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Abstract. We propose two inductive approaches for determining the cohomology of

Deligne-Lusztig varieties in the case of G = GLn. The first one uses Demazure compacti-

fications and analyses the corresponding Mayer-Vietoris spectral sequence. This allows us

to give an inductive formula for the Tate twist −1 contribution of the cohomology of a DL-

variety. The second approach relies on considering more generally DL-varieties attached

to hypersquares in the Weyl group. Here we give explicit formulas for the cohomology of

height one elements.

1. Introduction

In 1976 Deligne and Lusztig [DL] introduced certain locally closed subvarieties in flag

varieties over finite fields which are of particular importance in the representation theory of

finite groups of Lie type. They proved that their Euler-Poincaré characteristic considered

as a virtual representation of the corresponding finite group detect all irreducible repre-

sentations. However, a description of the individual cohomology groups of Deligne-Lusztig

varieties has been determined since then only in a few special cases. In fact Lusztig [L2]

considered the case of Coxeter elements, whereas Digne, Michel and Rouquier [DMR] gave

explicit formulas for groups of type A2,
2A2, B2,

2B2, G2,
2G2. Further Dudas [Du] treated

the cohomology associated to some short-length regular elements for split groups of type

F4 and En and [DM] one special case of type D4. On the other hand, the intersection

cohomology groups of their Zariski closures are considered in [L3]. In this paper we pro-

pose two inductive approaches for determining all of them in the case of G = GLn (resp.

for reductive groups of Dynkin type An−1). Although the key ideas work for other (split)

reductive groups as well, we have decided to treat here only the case of the general linear

group since things are more concrete in this special situation.

For a split reductive group G defined over k = Fq, let X be the variety of all Borel

subgroups of G. Let F : X → X be the Frobenius map over Fq. The Deligne-Lusztig
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variety associated to an element w ∈W of the Weyl group is the locally closed subset of X

given by

X(w) = {x ∈ X | inv(x, F (x)) = w}.

Here inv : X × X −→ W is the relative position map induced by the Bruhat lemma.

Then X(w) is a smooth quasi-projective variety defined over Fq. It is naturally equipped

with an action of G = G(k) and has dimension equal to the length of w. The `-adic

cohomology with compact support H∗c (X(w)) := H∗c (X(w),Q`) has therefore the structure

of a G×Gal(k/k)-module.

Let G = GLn . In this paper, we make heavily use of certain maps γ : X1 −→ X(w′) resp.

δ : X2 −→ X(sw′) introduced in [DL, Theorem 1.8] and implicitly further studied in [DMR].

Here w,w′ ∈W and s is a simple reflection with w = sw′s and `(w) = `(w′)+2. Further X1

is a closed subset of X(w) and X2 denotes its open complement. It is proved in loc.cit that γ

is a A1-bundle whereas δ is a Gm-bundle. Here we consider instead of the map δ its look-alike

X2 −→ X(w′s). The above maps extend to P1-bundles X2 ∪X(sw′) ∪X(w′s) −→ X(w′s)

and X1 ∪X(w′) −→ X(w′) which glue in turn to a P1-bundle

γ : X(Q) −→ X(w′s) ∪X(w′)

where X(Q) = X(w) ∪ X(sw′) ∪ X(w′s) ∪ X(w′). Here γ|X(w′s)∪X(w′) = id whereas the

restriction of γ to X(w, sw′) := X(w) ∪X(sw′) is a A1-bundle over the base X(w′s, w′) :=

X(w′s) ∪X(w′). In particular, we deduce that

H i
c(X(Q)) = H i

c(X(w′s, w′))⊕H i−2
c (X(w′s, w′))(−1)

for all integers i ≥ 2, which has been already known since [DMR].

The quadruple Q = {w′, sw′, w′s, w} ⊂W is a square in the sense of [BGG]. The notion

of a square appears in the theory of BGG-resolutions of finite-dimensional Lie algebra

representations. It seems to be also useful in the study of the cohomology of Deligne-Lusztig

varieties. We consider more generally hypersquares in W and even in the monoid F+ which

is freely generated by the subset S of simple reflections in W . In fact we work more generally

with DL-varieties and their Demazure compactifications attached to elements in F+ in the

spirit of [DMR]. More precisely, let w = si1 · · · sir be a fixed reduced decomposition of

w ∈ W and let X(w) be the associated Demazure compactification of X(w). This variety

is equipped with a compatible action of G. We consider the closed complement of X(w) in

X(w) which is - as already observed in [DL] - a union of smooth equivariant divisors. We

analyse the resulting spectral sequence converging to the cohomology of X(w). The crucial

point is that the intersection of these divisors is again a compactification of a DL-variety
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attached to some subexpression of si1 · · · sir ∈ F+. Concretely the spectral sequence has

the shape

Ep,q1 =
⊕

v�w,`(v)=`(w)−p

Hq(X(v)) =⇒ Hp+q
c (X(w)).

Another feature is that if w = sw′s ∈ F+, then X(w) is a P1-bundle over X(w′s). This

comes about from the fact that X(w) is paved by DL-varieties attached to squares of the

special type as above. So by induction on the length of w′s we know the cohomology of

the compactification X(w). Of course not every element w in F+ has the shape w = sw′s,

but by using a result of [GKP], every element can be transformed into such an element by

applying the usual Weyl group relations and a cyclic shift operator. We study henceforth the

effect on the cohomology by these operations. The start of induction is given by elements of

minimal length in their conjugacy classes, i.e. by Coxeter elements in Levi subgroups of G.

This is one reason why we deal only with reductive groups of Dynkin type An−1. In this case

the Demazure compactification of the standard Coxeter element can be considered as one

of the Drinfeld halfspace Ωn = Pn−1 \
⋃
H/Fq H (complement of all Fq-rational hyperplanes

in the projective space of lines in V = Fn), cf. [Dr], and may be realised as a sequence of

blow ups as it comes up in the arithmetic theory of Ωn over a local field [Ge, GK, I].

Theorem. Let G = GLn .

i) For all w ∈ F+, we have H i(X(w)) = 0 for odd i.

ii) Let w = sw′s with s ∈ S and w′ ∈ F+. Then there are decompositions

H i(X(w)) = H i(X(w′s))⊕H i−2(X(w′s))(−1) = H i(X(sw′))⊕H i−2(X(sw′))(−1).

iii) The action of the Frobenius on H i(X(w)) and H i
c(X(w)) is semi-simple for all w ∈ F+

and for all i ≥ 0.

iv) For all i ≥ 0, the cycle map Ai(X(w))Q` −→ H2i(X(w)) is an isomorphism
(
where

Ai(X(w)) is the Chow group of X(w) in degree i
)
.

Whereas part ii) of this theorem is already contained more generally for reductive groups

(and also for elements of the completed braid monoid) in [DMR, Prop. 3.2.3], it was pointed

out to me that part i) and iii) and iv) can be deduced from [L4]. Our proofs differ from

loc.cit.

It turns out that the cohomology of the varieties X(w) is similar to the classical situation

of Schubert varieties. Indeed, let ≺ be the Bruhat order on F+. For a parabolic subgroup

P ⊂ G, let iGP = IndGP (Q`) be the induced representation of the trivial one. By part ii)

of the above theorem and by studying the effect of the usual Weyl group relations on the
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Demazure compactifications of DL-varieties we are able to deduce the next statement. For

its proof and also the also the theorem hereafter, we use the identification of the cohomology

with Chow groups and consider excplict cycle classes.

Theorem. Let w ∈ F+. Then the cohomology of X(w) can be written as

H∗(X(w)) =
⊕
z�w

iGPwz (−`(z))[−2`(z)]

for certain std parabolic subgroups Pwz ⊂ G.

The gradings are not canonical as there are in general plenty of choices. However, they

behave functorial for appropriate choices as the following theorem says.

Theorem. Let w, v ∈ F+ with v ≺ w. Then there are gradings H2i(X(w)) =
⊕

z�w
`(z)=i

iGPwz

and H2i(X(v)) =
⊕

z�v
`(z)=i

iGP vz such that the natural homomorphism H2i(X(w)) −→ H2i(X(v))

is graded. Moreover, the maps iGPwz −→ iGP vz (which are induced by the double cosets of 1 in

WPwz \W/WP vz via Frobenius reciprocity) are either injective or surjective for all z � v.

In a next step we analyse the above spectral sequence attached to X(w) and its divisors.

By weight reasons the spectral sequence degenerates in E1 and we believe that it can be

evaluated via the following approach.

Conjecture. Let w ∈ F+ and fix an integer i ≥ 0. For v � w, there are gradings

H2i(X(v)) =
⊕
z�v
`(z)=i

iGP vz such that the complex

E•,2i1 : H2i(X(w)) −→
⊕
v≺w

`(v)=`(w)−1

H2i(X(v)) −→
⊕
v≺w

`(v)=`(w)−2

H2i(X(v)) −→ · · · −→ H2i(X(e))

is quasi-isomorphic to a direct sum
⊕

z�w
`(z)=i

H( · )z of complexes of the shape

H( · )z : iGPwz →
⊕
z�v�w

`(v)=`(w)−1

iGP vz →
⊕
z�v�w

`(v)=`(w)−2

iGP vz → · · · → iGP ez

(Here the maps iGP vz −→ iG
P v′z

in the complex are induced - up to sign - by the double cosets

of 1 in WP vz \W/WP v
′

z
via Frobenius reciprocity. Further iGP vz = (0) if z � v.).

As a consequence each element z which is smaller than w would induce by taking the

cohomology of the complex H( · )z a contribution with Tate twist −`(z) to the cohomology

of X(w). A similar statement holds true for period domains over finite fields [DOR]. We

are able to prove the conjecture in some cases. Additionally, we prove how to reduce the

issue to the case where w is again of the form w = sw′s.
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Theorem. i) The conjecture is true for Coxeter elements w.

ii) If w ∈ F+ is arbitrary, then the conjecture is true for i ∈ {0, 1, `(w)− 1, `(w)}.

Of course the cases i = 0 and i = `(w) are trivial. As a consequence we derive an

inductive formula for the Tate twist −1-contribution H∗c (X(w))〈−1〉 of the cohomology of a

DL-variety X(w). For a parabolic subgroup P of G, let vGP be the corresponding generalized

Steinberg representation.

Corollary. Let w = sw′s ∈ F+ with ht(sw′) ≥ 1. Then

H∗c (X(w))〈−1〉 =


H∗c (X(sw′))〈−1〉[−1] if s ∈ supp(w′)

H∗c (X(sw′))〈−1〉[−1]⊕ vGP (s)(−1)[−`(w)] if s /∈ supp(w′)

.

Here supp(w′) denotes the set of simple reflections appearing in w′ whereas P (s) is the

parabolic subgroup of G generated by B and s. Moreover, ht is the height function on

F+ (cf. Definition 5.3 for its definition). It has the property that ht(w) = ht(w′) + 1 if

w = sw′s as above. Further ht(w) = 0 if w is minimal length in its conjugacy class. The

start of the inductive formula is hence given by height one elements. Here we are even able

to determine all cohomology groups. For a partition λ of n, let jλ be the corresponding

irreducible G-representation.

Theorem. Let w = sw′s ∈W with ht(w) = 1 and assume that supp(w) = S.

i) If ht(sw′) = 0, then for i ∈ N, with `(w) < i < 2`(w)− 1,

H i
c(X(w′)) =

(
H i−2
c (X(w′))− j(i+1−n,1,...,1)(n− i)

)
(−1)− j(i+2−n,1...,1)(n− i− 1).

Furthermore,

H i
c(X(w)) =



vGB ⊕
(
vGP (s) − j(2,1...,1)

)
(−1) ; i = `(w)

0 ; i = 2`(w)− 1

iGG(−`(w)) ; i = 2`(w)

.

ii) If ht(sw′) = 1, then

H i
c(X(w)) = H i−2

c (X(w′s) ∪X(w′))(−1)⊕H i−1
c (X(sw′))

for all i 6= 2`(w)− 1, 2`(w)− 2 and H
2`(w)−1
c (X(w)) = H

2`(w)−2
c (X(w)) = 0.
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Moreover, we give an inductive recipe for the cohomology in degree 2`(w) − 2 of a DL-

variety X(w). Here the case of ht(w′) = 0 is treated by the above results.

Corollary. Let w = sw′s ∈ F+ with ht(w′) ≥ 1 and assume that supp(w) = S. Then

H2`(w)−2
c (X(w)) = H2`(w′s)−2

c (X(w′s))(−1)⊕ (iGP (w′) − i
G
G)(−`(w) + 1).

Here P (w′) is the parabolic subgroup of G which is generated by B and supp(w′) ⊂ S.

The proof of the two last formulas is based on the second approach for determining the

cohomology of DL-varieties. This alternative approach is pursued for arbitrary elements of

the Weyl group in the appendix. Whereas the previous approach uses Demazure resolutions,

i.e., DL-varieties attached to maximal hypersquares, this time the procedure goes the other

way round in the sense that the considered hypersquare grows. In fact, for determining the

cohomology of X(w), we study first the map

H i
c(X(w) ∪X(sw′)) −→ H i

c(X(sw′))

induced by the closed embedding X(sw′) ↪→ X(w) ∪ X(sw′). By induction on the length

the cohomology of the RHS is known. Further we give a conjecture on the structure of

this map. Hence it suffices to know the cohomology of the edge X(w) ∪ X(sw′) which

is - as explained above - induced by the cohomology of the edge X(w′s) ∪ X(w′). Thus

we have transferred the question of determining the cohomology of the vertex X(w) to the

knowledge of the cohomology of the edge X(w′s)∪X(w′), but which has has smaller length,

i.e. `(w′s) < `(w). In the next step one reduces similar to the case of an edge to the case of

a square etc. This second approach is a little bit vague as it depends among other things

on some more conjectures. Nevertheless, I have decided to include it into this paper for

natural reasons.

In Section 2 we review some facts on unipotent representations of GLn(Fq). In Section

3 we consider DL-varieties and study explicitly the case of a Coxeter element. In Section 4

we deal with squares and their associated DL-varieties. Here we treat in particular the case

of the special square Q = {sw′s, w′s, sw′, w′} and prove that the map X(Q) −→ X(w′s, w′)

is a P1-bundle. In section 5 we determine the cohomology of DL-varieties for G = GL4 and

in general for height 1 elements in W. In Section 6 we generalize the ideas of the foregoing

section to hypersquares. Section 7 deals with the cohomology of Demazure Varieties. In

Section 8 we reconsider the spectral sequence and discuss the conjecture mentioned above.

Finally in Section 9 we illustrate the Conjecture resp. the Theorem in the case of G = GL4 .
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Notation:

- Let k = Fq be a finite field of cardinality q with fixed algebraic closure k and absolute

Galois group Γ := Gal(k/k).

- We denote for any Γ-module V and any integer i, by V 〈i〉 the eigenspace of the arith-

metic Frobenius with eigenvalues of absolute value qi.

- Let G0 = GLn be the general linear group over k. Denote by G = G0 ×Fq F the base

change to the algebraic closure. Let T ⊂ B ⊂ G be the diagonal torus resp. the Borel

subgroup of upper triangular matrices. Let W ∼= Sn be the Weyl group of G and S be the

subset of simple reflections. For a subset I ⊂ S, we denote as usual by WI be the subgroup

of W generated by I.

- We also use the cyclic notation for elements in the symmetric group. Hence the ex-

pression w = (i1, i2, . . . , ir) denotes the permutation with w(ij) = ij+1 for j = 1, . . . , r − 1,

w(ir) = i1 and w(i) = i for all i 6∈ {i1, . . . , ir}.

- For a vector space V of dimension n over k and any integer 1 ≤ i ≤ n, we let Gri(V )

be the Grassmannian parametrizing subspaces of dimension i.

- We denote by 1 or e the identity in any group or monoid.
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- If a representation V admits a decomposition V =
⊕

i∈I Vi into subrepresentations,

then we simply call it a grading instead of I-grading.

Acknowledgements: I want to thank Olivier Dudas for his numerous remarks on this

paper. I am grateful for the invitation to Paris and all the discussions with François Digne

and Jean Michel. Finally I thank Roland Huber, Michael Rapoport and Markus Reineke

for their support.

2. Unipotent Representations of GLn

We start with a discussion on representations of G = GLn(k) which are called unipo-

tent. These kind of objects appear in the cohomology of Deligne-Lusztig varieties. In this

section, all representations will be in vector spaces over a fixed algebraically closed field C

of characteristic zero.

Recall that a standard parabolic subgroup (std psgp) P ⊂ G is a parabolic subgroup of

G with B ⊂ P. The set of all std psgp is in bijection with the set

D = D(n) =
{

(n1, . . . , nr) ∈ Nr | n1 + · · ·+ nr = n, r ∈ N
}

of decompositions of n. For a decomposition d = (n1, . . . , nr) ∈ D(n), we let Pd be the

corresponding std psgp with Levi subgroup MPd
=
∏
i GLni . There is a partial order ≤ on

D(n) defined by

d′ ≤ d if and only if Pd′ ⊂ Pd.

If P = Pd is a std psgp to a decomposition d ∈ D, then any d′ ∈ D induces a std psgp

Qd′ = MP ∩Pd′ of MP and this assignment gives a bijection between the sets

{d′ ∈ D | d′ ≤ d} ∼−→ { std psgps of MP}.

In the sequel we call the finite group P = P(k) attached to a std psgp P of G standard

parabolic of G, as well.

Recall that a parabolic subgroup of W is by definition the Weyl group of the Levi com-

ponent MP of some std psgp P. This defines a one-to-one correspondence between the std

psgp P of G and the parabolic subgroups WP of W . If P = Pd with d = (n1, . . . , nr) ∈ D,

then WP
∼= Sn1 × · · · × Snr .

We denote by P = P(n) the set of partitions of n. There is a map λ : D −→ P by

ordering a decomposition (n1, . . . , nr) in decreasing size. Let µ = (µ1, µ2, . . . , µn) and

µ′ = (µ′1, µ
′
2, . . . , µ

′
n) be two partitions of n. Consider the order ≤ on P defined by µ′ ≤ µ
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if for all r = 1, . . . , n, we have
r∑
i=1

µ′i ≤
r∑
i=1

µi.

Then the map λ is compatible with both orders in the sense that if d′ ≤ d then λ(d′) ≤ λ(d).

If P = Pd is a std psgp, then we also write λ(P ) for λ(d). On the other hand, two parabolic

subgroups are called associate, if their Levi components are conjugate under G. If P = Pd1

and P ′ = Pd2 with associated decompositions d1 = (n1, . . . , nr) and d2 = (n′1, . . . , n
′
r′) of n,

then P and P ′ are associate if and only if λ(d1) = λ(d2).

Let P be a std psgp of G. We denote by

iGP = IndGP 1

the induced representation of the trivial representation 1 of P. It coincides with the set

C[G/P ] of C-valued functions on G/P equipped with the natural action. Let Ĝ(iGB) be the

set of isomorphism classes of irreducible subobjects of iGB. We remind the reader of the

following properties of the representations iGP , cf. [DOR, Thm. 3.2.1].

Theorem 2.1. (i) iGP is equivalent to iGP ′ if and only if P is associate to P ′.

(ii) iGP contains a unique irreducible subrepresentation jGP which occurs with multiplicity one

and such that

HomG(jGP , i
G
P ′) 6= (0)⇔ λ(P ′) ≤ λ(P ).

(iii) We set for every µ ∈ P,
jµ = jGPµ

where Pµ is any std psgp with λ(Pµ) = µ. Then {jµ | µ ∈ P} is a set of representatives for

Ĝ(iGB).

Remarks 2.2. i) The proof of the above theorem makes use of the representation theory

of the symmetric group and is based on the following result of Howe [Ho]. Let Ŵ be the set

of isomorphism classes of irreducible representations of W . Analogously to the definition of

iGP , we set iWW ′ := IndWW ′ 1 for any subgroup W ′ of W. There exists a unique bijection

α : Ĝ(iGB) −→ Ŵ

characterized by the following property. An irreducible representation σ ∈ Ĝ(iGB) occurs in

iGP if and only if α(σ) occurs in iWWP
. Furthermore

dim HomG(σ, iGP ) = dim HomW (α(σ), iWWP
).

In particular, we get by Frobenius reciprocity

HomG(iGQ, i
G
P ) ∼= HomW (iWWQ

, iWWP
) = HomWQ

(1, iWWP
) = C[WQ\W/WP ].
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ii) Let P ⊂ Q be two standard parabolic subgroups. Then there is a natural inclusion

of G-representations iGQ ⊂ iGP which corresponds just to the double coset of e ∈ W in

WQ\W/WP . On the other hand, the map iGP −→ iGQ induced by e is given by δgP 7→∑
gP⊂gQ δgQ where δgP ∈ C[G/P ] is the Kronecker function with respect to gP ∈ G/P.

In general, for two arbitrary standard parabolic subgroups P,Q of G, the map iGP −→ iGQ
induced by e ∈W is injective (surjective) if and only if λ(P ) ≥ λ(Q) (λ(P ) ≤ λ(Q)). In fact,

this property which is a refinement of Theorem 2.1 ii) was observed by Liebler and Vitale

[LV] and reproved by Hazewinkel and Vorst [HV] for the symmetric group. In particular,

one can speak of the maximum max{iGP , iGQ} of these representations in this sense.

Corollary 2.3. Let V and W be two finite-dimensional isomorphic G-representations which

have decompositions V =
⊕s

i=1 i
G
Pi

, W =
⊕t

i=1 i
G
Qi

into induced representations. Then

s = t and after a possible permutation the parabolic subgroups Pi and Qi are associate for

all i = 1, . . . , s.

Proof. The trivial G-representation iGG = 1 appears with multiplicity one in each induced

representation iGP . Hence s = t.

The remaining proof is by induction on s. Let s = 1. Then the claim follows by the

theorem above. Let s > 1. Then again we use this theorem to deduce that there are associate

parabolic subgroups Pi, Qj in these decompositions. By dividing out the summand iGPi
∼= iGQj

on both sides, respectively, we get two decompositions of isomorphic representations of the

type above. Now the claim follows by induction on s. �

Definition 2.4. The generalized Steinberg representation associated to a std psgp P = Pd

is the quotient

vGP = iGP /
∑
Q)P

iGQ = iGPd/
∑
d′>d

iGPd′ .

For P = G, we have vGG = 1 whereas if B = P then we get the ordinary Steinberg

representation vGB which is irreducible. In general, the generalized Steinberg representations

vGP are not irreducible. More precisely, we have the following criterion.

Proposition 2.5. Let d ∈ D. Then vGPd is irreducible if and only if d = (k, 1, . . . , 1) for

some k with 1 ≤ k ≤ n.

Proof. By Remark 2.2 it suffices to show that the corresponding claim is correct for the

attached Weyl group representation vWWd
:= iWWd

/
∑

d′>d i
W
Wd′

.

First let d = (k, 1, . . . , 1) for some k with 1 ≤ k ≤ n. By induction hypothesis the

n − 1-tuple d̃ = (k, 1, . . . , 1) ∈ Zn−1 which is induced by deleting the last entry gives rise
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to an irreducible Sn−1-representation V. By Pieri’s formula [FH] we have a decomposition

IndSnSn−1
(V ) =

∑
λ Vλ where λ ∈ P ranges over all partitions obtained by adding the integer

1 to the n − 1-tuple d̃. Hence for k ≥ 2, there are exactly 3 irreducible representations

appearing in this sum. Otherwise there are 2 of them. In any case the irreducible represen-

tation jd is one of them. On the other hand, we have IndSnSn−1
(V ) = iWWd

/
∑

d′>d
d′ 6=(k,1,...,1,2)

iWWd′
.

The missing contribution iWW(k,1,...,1,2)
covers the remaining irreducible representations. Thus

vWWd
and therefore vGPd = jd are irreducible.

Suppose now that d is not of the shape above. We shall see that the representation

vWWd
is reducible. In a first step we may assume that d is a partition since vWWλ(d)

⊂ vWWd
.

Then we consider the partition (d1 + 1, d2 − 1, d3, . . . , dn). By Remark 2.2 the irreducible

representation attached to (d1 + 1, d2 − 1, d3, . . . , dn) appears in vWWd
. Hence the latter one

is not irreducible. �

Let us recall some further properties of the representations iGP . Let P = Pd ⊂ G for some

d ∈ D. Let d′ ≤ d and consider the std psgp Qd′ ⊂ MP of MP . We consider the induced

representation iMP
Qd′

as a P -module via the trivial action of the unipotent radical of P. Then

IndGP (iMP
Qd′

) = iGPd′ .

Since IndGP is an exact functor we get for any d′′ ∈ D with d′ ≤ d′′ ≤ d, the identity

IndGP (iMP
Qd′

/iMP
Qd′′

) = iGPd′
/iGPd′′

. In particular, we conclude that

IndGP (vMP
Qd′

) = iGPd′/
∑

{d′′∈D|d′<d′′≤d}

iGPd′′ .

Consider the special situation where d = (n1, n2) ∈ D. Then P = P(n1,n2) and MP =

M1 ×M2 with M1 = GLn1 , M2 = GLn2 . Let for i = 1, 2, di ∈ D(ni) be a decomposition

of ni and consider the corresponding std psgps Pdi of Mi. Denote by (d1, d2) ∈ D(n) the

glued decomposition of n.

Lemma 2.6. We have the identity

(2.1) IndGP(n1,n2)
(vM1
Pd1
� vM2

Pd2
) = iGP(d1,d2)

/
∑
d′1>d1

iGP(d′1,d2)
+
∑
d′2>d2

iGP(d1,d
′
2)
.

Proof. Since

iM1
Pd1
� iM2

Pd2
= iM1×M2

Pd1×Pd2

we get

IndGP(n1,n2)
(iM1
Pd1
� iM2

Pd2
) = iGP(d1,d2)

.
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Then the identity above follows by applying the exact functor IndGP(n1,n2)
to the exact

sequence

0 −→
∑
d′1>d1

iM1
Pd′1
� iM2

Pd2
+
∑
d′2>d2

iM1
Pd1
� iM2

Pd′2
−→ iM1

Pd1
� iM2

Pd2
−→ vM1

Pd1
� vM2

Pd2
−→ 0.

�

For the next property of generalized Steinberg representations, we refer to [Le] (resp.

to [DOR, Thm. 3.2.5] for a detailed discussion on this complex). Here we set for any

decomposition d = (n1, . . . , nr) ∈ D, r(d) = r.

