
ON SOME NON-PRINCIPAL LOCALLY ANALYTIC REPRESENTATIONS

INDUCED BY CUSPIDAL LIE ALGEBRA REPRESENTATIONS

SASCHA ORLIK, WITH AN APPENDIX BY ANDREAS BODE

Abstract. Let G be a split reductive p-adic Lie group. This paper is the first in a series on the

construction of locally analytic G-representations which do not lie in the principal series. Here

we consider the case of the general linear group G = GLn+1 and locally analytic representations

which are induced by cuspidal modules of the Lie algebra. We prove that they are ind-admissible

and satisfy the homological vanishing criterion in the definition of supercuspidality in the sense

of Kohlhaase. In the case of n = 1 we give a proof of their topological irreducibility for certain

cuspidal modules of degree 1.
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1. Introduction

Let L be a finite extension of Qp with ring of integers OL. Let G = G(L) be the group of

L-valued points of a split connected reductive algebraic group G over OL. This paper considers

some locally analytic G-representations which do not lie in the principal series, i.e., which

are not closed subrepresentation of parabolically induced representations IndG
P (W ) from locally

algebraic representations W as in [21]. We prove that they are ind-admissible (cf. Definition

2.2) and satisfy the homological vanishing criterion in the definition of supercuspidality in the
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sense of Kohlhaase [14]. Similarly to the principal series case [21], the construction proceeds by

globalizing certain representations of the attached Lie algebra. Indeed our representations are

induced by certain cuspidal weight modules which are by the very definition disjoint from the

category O used in loc.cit..

The motivation for the construction is twofold. The first is intrinsic, since in every repre-

sentation theory of a given group where a kind of ”parabolic” induction exists it is natural to

determine the cuspidal representations. Apart from this aspect the second reason is given by

the hypothetical p-adic local Langlands correspondence. In fact one might wonder whether the

locally analytic representations considered here have a meaning, e.g. on the Galois side.

The theory of locally analytic representations was introduced by P. Schneider and J. Teit-

elbaum in [27]. Such representations appear as the locally analytic vectors in Banach space

representations and in the study of vector bundles on p-adic period domains [28, 17, 32] inclu-

sive their coverings [8, 6, 33]. So far, mainly irreducible parabolically induced locally-analytic

representations are considered. To the author’s knowledge the aspect of cuspidality was first

considered in [13] by Kisin and Strauch. A few years later Kohlhaase [14] suggested a definition

of a supercuspidal representation V by demanding that V is topologically irreducible and that

all cohomology groups Hi(N,V ) for the unipotent radicals N of all parabolic subgroups in G

vanish. Moreover, he gave an important example of a locally algebraic supercuspidal repre-

sentation. Those appear already in the p-adic cohomology of the Drinfeld tower (in the case

of G = GL2) [33, 8, 6] studied by Dospinescu, Le-Bras and Colmez, Dospinescu, Nizio l and

Vanhaecke, respectively.

The idea for the construction is similar to the principal series case. Let K be a finite extension

of L which serves as our coefficient field. We start with certain Lie algebra representations of

g = Lie G, i.e., with modules M of the universal enveloping algebra U(g) and globalize them to

locally analytic representations. More precisely, we consider for G = GLn+1 and a fixed torus

T the category of weight modules W and its subcategory C of cuspidal weight modules M in

the sense of Grantcharov and Serganova [12]. If these cuspidal modules are simple they coincide

with those of Fernando [11]. Each cuspidal module has a degree which is simply the common

dimension of its non-trivial weight spaces. For each µ ∈ Kn+1 such that µi ̸∈ Z, i = 0, . . . , n,

we can define explicitly a simple cuspidal module Mµ of degree 1. To every finitely generated

weight module M we can attach its set of weights in X∗(T )K ∼= Kn+1. By considering the norms

of the entries in Kn+1 we get a bounded subset µM ⊂ Kn+1. For κ ∈ R, we let W≤κ be the full

subcategory ofW bounded by κ. To the categoryWκ we attach a finite field extension J = Jκ of

K such that all non-trivial weights of M give rise to locally analytic characters T0 → J× where