Proposition 2.7. Let P = Pd, where d ∈ D. Then there is an acyclic resolution of vGP by

G-modules,

(2.2) 0→ iGG →
⊕
d′≥d
r(d′)=2

iGPd′ →
⊕
d′≥d
r(d′)=3

iGPd′ → · · · →
⊕
d′≥d

r(d′)=r(d)−1

iGPd′ → iGPd → vGP → 0.

�

Remark 2.8. The prove of Proposition 2.7 relies on some simplicial arguments as follows,

cf. loc.cit. Let d, d′ ∈ D. Then we have

(2.3) iGPd ∩ iGPd′ = iGPd∨d′

for some d ∨ d′ ∈ D. Further for all d1, . . . , dr ∈ D, we have

(2.4) iGPd ∩ (iGPd1
+ iGPd2

+ · · ·+ iGPdr ) = (iGPd ∩ i
G
Pd1

) + · · ·+ (iGPd ∩ i
G
Pdr

).

We reinterpret the complex (2.2) as follows. Let F+ be the monoid which is freely

generated by the subset S ⊂W of simple reflections. Denote by

(2.5) γ : F+ −→W

the natural map. For w = si1 · · · sir ∈ F+, let `(w) := r be the length and

supp(w) := {si1 , . . . , sir}

its support. Any subword v which is induced by erasing factors in w gives by definition rise

to an element which is shorter with respect to the Bruhat ordering � on F+, cf. also [Hu].

Note that this ordering is not compatible with the usual one ≤ on W via γ.

For w ∈ F+, let I(w) ⊂ S be a minimal subset such that w is contained in the submonoid

generated by I(w). Let

(2.6) P (w) = PI(w) ⊂ G
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be the std parabolic subgroup generated by B and I(w). Alternatively, let d(w) ∈ D be the

decomposition which corresponds to the subset supp(w) ⊂ S under the natural bijection

D ∼−→ S. Then P (w) = Pd(w).

We may define for w ∈ F+ the following complex where the differentials are defined

similar as above:

(2.7) C•w : 0→ iGP (w) →
⊕
v�w

`(v)=`(w)−1

iGP (v) →
⊕
v�w

`(v)=`(w)−2

iGP (v) → · · · →
⊕
v�w
`(v)=1

iGP (v) → iGP (e) → 0.

Example 2.9. Let w = Coxn = s1s2 . . . sn−1 ∈ F+ be the standard Coxeter element. Then

the complex C•w coincides - up to augmentation in the Steinberg representation vGB - with

the complex (2.2) where d = d(e).

Definition 2.10. Let w ∈ F+. Then we say that w has full support if supp(w) = S.

Proposition 2.11. Let w ∈ F+ have full support. Then the complex C•w is quasi-isomorphic

to C•Cox.

Proof. We may suppose that w is not a Coxeter element. Hence there exists a simple

reflection s ∈ S which appears at least twice in w. Write w = w1sw
′sw2 with s ∈ S and

w1, w2, w
′ ∈ F+. Of course the subword v = w1w

′sw2 has full support, as well. Hence by

induction on the length the complex C•v is quasi-isomorphic to C•Cox. On the other hand,

for any subword v1sv
′sv2 of w, we have P (v1sv

′v2) = P (v1sv
′sv2). Hence the difference

between the complexes C•w and C•v is a contractible complex. The result follows. �

Let w ∈ F+ and s ∈ supp(w). Hence we may write w = w1sw2 for some subwords

w1, w2 ∈ F+ of w. Then we also use the notation

w/s := w1w2 ∈ F+

for convenience. We may define analogously to (2.7) the complex

(2.8) C•w,s : 0→ iGP (w) →
⊕
s�v�w

`(v)=`(w)−1

iGP (v) →
⊕
s�v�w

`(v)=`(w)−2

iGP (v) → · · · → iGP (s) → 0.

Example 2.12. Let w = Coxn ∈ F+ be the standard Coxeter element and s ∈ S. Then

the complex C•w,s coincides - up to augmentation with respect to the generalized Steinberg

representation - with the complex (2.2) where d = d(s), i.e., P = P (s).

With the same arguments as in Proposition 2.11 one proves the next statement.
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Proposition 2.13. Let w ∈ F+ have full support and let s ∈ supp(w). Then the complex

C•w,s is quasi-isomorphic to C•Cox,s if s 6∈ supp(w/s). Otherwise, it is acyclic. �

More generally, let w ∈ F+ and fix a subword u ≺ w. For any v ∈ F+ with u � v � w,

let Pv ⊂ G be a std psgp chosen inductively in the following way. Start with an arbitrary

std psgp Pu ⊂ G. Let u ≺ v � w and suppose that for all u � z ≺ v, the std psgp Pz

are already defined. Set {z1, . . . , zr} = {u � z ≺ v | `(z) = `(v) − 1}. Then let Pv ⊂ G

be a std psgp such that iGPv = A ⊕ B where A ⊂
⋂
i i
G
Pzi

and B maps to zero under all the

maps iGPv −→ iGPzi
induced by the double cosets of e ∈ W in WPv \W/WPzi

via Frobenius

reciprocity. Hence we get a sequence of G-representations

(2.9) 0→ iGPw →
⊕
u�v�w

`(v)=`(w)−1

iGPv →
⊕
u�v�w

`(v)=`(w)−2

iGPv → · · · →
⊕
u�v�w

`(v)=`(u)+1

iGPv → iGPu → 0

which we equip analogously with the same signs as above. By the very construction of the

sequence we derive the following fact.

Lemma 2.14. The sequence (2.9) is a complex. �

Example 2.15. Let G = GL4 and w, u ∈ F+ with `(w) = `(u) + 2. The sequence

iGP(3,1)
−→ iGP(3,1)

⊕ iGP(2,2)
−→ iGP(3,1)

(with differentials as explained above) is a complex in the sense above, whereas

iGP(2,2)
−→ iGP(2,2)

⊕ iGP(3,1)
−→ iGP(2,2)

is not.

For later use, we introduce the next definition.

Definition 2.16. Let V be a finite-dimensional G-representation. We denote by supp(V )

the set of isomorphism classes of irreducible subrepresentations which appear in V.

Let f : V −→ W be a homomorphism of G-representations. We get for each irreducible

G-representation Z an induced map

fZ : V Z −→WZ

of the Z-isotypic parts.
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Definition 2.17. Let f : V −→W be a homomorphism of G-representations.

i) We call f si-surjective resp. si-injective resp. si-bijective if the map fZ is surjective

resp. injective resp. bijective for all Z ∈ supp(V ) ∩ supp(W ).

ii) We say that f has si-full rang if the map fZ has full rang for all Z ∈ supp(V )∩supp(W ).

Remarks 2.18. i) The above definition makes of course sense for arbitrary groups. We

will apply it in the upcoming sections in the case of H := G×Γ. We shall see later on that

the action of H on the considered geometric representations is semi-simple.

ii) Obviously, the homomorphism f has si-full rang if and only if the map fZ is injective

or surjective for all Z ∈ supp(V ) ∩ supp(W ).

We close this section with the following observation.

Lemma 2.19. Let V 1 f1−→ V 2 f2−→ V 3 f3−→ V 4 be an exact sequence of H-modules with

supp(V 1) ∩ supp(V 4) = ∅.

a) If f1 is si-surjective then f2 is si-injective.

b) If f3 si-injective then f2 si-surjective,

c) f2 has si-full rang.

Proof. a) Let Z ∈ supp(V 2) ∩ supp(V 3). If the map fZ2 has a kernel it follows that V ∈
supp(V 1). Since f1 is si-surjective we deduce that fZ2 is the zero map. Hence V Z

3 maps

injectively into V 4 which implies Z ∈ supp(V 4) which is a contradiction to the assumption.

b) Let Z ∈ supp(V 2) ∩ supp(V 3). If the map fZ2 is not surjective it follows that V ∈
supp(V 4). Since f3 is si-injective we deduce that fZ2 is the zero map which implies Z ∈
supp(V 1) which is again a contradiction to the assumption.

c) This is obvious. �

3. Deligne-Lusztig varieties

Let X = XG be the set of all Borel subgroups of G. This is a smooth projective algebraic

variety homogeneous under G. By the Bruhat lemma the set of orbits of G on X ×X can

be identified with W. We denote by O(w) the orbit of (B,wBw−1) ⊂ X × X and by

O(w) ⊂ X ×X its Zariski closure.
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Let F : X → X be the Frobenius map over Fq. The Deligne-Lusztig variety associated

to w ∈W is the locally closed subset of X given by

X(w) = XG(w) =
{
x ∈ X | inv(x, F (x)) = w

}
where by definition inv(x, F (x)) = w ⇔ (x, F (x)) ∈ O(w). Denote by ≤ the Bruhat order

and by ` the length function on W. Then X(w) is a smooth quasi-projective variety of

dimension `(w) defined over Fq and which is equipped with an action of G, cf. [DL, 1.4].

We denote by X(w) ⊂ X its Zariski closure.

Before we proceed, let us recall some properties of the varieties O(w) we need in the

sequel, cf. loc.cit. If w = w1w2 with `(w) = `(w1) + `(w2) then

(1) a) (B,B′) ∈ O(w1) and (B′, B′′) ∈ O(w2) implies (B,B′′) ∈ O(w)

b) If (B,B′′) ∈ O(w), then there is a unique B′ ∈ X with (B,B′) ∈ O(w1) and

(B′, B′′) ∈ O(w2).

In other words, there is an isomorphism of schemes O(w1)×X O(w2) ∼= O(w).

(2) Let w,w′ ∈W. Then O(w′) ⊂ O(w) ⇔ w′ ≤ w for the Bruhat order ≤ on W.

As in the case of usual Schubert cells, there is by item (2) the following relation concerning

the closures of DL-varieties. Let w′, w ∈W . Then

X(w′) ⊂ X(w)⇔ w′ ≤ w.

It follows that we have a Schubert type stratification

(3.1) X(w) =
⋃
v≤w

X(v).

In particular if w′ ≤ w with `(w) = `(w′) + 1, then X(w) ∪ X(w′) is a locally closed

subvariety of X which is moreover smooth since the dimensions of X(w) and X(w′) differs

by one.

Example 3.1. Let G = GL3 and identify X with the full flag variety of V = F3. Then

X(1) = X(Fq)

X((1, 2)) =
{

(0) ⊂ V 1 ⊂ V 2 ⊂ V | V 2 is k-rational, F (V 1) 6= V 1
}

X((2, 3)) =
{

(0) ⊂ V 1 ⊂ V 2 ⊂ V | V 1 is k-rational, F (V 2) 6= V 2
}

X((1, 2, 3)) =
{

(0) ⊂ V 1 ⊂ V 2 ⊂ V | F (V 1) ⊂ V 2, F (V i) 6= V i, i = 1, 2
}

X((1, 3, 2)) =
{

(0) ⊂ V 1 ⊂ V 2 ⊂ V | V 1 ⊂ F (V 2), F (V i) 6= V i, i = 1, 2
}

X((1, 3)) =
{

(0) ⊂ V 1 ⊂ V 2 ⊂ V | F (V 1) * V 2, V 1 * F (V 2)
}
.
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Let S = {s1, . . . , sn−1} ⊂ W be the set of simple reflections. Recall that a Coxeter

element w ∈ W is given by any product of all s ∈ S (with multiplicity one). In the sequel

we denote by

Coxn := s1 · s2 · · · sn−1 = (1, 2, . . . , n) ∈W

the standard Coxeter element.

Example 3.2. Let w = Coxn. Then X(w) can be identified via the projection map

X −→ Pn−1 with the Drinfeld space

Ω(V ) = Ωn = Pn−1 \
⋃

H/Fq
H

(complement of all Fq-rational hyperplanes in the projective space of lines in V = Fn), cf.

[DL], §2. Its inverse is given by the map

Ω(V ) −→ X(w)

x 7→ x ⊂ x+ F (x) ⊂ x+ F (x) + F 2(x) ⊂ · · · ⊂ V

For any Coxeter element w for GLn, the corresponding DL-variety X(w) is universally

homeomorphic to Ωn, cf. [L2], Prop. 1.10.

In the sequel we denote for any variety X defined over k, by H i
c(X) = H i

c(X,Q`) (resp.

H i(X) = H i(X,Q`)) the `-adic cohomology with compact support (resp. the `-adic coho-

mology) in degree i. For a Deligne-Lusztig variety X(w), there is by functoriality an action

of H = G× Γ on these cohomology groups.

Proposition 3.3. Let w = Coxn be the standard Coxeter element. Then

H∗c (X(w)) =

n⊕
k=1

j(k,1,...,1)(−(k − 1))[−(n− 1)− (k − 1)].

(Here for an integer m ∈ Z, we denote as usual by (m) the Tate twist of degree m.)

Proof. See [L2, O] resp. [SS] in the case of a local field. �

The cohomology of the Zariski closure of X(Coxn) has the following description.

Proposition 3.4. Let w = Coxn ∈W be the standard Coxeter element. Then

H∗(X(w)) =
⊕
v≤w

J(v)(−`(v))[−2`(v)],

where J(v) = JG(v) is defined inductively as follows. Write v in the shape

v = v′ · sj+1 · sj+2 · · · sj+l
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where 1 ≤ j ≤ n− 2, l ≥ 0 and where v′ ≤ Coxj = s1 · · · sj−1. Then

J(v) = IndGP(j,n−j)
(JGLj (v′)� 1).

Proof. In terms of flags the DL-variety X(w) has the description

X(w) =
{
V • | F (V j) ⊂ V j+1, F (V j) 6= V j , ∀ 1 ≤ j ≤ n− 1

}
.

The Zariski closure X(w) of X(w) in X is then given by the subset

X(w) =
{
V • | F (V j) ⊂ V j+1, ∀ 1 ≤ j ≤ n− 1

}
which can be identified with a sequence of blow-ups, cf. [Ge, GK, I]. Start with Y0 =

Pn−1 = P(V ) where V = Fn and consider the blow up B1 in the set of rational points

Z0 = Pn−1(k) ⊂ Y0. Then we may identify B1 with the variety {V 1 ⊂ V 2 ⊂ V | F (V 1) ⊂
V 2}. We set Y1 =

⋃
W∈Gr2(V )(k) P(W ) ⊂ B1 which is the strict transform of the finite

set of k-rational planes and blow up B1 in Y1. The resulting variety B2 can be identified

with {V 1 ⊂ V 2 ⊂ V 3 ⊂ V | F (V i) ⊂ V i+1, i = 1, 2}. Now we repeat this construction

successively until we get Bn−2 = X(w). Hence the cohomology of X(w) can be deduced

from the usual formula for blow ups [SGA5]. More precisely, each time we blow up, we have

to add the cohomology of the variety∐
W∈Grj(V )(k)

(
XGL(W )(Coxj)× P(V/W )

)
\
(
XGL(W )(Coxj)× P0

)
which is

⊕
v′≤Coxj

n−j−1⊕
l=1

IndGP(j,n−j)
(JGLj (v′)� 1)(−`(v′ · sj+1 · sj+2 · · · sj+l))[−2(`(v′) + l)].

The start of this procedure is given by the cohomology of the projective space P(V ), which

we initialize by H2i(P(V )) = J(s1s2 · · · si)(−i) = iGG(−i), i = 1, . . . , n− 1. �

Remarks 3.5. i) Since all DL-varieties for Coxeter elements are homeomorphic [L2], they

have all the same cohomology. By considering stratifications (3.1) for different Coxeter

elements, the same is true for their Zariski closures. Alternatively, one might argue that

the morphism σ, τ of the upcoming Proposition 4.3 for different Coxeter elements extend

to their Zariski closures, thus inducing an isomorphism on their cohomology.

ii) It follows by the description of X(Coxn) in terms of blow ups together with Remark

3.5 i) that the cycle map

Ai(X(w))Q` −→ H2i(X(w))
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is an isomorphism for every Coxeter element w. In fact, in the Chow group the same formulas

concerning blow ups are valid [SGA5]. The first Chow group of X(Coxn) is also considered

in [RTW].

iii) Let w = sn−1sn−2 · · · s2s1. Then by symmetry, there is by considering the dual

projective space (Pn−1)∨ a procedure for realising

X(w) =
{
V • | V i ⊂ F (V i+1), i = 1, . . . , n− 1

}
as a sequence of blow ups.

iv) Since X(Coxn) is smooth and projective the above formula can be also deduced by

considering its stratification into DL-varieties together with Propositions 3.3 and 3.6.

On the other hand, for elements w ∈W having not full support, the cohomology of X(w)

can be deduced by an induction process. Here recall that we say that w has full support if

it is not contained in any proper parabolic subgroup WP of W .

Proposition 3.6. Let w ∈ W have not full support. Let P = P(i1,...,ir) be a minimal

parabolic subgroup such that w ∈WP . Then

H∗c (X(w)) = IndGP
(
H∗c (XMP

(w))
)

and

H∗(X(w)) = IndGP
(
H∗(XMP

(w))
)

where XMP
(w) =

∏r
j=1XGLij

(wj) and w = w1 · · ·wr with wj ∈ Sij , j = 1, . . . , r.

Proof. See [DL, Prop. 8.2]. �

Remark 3.7. The proof in loc.cit. shows that there is an identification of varieties X(w) =

IndGP
(
XMP

(w)
)
. Hence we have the same formulas for Chow groups. In particular, by using

Remark 3.5 we see that the cycle map is an isomorphism for all Coxeter elements in Levi-

subgroups, as well.

In the case when we erase some simple reflection in a reduced expression of a Coxeter

element, we may deduce from the above results the following consequence. Here we ab-

breviate the partition or decomposition (k, 1, . . . , 1) ∈ P by (k, 1(n−k)). For any triple of

integers i, k, l ∈ Z with 1 ≤ i ≤ n and 1 ≤ k ≤ i, 1 ≤ l ≤ n− i, we set

Ak,l = iGP
(k,1(i−k),l,1(n−i−l))

/
∑

d1>(k,1(i−k))

iGP
(d1,l,1

(n−i−l))
+

∑
d2>(l,1(n−i−l))

iGP
(k,1(k−i),d2)

.
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Corollary 3.8. Let w = Coxn = s1 · · · sn−1 be the standard Coxeter element and let1

w′ = s1 · · · ŝi · · · sn−1 ∈W . Then

H∗c (X(w′)) =
n⊕

m=2

⊕
k+l=m

Ak,l(−(m− 2))[−(n− 2)− (m− 2)].

Proof. The Weyl group element w′ is contained in the parabolic subgroup WP with P =

P(i,n−i). Now the expressions s1 · · · si−1 and si+1 · · · sn−1 are both Coxeter elements in the

Weyl groups attached to M1 = GLi resp. M2 = GLn−i . The cohomology of H∗c (XM1(w1))

resp. H∗c (XM2(w2)) are given by Proposition 3.3:

H∗c (XM1(w1)) =
⊕

k=1,...,i

jM1

(k,1,...,1)(−(k − 1))[−(i− 1)− (k − 1)]

resp.

H∗c (XM2(w2)) =
⊕

l=1,...,n−i
jM2

(l,1,...,1)(−(l − 1))[−((n− i)− 1)− (l − 1)].

Thus we get by Proposition 3.6 and identity (2.1)

H∗c (X(w′)) = IndGP(i,n−i)

(
H∗c (XM1(w1))�H∗c (XM2(w2))

)
=

n⊕
m=2

⊕
k+l=m

Ak,l(−(k + l − 2))[−(n− 2)− (k + l − 2)].

�

Let w = Coxn ∈ W . As we see from Proposition 3.4 the cohomology of X(w) vanishes

in odd degree. For any integer i ≥ 0, let

(3.2)

C• : H2i(X(w)) −→
⊕
v<w

`(v)=`(w)−1

H2i(X(v)) −→ · · · −→
⊕
v<w
`(v)=1

H2i(X(v)) −→ H2i(X(e))

be the natural complex (with C0 = H2i(X(w))) induced by the closed complement
⋃
v<wX(v)

of X(w) in X(w). This complex determines by Propositions 3.4 and 3.6 the contribution

with Tate twist −i to the cohomology of X(w) (compare also the lines following Lemma

7.1 for a more precise explanation of this issue), i.e.

H∗c (X(w))〈−i〉 =
⊕
j≥0

Hj(C•)[−2i− j].

On the other hand, we may consider the grading

H2i(X(w)) =
⊕
z≤w
`(z)=i

G(w)z

1Here the symbol ŝi means as usual that si is deleted from the above expression.
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described in Proposition 3.4, i.e. G(w)z = J(z)(−`(z)) for z < w. By Proposition 3.6 we

also have such a grading for all subexpressions v < w, i.e. H2i(X(v)) =
⊕

z≤v
`(z)=i

G(v)z.

Lemma 3.9. Let v1 < v2 ≤ w with `(v2) = `(v1) + 1. Then G(v2)z ⊂ G(v1)z for all z ≤ v1.

Proof. By Proposition 3.6 we may suppose that w = v2 and v = v1 = s1 · · · ŝi · · · sn−1. Let

z = z′ · sj+1 · sj+2 · · · sj+l with z′ ≤ Coxj and l ≥ 1 Then G(w)z = IndGP(j,n−j)
(JGLj (z′)�1).

If i < j then z′ = z′1z
′
2 with z′1 < Coxi and z′2|si+1 · · · sj−1. Thus we see that G(v)z =

IndGP(i,n−i)
(JGLi×GLn−i(z)) with

JGLi×GLn−i(z) = JGLi(z′1)� JGLn−i(z′2 · sj+1 · sj+2 · · · sj+l)

= JGLi(z′1)� Ind
GLn−i
P(j−i,n−j)

(JGLj−i(z′2)� 1).

Hence G(v)z = IndGP(i,j−i,n−j)

(
JGLi(z′1)� JGLj−i(z′2)� 1

)
. Since we have by induction on j

the inclusion JGLj (z′) ⊂ Ind
GLj
P(i,j−i)

(JGLi(z′1)� JGLj−i(z′2)) the claim follows in this case.

If i = j then one deduces moreover by arguing in the same way that the inclusion is an

identity, i.e., G(w)z = G(v)z as JGLn−i(si+1si+2 · · · si+l) is the trivial representation.

If i > j then we necessarily have i > j + l. Then z = z1z2 with z1 ≤ Coxi and z2 = e.

Thus

G(v)z = IndGP(i,n−i)
(JGLi×GLn−i(z))

= IndGP(i,n−i)
(JGLi(z1)� JGLn−i(z2))

= IndGP(i,n−i)
(IndGLi

P(j,i−j)
(JGLj (z′)� 1)� iGLn−i

B∩GLn−i
)

= IndGP(j,i−j,n−i)
(JGLj (z′)� 1� iGLn−i

B∩GLn−i
).

Hence it contains G(w)z. �

By Lemma 2.14 we get for each subword z ≤ w, a complex

G( · )z : G(w)z −→
⊕
z≤v≤w

`(v)=`(w)−1

G(v)z −→ · · · −→
⊕
z≤v≤w
`(v)=1

G(v)z −→
⊕
z≤e
`(z)=i

G(e)z.

Lemma 3.10. If z 6∈ {s1, s1s2, . . . ,Coxn} then this complex is acyclic. Otherwise, it coin-

cides with the complex (2.2) with respect to the generalized Steinberg representation vGP (z).

Proof. Let z = s1s2 · · · si. Then the complex G( · )z is easily verified by the above description

just the complex (2.2) with respect to vGP (z). So let z 6∈ {s1, s1s2, . . . ,Coxn} and write

z = z′ · sj+1 · sj+2 · · · sj+l with z′ ≤ Coxj and l ≥ 1 as above. In particular, we have

j ≥ 1. By the proof of the foregoing lemma, we know that for z ≤ v ≤ w with sj |v we
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have G(v)z = G(v/sj)z. By standard simplicial arguments it follows that the complex is

contractible. �

Hence by summing up we get a graded complex⊕
z≤w
`(z)=i

G(w)z −→
⊕
v≤w

`(v)=`(w)−1

⊕
z≤v
`(z)=i

G(v)z −→ · · · −→
⊕
v≤w
`(v)=1

⊕
z≤v
`(z)=i

G(v)z −→
⊕
z≤e
`(z)=i

G(e)z(3.3)

=
⊕
z≤w
`(z)=i

(
G(w)z −→

⊕
z≤v≤w

`(v)=`(w)−1

G(v)z −→ · · · −→
⊕
z≤v≤w
`(v)=1

G(v)z −→
⊕
z≤e
`(z)=i

G(e)z

)
.

Proposition 3.11. The complexes (3.2) and (3.3) are quasi-isomorphic.

Proof. We have a natural morphism of complexes (3.3) −→ (3.2). The claim follows now

from the foregoing lemma and Proposition 3.3. �

More generally, we believe that the natural generalization holds true.

Conjecture 3.12. Let u < w and i ∈ N. Then for all v ∈ W with u ≤ v ≤ w, there are

gradings

H2i(X(v)) =
⊕
z≤v
`(z)=i

H(v)z

into induced representations H(v)z = iGP vz for certain parabolic subgroups P vz (here the H(v)z

do not necessarily coincide with the expressions G(v)z in (3.3)) such that the complex

(3.4) H2i(X(w)) −→
⊕
u≤v≤w

`(v)=`(w)−1

H2i(X(v)) −→ · · · −→
⊕
u≤v≤w

`(v)=`(u)+1

H2i(X(v)) −→ H2i(X(u))

is quasi-isomorphic to a graded complex⊕
z≤w
`(z)=i

H(w)z −→
⊕
u≤v≤w

`(v)=`(w)−1

⊕
z≤v
`(z)=i

H(v)z −→ · · · −→
⊕
u≤v≤w
`(v)=1

⊕
z≤v
`(z)=i

H(v)z −→
⊕
z≤u
`(z)=i

H(u)z(3.5)

=
⊕
z≤w
`(z)=i

(
H(w)z −→

⊕
u≤v≤w

`(v)=`(w)−1

H(v)z −→ · · · −→
⊕
u≤v≤w
`(v)=1

H(v)z −→
⊕
z≤u
`(z)=i

H(u)z

)
.

We shall prove a more concrete version of the conjecture in the case where `(u) = `(w)−1.

Proposition 3.13. Let w be a Coxeter element and let w′ ∈ W with w′ < w and `(w′) =

`(w)−1. There are gradings H2j(X(w)) =
⊕

z≤w
`(z)=j

H(w)z and H2j(X(w′)) =
⊕

z≤w′
`(z)=j

H(w′)z

into induced representations such that the homomorphism H2j(X(w)) −→ H2j(X(w′)) co-

incides with the graded one. Moreover, the maps H(w)z −→ H(w′)z are injective for all

z ≤ w′.
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As for the proof we note that by Remark 3.5 the cycle map Aj(X(w))Q` −→ H2j(X(w))

is an isomorphism. The same holds true for the subvariety X(w′). Moreover for the Chow

groups, we have by the constructive proof an integral version of Proposition 3.4, i.e. the

induced representations iGP appearing in loc.cit. are replaced by their integral models

iGP (Z) = {f : G −→ Z | f(gp) = f(g) ∀p ∈ P}. Thus by Poincaré duality, the above

result follows from the following statement.

Proposition 3.14. Let w be a Coxeter element and let w′ ∈ W with w′ < w and `(w′) =

`(w)− 1. There are gradings Aj(X(w)) =
⊕

z≤w
`(z)=j

A(w)z and Aj(X(w′)) =
⊕

z≤w′
`(z)=j

A(w′)z

into induced representations iGP (Z) such that the homomorphism Aj(X(w′)) −→ Aj(X(w))

coincides with the graded one. Moreover, the maps A(w′)z −→ A(w)z are surjective for all

z ≤ w′.

Proof. We may assume that w = Coxn is the standard Coxeter element. If w′ = s2 · · · sn−1 ∈
W , the claim is a result of the proof of Proposition 3.4 following inductively the process of

blow ups. Here we may consider on the cohomology groups Aj(X(w)) and Aj(X(w′)) =

IndGP(1,n−1)

(
Aj(XGL1×GLn−1(w′))

)
the natural gradings given by loc.cit.

If on the other extreme w′ = s1 · · · sn−2, then we identify X(Coxn) with the variety

X(sn−1sn−2 · · · s2s1) (cf. Remark 3.5 i)) and argue in the same way as above using the

variant of Proposition 3.4 (cf. Remark 3.5 iii)) describing the latter space as a sequence

of blow ups using hyperplanes. Here the gradings are induced by mirroring the Dynkin

diagram and the induced representations.

In general, let w′ = s1 · · · ŝi · · · sn−1. Here the reasoning is a kind of mixture of the

previous cases. We consider the exact sequences [Fu, Prop. 6.7 e)]

0 −→ Ai(Yn−3) −→ Ai(Ỹn−3)⊕Ai(Bn−3) −→ Ai(X(w)) −→ 0

and

0 −→ Ai(Y
′
n−3) −→ Ai(Ỹ

′
n−3)⊕Ai(B′n−3) −→ Ai(X(w′)) −→ 0

where B′n−3 = Bn−3 ∩ X(w′), Y ′n−3 = Yn−3 ∩ X(w′), Ỹn−3 = X(s1s2 . . . sn−3sn−1) is the

preimage of Yn−3 in X(w) and Ỹ ′n−3 = Ỹ ′n−3 ∩X(w′). By induction on n and the steps in

the blow up process it suffices to show that the claim of the statement is true for the maps

i∗ : Aj(Ym−1) −→ Aj(Bm−1) with m 6= 1, n− 1.

Recall that

Bm−1 = {(0) ⊂ V 1 ⊂ V 2 ⊂ · · · ⊂ V m−1 ⊂ V m ⊂ V | F (V j) ⊂ V j+1, j = 1, . . . ,m− 1}

and

Ym−1 = {V • ∈ Bm−1 | F (V m) = V m}.
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We can consider the equivalent situation given by

B′m−1 = {(0) ⊂ V 1 ⊂ V 2 ⊂ · · · ⊂ V m−1 ⊂ V m ⊂ V | V j ⊂ F (V j+1), j = 1, . . . ,m− 1}

and

Y ′m−1 = {V • ∈ B′m−1 | F (V m) = V m}.

Similarly as above this situation is induced by successive blow ups starting with B = {(0) ⊂
V m−1 ⊂ V m ⊂ V | V m−1 ⊂ F (V m)} and Y = {V • ∈ B | F (V m) = V m}, respectively.

Hence the claim follows from the next lemma. �

Lemma 3.15. Let m ≥ 1 and let B = B(m) = {(0) ⊂ V m−1 ⊂ V m ⊂ V | F (V m−1) ⊂ V m}.

i) The cycle map induces for all j ≥ 0, an isomorphism Aj(B)Q̄`
∼= H2j(B). Set I =

{z ≤ Coxn | z = sk+1sk+2 . . . sk+l for l ≥ 1 and k ≤ m− 1 } Then for m ≤ n
2 , we further

have Aj(B) =
⊕

z∈I
`(z)=j

AB(z) with AB(z) ∼= iGP(k,n−k)
(Z) for z = sk+1sk+2 . . . sk+l.

ii) Let Y = {V • ∈ B | F (V m) = V m} ⊂ B. Then there are gradings on Aj(B) and Aj(Y )

such the induced homomorphism Aj(Y ) −→ Aj(B) is in diagonal form.

Proof. The proof is by induction on m. By symmetry we may assume that m ≤ n
2 . If m = 1,

then the first claim follows from the proof of Proposition 3.4. In general, we consider the

diagram {
(0) ⊂ V m−1 ⊂ V m ⊂ V m+1 ⊂ V | F (V k) ⊂ V k+1, k = m− 1,m

}
↙ ↘

B(m) B(m+1)

where the maps are the projections. By induction me may suppose that the statement

is true for B(m). All the appearing varieties are smooth and projective. Thus we get the

desired formula in i) by first blowing up and then blowing down and using [Fu, Prop. 6.7].

Concerning the second statement, we have Y =
∐
W∈Grm(V )(k) P̌(W ). Hence Aj(Y ) =

IndGP(m,n−m)

(
Aj(P̌(W )

)
which is labeled by the (single) element sm−j · · · sm−1 ≤ Coxn

(which is e for j = 0) and which is identified with the `(z)-dimensional cycle class⊕
H∈Grm(V )(Fq)

{
(0) ⊂ V m−1 ⊂ H ⊂ V | V m−1 contains an m− j − 1-dim. rational subspace

}
.

Apriori we identify (by the very construction) for z = sm · · · sm+l the `(z)-dimensional cycle

class AB(z) with⊕
W∈Grm−1(V )(Fq)

{
(0) ⊂W ⊂ V m ⊂ V | V m is contained in an m+ l + 1-dim. rational subspace

}
.
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We replace AB(z) by the cycle class⊕
W∈Grm−1(V )(Fq)

∑
H∈Grm(V )(Fq)

W⊂H

{
(0) ⊂ V m−1 ⊂ H ⊂ V | V m−1 ⊂ H ⊂ V | V m−1

contains an m− j − 1-dim. rational subspace
}

and relabel it with sm−l−1 . . . sm−1. On the other hand, we replace the cycle class AB(z)

where z = sm−l−1 . . . sm−1 with⊕
L∈Grm−l−2(V )(Fq)

∑
W∈Grm−1(V )(Fq)

L⊂W

{
(0) ⊂W ⊂ V m ⊂ V | V m is contained

in a m+ l + 1-dim. rational subspace
}

and relabel it by sm · · · sm+l. Hence we get a new grading Aj(B) =
⊕

z∈I
`(z)=j

A′B(z). Then it

is clear that the map i∗ is in diagonal form and maps surjectively AY (z) onto A′B(z) (since

i ≤ n
2 ) for all z ≤ Coxm−1 . The claim follows. �

Examples 3.16. i) Let j = 1. If w′ = s2 · · · sn−1, then we have the natural gradings given

by loc.cit., i.e.

H(w)s1 = iGG(−1) and H(w)si+1 = iGP(i,n−i)
(−1), i ≥ 1,

resp.

H(w′)s2 = iGP(1,n−1)
(−1) and H(w′)si+1 = iGP(1,i−1,n−i)

(−1), i ≥ 2.

If on the other extreme w′ = s1 · · · sn−2, then we identify as explained above X(Coxn) with

X(sn−1sn−2 · · · s2s1) and argue in the same way as above using the variant of Proposition

3.4 We set

H(w)sn−1 = iGG(−1) and H(w)si = iGP(i+1,n−i−1)
(−1), i < n− 1,

resp.

H(w′)sn−2 = iGP(n−1,1)
(−1) and H(w′)si = iGP(i+1,n−i−2,1)

(−1), i < n− 2.

Now let w′ = s1 · · · ŝi · · · sn−1 ∈ W for some 1 < i < n − 2. On H2(X(w′)) we consider

the natural grading induced by Proposition 3.4, i.e., we set

H(w′)sj =



iGP(j−1,i−(j−1),n−i)
(−1) ; 1 < j < i

iGP(i,n−i)
(−1) ; j = 1, j = i+ 1

iGP(i,j−(i+1),n−j+1)
(−1) ; i+ 1 < j < n

.
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As for w we set,

H(w)sj =



iGP(j−1,n−j+1)
(−1) ; j 6= i, 6= 1

iGG(−1) ; j = i

iGP(i−1,n−i+1)
(−1) ; j = 1

Here the contribution iGP(k,n−k)
(−1) is induced by the cycle classes {V • ∈ X(w) | V k is rational }.

ii) Let j = n − 2 and w′ = s1 · · · ŝi · · · sn−1 ∈ W for some 1 ≤ i ≤ n − 2. Using

Poincaré duality we treat the equivalent situation by considering the homomorphism i∗ :

An−2(X(w′)) −→ An−2(X(w)). We supply the latter object with the basis given by the

cycle classes {V • ∈ X(w) | V k is rational } labeled by s1s2 · · · ŝk · · · sn−1 for 1 ≤ k ≤ n− 2.

We realize the missing trivial representation by the cycle class f∗(P(H)) labeled as usual by

s1s2 · · · sn−2. Here f : X(w) −→ P(V ) is composite of all blow up maps, i.e., the projection

map onto the first filtration step and H ⊂ V is a (rational) hyperplane. Hence we have a

grading An−2(X(w)) =
⊕

k A(w)k.

If i < n − 2, then the map An−2(X(w′)) −→ An−2(X(w)) is graded by the choice of

bases. If i = n − 1 then i∗ = ⊕kik where ik : A(w′) −→ A(w)k is induced by Frobenius

reciprocity by the double coset of e ∈W multiplicated by −1. The reason is that f∗(P(H))

coincides with the cycle class

X(w)H +

n−2∑
i=1

∑
W∈Gri(V )(k)

W⊂H

X(w)W ,

where X(w)W := {V • ∈ X(w) | V i = W} when dimW = i.

If we want to have a graded morphism, then we simply use the bases on An−2(X(w)) by

using the approach via the dual projective space, cf. Remark 3.5 iii).

To the end of this section we recall the definition of Deligne-Lusztig varieties attached

to elements of the Braid monoid B+ of W and the description of smooth compactifications

of them, cf. [DL, DMR, L4]. The Braid monoid B+ is the quotient of F+ given by the

relations (st)ms,t = 1 where s, t ∈ S with s 6= t. Here ms,t ∈ Z is the order of the element

st ∈W . Thus we have surjections

(3.6) F+ α−→ B+ β−→W

with γ = β ◦ α. There is a section W ↪→ B+ of β which identifies W with the subset

B+
red = {w ∈ B+ | `(w) = `(β(w))}
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of reduced elements in B+, cf. [GKP]. In the sequel we will identify W with B+
red.

For any element w = si1 · · · sir ∈ F+, set

X(w) := X(si1 , . . . , sir)

:=
{
x = (x0, . . . , xr) ∈ Xr+1 | inv(xj−1, xj) = sij , j = 1, . . . , r, xr = F (x0)

}
.

This is a smooth variety over k equipped with an action of G. If w ∈W and w = si1 · · · sir
is a fixed reduced decomposition, then we also simply write XF+

(w) for X(si1 , . . . , sir). For

any w ∈W , the map

X(si1 , . . . , sir) −→ X(w)(3.7)

(x0, . . . , xr) 7→ x0

defines a G-equivariant isomorphism of varieties over k. Moreover by Broué, Michel [BM]

and Deligne [De] the variety XF+
(w) depends up to an unique isomorphism only on the

image of si1 · · · sir in B+.

Finally, we consider compactifications of the varieties X(w). More generally, we associate

to certain elements of the completed braid monoid B+ a DL-variety. Here we do not treat

the general machinery as developed in [DMR], not to mention the definition of B+, as we

need these varieties only for some elements of B+. For this let F̂+ be the free monoid

generated by the set Ŝ consisting of S and of all reflections in W of the shape sts with

s, t ∈ S, st 6= ts ∈ W. In order to distinguish the generator sts ∈ Ŝ where s, t ∈ S and

st 6= ts ∈W from the product sts ∈ F+ ⊂ F̂+, we also write ŝts for this element.

For any product t = t1 . . . tr ∈ F̂+ with ti ∈ Ŝ, we set

X(t) := X(t1, . . . , tr)

:=
{
x = (x0, . . . , xr) ∈ Xr+1 | inv(xj−1, xj) ≤ tj}, j = 1, . . . , r, xr = F (x0)

}
.

Again this is a k-variety with an action of G.

Proposition 3.17. The variety X(t) is smooth and projective.

Proof. See [DMR, Prop. 2.3.5, 2.3.6]. �

Let w = si1 , . . . , sir ∈ F+. Then the varietyX(w) includesX(w) as an open subset so that

we get a compactification of X(w). More precisely, for all v � w we can identify X(v) with a

locally closed subvariety of X(w) and we get in this way a stratification X(w) =
⋃
v�wX(v).

Hence if w ∈W and w = si1 · · · sir is a reduced decomposition, then the variety

X
F+

(w) := X(si1 , . . . , sir)
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is a smooth compactification of X(w). The map (3.7) extends to a surjective proper bira-

tional morphism

π : X
F+

(w) −→ X(w)

which we call the Bott-Samelson or Demazure resolution ofX(w) with respect to the reduced

decomposition.

Remark 3.18. If w is a Coxeter element, then the map π is an isomorphism. In fact, this

follows easily by considering the natural stratifications on both sides.

Remark 3.19. When w ∈ F+ has not full support, then the obvious variant of Proposition

3.6 does also hold true for the DL-varieties X(w) and their compactifications X(w), cf.

[DMR, Cor. 3.1.3].

4. Squares

We consider the action of W on itself by conjugation. The set of conjugacy classes C

in W is in bijection with the set of partitions P of n. For a partition µ ∈ P, let Cµ be

the corresponding conjugacy class. Let Cmin be the set of minimal elements in a given

conjugacy class C.

Corollary 4.1. Let C be a conjugacy class and let v, w ∈ Cmin. Then H∗c (X(v)) ∼=
H∗c (X(w)).

Proof. We start with the remark that Coxeter elements are minimal within their conjugacy

class. In this case the result is due to Lusztig [L2], cf. also Remark 3.5 i). Hence by

Proposition 3.6 the same is true for all Coxeter elements in a fixed Levi subgroup. On the

other hand, the Levi subgroups to the minimal elements v and w ∈ Cmin are conjugated by

an element in G which induces the isomorphism. �

In order to deal with non-minimal elements we recall the following result of Geck, Kim

and Pfeiffer. Let w,w′ ∈W and s ∈ S. Set w
s→ w′ if w′ = sws and `(w′) ≤ `(w). We write

w → w′ if w = w′ or if there are elements s1, . . . , sr ∈ S and w = w1, . . . , wr = w′ ∈ W
with wi

si→ wi+1, i = 1, . . . , r − 1.

Theorem 4.2. (([GKP], Thm. 2.6) Let C be a conjugacy class of W . For any w ∈ C,

there exists some w′ ∈ Cmin such that w → w′. �
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As a consequence, for any w ∈W , which is not minimal in its conjugacy class there exists

a finite set of cyclic shifts (i.e. elementary conjugations w −→ sws, s ∈ S) such that the

resulting element has the shape sw′s with `(w) = `(w′) + 2.

Let s ∈ S and let w,w′ ∈W with w = sw′s. Suppose that `(w) = `(w′) + 2. We put

X(w, sw′) = X(w) ∪X(sw′) and X(w′s, w′) = X(w′s) ∪X(w′)

and

X(w,w′s) = X(w) ∪X(w′s) and X(sw′, w′) = X(sw′) ∪X(w′).

Proposition 4.3. (Deligne-Lusztig) i) The varieties X(w′s) and X(sw′) are universally

homeomorphic by maps σ : X(sw′) −→ X(w′s) and τ : X(w′s) −→ X(sw′) with τ ◦ σ = F

and σ ◦ τ = F . Hence H∗c (X(w′s)) ∼= H∗c (X(sw′)).

ii) The above maps extend to morphisms τ : X(w′s, w′) −→ X(sw′, w′) and σ : X(sw′, w′) −→
X(w′s, w′) with σ|X(w′) = id and τ |X(w′) = F.

Proof. i) For later use we just recall the construction of the maps and refer for the proofs

to [DL]. Let B ∈ X(sw′). Then there is by property (1) b) of the varieties O(−) a unique

Borel subgroup σ(B) ∈ X with (B, σ(B)) ∈ O(s) and (σB,F (B)) ∈ O(w′). An immediate

computation shows that (σ(B), F (σB)) ∈ O(w′s), cf. [DL, Thm 1.6]. The map τ is defined

analogously.

ii) This follows easily from the definitions of the maps σ, τ. �

The following statement is based on a observation made in Theorem 1.6 in [DL] .

Proposition 4.4. There exists a A1-bundle γ : X(w, sw′) −→ X(w′s, w′).

Proof. As in the proof of loc.cit., we may write X(w) as a (set-theoretical) disjoint union

X(w) = X1 ∪X2

where X1 is closed in X(w) and X2 is its open complement (Note that we have interchanged

the role of w and w′ compared to [DL]). Recall the definition of Xi, i = 1, 2. For B ∈ X(w)

there are unique Borel subgroups δ(B), γ(B) ∈ X with (B, γ(B)) ∈ O(s), (γ(B), δ(B)) ∈
O(w′) and (δ(B), F (B)) ∈ O(s). Then

X1 =
{
B ∈ X(w) | δ(B) = F (γ(B))

}
resp. X2 =

{
B ∈ X(w) | δ(B) 6= F (γ(B))

}
.

In [DL] it is shown that the map γ : X1 −→ X(w′) is a A1-bundle whereas δ : X2 −→ X(w′s)

is a Gm-bundle.

On the other hand, if B ∈ X2, then (δ(B), F (B)) ∈ O(s), (F (B), F (γB)) ∈ O(s), δ(B) 6=
F (γB), hence (δ(B), F (γ(B))) ∈ O(s). This was already shown in [DL]. It follows that
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(γ(B), F (γ(B))) ∈ O(w′s), hence γ(B) ∈ X(w′s). Thus we have a morphism γ : X(w) −→
X(w′s, w′) of varieties compatible with the action of G and F.

By Proposition 4.3 there is a homeomorphism σ : X(sw′) −→ X(w′s). This map is

compatible with γ : X(w) −→ X(w′s, w′) in the sense that both maps glue to a morphism

γ : X(w, sw′) −→ X(w′s, w′). This map is clearly an A1-bundle. �

Corollary 4.5. There is an isomorphism H i
c(X(w, sw′)) = H i−2

c (X(w′s, w′))(−1) for all

i ≥ 2. �

Remark 4.6. This corollary and the upcoming results Corollary 4.5, Corollary 4.12, Propo-

sition 6.5 and Remark 6.6 were already proved in [DMR, Prop. 3.2.10]). Indeed, they

consider the situation where a cyclic shift is applied to w = sw′s.

The map γ even extends to a larger locally closed subvariety as follows. We setX(w, sw′, w′s, w′) :=

X(w, sw′) ∪X(w′s, w′).

Lemma 4.7. The set X(w, sw′, w′s, w′) is locally closed in X.

Proof. For proving the assertion, it suffices to show (by considering topological closures of

DL-varieties) that there is no element v ∈W different from sw′ resp. w′s with w′ ≤ v ≤ w.

This is a consequence of the following result. �

Lemma 4.8. Let w1, w2 ∈W with w1 ≤ w2 and `(w2) = `(w1)+2. Then there are uniquely

determined elements v1, v2 ∈W with w1 ≤ vi ≤ w2 and `(vi) = `(w1) + 1.

Proof. See [BGG, Lemma 10.3]. �

In the above situation, Bernstein, Gelfand, Gelfand call the quadrupleQ = {w1, v1, v2, w2}
a square in W. Here we use sometimes the graphical illustration of [Ku] (resp. for technical

reasons sometimes without arrows) to indicate this kind of object:

Q :

w2

↗ ↖
v1 v2

↖ ↗
w1

( resp.

w2

v1 v2

w1

).

Lemma 4.7 generalizes as follows.
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Lemma 4.9. For any square Q = {w1, v1, v2, w2} in W , the subset

X(Q) := X(w2) ∪X(v2) ∪X(v1) ∪X(w1)

is locally closed in X. �

For later use, we also mention the following property.

Lemma 4.10. For any square Q = {w1, v1, v2, w2} ⊂W, let

δi−1
w1,v1∪v2

: H i−1
c (X(w1)) −→ H i

c(X(v1) ∪X(v2))

and

δiv1∪v2,w2
: H i

c(X(v1) ∪X(v2)) −→ H i+1
c (X(w2))

be the corresponding boundary homomorphisms. Then δiv1∪v2,w2
◦ δi−1

w1,v1∪v2
= 0.

Proof. This is clear as the map δiv1∪v2,w2
◦δi−1
w1,v1∪v2

is just the composite of the corresponding

differentials in the E1-term associated to the stratification

X(Q) = X(w2)
·⋃ (

X(v1) ∪X(v2)
) ·⋃

X(w1).

�

Now we come back to the locally closed subvariety X(w, sw′, w′s, w′) ⊂ X.

Proposition 4.11. The map γ extends to a P1-bundle X(w, sw′, w′s, w′) −→ X(w′s, w′)

with γ|X(w′s,w′) = idX(w′s,w′).

Proof. This is a direct consequence of the definitions of γ and the variety X(w′s, w′) re-

alising the latter space as the set {(B0, B1, B2, B3) ∈ X4 | (B0, B1) ∈ O(e), (B1, B2) ∈
O(w′), (B2, B3) ∈ O(s), B3 = F (B0)}. �

Recall from Remark 2.18 that H = G× Γ.

Corollary 4.12. There is an isomorphism of H-modules

H i
c(X(w, sw′, w′s, w′)) = H i

c(X(w′s, w′))⊕H i−2
c (X(w′s, w′))(−1)

for all i ≥ 0. �

For the next statement, we consider the open subset Y := X(w) ∪ X(sw′) ∪ X(w′s) of

X(w, sw′, w′s, w′).

Corollary 4.13. There is a geometrically induced splitting H i
c(Y ) = H i

c(X(w, sw′)) ⊕
H i
c(X(w′s)) as H-modules for all i ≥ 0.
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Proof. The existence of a splitting is easily verified by considering the diagram of long exact

cohomology sequences

· · · −→ H i
c(X(w, sw′)) −→ H i

c(X(w, sw′, w′s, w′)) −→ H i
c(X(w′s, w′))

δi−→ H i+1
c (X(w, sw′)) −→ · · ·

‖ ↑ ↑ ‖
· · · −→ H i

c(X(w, sw′)) −→ H i
c(Y ) −→ H i

c(X(w′s)) −→ H i+1
c (X(w, sw′)) −→ · · ·

together with the fact that the differential map δi vanishes. That it is natural comes about

from the fact that the subset U := X2(w) ∪ X(sw′) ∪ X(w′s) is open in Y and there is a

P1-bundle γ : U −→ X(w′s) with γ ◦ i = id where i : X(w′s) ↪→ U is the inclusion. �

In the sequel, we denote by

riw,sw′ : H i
c(X(w, sw′)) −→ H i

c(X(sw′))

the map which is induced by the closed immersion X(sw′) ↪→ X(w, sw′). We consider the

corresponding long exact cohomology sequence

· · · −→ H i−1
c (X(sw′)) −→ H i

c(X(w)) −→ H i
c(X(w, sw′)) −→ H i

c(X(sw′)) −→ · · ·

which by Corollary 4.5 identifies with the sequence

· · · −→ H i−1
c (X(sw′)) −→ H i

c(X(w)) −→ H i−2
c (X(w′s) ∪X(w′))(−1)(4.1)

−→ H i
c(X(sw′)) −→ · · · .

Remark 4.14. In [DMR] it is proved that there is a long exact cohomology sequence

· · · −→ H i
c(X(w)) −→ H i−2

c (X(w′))(−1) −→ H i−1
c (X(sw′))(−1)⊕H i

c(X(sw′))

−→ H i+1
c (X(w)) −→ · · ·

which relies on the fact that the natural maps δi : H i−2
c (X(sw′))(−1) −→ H i

c(X(sw′))

induced by the Gm-bundle X2 over X(sw′) are trivial (as already stated in [DL, Thm.

1.6]). In particular, it follows that the cokernel of the boundary map H i−3
c (X(w′)) −→

H i−2
c (X(w′s)) always contributes to H i

c(X(w)).

Remark 4.15. The same statements presented here (Prop. 4.4. - Cor. 4.12) are true if

we work with elements in F+ instead in W , cf. also [DMR]. More precisely, if w = sw′s

for w,w′ ∈ F+ and s ∈ S, then we can define subsets X1, X2 ⊂ X(w) such that X1 is

a A1-bundle over X(w′) and such that X2 is an Gm-bundle over X(w′s). With the same

reasoning, the subset X(w) ∪X(sw′) is an A1-bundle over X(w′s) ∪X(w′), etc.
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Example 4.16. We reconsider Example 3.1 (which is also discussed in [DMR, ch. 4]). So

let w = sw′s = (1, 3) with s = s2 = (2, 3), w′ = s1 = (1, 2). We are going to determine the

cohomology of the DL-variety X(w). The cohomology of X(s1s2) resp. X(s2s1) is given in

Proposition 3.3 by

H∗c (X(s2s1)) = H∗c (X(s1s2)) = vGB [−2]⊕ vGP(2,1)
(−1)[−3]⊕ iGG(−2)[−4].