T0 ⊂ T is the maximal compact subgroup. Let D(G0) be the distribution algebra of the compact

subgroup G0 := G(OL). In this way we may consider M as a module over the subalgebra D(g, T0)

of D(G0) generated by g and T0. Further we consider smooth representations V of the maximal

compact subgroup T0 of our torus T . We set then for M ∈ Wκ

FG
κ (M,V ) := c− IndG

G0
(D(G0)⊗D(g,T0) M ⊗ V ′)′
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where c−IndG
G0

is the compact induction of locally analytic representations. This functor can be

extended to consider another ingredient, an algebraic representation W of the standard parabolic

subgroup P = P(1,n) corresponding to the decomposition (1, n) of n+1. Here we refer to chapters

3 and 4 for the construction. Thus we have a functor

FG
κ :Wκ × Repalg

K (P(1,n))× Rep∞
K (T0)→ ReplaJ (G)

into the category of locally analytic G-representations. It turns out that the objects in the

essential image of this functor are not admissible in the sense of Schneider and Teitelbaum [29].

In fact, they are larger but we will show that they are ind-admissible (see Definition 2.2, i.e.,

they are strict inductive limits of admissible representations when restricted to a compact open

subgroup).

On of main results of this paper is the following theorem:

Theorem A. (i) FG
κ is functorial in all arguments: contravariant in M and W , covariant in

V .

(ii) FG
κ is exact in all arguments.

(iii) For all M ∈ Wκ, for all algebraic representations W of P(1,n) and for all smooth admissible

representations of T0, the locally analytic representation FG
κ (M,W,V ) is ind-admissible and of

compact type.

(iv) Let (M,W,V ) be as in (iii) but suppose additionally that M is cuspidal. Then for all

parabolic subgroups P ⊂ G with unipotent radical N we have Hi(N,FG
κ (M,V )) = 0 for all

i ≥ 0.

Concerning topologically irreducibility statements of the representations above, we have to

take care on the action of the centre. For this reason we define the following variant in the case

where M,Z and V are irreducible and M = Mµ is a cuspidal module of degree 1 corresponding

to weight µ ∈ Kn+1. Then the action of Z(G) ∩ T0 on (Mµ(Z) ⊗K V ′)′ is given by a locally

analytic character ηµ,Z,V . We fix a locally character η on Z(G) which extends ηµ,Z,V and consider

the attached one dimensional dual space J ′
η. Then we set

Fµ(Z, V ) := c− IndG
Z(G)G0

((D(Z(G)G0)⊗D(g,T0) (Mµ(Z)⊗K V ′)⊗ J ′
η)′).

The other main theorem of this paper is:

Theorem B. Let n = 1. Suppose that w(µ) − µ ̸∈ Z2 where w ∈ W (T,G) is the non-trivial

reflection in the Weyl group W (T,G). Suppose further that |µi| ̸∈ |L|, i = 0, 1, |µ0| ≠ |µ1| and
that |µi| ≤ 1 for at least one i. Let W be given by an algebraic character λ = (λ0, λ1) of T.

If λ0 + λ1 ̸= 0 we further assume that |µi| ≥ 1 for at least one i. Let V be irreducible. Then

FG
κ (M,W,V ) is topologically irreducible.
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In particular the representation above is supercuspidal in the sense of Kohlhaase [14]. Of

course it is tempting to conjecture that some kind of version of Theorem B holds true for general

n and where M is a simple cuspidal module and W,V are irreducible, respectively.

The proof of the irreducibility result and of Theorem A i), ii) follows the same strategy as

in the principal series case [21]. As for Theorem B we arrive at a formal power series in one

variable and show that it does not converge by analysing explicitly its coefficients. To generalize

this idea to larger n seems to be too complicated to the author at the moment. As for the proof

of iv) we use the fact that the elements in n form an Ore set in U(g) and in D(G) . We prove

that for cuspidal M these elements act bijectively on FG
κ (M,W,V ), so that we may view M

and FG
κ (M,W,V ) as modules for the localised algebra S−1U(g) where S = nU(n). Then the

statement follows from easy methods of homological algebra.