Further we have H∗c (X(w′)) = iGB/i
G
P(2,1)

[−1]⊕ iGP(2,1)
(−1)[−2]. Now the variety X(w′s, w′) =

X(w′s) ∪ X(w′) coincides with the set {V • | F (V 1) ⊂ V 2, V 1 6= F (V 1)} which we may

identify with the open subset P(V ) \ P(V )(k) of P(V ). Hence we obtain (which follows also

by applying Proposition 5.7)

H∗c (X(w′s, w′)) = vGP(2,1)
[−1]⊕ iGG(−1)[−2]⊕ iGG(−2)[−4]

and therefore

H∗c (X(w, sw′)) = vGP(2,1)
(−1)[−3]⊕ iGG(−2)[−4]⊕ iGG(−3)[−6]

by Corollary 4.5. We claim that the maps r3
w,sw′ , r

4
w,sw′ are surjective. Indeed, for i = 4

this is clear since H4
c (X(sw′)) is the top cohomology group of X(sw′). As for i = 3, we

consider the boundary map H2
c (X(s)) −→ H3

c (X(sw′)) which is surjective since X(s) ∪
X(sw′) has the same cohomology as X(w′s, s). Let Z̃ = X(s2) ∪ X(s) . Then the map

H2
c (Z̃) −→ H2

c (X(s)) is surjective, as well, since the RHS is the top cohomology degree and

both varieties have the same number of connected components. We consider the resulting

commutative diagram

H3
c (X(w, sw′)) −→ H3

c (X(sw′))

↑ ↑

H2
c (Z̃) −→ H2

c (X(s)).

It follows that the map r3
w,sw′ : H3

c (X(w, sw′)) −→ H3
c (X(sw′)) is surjective. Hence we get

H∗c (X(w)) = vGB [−3]⊕ iGG(−3)[−6].

5. Cohomology of DL-varieties of height one

In this section we determine the cohomology of DL-varieties attached to Weyl group

elements which are slightly larger than Coxeter elements, i.e. to elements which are of

height one. For the definition of the height function we recall that by Theorem 4.2 there is

for any non-minimal w ∈W some element w′ ∈W with `(w) = `(w′) + 2 and w −→ w′.
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Definition 5.1. We define the height of w inductively by ht(w) = ht(w′) + 1. Here we set

ht(w) = 0 if w is minimal in its conjugacy class.

In order to extend the definition of the height function to F+, we use the following

statement.

Lemma 5.2. Let w ∈ B+ such that `(β(w)) < `(w), i.e. such that w ∈ B+ \W . Then w

has the shape w = w1ssw2 for some s ∈ S and w1, w2 ∈ B+.

Proof. See [GP, Exercise 4.1]. �

Definition 5.3. i) Let w ∈ B+. We define the height inductively by

ht(w) :=


ht(w) if w ∈W

h(w1w2) + 1 if w = w1ssw2 is as above.

ii) For w ∈ F+, we set ht(w) := ht(α(w)).

Apart from minimal elements induced by W we may write by Lemma 5.2 resp. Theorem

4.2 the elements in B+ modulo cyclic shift in the shape w = sw′s for some s ∈ S and

w′ ∈ B+. The proof of the next statement is immediate.

Lemma 5.4. Let w ∈ F+ and let wmin ∈ W be a minimal element lying in the conjugacy

class of γ(w). Then `(w) = `(wmin) + 2 ht(w). �

For any irreducible H-representation V = jµ(i), µ ∈ P, i ∈ Z, we set t(V ) = i.

Proposition 5.5. Let v, w ∈ F+, i, j,m ∈ Z≥0 and suppose that ht(v) = 0. Let V ⊂
H i
c(X(w)) be a subrepresentation such that V (m) ⊂ Hj

c (X(v)). Then

`(w)− `(v) +m ≥ i− j ≥ `(w)− `(v) +m− ht(w).

Proof. As ht(v) = 0 we deduce by Proposition 3.3 and Proposition 3.6 that j = `(v) −
t(V (m)). As the maps

⊕
v′<v

`(v′)=`(v)−1

Hj−1
c (X(v′)) −→ Hj

c (X(v)) are surjective for j < 2`(v),

we may suppose by considering the above inequalities that V (m) sits in the top cohomology

degree of X(v). Then `(v) = −t(V (m)). As any unipotent representation is realized in

H0(X(e)) we may assume that v = 1 and therefore j = 0.

We start with the case where ht(w) = 0. In this case one has even - by looking again at

Proposition 3.3 - the stronger identity

i = `(w) +m.
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Now let ht(w) ≥ 1 and suppose that w = sw′s. Consider the long exact cohomology sequence

(4.1). We distinguish the following cases:

Case a) Let V ⊂ H i−1
c (X(sw′)). By induction on the length we deduce that `(sw′) +m ≥

i − 1 ≥ `(sw′) + m − ht(sw′). As `(sw′) = `(w) − 1 and ht(w) ≥ ht(sw′), we see that

`(w) +m ≥ i ≥ `(w) +m− h(w).

Case b) Let V ⊂ H i
c(X(w, sw′)). Then m ≥ 1.

Subcase i) Let V (1) ⊂ H i−2
c (X(sw′)). By induction on the length we deduce that `(sw′)+

m− 1 ≥ i− 2 ≥ `(sw′) +m− 1− h(sw′). As `(sw′) = `(w)− 1 and ht(w) ≥ ht(sw′), we see

that `(w) +m ≥ i ≥ `(w) +m− ht(w).

Subcase ii) Let V (1) ⊂ H i−2
c (X(w′)). By induction on the length we deduce that `(w′) +

m− 1 ≥ i− 2 ≥ `(w′) +m− 1− ht(w′). As `(w′) = `(w)− 2 and h(w) = h(w′) + 1, we see

that even the stronger identity `(w) +m− 1 ≥ i ≥ `(w) +m− h(w) holds true. �

Corollary 5.6. Let v, w ∈W and i, j,m ∈ Z≥0. Let V ⊂ H i
c(X(w)) be a subrepresentation

such that V (m) ⊂ Hj
c (X(v)). Then

`(w)− `(v) +m+ ht(v) ≥ i− j ≥ `(w)− `(v) +m− ht(w).

Proof. We apply the foregoing proposition where w is replaced by v and v by 1. Then

`(v) + t(V (m)) ≥ j ≥ `(v) + t(V (m)) − ht(v). Multiplying this term with −1 and adding

the result to the sequence of inequalities `(w) + t(V ) ≥ i ≥ `(w) + t(V ) − ht(w) gives the

statement. �

For w′ ∈ W with w′ ≤ w and `(w′) = `(w) − 1, the set X(w,w′) = X(w) ∪ X(w′) is

a subvariety of X as already observed above. Here X(w′) is closed and X(w) is open in

X(w,w′). We denote by

δ∗w′,w : H∗c (X(w′)) −→ H∗+1
c (X(w))

the associated boundary map.

Proposition 5.7. Let w be a Coxeter element and let w′ ∈ W with w′ ≤ w and `(w′) =

`(w) − 1. Then the boundary homomorphism δjw′,w : Hj
c (X(w′)) −→ Hj+1

c (X(w)) is sur-

jective for all j ≤ 2`(w′) = 2(n − 2). (In particular, δjw′,w is si-surjective for all j =

0, . . . , 2`(w) = 2(n− 1).)

Proof. We may suppose that w = Coxn . Since all the representations H i
c(X(w)) 6= (0) are

irreducible, it suffices to show that the boundary maps δiw′,w for i < 2`(w) − 1, are non-

trivial. Let w′ = s1 · · · ŝi · · · sh be as above. In terms of flags the DL-varieties in question
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have the following description

X(w) =
{
V • | F (V j) ⊂ V j+1, F (V j) 6= V j , 1 ≤ j ≤ n− 1

}
,

X(w′) =
{
V • | F (V j) ⊂ V j+1, F (V i) = V i, F (V j) 6= V j , 1 ≤ j 6= i ≤ n− 1

}
.

Their Zariski closures are given by

X(w) =
{
V • | F (V j) ⊂ V j+1, 1 ≤ j ≤ n− 1

}
,

X(w′) =
{
V • | F (V j) ⊂ V j+1, F (V i) = V i, 1 ≤ j 6= i ≤ n− 1

}
.

The complement of X(w) in X(w) is a divisor D =
⋃
W DW where the union is over all k-

rational subspaces W of V . For any rational flag W • = (0) (W i1 (W i2 ( · · · (W ik ( V

of V , we set DW • = DW i1 ∩ DW i2 ∩ · · · ∩ DW ik and lg(W •) = k. This construction gives

rise for any constant sheaf A on X(w) to a resolution

A −→
⊕
W

ADW −→
⊕

W •,lg (W •)=2

ADW• −→ · · · −→
⊕

W •, lg(W •)=n−1

ADW• .

of AX(w). On the other hand, we have X(w′) =
⋃
W∈Gri(V )(k)DW . Similarly as above, we

get a resolution

A
X(w′) −→

⊕
W•,lg (W•)=2

Wi∈W•

ADW• −→
⊕

W•,lg (W•)=3

Wi∈W•

ADW• −→ · · · −→
⊕

W•, lg(W•)=n−1

Wi∈W•

ADW•

of AX(w′). The second complex is a subcomplex of the first one and this inclusion induces just

the boundary map. In other terms, applying H2i(−) to both resolutions (strictly speaking

to injective resolutions of A = Z/lnZ, n ∈ N)), we just get the complexes

H2i(X(w)) −→
⊕
v<w

`(v)=`(w)−1

H2i(X(v)) −→ · · · −→
⊕
v<w
`(v)=1

H2i(X(v)) −→ H2i(X(e))

and

H2i(X(w′)) −→
⊕
v<w′

`(v)=`(w′)−1

H2i(X(v)) −→ · · · −→
⊕
v<w′
`(v)=1

H2i(X(v)) −→ H2i(X(e)).

If w′ = s1s2 · · · sn−2, then X(w′) ∼=
∐
H Ω(H) with H running through all rational

hyperplanes in V = Fn. Further we may identify X(w) with Ω(V ) ⊂ P(V ). Here the result

is well-known in the setting of period domains. In fact, by considering also the varieties

Ω(E) with E a rational subspace of V , we get a stratification of the projective space P(V ).

Then the result follows by weight reasons and the cohomology formula in Proposition 3.3
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with respect to the varieties Ω(E). Alternatively, one might use the fundamental complex

in [O]. By symmetry the same reasoning applies to w′ = s2s3 · · · sn−1.

In general we distinguish the cases whether j = 2`(w′) or j < 2`(w′). Suppose first that

j = 2`(w′). Here the claim follows by Example 3.16 ii) since the contribution Hj(X(w′))

does not lie in the image of the map Hj(X(w)) −→
⊕

v<w
`(v)=`(w)−1

Hj(X(v)).

If j < 2`(w′) then we argue as follows. Let v = s1s2 · · · sn−2 and v′ = gcd(w′, v) =

s1 · · · ŝi · · · sn−2. By induction on n the map Hj−1
c (X(v′)) −→ Hj

c (X(v)) is surjective. On

the other hand, by what we have observed above the map Hj
c (X(v)) −→ Hj+1

c (X(w)) is

surjective, as well. Using Lemma 4.10 we deduce that the map Hj
c (X(w′)) −→ Hj+1

c (X(w))

is non-trivial. �

The next two statements give the cohomology of all Weyl group elements having full sup-

port and which are of height 1. Arbitrary elements of height one are handled by Proposition

3.6.

Proposition 5.8. Let w = sw′s where w′ ∈W is a Coxeter element in some Levi subgroup

of a proper maximal parabolic subgroup in G . Then the maps rjw,sw′ : Hj
c (X(w, sw′)) −→

Hj
c (X(sw′)) are all surjective for j > `(sw′) = n − 1. (In particular they are si-surjective

for all j ≥ 0.)

Proof. We start with the observation that sw′ and w′s are both Coxeter elements in W . We

may suppose that w′ = s1 · · · ŝi · · · sn−1 and s = si. It is clear that vGB 6∈ suppHn−1
c (X(w, sw′)).

So let j > n − 1 and suppose that rjw,sw′ is not surjective. Then the irreducible module

Hj
c (X(sw′)) maps injectively into Hj+1

c (X(w)) via the boundary homomorphism δjsw′,w.

First let i < n− 1. Set

w′′ := sis1s2 · · · ŝi · · · sn−2 = siw
′sn−1.

This is a Coxeter element in the parabolic subgroup W(n−1,1) of W with w′′ ≤ siw
′ and

`(w′′) = `(w′). Consider the square

w

↗ ↖
siw
′ w′′si.

↖ ↗
w′′

The boundary homomorphism δj−1
w′′,siw′

: Hj−1
c (X(w′′)) −→ Hj

c (X(siw
′)) is si-surjective

by Proposition 5.7. On the other hand, the boundary map δj−1
w′′,w′′si

: Hj−1
c (X(w′′)) −→

Hj
c (X(w′′si)) vanishes as the map rjw′′si,w′′ : Hj−1

c (X(w′′si) ∪X(w′′)) −→ Hj−1
c (X(w′′)) is
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(si-)surjective by induction on n. Indeed, both elements w′′, w′′si are of the shape above

and in the Weyl group of GLn−1 . The start of induction is given by Example 4.16. By

Lemma 4.10 the composite δjsiw′,w ◦ δ
j−1
w′′,siw′

vanishes, a contradiction. The result follows in

this special case.

If i = n − 1, then we set w′′ := s1w
′sn−1 and consider w′sn−1 instead of sn−1w

′ and

sn−1w
′′ instead of w′′sn−1. Then the same argument goes through. �

By Proposition 5.7 we are able to give a formula for the cohomology of these height 1

elements. Here we could give the description of the induced representation H∗c (X(w′)) =

IndGP(i,n−i)
(H∗c (XM(w′)) by using Littlewood-Richardson coefficients, cf. [FH, §A] (Note

that the structure or combinatoric of unipotent G- and W -representations is the same, cf.

Remark 2.2). Instead we prefer to use the notation which is common in the Grothendieck

group of G-representations. Hence if we write V −W for two G-representations V,W , then

we mean implicitly that W is a subrepresentation of V .

Corollary 5.9. In the situation of the foregoing proposition, we have for j ∈ N, with

`(w) < j < 2`(w)− 1,

Hj
c (X(w)) =

(
Hj−2
c (X(w′))− j(j+1−n,1,...,1)(n− j)

)
(−1)− j(j+2−n,1...,1)(n− j − 1).

Moreover, we have H
`(w)
c (X(w)) = vGB

⊕(
vGP (s) − j(2,1...,1)

)
(−1), H

2`(w)−1
c (X(w)) = 0 and

H
2`(w)
c (X(w)) = iGG(−`(w)).

Proof. By Proposition 5.8, we deduce thatHj
c (X(w)) = ker

(
Hj
c (X(w, sw′)) −→ Hj

c (X(sw′))

for all j > `(w) = n. By Proposition 3.3 we have Hj
c (X(sw′)) = j(j+2−n,1...,1)(n − j − 1).

Further Hj
c (X(w, sw′)) = Hj−2

c (X(w′s) ∪X(w′))(−1) and the boundary map

Hj−2
c (X(w′)) −→ Hj−1

c (X(w′s)) = j(j+1−n,1,...,1)(n− j)

is surjective for j − 2 ≤ 2`(w′) = 2`(w) − 4 by Proposition 5.7. Hence we get the first

identity in the statement.

If j = `(w) = n then one verifies easily that

Hj−2
c (X(w′))− j(j+1−n,1,...,1)(n− j) = H`(w′)

c (X(w′))− vGB = vGP (s).

In addition the Steinberg representation appears as a summand in Hn
c (X(w)). It is in-

duced via the boundary map H
`(w′s)
c (X(w′s)) −→ H

`(w)
c (X(w)) from H

`(w)−1
c (X(w′s)) =

H
`(w′s)
c (X(w′s)) = vGB .

The remaining identities for j = 2`(w)− 1, 2`(w) are easily verified in the same way. �



THE COHOMOLOGY OF DELIGNE-LUSZTIG VARIETIES 39

Remark 5.10. Let w ∈ W have full support. Then we always have H
`(w)
c (X(w)) ⊃ vGB =

j(1,...,1) and H
2`(w)
c (X(w)) = vGG(−`(w)) = j(n)(−`(w)), cf. [L2, Prop. 1.22], [DMR, Prop.

3.3.14, 3.3.15]. More precisely, these are the only cohomology degrees where these extreme

unipotent representations appear. Further H i
c(X(w)) = 0 for all i < `(w).

Example 5.11. Let n = 4, w = (1, 2)(2, 3)(3, 4)(1, 2) ∈W. Then

H∗c (X(w)) = vGB [−4]⊕ j(2,2)(−2)[−5]⊕ iGG(−4)[−8].

Example 5.12. Let n = 4, w = (2, 3)(1, 2)(3, 4)(2, 3) ∈W. Then

H∗c (X(w)) = vGB [−4]⊕ j(2,2)(−1)[−4]⊕ j(2,1,1)(−2)[−5]

⊕j(3,1)(−2)[−5]⊕ j(2,2)(−3)[−6]⊕ iGG(−4)[−8].

The remaining elements with full support and which are of height 1 are treated by the

next result.

Corollary 5.13. Let w = sw′s ∈ W with `(w) = `(w′) + 2 for some Coxeter element

w′ ∈ W and s ∈ S. Then the map rjw,sw′ : Hj
c (X(w, sw′)) −→ Hj

c (X(sw′)) vanishes for all

j 6= 2`(w)− 2 and is an isomorphism for j = 2`(w)− 2. Hence we have

Hj
c (X(w)) = Hj−2

c (X(w′s) ∪X(w′))(−1)⊕Hj−1
c (X(sw′))

for all j 6= 2`(w)− 1, 2`(w)− 2 and H
2`(w)−1
c (X(w)) = H

2`(w)−2
c (X(w)) = 0.

Proof. By Prop. 5.8 the boundary map Hj−2
c (X(w′)) −→ Hj−1

c (X(w′s)) vanishes for all

j ∈ N with j − 2 6= `(w′) = n− 1. If j − 2 = `(w′), then it is an injection, since on the LHS

we have the Steinberg representation vGB . Hence

Hj
c (X(sw′s) ∪X(sw′)) ∼= Hj−2

c (X(w′s) ∪X(w′))(−1)

= Hj−2
c (X(w′s))(−1)⊕Hj−2

c (X(w′))(−1)

for all j > `(w′) + 2 = n+ 1. By Remark 4.14 we know that rjw,sw′ applied to a contribution

of Hj−2
c (X(w′s))(−1) vanishes. On the other hand, by comparing weights we see that

the Tate twist of a contribution in Hj
c (X(sw′s) ∪X(sw′)) induced by Hj−2

c (X(w′))(−1) is

different from the Tate twist of Hj
c (X(sw′), except for j = 2`(w) − 2. Here we have the

trivial representation on both sides. The result follows. �

Example 5.14. Let n = 4, w = (2, 3)(1, 2)(2, 3)(3, 4)(2, 3) ∈W. Then one verifies that

H∗c (X(w)) = vGB [−5]⊕ j(2,2)(−2)[−6]⊕ j(2,1,1)(−2)[−6]

⊕j(3,1)(−3)[−7]⊕ j(2,2)(−3)[−7]⊕ iGG(−5)[−10].
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Although the previous results do not apply directly to the element w = (1, 4) ∈W , we are

able to compute the cohomology of X((1, 4)). Indeed, we write w = sw′s with w′ = (1, 3)

and s = (3, 4). The cohomology groups of X((1, 3)) and X((1, 3)(3, 4)) behave disjointly, cf.

Examples 4.16, 5.11. We deduce that

H∗c (X(w′) ∪X(w′s)) = j(2,1,1)[−3]⊕ j(2,2)(−2)[−5]⊕ j(3,1)(−3)[−6]

⊕ iGG(−3)[−6]⊕ iGG(−4)[−8]

and so

H∗c (X(w) ∪X(sw′)) = j(2,1,1)(−1)[−5]⊕ j(2,2)(−3)[−7]⊕ j(3,1)(−4)[−8]

⊕ iGG(−4)[−8]⊕ iGG(−5)[−10].

But these groups behave again disjointly (apart from the top cohomology) from those of

X(sw′). Hence we get

H∗c (X(w)) = vGB [−5]⊕ j(2,1,1)(−1)[−5]⊕ j(2,2)(−2)[−6]⊕

⊕j(2,2)(−3)[−7]⊕ j(3,1)(−4)[−8]⊕ iGG(−5)[−10].

For determining the cohomology of the DL-variety attached to the longest element in the

Weyl group of GL4 we refer to the appendix.

6. Hypersquares

Here we generalize some of the results of the previous section to hypersquares.

For elements v, w ∈ W with v ≤ w, we let I(v, w) = {z ∈ W | v ≤ z ≤ w} ⊂ W be the

interval between v and w. Analogously we define IF
+

(v, w) = I(v, w) for v, w ∈ F+. Note

that if we have fixed reduced decompositions v̇, ẇ ∈ F+ of v, w ∈ W , then γ(IF
+

(v̇, ẇ)) 6=
I(v, w) in general. Further we set for any interval I = I(v, w),

head(I) = w and tail(I) = v.

Definition 6.1. Let v ≤ w ∈W with `(w)− `(v) = d. We say that I(v, w) is a hypersquare

of dimension d in W if

#
{
z ∈ I(v, w) | `(z) = `(w)− i

}
=

(
d

i

)
for all 1 ≤ i ≤ d.

If I(v, w) is a hypersquare, then #I(v, w) = 2d (the converse is also true). In this case

we also write Q(v, w) = I(v, w).
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The definition of a hypersquare in F+ is similar but easier in the sense that for all

v, w ∈ F+ with v � w the cardinality of I(v, w) is always 2`(w)−`(v).

Definition 6.2. Let v � w ∈ F+ with `(w) − `(v) = d. The associated hypersquare of

dimension d in F+ is given by the set Q(v, w) = I(v, w).

If we consider v, w ∈W with v ≤ w and with fixed reduced decompositions w = si1 · · · sir
and v = sj1 · · · sjs , then we also write QF

+
(v, w) for Q(sj1 · · · sjs , si1 · · · sir). For a hyper-

square resp. interval I = I(v, w) of W (resp. F+), let

X(v, w) := X(I) :=
⋃
w∈I

X(w)

be the induced locally closed subvariety of X (resp. of X`(w)+1 where w = head(I)). In

particular, for w ∈ F+ the compactification X(w) of X(w) can be rewritten as

X(w) = X(Q(1, w)).

Lemma 6.3. Let Q ⊂ W (resp. Q ⊂ F+) be a hypersquare. Then the variety X(Q) is

smooth.

Proof. If Q ⊂ F+, then the claim follows from Proposition 3.17 since X(Q) is an open

subset of X(head(Q)). If Q ⊂ W , then the claim follows from [BL, Theorem 6.2.10]. In-

deed, let d := dimQ. By the rigidity of Q it has to coincide with the Bruhat graph

B(tail(Q), head(Q)). Then loc.cit. says that the Schubert type analogue

XSch(Q) :=
⋃
w∈Q

XSch(w)

(where XSch(w) is the Schubert cell to w) is (rationally) smooth if each vertex in the Bruhat

graph has exactly d edges. But each vertex in Q has already by definition d edges. Now

the argumentation is completely analogous as for ordinary DL-varieties. In fact, next we

deduce that O(Q) :=
⋃
w∈QO(w) ⊂ X × X is smooth. Since O(Q) is transversal to the

graph of the Frobenius, we see that X(Q) is smooth. �

Definition 6.4. A square Q ⊂ W (resp. Q ⊂ F+) is called special if it has the shape

Q = {sw′s, sw′, w′s, w′} for some w,w′ ∈ W , s ∈ S (resp. F+) with `(w) = `(w′) + 2. In

this case we also write Qw = Qw,s = Q.

The generalization of Proposition 4.5 is given by the next result.

Proposition 6.5. Let Q′ = Q(v′, w′) ⊂ W be a hypersquare of dimension d. Suppose that

for s ∈ S, the sets sQ′, Q′s and Q := sQ′s are hypersquares, as well, and that `(sw′s) =
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`(w′) + 2, `(sv′s) = `(v′) + 2. Then X(Q) ∪X(sQ′) is an A1-bundle over X(Q′s) ∪X(Q′).

Consequently,

H i
c(X(Q) ∪X(sQ′)) ∼= H i−2

c (X(Q′s) ∪X(Q′))(−1).

Moreover X(Q)∪X(sQ′)∪X(Q′s)∪X(Q′) = X(Q(v′, sw′s)) is a P1-bundle over X(Q′s)∪
X(Q′).

Proof. The claim follows easily from the fact the hypersquare Q ∪ sQ′ ∪Q′s ∪Q′ is paved

by special squares together with Corollary 4.12. �

Remark 6.6. The same statement is true if we work in F+ where the assumptions are

automatically satisfied. In particular, if w = sw′s ∈ F+, then

H i(X(w)) = H i(X(w′s))⊕H i−2(X(w′s))(−1)

for all i ≥ 2 and H0(X(w)) = H0(X(w′s)). Analogously, we have

H i(X(w)) = H i(X(sw′))⊕H i−2(X(sw′))(−1)

for all i ≥ 2 and H0(X(w)) = H0(X(sw′)).

This statement is already proved more generally in [DMR, Prop. 3.2.3]. In fact, the

notion of a hypersquare can be expressed by using elements of the completed braid monoid

B+.

For later use we mention the following statement. Recall from the notation fixed in the

introduction that we denote for any Γ-module V and any integer i, by V 〈i〉 the eigenspace

of the arithmetic Frobenius with eigenvalues of absolute value qi.

Lemma 6.7. Let w = sw′s ∈ F+ with ht(sw′) = 0. Then H2i+1
c (X(s2, w))〈−i〉 = 0.

Proof. For proving the assertion we may assume that w is full. If `(w) > `(γ(w)) then s

commutes with every simple reflection in w′. Hence the variety X(s2, w) is homeomorphic

to X(s2)×X(w′). One computes easily that

H∗c (X(s2)) = iGB/i
G
P (s)[−2]

⊕
iGP (s)(−2)[−4].

Further the cohomology of X(w′) vanishes in odd degree by Proposition 3.4, thus we get

H2i+1
c (X(s2, w)) = (0) by the Künneth formula.

So let `(w) = `(γ(w)) and suppose that V = jλ(−i) ⊂ H2i+1
c (X(s2, w)) 6= 0. Suppose

first that V is induced by H2i+1
c (X(w)). By Corollary 5.9 and by Proposition 5.5 it follows

that i = `(w)− 2.

1. Case: w = s1s2s3 · · · sn−1s1 (or w = sn−1s1s2 · · · sn−2sn−1 etc.) i.e., s = s1 or s = sn−1.
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By Corollary 5.9 we conclude that jλ = j(n−2,2). We consider the square

Q = {w, sv′1s, sv′2s, su′s} ⊂ F+

with

v′1 = s2s3 · · · sn−3sn−2,

v′2 = s2s3 · · · sn−3sn−1,

u′ = s2s3 · · · sn−3.

Now H2i
c (X(su′s)) = H

2`(su′s)
c (X(su′s)) = iGP (su′s)(−i) = iGPd(−i) with d = (n−2, 1, 1) ∈ D.

For proving our claim in this special situation, it is enough to see that the j(n−2,2)-isotypic

part in H2i+1
c (X(Q)) vanishes. For this we consider the boundary map H2i

c (X(sv′2s) ∪
X(su′s)) −→ H2i+1

c (X(sv′1s) ∪X(w)) and moreover the extended boundary map

H2i
c (X(sv′2s) ∪X(su′s) ∪X(sv′2) ∪X(su′)) −→ H2i+1

c (X(w) ∪X(sv′1s) ∪X(sv′1) ∪X(sw′))

which identifies by Proposition 6.5 with

H2i−2
c (X(v′2s)∪X(u′s)∪X(v′2)∪X(u′))(−1) −→ H2i−1

c (X(w′s)∪X(v′1s)∪X(v′1)∪X(w′))(−1).

By weight reasons we deduce that

H2i
c (X(sv′2s) ∪X(su′s)) ⊂ H2i

c (X(sv′2s) ∪X(su′s) ∪X(sv′2) ∪X(su′)).

On the other hand, we have V 6⊂ H2i
c (X(sv′1)∪X(sw′)) as H2i

c (X(sv′1)) = iGP(n−1,1)
(−i) and

H2i
c (X(sw′)) = j(n−2,,1,1)(−i) by Proposition 3.3. Hence it suffices to see that V does not

appear in the cokernel of the extended boundary map. Now

V (−1) ⊂ H2i−2
c (X(u′s)) = iGP (u′s)(−i+ 1) = iGP(n−2,1,1)

(−i+ 1)

resp.

V (−1) ⊂ H2i−2
c (X(v′2)) = iGP (v′2)(−i+ 1)) = iGP(1,n−3,2)

(−i+ 1).

On the other hand,

V (−1) ⊂ H2i−1
c (X(w′)) = iGP(1,n−2,1)

/iGP(1,n−1)
(−i+ 1),

V (−1) ⊂ H2i−1
c (X(v′1s)) = iGP(n−2,1,1)

/iGP(n−1,1)
(−i+ 1)

and

V (−1) ⊂ H2i−2
c (X(v′1)) = iGP(1,n−2,1)

(−i+ 1).

The result follows now easily by intertwining arguments as the contribution V (−1) ⊂
H2i−2
c (X(v′1)) maps diagonally to H2i−1

c (X(v′1s))
⊕
H2i−1
c (X(w′)) and H2i−2

c (X(v′2)) maps

surjectively onto H2i−1
c (X(w′)) by Proposition 5.7.

2. Case: w = sis1s2 · · · ŝi · · · sn−1si with 2 ≤ i ≤ n− 2.
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By Corollary 3.8 we see that H2i+1
c (X(w)) is a direct sum of quotients of induced repre-

sentations iGP (−i) where P is not a proper maximal subgroup. But H2i
c (X(sw′)) does not kill

H2i+1
c (X(w)) by Prop. 5.8. Further H2i

c (X(sv′)) = H
2`(w)−4
c (X(sv′)) = H

2`(sv′)
c (X(sv′)) =

iGP (sv′)(−i) for all v′ ≺ w′ with `(v′) = `(w′) − 1, where P (sv′) ⊂ G is a proper maximal

subgroup. Hence the representations of the first kind have to be killed by weight reasons

by some H2i
c (X(su′s)) with `(u′) = `(w′)− 2. The claim follows.

If V is not necessarily induced by H2i+1
c (X(w)), then we argue as follows. In the first case

above we consider the subsquares X(s2
1, s1s3s4 . . . sn−1s1), X(s1s2s1, s1s2s4s5 . . . sn−1s1),

X(s1s2s3s1, s1s2s3s5s6 . . . sn−1s1) within X(s2
1, w). These are homeomorphic to X(s2

1) ×
X(s3s4 . . . sn−1), X(s1s2s1)×X(s4s5 . . . sn−1), X(s1s2s3s1)×X(s5s6 . . . sn−1) etc. As for the

first two subvarieties U we haveH2i+1
c (U)〈−i〉 = 0.On the other hand, for the other varieties

U , it follows by induction that we have H2i+1
c (U)〈−i〉 = 0. Hence we get a contradiction

since there has to be one out of these varieties which induce V.

In the second case one proceeds similarly. �

7. Some further results on the cohomology of DL-varieties

We shall prove some further statements given in the introduction.

Recall we may write all “non-minimal” elements in B+ modulo cyclic shift in the shape

w = sw′s for some s ∈ S and w′ ∈ B+. In particular, for w ∈ F+ such that γ(w) is not

minimal in its conjugacy class, there is always an element sw′s ∈ F+ with `(w) = `(sw′s)

and with H∗c (X(w)) = H∗c (X(sw′s)). We shall use this property to prove the next statement.

Lemma 7.1. Let w ∈ F+. Then H i(X(w)) = 0 for i odd.

Proof. By Propositions 3.4 and 3.6 we may assume that γ(w) is not minimal in its conjugacy

class. Since X(w) is smooth and projective it suffices to show that all eigenvalues of the

Frobenius on the cohomology groups H∗(X(w)) are integral powers of q. By considering

the spectral sequence to the stratification X(w) =
⋃
v�wX(v) it suffices to show that this

property is valid for the cohomology groups H∗c (X(v)). By what we have said above, we may

suppose that v = sv′s for some s ∈ S and v′ ∈ F+. By induction on the length we know

that the assertion is true for H∗c (X(v′s)) and H∗c (X(v′)), hence for H∗c (X(v′s) ∪ X(v′)).

But X(v)∪X(sv′) is an A1-bundle over X(v′s)∪X(v′) by Remark 4.15. Thus the assertion

is true for H∗c (X(v) ∪X(sv′)). Finally, by considering again the corresponding long exact

cohomology sequence the claim follows. �
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Let X(w) be a DL-variety attached to an element w ∈ W and let w = si1 · · · sir be

a reduced decomposition of w. In order to compute the cohomology of X(w) ∼= XF+
(w)

we consider the stratification X(w) =
⋃
v�wX

F+
(v) in which X(w) appears as an open

stratum. Write

X(w) = XF+
(w)

·
∪ Y

where Y =
⋃

v≺w
`(v)=`(w)−1

X(v). We consider the induced spectral sequence

Ep,q1 =⇒ Hp+q
c (XF+

(w))

with

Ep,q1 =
⊕

{v1,...,vp}
vi≺w,`(vi)=`(w)−1

Hq
c

( p⋂
i=1

X(vi)
)

for p ≥ 1 and E0,q
1 = Hq(X(w)) . Note that the intersection

⋂p
1X(vi) is nothing else but

X(v) where v ∈ F+ is the unique element of length `(w)− p with v � vi, i = 1, . . . , p.

Remark 7.2. The element v could be considered as the greatest common divisor or the

meet of the elements v1, . . . , vp. Note that the set Q(1, w) is a bounded distributive lattice.

Hence the ith row of E1 is given by the complex

(7.1) 0 −→ H i(X(w)) −→
⊕
v≺w

`(v)=`(w)−1

H i(X(v)) −→
⊕
v≺w

`(v)=`(w)−2

H i(X(v)) −→ · · ·

We shall analyse this spectral sequence. As all varieties X(v) are smooth and projective

their cohomology is pure. We conclude that E2 = E∞ and hence by weight reasons that

H i
c(X(w)) =

⊕
p+q=i

Ep,q2 .

Proposition 7.3. The representations H∗(X(w)) and H∗c (X(w)) are Frobenius semisimple

for all w ∈ F+.

Proof. Again the proof is by induction on `(w). The start of induction is given by Proposition

3.4. As the weights of H i−1(Y ) are different from H i(X(w)), it is enough to prove that both

of these objects are Frobenius semisimple. But by considering the E2-term of the obvious

spectral sequence converging to the cohomology of Y and by induction hypothesis it suffices

to show that H i(X(w)) is Frobenius semisimple.

Since X(w) is smooth and projective we get by Poincaré duality the identity H i(X(w)) =

H2`(w)−i(X(w))(−`(w)+ i) for i ≤ `(w). So it suffices to consider the case i ≤ `(w). Further

we know that H i
c(X(w)) = (0) for all i < `(w), cf. Remark 5.10. Hence we deduce that
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H i(X(w)) ⊂ H i(Y ) for all i < `(w). In the latter case the claim follows by induction

considering again the spectral sequence to Y .

If i = `(w) (is even and positive), then we consider the long exact sequence

0 −→ H`(w)−1(Y ) −→ H`(w)
c (X(w)) −→ H`(w)(X(w))

−→ H`(w)(Y ) −→ H`(w)+1
c (X(w)) −→ 0.

We claim that if there is some irreducible subrepresentation V = jλ(−j) ⊂ H
`(w)
c (X(w)),

then j < i
2 . Here we may suppose that w = sw′s. If V ⊂ H`(w)−1(Y ), then the claim follows

by weight reasons. If V ⊂ H`(w)(X(w)), i.e. j = i
2 , then it is in the kernel of the map

H`(w)(X(w)) −→
⊕
v≺w

`(v)=`(w)−1

H`(w)(X(v)).

Since w′s appears as index in this direct sum, the kernel is by Remark 6.6 the same as the

kernel of the map

H`(w)−2(X(w′s))(−1) −→ H`(w)(X(sw′))
⊕ ⊕

v′≺w′s
`(v′)=`(w′)−1

H`(w)−2(X(v′s))(−1).

In particular, it is contained in the kernel of the map

H`(w)−2(X(w′s))(−1) −→
⊕
v′≺w′s

`(v′)=`(w′)−1

H`(w)−2(X(v′s))(−1).

Since the contribution of w′ is missing on the RHS, we deduce that

V (1) = jλ(−j + 1) ⊂ H`(w)−2
c (X(w′s) ∪X(w′)).

But H
`(w)−2
c (X(w′s)) = (0), as `(w′) = `(w) − 2 < `(w′s). Hence V (1) ⊂ H

`(w′)
c (X(w′)).

Again by induction we know that j − 1 < `(w′)
2 . But `(w′)

2 = `(w)−2
2 = `(w)

2 − 1. Hence we

get a contradiction. �

Corollary 7.4. (of the proof) Let w ∈ F+ \ {e} and let V = jλ(−i) ⊂ H
`(w)
c (X(w)) for

some λ ∈ P. Then 2i < `(w).

Remarks 7.5. i) The latter result is proved in [DMR, Prop. 3.3.31 (iv)] for arbitrary

reductive groups.

ii) It was pointed out to me by O. Dudas, that the semi-simplicity of H∗(X(w)), Lemma

7.1 and the upcoming Proposition 7.15 can be deduced from [L4].

We further have the following vanishing result.

Proposition 7.6. Let w ∈ F+ with ht(w) ≥ 1. Then H
2`(w)−1
c (X(w)) = 0.
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Proof. By Corollary 5.9 we may suppose that ht(sw′) ≥ 1. We consider the long exact

cohomology sequence

· · · −→ H
2`(w)−2
c (X(w) ∪X(sw′))

r−→ H2`(w)−2
c (X(sw′)) −→ H2`(w)−1

c (X(w))

−→ H
2`(w)−1
c (X(w) ∪X(sw′)) −→ · · · .

The map r = r
2`(w)−2
w,sw′ has to be surjective since H

2`(w)−2
c (X(sw′)) = H

2`(sw′)
c (X(sw′)) =

iGG(−`(sw′)) is the top cohomology group. On the other hand, by Proposition 4.5 we know

that H
2`(w)−1
c (X(w) ∪X(sw′)) = H

2`(w)−3
c (X(w′s) ∪X(w′))(−1). But

H2`(w)−3
c (X(w′s)) = H2`(w′s)−1

c (X(sw′)) = 0

by induction. Further H
2`(w)−3
c (X(w′)) = H

2`(w′)+1
c (X(w′)) = 0. Hence we conclude the

claim. �

This vanishing result has the following consequences.

Corollary 7.7. Let w ∈ F+ with ht(w) ≥ 1. Then

H2`(w)−2(X(w)) = H2`(w)−2
c (X(w))

⊕ ⊕
v�w

`(v)=`(w)−1

H2`(w)−2
c (X(v))

= H2`(w)−2
c (X(w))

⊕ ⊕
v�w

`(v)=`(w)−1

iGP (v)(−(`(w)− 1)).

Proof. We consider the long exact cohomology sequence

· · · −→ H i−1(Y ) −→ H i
c(X(w)) −→ H i(X(w)) −→ H i(Y ) −→ · · ·

which coincides in degree i = `(w)− 2 with

· · · −→
⊕
v≺w

`(v)=`(w)−1

H
2`(w)−3
c (X(v))

δ−→ H2`(w)−2
c (X(w)) −→ H2`(w)−2(X(w))

−→
⊕
v≺w

`(v)=`(w)−1

H
2`(w)−2
c (X(v)) −→ H2`(w)−1

c (X(w)) −→ · · ·

NowH
2`(w)−1
c (X(w)) = 0. If ht(v) ≥ 1 then we conclude by induction thatH

2`(w)−3
c (X(v)) =

H
2`(v)−1
c (X(v)) = 0. Thus if this latter condition is satisfied, we are done. Otherwise w is

of height one and there is some v ≺ w with ht(v) = 0.. Then we deduce from Corollary 5.9

and weight reasons that the map δ vanishes. �

Corollary 7.8. Let w = sw′s ∈ F+ with ht(w′) ≥ 1 and supp(w) = S. Then

H2`(w)−2
c (X(w)) = H2`(w′s)−2

c (X(w′s))(−1)
⊕

(iGP (w′) − i
G
G)(−`(w) + 1).
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Proof. Since ht(sw′) ≥ 1 we have an exact sequence

0 −→ H2`(w)−2
c (X(w)) −→ H2`(w)−2

c (X(w) ∪X(sw′)) −→ H2`(w)−2
c (X(sw′)) −→ 0.

But the assumption supp(w) = S also implies that supp(sw′) = S. Hence we get

H2`(w)−2
c (X(sw′)) = H2`(sw′)

c (X(sw′)) = iGG(−`(w) + 1).

Further the identity H
2`(w)−2
c (X(w) ∪X(sw′)) = H

2`(w)−4
c (X(w′s) ∪X(w′)) is satisfied by

Corollary 4.5 But since ht(w′) ≥ 1 we deduce that

H2`(w)−5
c (X(w′)) = H2`(w′)−1

c (X(w′)) = 0.

Now the result follows easily. �

We reconsider the spectral sequence

Ep,q1 ⇒ Hp+q(H∗(X(w)))

which is induced by the stratification X(w) =
·⋃
v�w X(v). The qth line in the E1-term is

the complex⊕
v′�w
`(v′)=q

H2q
c (X(v′)) −→ · · · −→

⊕
v′�w

`(v′)=q+j

H2q+j
c (X(v′)) −→

⊕
v�w

`(v)=q+j+1

H2q+j+1
c (X(v)) −→ · · ·

where the homomorphisms are induced by the boundary maps δv′,v.

Picture:

...
...

H4 H5 H6 · · · H i+2 H i+3 · · ·

H2 H3 H4 H5 · · · H i+1 H i+2 · · ·

H0 H1 H2 H3 H4 · · · H i H i+1 · · ·

e ` = 1 ` = 2 ` = 3 ` = 4 · · · ` = i ` = i+ 1

Of course this spectral sequence degenerates and we may write by weight reasons and by

Proposition 7.3 for all 0 ≤ i ≤ `(w),

H2i(X(w)) =

`(w)⊕
j=i

H2i
c (X(w)(j))′
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where

X(w)(j) :=
⋃
v�w
`(v)=j

X(v)

and where H2i
c (X(w)(j))′ ⊂ H2i

c (X(w)(j)) =
⊕

v�w
`(v)=j

H2i
c (X(v)).

For v � w with `(v) = i, we have H2i
c (X(v)) = H2i(X(v)) = iGP (v)(−i). Here P (v) ⊂ G

is the std psgp attached to v, cf. (2.6.) By Remark 4.10 the trivial representation does

appear in the top cohomology degree of a DL-variety. Hence the subrepresentation iGG(−i) ⊂
iGP (v)(−i) survives the spectral sequence. Thus there is grading

H2i(X(w)) =
⊕
z�w
`(v)=i

H(w)z

with H(w)z ⊃ iGG(−i) for certain representations H(w)z.

In the sequel we shall see that we may suppose that the objects H(w)z are induced

representations from parabolic subgroups. Recall that the following three operations C,K,R

on elements in F+ allows us to transform an arbitrary element w ∈ F+ into the shape

w = sw′s with s ∈ S and w′ ∈ F+.

(I) (Cyclic shift) If w = sw′ with s ∈ S, then we set C(w) = w′s.

(II) (Commuting relation). If w = w1stw2 with s, t ∈ S and st = ts. Then we set K(w) =

w1tsw2.

(III) (Replace sts by tst) If w = w1stsw2 with s, t ∈ S and sts = tst. Then we set

R(w) = w1tstw2.

We shall analyse the induced behaviour on the cohomology of Demazure varieties. In

[DMR] the following generalization of Proposition 4.3 is proved.

Proposition 7.9. Let w = si1 · · · sir ∈ F̂+. Then for all i ≥ 0, there are isomorphisms of

H-modules

H i
c(X(w)) −→ H i

c(X(C(w)))

and

H i(X(w)) −→ H i(X(C(w)))

Proof. These are special cases of [DMR, Proposition 3.1.6]. �

Corollary 7.10. Let sw′s ∈ F+. Then H i(X(sw′)) = H i(X(w′s)) for all i ≥ 0. �

Remark 7.11. Consider the equivalence relation ∼ on F+ leading to cyclic shift classes in

the sense of [GP], i.e., v, w ∈ F+ are equivalent if there is some integer i ≥ 0 with Ci(w) = v.
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Thus we can associate to any element in C+ = F+/ ∼ its cohomology. Moreover, the height

function ht on F+ depends only on the cycle shift class. Sometimes it is useful to interpret

in what follows the image of an element w = si1si2 · · · sir−1sir in C+ as a circle, i.e.,

si1

sir s2

...
...

sij+1 sij−1

sij

As we have observed above the Cyclic shift operator does not affect the cohomology of a

Demazure variety. The same holds true for operation (II).

Proposition 7.12. Let w = w1stw2 ∈ F̂+ with s, t ∈ S (or s ∈ S, t ∈ Ŝ) such that st = ts.

Set K(w) = w1tsw2. Then H i(X(w)) = H i(X(K(w))) for all i ≥ 0.

Proof. This property is implicitly contained in the definition of a generalized Deligne-Lusztig

variety attached to elements of the completed Braid monoid [DMR]. The reason is that the

stratifications of the varieties X(w) and X(K(w)) are essentially the same in the obvious

sense. �

Let w = w1stsw2 ∈ F+. In the sequel we also write w = w1sltsrw2 (l for left, r for right)

in order to distinguish the reflection s in its appearance in w. Further we write w1s
2w2 for

the subword w1slsrw2.

Proposition 7.13. Let w = w1stsw2 ∈ F̂+ with s, t ∈ S and st 6= ts in W . Then there is

a canonical decomposition H2i(X(w)) = H2i(X(w1ŝtsw2))⊕H2i−2(X(w1sw2))(−1).

Proof. This is a special situation of [DMR, Prop. 3.2.9]. The argument is that the proper

morphism π : X(w) −→ X(w1ŝtsw2) by forgetting appropriate entries is an isomorphism

over the open subset X(w1ŝtsw2) \ X(w1sw2) and induces over X(w1sw2) a P1-bundle.

As both varieties are smooth and projective the claim follows from considering long exact

cohomology sequences. �

Corollary 7.14. Let s, t ∈ S, w1, w2 ∈ F̂+ such that st 6= ts in W . Set w = w1stsw2 and

v = R(w) = w1tstw2. Then for all i ≥ 0, there is an identity

H i(X(v)) = H i(X(w))−H i
c(X(sl, w1s

2w2)) +H i
c(X(tr, w1t

2w2))

= H i(X(w))−H i−2(X(w1sw2))(−1) +H i−2(X(w1tw2))(−1).
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(Here we mean as before when writing −H i−2(X(w1sw2))(−1) that H i−2(X(w1sw2))(−1)

appears canonically as a submodule in H i(X(w)).)

Proposition 7.15. Let w ∈ F+. Then for all i ≥ 0, the cycle map Ai(X(w))Q` −→
H2i(X(w)) is an isomorphism

(
where Ai(X(w)) is the Chow group of X(w) in degree i

)
.

Proof. We may assume that supp(w) = S. If w is a Coxeter element, then the claim follows

from Remark 3.5. If w = sw′s then Ai(X(w)) = Ai(X(w′s))⊕Ai−1(X(w′s)) and the claim

follows by induction on `(w).

In general we have to consider the induced behaviour of the operations K,C,R on

the Chow groups. First we observe that Ai(X(w)) = Ai(X(C(w))) since the generat-

ing cycle classes are rational. Further Ai(X(w)) = Ai(X(K(w))). Let w = w1stsw2,

R(w) = w1tstw2, y = w1ŝtsw2 and suppose that the claim is true for w. Then we consider

as in Proposition 7.13 the map π : X(w) −→ X(y) which induces short exact sequences

0 −→ H2i−4(X(w1sw2))(−2) −→ H2i(X(y))⊕H2i−2(X(w1s
2w2))(−1) −→ H2i(X(w)) −→ 0

and

0 −→ Ai−2(X(w1sw2)) −→ Ai(X(y))⊕Ai−1(X(w1s
2w2)) −→ Ai(X(w)) −→ 0.

It follows by induction on the length that the cycle map for X(y) is an isomorphism, as

well. Considering both exact sequences for R(w) and using again induction the claim is

true for R(w). �

Remark 7.16. For m ≥ 0, the Tate twist −i contribution of H2i+m
c (X(w)) is Bloch’s higher

Chow group CH i(X(w),m)Q` , cf. [Bl]. Indeed, this follows from the spectral sequence (7.1).

For w ∈ F+ and z � w, we denote by iz,w : A`(z)(X(z)) −→ A`(z)(X(w)) the map

induced by the inclusion X(z) ⊂ X(w). Moreover, we let [X(z)] ∈ A`(z)(X(z)) be the sum

of all the irreducible components appearing in X(z).

Definition 7.17. Let w ∈ F̂+. A gradingAi(X(w))Q` =
⊕

z�w
`(z)=i

A(w)z is called geometrical

if there is an order z1, . . . , zr on the set {z � w | `(z) = i} such that⊕
j=1,...,k

A(w)zj ⊃
∑

j=1,...,k

(izj ,w)∗([X(zj)])

for all k ≤ r.

By using the cycle map we may speak of geometrical gradings on H2i(X(w)).
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Let w = sw′s ∈ F+ as before. Consider the commutative diagram

(7.2)

...
...

...

↓ ↓ ↓
· · · −→ H2i

c (X(s2, w)) −→ H2i
c (X(s, w)) −→ H2i

c (X(s, w′s)) −→ · · ·
↓ ↓ ↓

· · · −→ H2i
c (X(s, w)) −→ H2i(X(w)) −→ H2i(X(w′s)) −→ · · ·
↓ g ↓ ↓

· · · −→ H2i
c (X(s, sw′)) −→ H2i(X(sw′))

f−→ H2i(X(w′)) −→ · · ·
↓ ↓ ↓
...

...
...

where the maps in this diagram are the natural ones. We slightly generalize this setup as

follows. Let v = v1rv2 with r ∈ S and u = v1v2. Set v̆ = v1r
2v2 = v1rlrrv2 and v̄ = v1rrv2.

Then v = v1rlv2 and we may form the following diagram

(7.3)

...
...

...

↓ ↓ ↓
· · · −→ H2i

c (X(r2, v̆)) −→ H2i
c (X(rr, v̆)) −→ H2i

c (X(rr, v̄)) −→ · · ·
↓ ↓ ↓

· · · −→ H2i
c (X(rl, v̆)) −→ H2i(X(v̆)) −→ H2i(X(v̄)) −→ · · ·
↓ g ↓ ↓

· · · −→ H2i
c (X(rl, v)) −→ H2i(X(v))

f−→ H2i(X(u)) −→ · · ·
↓ ↓ ↓
...

...
...

In the setting of Chow groups and Poincaré duality the above diagram reads as

(7.4)

...
...

...

↑ ↑ ↑
· · · −→ Ai(X(rr, v̄)) −→ Ai(X(rr, v̆)) −→ Ai(X(r2, v̆)) −→ · · ·

↑ ↑ ↑
· · · −→ Ai(X(v̄)) −→ Ai(X(v̆)) −→ Ai(X(rl, v̆)) −→ · · ·

↑ ↑ ↑ g′

· · · −→ Ai(X(u))
f ′−→ Ai(X(v)) −→ Ai(X(rl, v)) −→ · · ·

↑ ↑ ↑
...

...
...
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The next result generalizes Proposition 3.13 to arbitrary pairs of elements v, u ∈ F+ with

u ≺ v and `(v) = `(u) + 1.

Theorem 7.18. a) The cohomology of X(v) in degree 2i can be written as

H2i(X(v)) =
⊕
z�v
`(v)=i

H(v)z

with H(v)z = iGP vz (−i) for certain standard parabolic subgroups P vz ⊂ G.

b) There are geometric gradings

H2i(X(v)) =
⊕
z�v
`(z)=i

H(v)z and H2i(X(u)) =
⊕
z�u
`(z)=i

H(u)z

by induced representations as in part a), such that the map f : H2i(X(v)) −→ H2i(X(u)) is

in diagonal form, i.e. it coincides with the graded one. Further the induced homomorphisms

H(v)z −→ H(u)z are injective or surjective for all z � u.

c) There is a geometric grading as in part a)

H2i
c (X(rl, v̆)) = H2i−2(X(v̄))(−1) =

⊕
z′�v̄

`(z′)=i−1

H(v̄)z′

such that H(v̄)z′(−1) = H(v)z1rz2 for all elements z′ = z1z2 � u.