As for the list of content we recall in section 2 some basic facts in locally analytic represen-

tation theory. In particular we consider the compact induction functor c− IndG
C for a compact

open subgroup C of G. Then we define ind-admissible representations and prove some basic

properties. Section 3 is devoted to review the necessary background on cuspidal modules over

the field of complex numbers. In section 4 we define our functor FG
µ and prove assertions i)-iii)

from the Theorem A above. The irreducibility result is shown in section 5. Finally we prove

part iv) in the last section. The proof of irreducibility relies on a locally analytic version of

Mackey’s irreducibility criterion, which is proven in the appendix.

Notation and conventions: We denote by p a prime number and consider fields L ⊂ K which

are both finite extensions of Qp. Let OL and OK be the rings of integers of L, resp. K, and let

| · |K be the absolute value on K such that |p|K = p−1. The field L is our ”base field”, whereas

we consider K as our ”coefficient field”. For a locally convex K-vector space V we denote by

V ′
b its strong dual, i.e., the K-vector space of continuous linear forms equipped with the strong

topology of bounded convergence. Sometimes, in particular when V is finite-dimensional, we

simplify notation and write V ′ instead of V ′
b . All finite-dimensional K-vector spaces are equipped

with the unique Hausdorff locally convex topology.

We let G0 be a split reductive group scheme over OL and T0 ⊂ B0 ⊂ G0 a maximal split

torus and a Borel subgroup scheme, respectively. We denote by G, B, T the base change of

G0, B0 and T0 to L. By G0 = G0(OL), B0 = B0(OL), etc., and G = G(L), B = B(L),

etc., we denote the corresponding groups of OL-valued points and L-valued points, respectively.

Standard parabolic subgroups of G (resp. G) are those which contain B (resp. B). For each

standard parabolic subgroup P (or P ) we let LP (or LP ) be the unique Levi subgroup which

contains T (resp. T ) and UP its unipotent radical. The opposite unipotent radical is denoted

by U−
P. Finally, Gothic letters g, p, etc., will denote the Lie algebras of G, P, etc.: g = Lie(G),

t = Lie(T), b = Lie(B), p = Lie(P), lP = Lie(LP), etc.. Base change to K is usually denoted

by the subscript K , for instance, gK = g⊗L K.

We make the general convention that we denote by U(g), U(p), etc., the corresponding

enveloping algebras, after base change to K, i.e., what would be usually denoted by U(g)⊗L K,
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U(p)⊗L K etc. Similarly, we use the abbreviations D(G) = D(G,K), D(P ) = D(P,K) etc. for

the locally L-analytic distributions with values in K.

Acknowledgements. I am very grateful to Andreas Bode for his careful reading of this paper

and for all the discussions on it. In particular for pointing out to me some mistakes in a previous

version and the help to remediate them. I thank Georg Linden and Tobias Schmidt for some

helpful remarks.

2. Preliminaries on locally analytic representations

We start by recalling some basic facts on locally analytic representations as introduced by

Schneider and Teitelbaum [27].

For a locally L-analytic group H, let Can(H,K) be the locally convex vector space of locally

L-analytic K-valued functions. The dual space D(H) = D(H,K) = Can(H,K)′ is a topological

K-algebra which has the structure of a Fréchet-Stein algebra when H is compact [29]. More

generally, if V is a Hausdorff locally convex K-vector space, let Can(H,V ) be the K-vector space

consisting of locally analytic functions with values in V . It has the structure of a Hausdorff locally

convex vector space, as well.

A locally analytic H-representation is a Hausdorff barrelled locally convex K-vector space

together with a homomorphism ρ : H → GLK(V ) such that the action of H on V is continuous

and the orbit maps ρv : H → V, h 7→ ρ(h)(v), are elements in Can(H,V ) for all v ∈ V . We

denote by ReplaK(H) the category of locally analytic H-representations on K-vector spaces where

the morphisms are the continuous H-linear maps.