We leave the translation of this theorem for covariant Chow groups to the reader. We

start with the following lemma.

Lemma 7.19. Suppose that there are gradings as in Theorem 7.18 b). Then if we start

with an arbitrary geometric grading on H2i(X(u)), then we can define a geoemtric grading

on H2i(X(v)) such that f is graded with respect to these new gradings, as well.

Proof. We consider the viewpoint of Chow groups. Let Ai(X(u))Q` =
⊕

z�u
`(z)=i

A(u)′z be

another grading. Then by Corollary 2.3 for any z � u there is an element z′ = φ(z)

with z′ � u, `(z) = `(z′) = i and with A(u)z ∼= A(u)′z′ . The map πuz,φ(z) : A(u)z
∼−→

A(u)′φ(z) which is induced by the neutral element, cf. Remark 2.2, and the choice of P uz -

invariant generating cycle classes for the induced representations iGPuz gives rise to such an

isomorphism.

Suppose first that the maps A(u)z −→ A(v)z are surjective for all z � u with `(z) = i.

As G acts semi-simple we may consider A(v)z as a subrepresentation of A(u)z. We define

a new grading on Ai(X(v))Q` =
⊕

z�v
`(z)=i

A(v)′z by setting

A(v)′φ(z) := πuz,φ(z)(A(v)z)
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for z � u and A(v)′z := A(v)z if z 6� u. We set πu := ⊕ z≺u
`(z)=i

πuz,φ(z) so that we get an

endomorphism

πu : Ai(X(u))Q` −→ Ai(X(u))Q` .

Analogously we define an endomorphism πv := ⊕ z≺v
`(z)=i

πvz,φ(z) of Ai(X(v))Q` with πvz,φ(z) =

id . Here we have extended φ to a function on the set {z � v, `(z) = i} by φ(z) = z for

z 6� u. We get a commutative diagram

Ai(X(v))Q`
πv−→ Ai(X(v))Q`

↑ f ′ ↑ f ′

Ai(X(u))Q`
πu−→ Ai(X(u))Q`

Now the statement follows easily.

In general we devide the set {z � u | `(z) = i} = A
.
∪ B into two disjoint subsets where

A consists of those z � u such that the map A(u)z −→ A(v)z is surjective. To define a

new grading on Ai(X(v))Q` we proceed with the set A as above. In particular the set A

covers the kernel of the map f ′ : Ai(X(u))Q` −→ Ai(X(v))Q` . Hence for z ∈ B the map

A(u)φ(z) −→ Ai(X(v))Q` is (strictly) injective. Then there is some induced representation

iGP ⊂ Ai(X(v))Q` which contains the image of the latter map 2. We let iGP be a constituent

of the disired grading. But the map ⊕z∈BA(u)φ(z) −→ Ai(X(v))Q` is injective, as well. The

claim of the lemma follows by applying the former procedure sucessively. �

Proof. Part a) and b). The last statement of part b) is a consequence of Remark 2.2 ii).

The remaining proof is by induction on `(v). By Remark 3.19 and Künneth arguments we

may suppose that v has full support. If v is a Coxeter element then the statement follows

from Propositions 3.4, 3.13. So let ht(v) ≥ 1.

1. Case. v = sv′s for some s ∈ S.

Hence H2i(X(v)) = H2i(X(v′s))
⊕
H2i−2(X(v′s))(−1). As for part a) we may write by

induction

H∗(X(v′s)) =
⊕
z�v′s

iG
P v′sz

(−`(z))[−2`(z)].

Then

H∗(X(v)) =
⊕
z�v

iGP vz (−`(z))[−2`(z)]

where P vz = P v
′s

z if z � v′s and P vz = P sv
′

z′ if z ∈ Q(sv′, v). Here z = sz′. Concerning part

b) we distinguish the following cases:

2Indeed let iGP −→ iGQ⊕ iGR be an injective map. Then we may suppose w.l.o.g. that iGP −→ iGQ is injective,

as well. We may extend the first map to an injection iGQ −→ iGQ ⊕ iGR and the graph contains iGP .
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Subcase a). u = v′s (The case u = sv′ is symmetric to this one).

Here the proof is trivial since the map H2i(X(v)) −→ H2i(X(u)) identifies with the

projection map.

Subcase b). u = su′s.

Then H2i(X(u)) = H2i(X(u′s))
⊕
H2i−2(X(u′s))(−1). The statements follow now by

induction with respect to the homomorphism Hj(X(v′s)) −→ Hj(X(u′s)) with j ∈ {2i −
2, 2i}.

2. Case. v is arbitrary.

Then we apply the operations (I) - (III) (introduced before Proposition 7.9) to arrange v

in the shape as in the first case. Here we use inner induction on the necessary operations.

So let w ∈ F+ and suppose that the statements are true for w and for all x ≺ w with

`(x) = `(w)− 1.

The operations (I) and (II) are easy to handle by Propositions 7.9 and 7.12:

(I) Let w = sw′, with s ∈ S and w′ ∈ F+ and w′s = C(w). Let C̃ : H2i(X(w)) −→
H2i(X(C(w))) be the cyclic shift isomorphism. Define for z � w,

C(z) =

{
z′s if z = sz′

z if z � w′.

Then the assignment H(C(w))C(z) := C̃(H(w)z) for `(z) = i, defines the desired grading

on H2i(X(C(w))). In the same way we get a grading on H2i(X(C(x))). Moreover, the

homomorphism H2i(X(C(w))) −→ H2i(X(C(x))) is graded.

(II) Let w = w1stw2 and K(w) = w1tsw2. Let K̃ : H2i(X(w)) −→ H2i(X(K(w))) be

the induced isomorphism. Define for z � w,

K(z) =

{
v1tsv2 if z = v1stv2

z if st 6 | z.

Then the assignment H(K(w))K(z) := K̃(H(w)z) for `(z) = i, defines the desired grading

on H2i(X(K(w))). Part b) is proved in the same way as above.

(III) So let w = w1stsw2 and v = R(w) = w1tstw2. Set ŵ = v̂ = w1ŝtsw2.

We start with the observation that we have a geometrical grading on H2i(X(ŵ)). Indeed

by induction hypothesis applied to w and x = w1s
2w2, we have gradings on H2i(X(w)) and

H2i(X(w1s
2w2)) such that the natural map H2i(X(w)) −→ H2i(X(w1s

2w2)) is in diagonal

form. In particular it follows that H(w)z = H(w1s
2w2)z for all z ∈ Q(s, w1s

2w2) (since

X(ŵ)\X(w1sw2) = X(w)\X(w1s
2w2)) and henceforth that we have a geometrical grading

on H2i(X(ŵ)) by induced representations. Hence we see that we have such a grading
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on H2i(X(v)) = H2i(X(v̂)) ⊕ H2i−2(X(w1tw2)). More precisely, we set for z1 � w1 and

z2 � w2,

R(z) =


z1tstz2 if z = z1stsz2

z1tlsz2 if z = z1tsrz2

z1strz2 if z = z1sltz2

z1z2 if z = z1z2.

Then the assignment H(R(w))R(z) := H(w)z for z 6∈ Q(sl, z1s
2z2) and H(v)z = H(v/tr)z/tr

for z ∈ Q(tr, w1t
2w2) with `(z) = i defines the desired grading on H2i(X(v)).

Concerning part b) we distinguish the following situations.

Subcase a). u = R(x) = w1tsw2. (The case u = R(x) = w1stw2 behaves symmetrically)

We consider the viewpoint of Chow groups. By induction hypothesis there are geo-

metric gradings on Ai(X(w1w2))Q` and Ai(X(w1tw2))Q` such that the homomorphisms

Ai(X(w1w2))Q` −→ Ai(X(w1tw2))Q` induced by the inclusion is in diagonal form. Fur-

ther we may suppose that we have a geometric grading on Ai(X(u))Q` such that the map

Ai(X(w1tw2))Q` −→ Ai(X(u))Q` is in diagonal form, as well. Let fw : Ai(X(u)) −→
Ai(X(w)) resp. fv : Ai(X(u)) −→ Ai(X(v)) be the homomorphisms induced by the inclu-

sion. Again by assumption there is a grading Ai(X(w))Q` = ⊕zA(w)z such the map fw is

graded. We have a natural commutative diagram

X(w)

↗ ↓ πw

X(w1stw2) −→ X(ŵ).

where πw : X(w) −→ X(ŵ) is the map of Lemma 7.13. It follows that the map Ai(X(u)) −→
Ai(X(ŵ)) is graded, as well, if we consider on Ai(X(ŵ))Q` the induced grading, i.e., A(ŵ)z =

max{πw(A(w)z1slz2), πw(A(w)z1srz2)} for z = z1sz2 � ŵ and A(ŵ)z = πw(A(w)z) for the

remaining z � ŵ, , cf. Remark 2.2 and [Fu, Prop. 6.7]. In order to define the grading on

Ai(X(v))Q` we consider again the splitting

(7.5) Ai(X(v))Q` = Ai(X(ŵ))Q` ⊕Ai−1(X(w1trw2))Q` .

Now we apply the induction hypothesis to deduce the existence of a grading on the vector

space Ai−1(X(w1trw2))Q` such that under the map

Ai(X(w1tlw2))Q` −→ Ai−1(X(w1trw2))Q`

we have

A(w1tlw2)z = A(w1trw2)z/tl
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for all z with tl | z. But the latter map factorizes over the map

r : Ai(X(w1tsw2))Q` −→ Ai−1(X(w1trw2))Q` .

Moreover, the contributions A(w1tlw2)z/tr with tl | z do not lie in the image of the map r

since the trivial subrepresentations iGG ⊂ A(w1trw2)z/tl are linearly independent from those

of Ai(X(w1tsw2))Q` , as one deduces from [L4, Prop. 2.7]. The claim follows.

Subcase b). u = R(x) = v1tstw2 with x = v1stsw2 (or u = R(x) = w1tstv2).

Here the result follows by writing fv as the sum of the homomorphisms

H2i(X(v̂)) −→ H2i(X(û))

and

H2i−2(X(w1tw2))(−1) −→ H2i−2(X(v1tw2))(−1)

where û = v1ŝtsw2.

Subcase c). u = w1t
2w2.

Here the homomorphism H2i(X(v)) −→ H2i(X(w1t
2w2)) contracts by deleting the sum-

mand H2i−2(X(w1tw2))(−1) on both sides to the map H2i(X(v̂)) −→ H2i(X(w1tw2)).

The latter one factorizes over H2i(X(w1tsw2)). By induction the maps H2i(X(ŵ)) −→
H2i(X(w1tsw2)) and H2i(X(w1tsw2)) −→ H2i(X(w1tw2)) are graded. By Lemma 7.19 the

bases can be chosen in a compatible way. Hence the composite map is graded.

Alternatively one can avoid this case by the proceeding Lemma 7.20.

Part c). The remaining part of the theorem can be proved by induction. Here Lemma

6.7 serves as the start of the induction process. However, part c) is already a consequence

of the diagram (7.4). To explain this we consider the viewpoint of Chow groups.

As in part b) we choose geometric gradings on Ai(X(v))Q` and Ai(X(u))Q` auch that

the natural homomorphim Ai(X(u))Q` −→ Ai(X(v))Q` is graded. We need to show that

the intersection of Ai(X(v))Q` and Ai(X(v̄))Q` within Ai(X(v̆))Q` is as small as possible,

i.e., induced by the image of Ai(X(u))Q` . For this, suppose that there is a constituent

A(v)z = iGP with r | z such that an irreducible subrepresentation jλ of iGP lies in Ai(X(v̄))Q` .

Let x ∈ jλ and write x = y1 + y2 with uniquely determined elements y1 ∈ Ai(X(v̄))Q` and

y2 ∈ Ai(X(r, v̆))Q` . Here we have fixed the natural splittings. By what we saw in Section

4, it follows that y1 = σ∗(x) for the cyclic shift map σ : X(v) −→ X(v̄). But the map

σ is an isomorphism, more precisely we have by Proposition 4.3 that σ ◦ τ is an scalar

mulitple of the identity. It follows that σ is up to a scalar a multiple of the morphism

induced by the identity element e ∈ W. The upshot is that if jλ lies in Ai(X(v̄))Q` the

same is true for the induced representation iGPλ ⊂ i
G
P . But all the trivial subrepresentations
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iGG = [X(y)]Q` ⊂ A(v̆)y induced by the cycle classes X(y) with y � v̆ and `(y) = i are

linear independent in Ai(X(v̆))Q` by the result of Lusztig [L4, Prop. 2.7]. Hence we get a

contradiction. �

Let u, v ∈ F+ with u ≺ v with `(u) = `(v)−1. There is the obvious notion of simultaneous

transformation applied to the pair (v, u) with respect to the operations (I) - (III), as long as

the corresponding subword s, st, sts is part of u, as well. Apart from the critical situation

where v = v1stsv2 and u = v1ssv2, we extend the simultaneous transformation to the tuple

(v, u) by letting act C,K,R trivially on u.

Lemma 7.20. Let u, v ∈ F+ with u ≺ v, `(u) = `(v)− 1 and ht(v) ≥ 1. Then there exists

a sequence (vi, ui), i = 0, . . . , n, of such tuples such that (v, u) = (v0, u0), vn is of the shape

sv′s and (vi+1, ui+1) is induced simultaneously from (vi, ui) via one of the operations (I) -

(III). Here the situation that (vi, ui) = (v1stsv2, v1s
2v2) and (vi+1, ui+1) = (v1tstv2, v1t

2v2)

does not occur.

Proof. By Theorem 4.2 resp. Lemma 5.2 we may transform v into the desired shape. We

only have to analyse the critical case which we want to avoid. After a series of cyclic shifts

we may then suppose that v = tsv′s and u = sv′s. If γ(u) 6∈ W , then we may transform

by Lemma 5.2 u without cyclic shifts into the shape u1r
2u2 for some r ∈ S. But then v

can be transformed into the word tu1r
2u2 and the claim follows using cyclic shifts again. If

γ(u) ∈ W but γ(v) 6∈ W, then we may write γ(u) = tw′ for some w′ ∈ W and we are done

again.

So it remains to consider the case where γ(v) ∈ W. We denote for any z ∈ F+ and any

t = sk ∈ S by mt(z) = mk(z) ∈ Z≥0 its multiplicity in z.

Let s = sm+1 and t = sm. Choose under all successive transformations (without using

the forbidden replacement sts  tst) and all cyclic shifts (if we get an element which

is not reduced, we are done by the first case) starting with v an element z such that

m(z) := (mn−1(z),mn−2(z), . . . ,m2(z),m1(z)) is maximal for the lexicographical order.

Then let 1 ≤ i ≤ n − 1 be the unique index with mi(z) > mk(z) for all k > i and

mi(z) ≥ mk(z) for all k ≤ i. Moreover, let j ≤ i such that mi(z) = mi−1(z) = · · · = mj(z).

We claim that z has up to cyclic shift the desired shape sjz
′sj . Suppose that the claim is

wrong, i.e. z = z1sjz2sjz3 with z1 6= e or z3 6= e and sj 6∈ supp(z1) ∪ supp(z3).

1st Case: j > 1. Consider two consecutive simple reflections sj together with the corre-

sponding subword sju
′sj of z. If there is no simple reflection sj−1 appearing in u′ there
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must be (as γ(z) ∈ W ) some simple reflection sj+1 in between. Hence we can finally re-

place an expression of the shape sksk+1sk in sjusj with k ≥ j by sk+1sksk+1. This gives a

contradiction to the maximality of m(z). On the other hand since mj−1 < mj there cannot

be modulo cyclic shift such a reflection between any such consecutive pair.

2nd Case: j = 1. In this case we easily see that it is possible to increase the lexicographical

order by a replacing an expression s1s2s1 by s2s1s2. Hence we get a contradiction, too.

The case s = sm and t = sm+1 behaves symmetrically using the lexicographical order on

(m1(z),m2(z), . . . ,mn−2(z),mn−1(z)).

Example 7.21. a) Let (1, 5) = (1, 2)(2, 3)(3, 4)(4, 5)(3, 4)(2, 3)(1, 2) = sw′s. Then sw′ =

(1, 2)(2, 3)(3, 4)(4, 5)(3, 4)(2, 3). Shifting the simple reflection (2, 3) from the RHS to the

LHS we get from (v, u) = (sw′, w′) the tuple

((2, 3)(1, 2)(2, 3)(3, 4)(4, 5)(3, 4), (2, 3)(2, 3)(3, 4)(4, 5)(3, 4))

which we want to avoid since the first entry has not desired shape. Instead we consider the

sequence

(v1, u1) = ((1, 2)(2, 3)(4, 5)(3, 4)(4, 5)(2, 3), (2, 3)(4, 5)(3, 4)(4, 5)(2, 3))

...

(v4, u4) = ((4, 5)(1, 2)(2, 3)(3, 4)(2, 3)(4, 5), (4, 5)(2, 3)(3, 4)(2, 3)(4, 5)).

b) Let v = sw′ = (3, 4)(2, 3)(1, 2)(3, 4)(4, 5)(2, 3) and u = (2, 3)(1, 2)(3, 4)(4, 5)(2, 3).

Again shifting the reflection (2, 3) from the RHS to the LHS, would yield the (non-desirable)

tuple. Instead we consider the sequence

(v1, u1) = ((3, 4)(2, 3)(3, 4)(1, 2)(4, 5)(2, 3), (2, 3)(3, 4)(1, 2)(4, 5)(2, 3)),

(v2, u2) = ((2, 3)(3, 4)(2, 3)(1, 2)(4, 5)(2, 3), (2, 3)(3, 4)(1, 2)(4, 5)(2, 3)).

�

We believe that the above theorem can be stated with respect to words in F̂+. In par-

ticular the following conjecture should hold true.

Conjecture 7.22. Let w ∈ F̂+. The cohomology of X(w) in degree 2i can be written as

H2i(X(w)) =
⊕
z�w
`(v)=i

H(w)z

with H(w)z = iGPwz (−i) for certain standard parabolic subgroups Pwz ⊂ G. �
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Remarks 7.23. i) The grading

H2i(X(w)) =
⊕
z�w
`(v)=i

H(w)z

produced above is licentious since it depends among other things on the chosen gradings

with respect to the (relative) Coxeter elements in Levi subgroups.

ii) We can use Theorem 7.18 in order to reprove the statement in Remark 5.10 concerning

the appearance of the Steinberg representation in the cohomology of a DL-variety X(w).

Indeed, it is easily seen that the induced representation iGB occurs in the spectral sequence

only in the contribution H0(X(e)). Hence the G-representation vGB occurs by Prop. 2.11

exactly in degree `(w).

iii) In [DMR, Cor. 3.3.8] the authors determine the character of H2i(X(w)) as H-

representation. But for the author it is not clear that their result leads to part a) of

Theorem 7.18.

8. The spectral sequence revisited

In this section we reconsider the spectral sequence

Ep,q1 =
⊕
v�w

`(v)=`(w)−p

Hq(X(v)) =⇒ Hp+q
c (X(w))

of the previous paragraph and treat the final aspect of the introduction.

Conjecture 8.1. Let w ∈ F+ and fix an integer i ≥ 0. For v � w, there are geometric

gradings H2i(X(v)) =
⊕
z�v
`(z)=i

iGP vz (−`(z)) such that the complex

E•,2i1 : H2i(X(w)) −→
⊕
v≺w

`(v)=`(w)−1

H2i(X(v)) −→
⊕
v≺w

`(v)=`(w)−2

H2i(X(v)) −→ · · · −→ H2i(X(e))

is quasi-isomorphic to a direct sum
⊕

z�w
`(z)=i

H( · )z of complexes of the shape

H( · )z : iGPwz →
⊕
z�v�w

`(v)=`(w)−1

iGP vz →
⊕
z�v�w

`(v)=`(w)−2

iGP vz → · · · → iGP ez

as in section 1, cf. (2.9). (Here the maps iGP vz −→ iG
P v′z

in the complex are induced - up

to sign - by the double cosets of 1 in WP vz \ W/WP v′z
via Frobenius reciprocity. Further

iGP vz = (0) if z � v.).
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By Proposition 3.11 the conjecture is true for Coxeter elements. Thus we deal in what

follows with elements of positive height.

Proposition 8.2. Let w ∈ F+ with ht(w) ≥ 1. Then for proving the conjecture we may

assume that w is of the form w = sw′s with `(w) = `(w′) + 2.

Proof. We apply again the operations (I) - (III) to the complex. Suppose that the statement

is true for w. We need to show that the assertion is true for the transformed element in

F+.

(I) Let w = sw′. Then we set H(C(v))C(z) = H(v)z for v � w and z � v. The corresponding

complexes are clearly quasi-isomorphic.

(II) Let w = w1stw2 with st = ts. We set H(K(v))K(z) = H(v)z for v � w and z � v. The

corresponding resulting complexes are clearly quasi-isomorphic.

(III) Let w = w1stsw2 and R(w) = w1tstw2. By Corollary 7.14 we know that for zi � wi,

i = 1, 2, the cohomology H2i
c (X(sl, z1stsz2)) is a direct factor of H2i(X(z1stsz2)) and that

H2i(X(z1stsz2))−H2i
c (X(sl, z1s

2z2)) = H2i(X(z1ŝtsz2))

= H2i(X(z1tstz2))−H2i
c (X(tr, z1t

2z2)).

FurtherH2i(X(z1s
2z2)) = H2i(X(z1sz2))

⊕
H2i−2(X(z1sz2))(−1).Hence the complex E•,2i1

for w is quasi-isomorphic to

⊕
v1≺w1

`(v1)=`(w1)−1

H2i(X(v1ŝtsw2)) −→ · · ·

↗

H2i(X(ŵ)) −→ H2i(X(w1stw2))⊕H2i(X(w1tsw2)) −→ · · ·

↘ ⊕
v2≺w2

`(v2)=`(w2)−1

H2i(X(w1ŝtsv2)) −→ · · ·

which coincides with
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v1≺w1

`(v1)=`(w1)−1

H2i(X(v1t̂stw2)) −→ · · ·

↗

H2i(X( ˆR(w))) −→ H2i(X(w1stw2))⊕H2i(X(w1tsw2)) −→ · · ·

↘ ⊕
v2≺w2

`(v2)=`(w2)−1

H2i(X(w1t̂stv2)) −→ · · ·

By reversing the above argument, i.e. by adding the contributions H2i
c (X(tr, z1t

2z2)) and

H2i−2(X(z1tz2))(−1) to the complex (with gradings chosen by induction) we see that the

E1-term of the transformed element R(w) in degree 2i is quasi-isomorphic to the complex

H(R(·))·. �

Remark 8.3. Let w = sw′s with `(w) = `(w′) + 2. For every v′ � w′, we have the identity

H2i(X(sv′s)) = H2i(X(v′s))
⊕
H2i−2(X(v′s))(−1). Hence the complex in Conjecture 8.1

is quasi-isomorphic to its subcomplex

(8.1)

H2i(X(sw′)) −→
⊕
v′≺w′

`(v′)=`(w′)−1

H2i(X(sv′))
⊕
H2i(X(w′))

↗ ↗ −→ · · ·

H2i−2(X(w′s))(−1) −→
⊕
v′≺w′

`(v′)=`(w′)−1

H2i−2(X(v′s))(−1).

Moreover, by considering the middle column in the diagram (7.3), we see that the lower

line which we may identify with the complex

H2i
c (X(s, sw′s)) −→

⊕
v′≺w′

`(v′)=`(w′)−1

H2i
c (X(s, sv′s)) −→ · · · −→ H2i

c (X(s, ss))

is the direct sum of the complexes

H2i
c (X(s2, sw′s))〈−i〉 −→

⊕
v′≺w′

`(v′)=`(w′)−1

H2i
c (X(s2, sv′s))〈−i〉 −→ · · · −→ H2i

c (X(s2))〈−i〉

and

H2i
c (X(s, sw′)) −→

⊕
v′≺w′

`(v′)=`(w′)−1

H2i
c (X(s, sv′)) −→ · · · −→ H2i

c (X(s)).
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Theorem 8.4. Let w ∈ F+. Then Conjecture 8.1 is true for i = 0, 1, `(w)− 1, `(w).

Proof. We may suppose that w has full support. If ht(w) = 0, then the claim follows from

Proposition 3.11. So we assume in the sequel that ht(w) ≥ 1.

If i = 0 then the complex coincides with the complex (2.7) of section 1 which yields the

Steinberg representation vGB .

If i = `(w), the claim is trivial.

If i = `(w)− 1 the assertion follows from Corollary 7.7.

So let i = 1. The proof is by induction on the length. By Proposition 8.2 we may assume

that w = sw′s. For the start of induction, let w = sw′s be as in Corollary 5.9 with s = si

and

w′ = s1 · · · si−1si+1 · · · sn−1.

Here the Tate twist -1 contribution of the cohomology of X(w) is given by

H∗c (X(w))〈−1〉 = Hn
c (X(w))〈−1〉 = vGP (s)(−1)− vGP(2,1,1,...,1)

(−1).

The lower line in the complex (8.1) is nothing else but the complex (2.8) which is a resolution

of vGP (s). In view of Theorem 7.18 we define a grading on the upper line as follows. Set for

all j 6= i,

H(ssj)s = H(sjs)e(−1) = iGP (sjs)
(−1)

and

H(t)t = H(t)e(−1) = iGP (t)(−1) ∀t ∈ S.

In particular, we have fixed H(ssj)sj in this way for all j 6= i. Further we set for j < i− 1,

H(sjsj+1)sj = iGP (sj)
(−1)

and

H(sjsj+1)sj+1 = iGP (sj+1)(−1)

for j > i. If sjsk = sksj , then there is a canonical grading on H2(X(sjsk)). Thus we have

defined gradings for all subwords of sw′ of length ≤ 2. Now we extend the above gradings

to the complex

0 −→ H2(X(w′)) −→
⊕
v′≺w′

`(v′)=`(w′)−1

H2(X(v′)) −→ · · · −→
⊕
v′≺w′
`(v′)=1

H2(X(v′))

which is induced by the Künneth formula and (compatible) gradings with respect to the the

relative Coxeter elements s1 · · · si−1 and si+1 · · · sn−1. More precisely, for si+1 · · · sn−1 we

consider the grading described by Proposition 3.4 whereas for s1 · · · si−1 we consider the dual
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grading, i.e., induced by blowing up hyperplanes (For v′ = w′ the resulting grading coincides

with the one in Proposition 3.13). Finally we apply Theorem 7.18 b) once again in order to

get the remaining gradings on the upper line in the complex (8.1). Here we have to make a

choice for the grading on H2(X(ssi−1si+1)), say H(ssi−1si+1)si−1 ⊂ H(ssi−1si+1)si+1 . The

resulting graded complex satisfies the claim. Indeed, for any t | si+1 · · · sn−1 the complex

H(·)t is acyclic as H(sv′)t = H(sv′/si+1)t for all v′ � w′ with si+1 | v′. Similarly, for

t | s1 · · · si−1 the complex H(·)t is acyclic as H(sv′)t = H(sv′/si−1)t for all v′ � w′ with

si−1 | v′. Moreover H(sv′)si+1 = H(v′)si+1 for all v′ � w′ which shows that the complex

H(·)si+1 is acyclic. Finally, one checks that the complex H(·)si−1 is a resolution of the

representation vGP (s)(−1)− vGP(2,1,1,...,1)
(−1). Moreover, we see that the differential

(8.2)
⊕
v�w
`(v)=2

H2(X(v)) −→
⊕
t≺w
`(t)=1

H2(X(t))

is surjective.

Let’s proceed with the induction step. So let w = sw′s ∈ F+ with ht(sw′) ≥ 1.

Claim: The map (8.2) is surjective, as well.

Here we may consider the complex (8.1) again. By induction hypothesis we deduce that

the map
⊕

v�sw′
`(v)=2

H2(X(v)) −→
⊕

t≺sw′
`(t)=1

H2(X(t)) is surjective. On the other hand, we have

a surjection H2(X(s2)) −→ H2(X(sr)). The claim follows.

We distinguish finally the following cases.

Case a). s ∈ supp(w′). Then the lower line in the complex (8.1) coincides with the

complex (2.8). It is contractible by Proposition 2.13. By induction hypothesis the statement

is true for the upper line. We extend the grading to the complex with respect to w in the

obvious way.

Case b). s 6∈ supp(w′). Then the lower line in the complex (8.1) coincides with the com-

plex (2.8) and gives a resolution of the generalized Steinberg representation vGP (s). By induc-

tion hypothesis the statement is true for the upper line. As the map
⊕

v�sw′
`(v)=2

H2(X(v)) −→⊕
t≺sw′
`(t)=1

H2(X(t)) is surjective the representation vGP (s)(−1) occurs in the cohomology of

X(w). Here, we extend the grading to the complex with respect to w in the obvious way,

as well. �

By the proof of the preceding theorem we get an inductive formula for the Tate twist −1

contribution of the cohomology of DL-varieties.

Corollary 8.5. Let w = sw′s ∈ F+ with ht(sw′) ≥ 1. Then
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H∗c (X(w))〈−1〉 =


H∗c (X(sw′))〈−1〉[−1] if s ∈ supp(w′)

H∗c (X(sw′))〈−1〉[−1]
⊕
vGP (s)(−1)[−`(w)] if s /∈ supp(w′)

.

In view of the lower line in (8.1) we generalize Conjecture 3.12.

Conjecture 8.6. Let w ∈ F+ and fix u ≺ w. For u � v � w, there are geometric gradings

H2i(X(v)) =
⊕

z�v
`(z)=i

H(v)z such that the complex

(8.3) 0 −→ H2i(X(w)) −→
⊕
u�v≺w

`(v)=`(w)−1

H2i(X(v)) −→ · · · −→ H2i(X(u))

is quasi-isomorphic to the graded direct sum of complexes of the shape

0→ iGPwz →
⊕
z�v�w

`(v)=`(w)−1

iGP vz →
⊕
z�v�w

`(v)=`(w)−2

iGP vz → · · · → iGP ez → 0

cf. (2.9).

Remark 8.7. As in Proposition 8.2 one can reduce the conjecture to the case where w is

of the shape w = sw′s. Again we only have seriously to consider the operation (III) in this

process of transformations. So let w = w1stsw2 and R(w) = w = w1tstw2. If

u = v1stsv2, v1s
2v2, v1stv2, v1tsv2, v1v2,

respectively, we set

u = v1tstv2, v1t
2v2, v1tsv2, v1stv2, v1v2.

Then the complex (8.3) is quasi-isomorphic to

(8.4) 0 −→ H2i(X(w)) −→
⊕
u�v≺w

`(v)=`(w)−1

H2i(X(v)) −→ · · · −→ H2i(X(u)).

Similarly, we transform the lower complex in the conjecture above.

Remark 8.8. If Conjecture 8.1 is true for w = sw′s then the induced graded complex

restricted to

0 −→ H2i(X(sw′)) −→
⊕
v≺sw′

`(v)=`(w)−1

H2i(X(v)) −→ · · · −→ H2i(X(e)).

is not necessarily quasi-isomorphic to the latter complex.
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Remark 8.9. Suppose that Conjecture 8.1 is true. Then we can reprove the statement in

Remark 5.10 concerning the appearing of the trivial representation in the cohomology of

a DL-variety X(w). Indeed, the multiplicity of the trivial representation iGG in an induced

representation iGP is always 1. Hence for any z � w, the v-contribution

0→ iGPwz →
⊕
z�v�w

`(v)=`(w)−1

iGP vz →
⊕
z�v�w

`(v)=`(w)−2

iGP vz → · · · → iGP ez → 0

restricted to iGG is acyclic as the resulting index set is contractible (a lattice). It follows that

the iGG occurs only in the top cohomology group of X(w).

9. Examples

Here we present some examples concerning Theorem 8.4. In the following we omit the

Tate twists for reasons of clarity. For w ∈ F+ and z � w, we write iGP (z) instead of

H(w)z = iGP .

a) Let G = GL3 and let w = (1, 2)(2, 3)(1, 2) = sw′s ∈ F+ with s = (1, 2) and w′ = (2, 3).

α) Let i = 2. Here the complex (8.1) is

H4(X((1, 2)(2, 3))) = iGG
↗

H2(X((2, 3)(1, 2)) −→ H2(X((1, 2)r)) = iGP(2,1)
.

We consider the grading H2(X(2, 3)(1, 2)) = iGG(2, 3)
⊕
iGP(2,1)

(1, 2). Thus we see that the

above complex is contractible, as it should be by Example 4.16.

β) Let i = 1. Here the complex (8.1) is

H2(X((1, 2)(2, 3))) −→ H2(X((1, 2)l))
⊕
H2(X((2, 3))) = iGP(2,1)

⊕
iGP(2,1)

↗ ↗

H0(X((2, 3)(1, 2))) = iGG −→ H0(X((1, 2)r)) = iGP(2,1)
.

We consider the grading H2(X((2, 3)(1, 2))) = iGG(1, 2)
⊕
iGP(2,1)

(2, 3). Thus we see that the

above complex is contractible, as it should be by Example 4.16.
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b) Let G = GL4 and let w = (3, 4)(1, 2)(2, 3)(3, 4) = sw′s ∈ F+ with s = (3, 4) and

w′ = (1, 2)(2, 3).

α) Let i = 2. We have H4(X((1, 2)(2, 3))) = iGP(3,1)
. We consider the grading

H4(X((3, 4)(1, 2)(2, 3)) = iGG((3, 4)(2, 3))
⊕

iGP(3,1)
((1, 2)(2, 3))

⊕
iGP(2,2)

((1, 2)(3, 4)).

The reduced complex (8.1) is given by

H4(X((1, 2)(2, 3))) = iGP(3,1)

↗
H4(X((3, 4)(1, 2)(2, 3)))) −→ H4(X((3, 4)(1, 2))) = iGP(2,2)

↘
H4(X((3, 4)(2, 3))) = iGP(1,3)

↑
H2(X((1, 2)(3, 4)))

↑ ↗ ↘

H2(X(Cox)) ↑ H2(X((3, 4))) = iGP(1,1,2)
.

↘ ↗
H2(X((2, 3)(3, 4)))

Here the upper arrows ↑ go as in the complex (8.1) from H2(X(v′s)) to H4(X(sv′)) for

v′ � w′. We consider the gradings

H2(X((2, 3)(3, 4))) = iGP(1,3)
(2, 3)

⊕
iGP(1,1,2)

(3, 4),

H2(X((1, 2)(3, 4))) = iGP(2,2)
(1, 2)

⊕
iGP(2,2)

(3, 4)

and

H2(X(Cox)) = iGG(2, 3)
⊕

iGP(3,1)
(3, 4)

⊕
iGP(2,2)

(1, 2).

We get H∗c (X(w))〈−2〉 = j(2,2)[−5], as it should be by Example 5.11.

β) Let i = 1. We consider for w′ = (1, 2)(2, 3) the graded complex

H2(X((1, 2))) = iGP(2,1,1)

↗
H2(X((1, 2)(2, 3)))

↘
H2(X((2, 3))) = iGP(1,2,1)
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with H2(X((1, 2)(2, 3))) = iGP(3,1)
(2, 3)

⊕
iGP(2,1,1)

(1, 2).

We consider further the gradings

H2(X((3, 4)(2, 3))) = iGP(3,1)
(3, 4)

⊕
iGP(1,2,1)

(2, 3),

H2(X((3, 4)(1, 2)) = iGP(2,2)
(1, 2)

⊕
iGP(2,2)

(3, 4)

and

H2(X((3, 4)(1, 2)(2, 3))) = iGG(3, 4)
⊕

iGP(3,1)
(2, 3)

⊕
iGP(2,2)

(1, 2).

The reduced complex (8.1) is given by

H2(X((1, 2)(2, 3))) −→ H2(X((1, 2)) = iGP(2,1,1)

↗ ↗↘
H2(X((3, 4)(1, 2)(2, 3))) −→ H2(X((3, 4)(1, 2))) −→ H2(X((2, 3))) = iGP(1,2,1)

↘ ↗↘
H2(X((3, 4)(2, 3))) −→ H2(X((3, 4))) = iGP(1,1,2)

↑
H0(X((1, 2)(3, 4))) = iGP(2,2)

↑ ↗ ↘ ↑

H0(X(Cox)) = iGG ↑ H0(X((3, 4))) = iGP(1,1,2)
.

↘ ↗
H0(X((2, 3)(3, 4))) = iGP(1,3)

Here the upper arrows ↑ go as in the complex (8.1) from H0(X(v′s)) to H2(X(sv′)) for

v′ � w′. It follows that the complex is contractible, as it should be by Example 5.11.

c) Let G = GL4 and let w = (2, 3)(1, 2)(3, 4)(2, 3) ∈= sw′sF+ with s = (2, 3) and w′ =

(1, 2)(3, 4).

α) Let i = 2. We have H4(X((1, 2)(3, 4))) = iGP(2,2)
. We consider the grading

H4(X((2, 3)(1, 2)(3, 4)) = iGG((2, 3)(1, 2))
⊕

iGP(3,1)
((2, 3)(3, 4))

⊕
iGP(2,2)

((1, 2)(3, 4)).

The reduced complex (8.1) is given by
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H4(X((1, 2)(3, 4))) = iGP(2,2)

↗
H4(X((2, 3)(1, 2)(3, 4)))) −→ H4(X((2, 3)(1, 2))) = iGP(3,1)

↘
H4(X((2, 3)(3, 4))) = iGP(1,3)

↑
H2(X((1, 2)(2, 3)))

↑ ↗ ↘

H2(X((1, 2)(3, 4)(2, 3))) ↑ H2(X((2, 3))) = iGP(1,2,1)
.

↘ ↗
H2(X((3, 4)(2, 3)))

Here the upper arrows ↑ go as in the complex (8.1) from H2(X(v′s)) to H4(X(sv′)) for

v′ � w′. We consider the gradings

H2(X((3, 4)(2, 3))) = iGP(1,3)
(3, 4)

⊕
iGP(1,2,1)

(2, 3),

H2(X((1, 2)(2, 3))) = iGP(3,1)
(1, 2)

⊕
iGP(1,2,1)

(2, 3)

and

H2(X((1, 2)(3, 4)(2, 3))) = iGG(1, 2)
⊕

iGP(3,1)
(3, 4)

⊕
iGP(2,2)

(2, 3).

We get H∗c (X(w))〈−2〉 = iGP(2,1,1)
/iGP(2,2)

[−5], as it should be by Example 5.12.

β) Let i = 1. We consider for w′ = (1, 2)(3, 4) the graded complex

H2(X((1, 2))) = iGP(2,1,1)

↗
H2(X((1, 2)(3, 4)))

↘
H2(X((3, 4))) = iGP(1,1,2)

with H2(X((1, 2)(3, 4))) = iGP(2,2)
(1, 2)

⊕
iGP(2,2)

(3, 4). We consider further the gradings

H2(X((2, 3)(3, 4))) = iGP(1,3)
(2, 3)

⊕
iGP(1,1,2)

(3, 4),

H2(X((2, 3)(1, 2))) = iGP(3,1)
(2, 3)

⊕
iGP(2,1,1)

(1, 2)
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and

H2(X((2, 3)(1, 2)(3, 4))) = iGG(2, 3)
⊕

iGP(3,1)
(3, 4)

⊕
iGP(2,2)

(1, 2).

The reduced complex (8.1) is given by

H2(X((2, 3)(1, 2))) −→ H2(X((1, 2))) = iGP(2,1,1)

↗ ↗↘
H2(X((2, 3)(1, 2)(3, 4))) −→ H2(X(((1, 2)(3, 4))) −→ H2(X((2, 3))) = iGP(1,2,1)

↘ ↗↘
H2(X((2, 3)(3, 4))) −→ H2(X((3, 4))) = iGP(1,1,2)

↑
H0(X((1, 2))(2, 3)) = iGP(3,1)

↑ ↗ ↘ ↑

H0(X((1, 2)(3, 4)(2, 3))) = iGG ↑ H0(X((2, 3))) = iGP(1,2,1)
.

↘ ↗
H0(X((3, 4)(2, 3))) = iGP(1,3)

Here the upper arrows ↑ go as in the complex (8.1) from H0(X(v′s)) to H2(X(sv′)) for

v′ � w′. We get H∗c (X(w))〈−1〉 = j(2,2)[−4], as it should be by Example 5.12.

10. The second approach

In this section we present a different but more vague method for determining the coho-

mology of DL-varieties attached to elements in the Weyl group. The analogous situation

for elements of the monoid F+ can be treated in the same way. Here the approach is the

other way round compared to the foregoing version. Some results presented here might be

also treated by using Demazure resolutions and the results of the previous sections.

Let w = sw′s ∈W with `(w) = `(w′)+2 and X(w, sw′) = X(w)∪X(sw′) ⊂ X as before.

Reconsider for i ≥ 0, the natural map ri = riw,sw′ : H i
c(X(w, sw′)) −→ H i

c(X(sw′)). Now

we write H i
c(X(w, sw′)) = H i−2

c (X(w′s, w′))(−1) = A
⊕
B where

A ∼= coker
(
H i−3
c (X(w′)) −→ H i−2

c (X(w′s))
)
(−1)

and

B = ker
(
H i−2
c (X(w′)) −→ H i−1

c (X(w′s))
)
(−1).

By Remark 4.14 we know that ri|A = 0.



THE COHOMOLOGY OF DELIGNE-LUSZTIG VARIETIES 71

Motivated by the Examples in the GL4-case we pose the following conjecture.

Conjecture 10.1. For i ≥ 0, the map ri|B : B −→ H i
c(X(sw′)) has si-full rang.

Remark 10.2. For our purpose it is even enough to have the validity of a weaker form

of the above conjecture. More precisely, it suffices to know that for all irreducible H-

representations V with i = −2t(V ) the map ri|BV : BV −→ H2i
c (X(sw′))V has full rang.

Indeed if the assumption i = −2t(V ) is not satisfied, then we proceed as follows to

determine the V -isotypic part of the map riw,sw′ . We fix a reduced decomposition of w′.

Since i > −2t(V ) there is by purity of X(w) some hypersquare Q ⊂ F+ of dimension d

(which is assumed to be minimal) with head w and with {w, sw′} ⊂ Q and such that a given

irreducible subrepresentation Z ⊂ BV ⊂ H i
c(X(w) ∪X(sw′)) is induced by an isomorphic

subrepresentation Z ′ ⊂ H i−1
c (X(Q) \X(w)∪X(sw′)) via the corresponding boundary map

δi−1. A minimal hypersquare exists since the extreme case where tail(Q) = e yields one.

Then tail(Q) = sv′ or tail(Q) = v′ for some v′ ∈ F+ with v′ � w′.

Suppose that d = 2.

1. Case. tail(Q) = sv′. Thus Z ′ ⊂ H i−1
c (X(sv′s) ∪ X(sv′)) maps onto Z ⊂ H i

c(X(w) ∪
X(sw′)) via the boundary map δi−1.

Subcase a) Z ′ is induced by H i−1
c (X(sv′)).

Subsubcase i) δi−1
sw′sv′(Z

′) 6= 0 where δi−1
sw′sv′ is the boundary map H i−1

c (X(sv′)) −→
H i
c(X(sw′)) (which is known by induction, cf. the following pages). In this case riw,sw′

maps Z ⊂ H i
c(X(w) ∪X(sw′)) onto δi−1

sw′sv′(Z
′) ⊂ H i

c(X(sw′)) by considering the commu-

tative diagram:

...
...

...

↑ ↑ ↑
· · · −→ H i

c(X(w)) −→ H i
c(X(w) ∪X(sw′)) −→ H i

c(X(sw′)) −→ · · ·
↑ ↑ δi−1 ↑ δi−1

sw′,sv′

· · · −→ H i−1
c (X(v)) −→ H i−1

c (X(v) ∪X(sv′)) −→ H i−1
c (X(sv′)) −→ · · ·

↑ ↑ ↑
...

...
...

Subsubcase ii) δi−1
sw′sv′(Z

′) = 0. Then ri(Z) = 0.

Subcase b) Z ′ is induced by H i−1
c (X(v)). In this case ri(Z) = 0.

2. Case. tail(Q) = w′. This case yields a contradiction since the boundary mapH i−1
c (X(w′s)∪

X(w′)) −→ H i
c(X(w) ∪X(sw′)) vanishes by Corollary 4.12.
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Suppose that d = 3.

1. Case tail(Q) = sv′ for some v′ ≺ w′ with `(w′) = `(v′) + 1, i.e. Q has the shape

Q :

w

↗ ↑ ↖
sw′ sv′1s sv′2s

↑ ↗↖ ↗↖ ↑
sv′1 sv′2 sv′s

↖ ↑ ↗
sv′

for some v′1, v
′
2 ∈ F+. We set A = {sv′1, sv′2, sv′} and = {sv′1s, sv′2s, sv′s}. Then X(A) is

closed in X(Q) \ (X(w) ∪X(sw′)) whereas X(B) is open in the latter space. Now we may

imitate the procedure of the case d = 2. The variety X(A) corresponds to X(sv′) whereas

X(B) plays the role of X(v).

2. Case tail(Q) = v′ for some v′ ≺ w′ with `(w′) = `(v′) + 1, i.e., Q has the shape

Q :

w

↗ ↑ ↖
sw′ sv′s w′s

↑ ↗↖ ↗↖ ↑
sv′ w′ v′s

↖ ↑ ↗
v′

We claim that riw,sw′ is trivial. Indeed, as X(sv′s)∪X(sv′) and X(w′s)∪X(w′) are both

open in X(Q) \ (X(w) ∪X(sw′)) whereas X(v′s) ∪X(v′) is closed we see that

• Z ′ ⊂ H i−1
c (X(sv′s) ∪X(sv′)) gives a contradiction to the minimality with respect

to d.

• Z ′ ⊂ H i−1
c (X(w′s) ∪X(w′)) gives a contradiction as the boundary map is trivial.

So Z ′ is induced by H i−1
c (X(v′s) ∪ X(v′)) and it is mapped to Z ⊂ H i

c(X(Q(w′, w))) via

the boundary map. But the latter one is given by the diagram
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...
...

...

↑ ↑ ↑
H i
c(X(Q(w′, w)) = H i

c(X(w) ∪X(sw′)) ⊕ H i
c(X(w′s) ∪X(w′))

↑ ↑ ↑
H i−1
c (X(Q(v′, v)) = H i−1

c (X(v) ∪X(sv′)) ⊕ H i−1
c (X(v′s) ∪X(v′))

↑ ↑ ↑
...

...
...

i.e. it is for trivial reasons the direct sum of the summands. Hence we get a contradiction.

The higher dimensional cases d ≥ 4 behave as above whether tail(Q) = sv′ or tail(Q) = v′.

The latter case gives a contradiction. �

Thus under the validity of the above conjecture for determining the cohomology of X(w),

it remains to compute the cohomology of the edge X(w′) ∪X(w′s) which we explain now.

Let w, v ∈W with `(w) = `(v) + 1. We want to determine the cohomology of the locally

closed subvariety X(w)∪X(v) ⊂ X. Suppose that we may write w = sw′s as in the previous

sections. If v ∈ {sw′, w′s} then H i
c(X(w) ∪ X(v)) = H i−2

c (X(w′) ∪ X(w′s))(−1) and we

may suppose by induction on the length of w that these groups are known.

So let v = sv′s with v′ < w′. Then the cohomology of X(w) ∪X(v) sits in a long exact

cohomology sequence

· · · −→ H i
c(X(w) ∪X(v)) −→ H i

c(X(Q)) −→ H i
c(X(sw′) ∪X(sv′)) −→ · · ·

where Q is the square Q = {w, v, sw′, sv′} ⊂ W . The cohomology of X(sw′) ∪ X(sv′) is

known by induction on the length of w′s. On the other hand, the square

Q :

w

↗ ↖
v sw′.

↖ ↗
sv′

is induced by the square

Q̂ :

w′s

↗ ↖
v′s w′

↖ ↗
v′
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via multiplication with s ∈ S from the left. The union Q ∪ Q̂ gives rise to a cube or a

3-dimensional hypersquare

Q ∪ Q̂ :

w

↗ ↑ ↖
sw′ v sw′

↑ ↗↖ ↗↖ ↑
sv′ w′ v′s

↖ ↑ ↗
v′

Then by Proposition 6.5 the variety X(Q) is an A1-bundle over X(Q̂) and X(Q ∪ Q̂) is a

P1-bundle over X(Q̂). Further the restriction map in cohomology

riQ,{sw′,sv′} : H i
c(X(Q)) −→ H i

c(X(sw′) ∪X(sv′))

can be computed in the same way as in Conjecture 10.1 resp. Remark 10.2. Thus if we are

able to determine the cohomology group H∗c (X(Q̂)) we have knowledge of the cohomology

of X(w) ∪ X(v). Hence we have reduced the question of determining the cohomology of

the edge X(w) ∪X(v) by the prize of enlarging the square but where the head has smaller

length.

Example 10.3. Let G = GL4 . Let w = (1, 4)(2, 3) ∈ W. Here we write w = sw′s =

(3, 4)(1, 3)(2, 4)(3, 4) so that sw′ = (2, 3)(3, 4)(2, 3)(1, 2)(2, 3), w′ = (2, 3)(1, 2)(3, 4)(2, 3)

and w′s = (2, 3)(1, 2)(2, 3)(3, 4)(2, 3). Hence for computing the cohomology of the edge

X(w′s) ∪X(w′) we consider the square

Q :

w′s

↗ ↖
w′ (2, 3)(1, 2)(2, 3)(3, 4)

↖ ↗
(2, 3)(1, 2)(3, 4)

and henceforth the square

Q̂ :

(1, 2)(2, 3)(3, 4)(2, 3)

↗ ↖
(1, 2)(3, 4)(2, 3) (1, 2)(2, 3)(3, 4).

↖ ↗
(1, 2)(3, 4)
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The cohomology of X(Q̂) is by using the results in section 5 easily computed as

H∗c (X(Q̂)) = vGP(1,2,1)
[−2]⊕ j(3,1)(−1)[−3]2 ⊕ iGG(−2)[−4]

⊕j(3,1)(−2)[−5]⊕ iGG(−3)[−6]2 ⊕ iGG(−4)[−8].

Hence

H∗c (X(Q)) = vGP(1,2,1)
(−1)[−4]⊕ j(3,1)(−2)[−5]2 ⊕ iGG(−3)[−6]

⊕j(3,1)(−3)[−7]⊕ iGG(−4)[−8]2 ⊕ iGG(−5)[−10].

On the other hand the cohomology of Y = X((2, 3)(1, 2)(2, 3)(3, 4))∪X((2, 3)(1, 2)(3, 4)) is

given (using loc.cit.) by

H∗c (Y ) = vGP(2,1,1)
(−1)[−4]⊕ j(2,2)(−2)[−5]⊕ j(3,1)(−2)[−5]⊕ iGG(−3)[−6]⊕ iGG(−4)[−8].

By a careful study of the restriction map we compute that the cohomology of X(w′s)∪X(w′)

is hence given by

H∗c (X(w′s) ∪X(w′)) = j(2,2)(−1)[−4]⊕ j(3,1)(−2)[−5]⊕ j(2,2)(−2)[−6]

⊕j(3,1)(−3)[−7]⊕ iGG(−4)[−8]⊕ iGG(−5)[−10].

Exemplarily, the contribution j(3,1)(−2)[−5] in H∗c (Y ) is induced by the Coxeter element

(2, 3)(1, 2)(3, 4). Further one checks that this representation lies in the image of the re-

striction map H∗c (X((1, 3, 4)) ∪ X((2, 3)(1, 2)(3, 4))) −→ H∗c (X((2, 3)(1, 2)(3, 4))). Finally

one verifies that the representation on the LHS is induced by H5(X(Q)) which implies

that j(3,1)(−2) ⊂ H5
c (Y ) is killed by H5

c (X(Q)). Alternatively, on can apply the method

presented in Remark 10.2. With the same methods one deduces that

H∗c (X((1, 4)(2, 3))) = vGB [−6]⊕ j(2,1,1)(−2)[−7]⊕ j(2,2)(−3)[−8]2

⊕j(3,1)(−4)[−9]⊕ iGG(−6)[−12].

Again we consider exemplarily the contribution j(2,2)(−2) ⊂ H6
c (X(sw′)). It is induced by

H5
c (X((1, 4, 3))). The set Q′ = {w, sw′, (1, 4), (1, 4, 3)} is a square and the restriction map

H5
c (X((1, 4))∪X((1, 4, 3))) −→ H5

c (X((1, 4, 3))) is surjective. By computing H4
c (X(Q′)) =

H2
c (X(Q̂′))(−1) withQ′ = {w′s, w′, (1, 3, 4), (1, 3)} one verifies that j(2,2)(−2) ⊂ H6

c (X(sw′))

is killed by the restriction map.

Remark 10.4. In general we have to apply to w ∈ W the operations (I) - (III) (in the

sense of Weyl groups) of the previous section in order to write it in the shape w = sw′s,

cf. Lemma 7.20. In what follows, we hope that this lemma (or rather a variant) generalizes

somehow to arbitrary hypersquares.
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We now explain how the strategy works in higher dimensions. Here we suppose that

a similar conjecture as above holds true. Hence we have to determine the cohomology of

X(Q) for squares Q ⊂W. So let Q be such a square with head w = sw′s.

Case 1: Q is of the shape

Q :

w

↗ ↖
sw′ w′s

↖ ↗
w′

.

In this case the we have by Proposition 4.12 a splitting H i
c(X(Q)) = H i

c(X(w′s)∪X(w′))⊕
H i−2
c (X(w′s) ∪X(w′))(−1). By induction the cohomology of X(w′s) ∪X(w′) and hence of

X(Q) is known.

Case 2: Q is of the shape

Q :

w

↗ ↖
v sw′

↖ ↗
sv′

with v = sv′s. In this case the we have H i
c(X(Q)) = H i−2

c (X(Q̂))(−1) where Q̂ =

{w′s, v′s, w′, v′}. By induction the cohomology of X(Q̂) and hence of X(Q) is known.

Case 3: Q is of the shape

Q :

w

↗ ↖
v1 v2

↖ ↗
v3

with vi = sv′is for i = 1, 2, 3 and where Q′ := {w′, v′1, v′2, v′3} ⊂ W is a square. In this case

we consider as in the case of edges above the square sQ′ = {sw′, sv′1, sv′2, sv′0}. Then the

cohomology of X(Q) sits in a long exact cohomology sequence

· · · −→ H i−1
c (X(sQ′) −→ H i

c(X(Q)) −→ H i
c(X(Q) ∪X(sQ′)) −→ H i

c(X(sQ′)) −→ · · · .

Again by induction on the length of the head of a cube the cohomology of X(sQ′), X(Q′s)

and X(Q′) are known. Further we have H i
c(X(Q)∪X(sQ′)) = H i−2

c (X(Q′s)∪X(Q′))(−1),
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where Q′s := {w′s, v′1s, v′2s, v′3s}. Thus we may compute riQ∪sQ′,sQ′ as in the lower dimen-

sional cases, i.e. as in Conjecture 10.1 resp. Remark 10.2.

But there are yet two other kind of squares.

Case 4: Q is of the shape

Q :

w

↗ ↖
sw′ w′s

↖ ↗
su′

with su′ = u′s.

and

Case 5: Q is of the shape

Q :

w

↗ ↖
sw′ sv′s

↖ ↗
su′s

with u′ < v′ < w′ and `(w′) = `(u′) + 2.

Unfortunately, as we see, the higher the dimension of a square is the more complicated

the situation behaves. This is of course due to the relations which exist in the Weyl group

W. For this reason, we also consider the monoid F+ in the sequel where this phenomenon

does not appear.

Before we proceed we recall the following well-known fact.

Lemma 10.5. Let w ∈ W and s, t ∈ S. Suppose that `(sw) = `(w) + 1, `(wt) = `(w) + 1

and `(swt) = `(w). Then w = swt.

Proof. This is [DL, Lemma 1.6.4] �

Thus if `(sw′) = `(w′s) = `(w′) + 1 and `(sw′s) = `(w′) we have sw′ = w′s.

Let Q ⊂ W be a hypersquare with head w = sw′s. There are a priori for the tail of Q

the following possibilities (mod symmetry) where u′ ≤ w′.
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Case A: tail(Q) = u′ with `(su′s) = `(u′) + 2.

Case B: tail(Q) = u′ with `(su′) = `(u′s) = `(u′) + 1 and `(su′s) = `(u′).

Case C: tail(Q) = su′ with `(su′) = `(u′) + 1 and `(su′s) = `(u′).

Case D: tail(Q) = su′ with `(su′) = `(u′) + 1 and `(su′s) = `(u′) + 2.

Case E: tail(Q) = su′s with `(su′s) = `(u′) + 2.

We shall examine in all cases the structure of Q and the cohomology of X(Q).

Case A: tail(Q) = u′ with u′ < w′ and `(su′s) = `(u′) + 2.

Let dim(Q) = d, so that #Q = 2d. We consider the subintervals I(u,w), I(su′, sw′),

I(u′s, w′s), I(u′, w′). SinceQ is a square each of them is a square as well and has consequently

2d−2 elements. We shall see that the union of them is Q. Indeed, let v ∈ Q.

Case 1) If v ≤ w′ then v ∈ I(u′, w′).

Case 2) Let v ≤ sw′ and v 6≤ w′. Thus we may write v = sv′ with v′ ≤ w′. As `(su′) =

`(u′) + 1 we see that by considering reduced decompositions that we must have v ≥ su′.

Thus w ∈ I(su′, sw′).

Case 3) Let v ≤ w′s and v 6≤ w′. This case is symmetric to Case 2, hence w ∈ I(u′s, w′s).

Case 4) Let v ≤ sw′s and v 6≤ sw′ and v 6≤ w′s. Then as in Case 2 we argue that v = sv′s

with v′ ≥ u′. Hence v ∈ I(su′s, sw′s).

As 4 · 2d−2 = 2d. we see that the pairwise intersection of the above 4 subsquares is empty

and that I(su′, sw′) (resp. I(u,w), I(u′s, w′s)) is induced by I(u′, w′) by multiplying with

s from the left (resp. conjugating with s, multiplying with s from the right). Hence Q is a

union of special squares (cf. Definition 6.4) and the cohomology is consequently given by

H i
c(X(Q)) = H i

c(X(Q(u′, w′s)))⊕H i−2
c (X(Q(u′, w′s)))(−1)

which is known by induction on the length.

Case B. tail(Q) = u′ with u′ < w′ and `(su′s) = `(u′). It follows that su′ = u′s by Lemma

10.5. We claim that this case does not appear. The case where dim(Q) = 2 does not occur.

Let dim(Q) = 3. Then Q must have the shape

I(w, u′) :

w

sw′ sv′s w′s

sv′ w′ v′s

u′



THE COHOMOLOGY OF DELIGNE-LUSZTIG VARIETIES 79

for some v′ ≥ u′ since `(su′) = `(u′) + 1 (consider a reduced decomposition of v′). Hence

v′ = u′. But then sv′s = su′s, a contradiction as `(su′s) = `(u′).

If dimQ > 3 then we argue by induction. Indeed in Q there must be a subsquare of

dimension dim(Q) − 1 with head(Q) = sv′s and tail(Q) = u′. By induction this is not

possible.

Case C: tail(Q) = su′ with `(us′) > `(u′) < `(su′).

We shall see that this case behaves very rigid. More precisely, we shall see that Q is

paved by squares of type Case 4. Here we make usage of the following statement.

Lemma 10.6. Let w′ ∈ W , s ∈ S with `(sw′s) = `(w′) + 2. Then there is no v′ ≤ w′ with

`(v′) = `(w′)− 1 and such that v′ = su′ = u′s for some u′ ≤ v′.

Proof. Let w′ = s1 · · · sr be a reduced decomposition. Suppose that there exists such a

v′ = su′ = u′s as above. Then there is some index 1 ≤ i ≤ r with su′ = s1 · · · ŝi · · · sr.
On the other hand, since `(sv′) < `(v′) there exits by the Exchange Lemma some integer

1 ≤ m ≤ r with ss1 · · · sm−1 = s1 · · · sm (with si omitted depending on whether i <

m or i > m). If m < i, then w′ = s1 · · · sr = ss1 · · · ŝm · · · sr a contradiction to the

assumption that `(sw′) = `(w′) + 1. If m > i, then ss1 · · · ŝi · · · sm−1 = s1 · · · ŝi · · · sm.
But su′ = s · s1 · · · ŝi · · · ŝm · · · sr = s1 · · · ŝi · · · ŝm · · · sr · s as su′ = u′s. Hence we deduce

that sm+1 · · · sr · s = sm · sm+1 · · · sr. Again by plugging this expression into the reduced

decomposition for w′, we obtain a contradiction to the assumption that `(w′s) = `(w′) +

1. �

We start with the case of a square. Here it is as in Case 4 before. Consider now a

hypersquare Q of dimension 3. Thus it must have the shape

Q :

w

sw′ sv′s w′s

? ? ?

su′

with su′ = u′s, v′ < w′ and u′ < w′ for certain elements ? ∈ W. As `(su′) = `(u′) + 1 we

deduce that v′ ≥ u′. Hence we can make the structure of Q more precise, i.e.

Q :

w

sw′ sv′s w′s

sv′ ? v′s

su′
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As one verifies there are a priori for ? ∈W only 2 possibilities : ? ∈ {w′, sz′} with sz′ = z′s

and z′ ∈ I(u′, w′). But by Lemma 10.6 we must have ? = sz′. Hence Q is the union of two

squares of the shape as in Case 4.

Let dim(Q) = d > 3. The square Q begins with the following elements

Q :

w

sw′ sv′1s, · · · , sv′d−2s w′s
...

...
...

su′

By induction on the size of Q we know that all subsquares of Q of the shape Q(su′, sv′is) are

union of squares of the the desired shape. Now one verifies that square Q ends as follows

Q :

w
...

...
...

sx′ sy′1, · · · , sy′d−2 x′s

su′

with syi = yis, i = 1, . . . , d. There must be some yi with sy′ ≤ w and again by induction

the statement follows.

Next we turn to the cohomology with respect to these hypersquares. We start again

with the 2-dimensional case. We fix reduced decompositions of w′ and u′. We consider the

hypersquare QF
+

(u′, w) ⊂ F+

QF
+

(u′, w) :

w

↗ ↑ ↖
sw′ su′s sw′

↑ ↗↖ ↗↖ ↑
su′ w′ u′s

↖ ↑ ↗
u′

and the interval I(u′, w) in W . A case by case study together with the fact (which follows by

Lemma 10.5) that apart from u′ there is no z′ ≺ w′ with `(z′) = `(w′)− 1 and γ(z′) = γ(u′)

it is seen that the preimage of I(u′, w) under the proper map π : X`(w)+1 −→ X is just

X(QF
+

(u′, w)). Hence we get a proper surjective map

π : X(QF
+

(u′, w)) −→ X(I(u′, w)).

The hypersquare Q is an open subset of the interval I(u′, w) so that U := X(Q) is an open

subvariety of X(I(u′, w)). The closed complement is given by Y := X(I(u′, w)) \ X(Q).

We consider their preimages U ′ := π−1(X(Q)) and Y ′ := π−1(Y ) in X`(w)+1. We get a
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commutative diagram of long exact cohomology sequences

(10.1)

· · · −→ H i
c(U

′) −→ H i
c(X(QF

+
(u′, w))) −→ H i

c(Y
′) −→ · · ·

↑ ↑ ↑
· · · −→ H i

c(X(Q)) −→ H i
c(X(I(u′, w)) −→ H i

c(Y ) −→ · · ·

We claim that we can recover the cohomology of X(Q) by this diagram. In fact, the

cohomology of X(QF
+

(u′, w)) is known by its particular structure since it is the union of

special squares, i.e.

H i
c(X(QF

+
(u′, w))) = H i

c(X(QF
+

(u′, w′s)))⊕H i−2
c (X(QF

+
(u′, w′s)))(−1).

Further Y = X(w′) ∪X(u′) whereas Y ′ = XF+

1 (su′s) ∪ Y F+
with the obvious meaning for

Y F+
and XF+

1 (su′s) is the closed subset of XF+
(su′s) in Remark 4.15. Then

H i
c(Y

′) = H i
c(Y )⊕H i−2

c (X(u′))(−1)

and

H i
c(U

′) = H i
c(U)⊕H i−2

c (X(u′s))(−1).

Hence the restriction map H i
c(X(QF

+
(u′, w))) −→ H i

c(Y
′) is induced by the sum of the

maps

H i
c(X(Q(u′, w′s))) −→ H i

c(Y ) and H i−2
c (X(Q(u′, w′s)))(−1) −→ H i−2

c (X(u′))(−1).

The latter one factories over the representation H i−2
c (X(w′) ∪ X(v′))(−1). Hence both

maps are known by induction. Thus we deduce the cohomology of U ′. By factoring out

the second summand in H i
c(U

′) = H i
c(U) ⊕ H i−2

c (X(u′s))(−1) we get the cohomology of

X(Q). Furthermore, the boundary map H i−2
c (X(u′)) −→ H i−1

c (X(u′s)) which appears in

the boundary map H i
c(Y

′) −→ H i+1
c (U ′) is known, as well.

If dim(Q) > 2 then one verifies that the above description generalizes to the higher

dimensional setting. In particular, we get

H i
c(Y

′) = H i
c(Y )⊕H i−2

c (
⋃
sv′∈Q
sv′=v′s

X(v′))(−1)

and

H i
c(U

′) = H i
c(U)⊕H i−2

c (
⋃
sv′∈Q
sv′=v′s

X(sv′))(−1).

The second summand is known by induction as the set {sv′ ∈ Q | sv′ = v′s} forms a

subsquare in W .

For the remaining two cases (D and E), we introduce the following partial order on the

sets of squares of type Case 1 - 5 via the following pre-order diagram.



82 SASCHA ORLIK

Case 3

↓
Case 5

↙ ↘
Case 4 Case 2

↓
Case 1

Here the arrow Case i −→ Case j means that Case j < Case i.

Case D: tail(Q) = su′ with u′ < w′ and `(su′s) = `(u′) + 2.

We start with the case of a square. Here it has the shape as in Case 2 before. Consider

now a hypersquare Q of dimension 3. Thus it must have the shape

Q :

w

sw′ sv′s ?

sv′ ? su′s

su′

for certain elements ? ∈ W where v′ ≥ u′ as `(u′s) = `(u′) + 1. There are two possibilities

for completing Q. If w′ ≥ su′, then we get

Q :

w

sw′ sv′s w′s

sv′ w′ su′s

su′

.

On the other hand, if w′ 6≥ su′, then we get

Q :

w

sw′ sv′s sz′s

sv′ sz′ su′s

su′

.

Hence if we write Q = Q(su′, sv′s)
·
∪ Q′ then Q′ is a specialization of Q(su′, sv′s),

i.e. Q′ ≤ Q(su′, sv′s). For dim(Q) = d > 3, we claim that Q is paved by 3-dimensional

hypersquares of this kind. More precisely, if Q′ ⊂ Q is a 3-dimensional subsquare which

we write as Q = Q1
·
∪ Q2 where head(Qi) = svis with v2 ≺ v1, then Q1 ≤ Q2. Indeed, the

square Q begins with the following elements
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Q :

w

sw′ sv′1s, · · · , sv′d−2s ?
...

...
...

su′

with ? ∈ {w′s, sv′d−1s}. By induction on the size of Q we know that all subsquares of Q of

the shape Q(su′, sv′is) are union of squares of the the desired shape. But the union over all

these squares exhaust all apart from {w, sw′, ?, ?}. Indeed the number of elements in this

union is 2d−1 + 2d−2 + · · · + 22 = 2d − 4. Again if w′ ≥ su′, then {w, sw′, ?, ?} = Qw and

the claim follows. On the other hand if w′ 6≥ su′, then we can even says that Q is paved by

squares of type Case 2, since there cannot be an element v′ ≤ w′ with v′ ∈ Q and v′ ≥ su′.

Let’s determine the cohomology of X(Q). If dim(Q) = 2, then we get

H i
c(Q(su′, w)) = H i−2

c (Q(u′, w′s))(−1).

If dim(Q) = 3 and w′ 6≥ su′ then again - by the observation above - we get H i
c(Q(su′, w)) =

H i−2
c (Q(u′, w′s))(−1). Consider the other possibility of a cube. Here we consider as in the

previous case the hypersquare Q̂ := QF
+

(u′, w) in F+ and the interval I(u′, w) in W .

Q̂ :

w

sw′ sv′s w′s sz′s

sv′ w′ su′s v′s sz′ z′s

su′ v′ u′s z′

u′

with z′ = su′. The map π : X`(w)+1 −→ X induces surjective map

π : X(QF
+

(u′, w)) −→ X(I(u′, w))

which is even proper although X(QF
+

(u′, w)) might be strictly contained in the subset

π−1(X(I(u′, w))). (The reason is that for any closed subset A ⊂ π−1(X(I(u′, w))) the

identity π(A) = π(A ∩ X(QF
+

(u′, w))) holds). We set U := X(Q) ⊂ X(I(u′, w)) and

Y := X(I(u′, w)) \X(Q). We consider their preimages U ′ := π−1(X(Q)) and Y ′ := π−1(Y )

in X(QF
+

(u′, w)). Again we claim that we can recover the cohomology of X(Q) by the

diagram 10.1. The reasoning is similar to Case C. In fact, we have

H i
c(X(QF

+
(u′, w))) = H i

c(X(QF
+

(u′, w′s)))⊕H i−2
c (X(QF

+
(u′, w′s)))(−1)

since QF
+

(u′, w) is paved by special squares. Further

Y = X(u′) ∪X(v′) ∪X(u′s) ∪X(v′s)
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and

Y ′ = Y F+ ∪XF+

1 (sz′) ∪XF+
(sz′s)

whereas

U ′ = UF
+ ∪XF+

(z′) ∪XF+
(z′s) ∪XF+

2 (sz′) ∪XF+

2 (sz′s).

Here XF+

2 (su′s) is the open subset of XF+
(su′s) in Remark 4.15. Then

H i
c(Y

′) = H i(Y )⊕H i−2
c (X(u′) ∪X(u′s))(−1)

and

H i
c(U

′) = H i
c(U)⊕H i−2

c (X(su′s) ∪X(su′))(−1).

The restriction map H i
c(X(QF

+
(u′, w))) −→ H i

c(Y
′) is given by the sum of the maps

H i
c(X(Q(u′, w′s))) −→ H i

c(Y ) and H i−2
c (X(Q(u′, w′s)))(−1) −→ H i−2

c (X(u′s)∪X(u′))(−1).

Again both maps are known by induction. Thus we deduce the cohomology of U ′. By

factoring out the second summand in H i
c(U

′) = H i
c(U) ⊕H i−2

c (X(su′s) ∪X(su′))(−1) we

get the cohomology of X(Q).

The higher dimensional case is treated similar as in Case C.

Case E: tail(Q) = su′s with u′ < w′ and `(su′s) = `(u′) + 2.

We start with the case of a square. Here it has the shape as in Case 3 or Case 5 before.

Consider now a hypersquare Q of dimension 3. Thus if its lower subsquare is as in Case 5

must have the shape

Q :

w

? sv′s ?

sv′ ? sz′s

su′s

for certain elements ? ∈W. There are three possibilities for completing Q. If w′ ≥ su′, then

we get

Q :

w

sw′ sv′s w′s

sv′ sy′ sz′s

su′s

with sy′ = y′s. On the other hand, if w′ 6≥ su′, then we get

Q :

w

sw′ sv′s sy′s

sv′ ? sz′s

su′s
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with ? = sy′ or ? = sx′s for some x′ < v′. Hence if we write Q = Q(su′s, sv′s)
·
∪ Q′ then Q′

is a specialization of Q(su′s, sv′s), i.e. Q′ ≤ Q(su′, sv′s). For dim(Q) = d > 3, one proves

as in Case D that is paved by 3-dimensional hypersquares of this kind.

Consider now a hypersquare Q of dimension 3 such that its lower subsquare is as in Case

3,

Q :

w

? sv′s ?

sx′s ? sy′s

su′s

for certain elements ? ∈W. This is the most generic case in the sense that the upper square

in Q can be arbitrary, i.e. if we write Q = Q(su′s, sv′s)
·
∪ Q′ then Q′ is a any specialization

of Q(su′, sv′s).

Now we consider the cohomology and discuss only the case of a square Q. The higher

dimensional cases are treated as before, see also Remark 10.7 for a general approach. So let

Q be a square as in Case 5 (Case 3 has been already explained)

Q :

w

↗ ↖
sw′ sv′s

↖ ↗
su′s

where

w′

↗ ↖
y′ v′

↖ ↗
u′

is a square with y′ = u′s. We consider the extended interval I(su′, w) ⊂ W resp. the cube

Q̂ := QF
+

(su′, w) ⊂ F+.

Q̂ :

w

↗ ↑ ↖
sw′ sv′s sy′s

↑ ↗↖ ↗↖ ↑
sv′ su′s sy′

↖ ↑ ↗
su′

.
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Here

Y = X(su′) ∪X(sv′).

Y ′ = Y F+ ∪XF+

1 (sy′s).

U = X(w) ∪X(sw′) ∪X(sv′s) ∪X(su′s).

U ′ = UF
+ ∪XF+

(sy′) ∪XF+

2 (sy′s).

Hence we get

H i
c(Y

′) = H i
c(Y )⊕H i−2

c (X(u′s))(−1)

and

H i
c(U

′) = H i
c(U)⊕H i−2

c (X(su′s))(−1).

The restriction map H i
c(X(QF

+
(su′, w))) −→ H i

c(Y
′) is given as follows. First note that

H i
c(X(Q̂)) = H i−2

c (X(s\Q))(−1), where s\Q is the cube such that s · (s\Q) = Q. With re-

spect to the summand H i
c(Y ) we know the map factorizes over H i

c(X(QF
+

(su′, sw′))) −→
H i
c(X(sv′)∪X(su′)). As for the summand H i−2

c (X(su′))(−1) the necessary information fol-

lows from the identity H i
c(X(Q̂)) = H i−2

c (X(s\Q))(−1). All maps are known. On the other

hand we know by induction the boundary map H i−2
c (X(su′)) −→ H i−1

c (X(su′s)). Again

we deduce the cohomology of U ′ and by factoring out the summand H i−2
c (X(su′s))(−1) we

get the cohomology of U .

Thus we have examined all cases. In remains to say that the start of induction is the sit-

uation where head(Q) is minimal in its conjugacy class. This case can be handled explicitly

using successively Proposition 5.7.

Remark 10.7. Let I = I(u,w) ⊂W be any interval. The map π : X`(w)+1 −→ X induces

a proper map

π : π−1(X(I)) −→ X(I).

The following lines gives a description of the preimage Z = π−1(X(I)) ⊂ X`(w)+1. Let

v ∈ QF+
(1, w).

1. Case. `(γ(v)) = `(v).

Subcase a) γ(v) 6≥ u. In this case XF+
(v) ∩ Z = ∅.

Subcase b) γ(v) ≥ u. In this case XF+
(v) ⊂ Z and the restriction of π to XF+

(v) induces

an isomorphism XF+
(v)

∼−→ X(γ(v)).
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2. Case. `(γ(v)) < `(v). By Lemma 5.2 we may suppose that v = v1 · t · t · v2. Thus we

may write XF+
(v) = XF+

1 (v)
⋃
XF+

2 (v) where XF+

1 (v) is closed and XF+

2 (v) is open. We

have A1-bundles XF+

1 (v) −→ XF+
(v1v2) and XF+

2 (v) ∪XF+
(v1tv2) −→ XF+

(v1tv2). The

map π|
XF+ : XF+

(v) −→ X factorizes through XF+
(v1tv2) ∪ XF+

(v1v2). Hence we have

reduced the question to elements of lower length.

Suppose additionally that w = sw′s. Then QF
+

(1, w) is paved by special squares. Then

it is possible to say what the image of such a special square Qv = {v, sv′, v′s, v′} under the

map π is. But we do not carry out this since there are to many cases.

11. Appendix B

Here we give summarizing tables of the cohomology of DL-varieties with respect to Weyl

group elements of full support in GL3 and GL4. We list only representatives of cyclic shift

classes.

GL3 H∗c (X(w))

(1, 2, 3) j(1,1,1)[−2]⊕ j(2,1)(−1)[−3]⊕ j(3)(−2)[−4]

(1, 3) j(1,1,1)[−3]⊕ j(3)(−3)[−6]
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GL4 H∗c (X(w))

(1, 2, 3, 4) j(1,1,1,1)[−3]⊕ j(2,1,1)(−1)[−4]⊕ j(3,1)(−2)[−5]⊕ j(4)(−3)[−6]

(1, 2, 4) j(1,1,1,1)[−4]⊕ j(2,2)(−2)[−5]⊕ j(4)(−4)[−8]

(1, 3)(2, 4) j(1,1,1,1)[−4]⊕ j(2,2)(−1)[−4]⊕ j(2,1,1)(−2)[−5]⊕ j(3,1)(−2)[−5]⊕

j(2,2)(−3)[−6]⊕ j(4)(−4)[−8]

(1, 3, 2, 4) j(1,1,1,1)[−5]⊕ j(2,2)(−2)[−6]⊕ j(2,1,1)(−2)[−6]⊕ j(2,2)(−3)[−7]⊕

j(3,1)(−3)[−7]⊕ j(4)(−5)[−10]

(1, 4) j(1,1,1,1)[−5]⊕ j(2,1,1)(−1)[−5]⊕ j(2,2)(−2)[−6]⊕ j(2,2)(−3)[−7]⊕

j(3,1)(−4)[−8]⊕ j(4)(−5)[−10]

(1, 4)(2, 3) j(1,1,1,1)[−6]⊕ j(2,1,1)(−2)[−7]⊕ j(2,2)(−3)[−8]2 ⊕ j(3,1)(−4)[−9]⊕ j(4)(−6)[−12].

References

[BGG] I.N. Bernstein, I.M. Gelfand, S.I. Gelfand, Differential operators on the base affine space and a study

of g-modules. Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc.,

Budapest, 1971), pp. 21 - 64, Halsted, New York, 1975.

[BL] S. Billey, V. Lakshmibai, Singular loci of Schubert varieties. Progress in Mathematics, 182.
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[RTW] B. Rémy, A. Thuillier, A. Werner, Automorphisms of Drinfeld half-spaces over a finite field, Com-

positio Math. 149 (2013), 1211-1224.
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