We recall that a Hausdorff locally convex K-vector space V is called of compact type if it is an

inductive limit of countably many Banach spaces with injective and compact transition maps,

cf. [27, sec. 1]. In this case, the strong dual V ′
b is a nuclear Fréchet space (by [26, 16.10, 19.9]).

We denote by Repla,cK (H) the full subcategory of ReplaK(H) consisting of objects of compact type.

By [27, 3.3], the duality functor gives an equivalence of categories

Repla,cK (H)
∼−→


separately continuous D(H)-

modules on nuclear Fréchet

spaces with continuous

D(H)-module maps


op

.

In particular, V is topologically irreducible if V ′
b is a topologically simple D(H,K)-module. We

let CH be the category of coadmissible D(H)-modules, cf. [29]. Then by the very definition the

above functor induces an equivalence

RepaK(H)→ CH
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where RepaK(H) is the subcategory of Repla,cK (H) consisting of admissible H-representations.

Then we also recall that a locally analytic H-representation V is called strongly admissible if its

strong dual V ′
b is a finitely generated D(H0)-module for any (equivalently, one) compact open

subgroup H0 ⊂ H, cf. [27, sec. 3].

For any closed subgroup H ′ of H and any locally analytic representation V of H ′, we denote

by IndH
H′(V ) the induced locally analytic representation. It is defined by

IndH
H′(V ) :=

{
f ∈ Can(H,V ) | ∀h′ ∈ H ′,∀h ∈ H : f(h · h′) = (h′)−1 · f(h)

}
.

The group H acts on this vector space by (h · f)(x) = f(h−1x). If V is of compact type and

H/H ′ is compact then IndH
H′(V ) is of compact type again and IndH

H′(V )′ = D(H) ⊗D(H′) V
′
b is

a nuclear Fréchet space.

Next we consider the compactly supported induction which is defined similarly as for smooth

representations, cf. [30, Section 2]. Suppose that H is second countable and let C ⊂ H be a

compact open subgroup. Then we set

c− IndH
C (V ) := {f ∈ IndH

C (V ) | f has compact support}.

This is an H-stable subspace, and for any f ∈ c− IndH
C (V ) there are only finitely many elements

h1, . . . hr such that supp(f) =
⋃r

i=1 hiC. Since H is second countable we may write c− IndH
C (V )

as a countable direct sum
⊕

g∈H/C h · V and supply this space with the locally convex direct

sum topology. Then c− IndH
C (V ) is barrelled by [26, Ex. 3 after 6.16] and Hausdorff by [26, Cor.

5.4]. Further the action is locally analytic so that we get a locally analytic H-representation.

The construction is functorial and we get a functor

c− IndH
C : ReplaK(C)→ ReplaK(H).

As in the case of smooth representations we have:

Proposition 2.1. The functor c− IndH
C is left adjoint to the restriction functor

Rep(H)laK → ReplaK(C),

i.e, we have functorial bijections of K-vector spaces

HomH(c− IndH
C (V ), Z) ∼= HomC(V,Z|C).

Proof. The proof is the same as in the case of smooth representations. Indeed, let f ∈ HomH(c−
IndH

C (V ), Z). By composing it with the natural inclusion V ↪→ c − IndH
C (V ) we get a C-

equivariant map V → Z. On the other hand if h ∈ HomC(V,Z|C) then we define f : c −
IndH

C (V )→ Z by f(
∑

g gvg) =
∑

g gf(vg). The maps are inverse to each other. 2

For later use we also consider a variant of the above construction which is common in smooth

representation theory. Let Z = Z(G) ⊂ G be the centre of G. Then we define for any locally

analytic CZ -represenation V

c− IndH
ZC(V ) := {f ∈ IndH

ZC(V ) | f has compact support modulo Z(G)}.
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For more details, we refer to the appendix.

The representations c− IndH
C (V ) and c− IndH

ZC(V ) are of compact type by [27, Prop 1.2. ii]

but in general not admissible. For this reason we enlarge the concept of ”admissibility”.

Definition 2.2. A locally analytic H-representation V is called ind-(strongly )admissible if

V|C = lim−→n
Vn is a strict inductive limit of (strongly) admissible locally analytic C-representations

Vn.

The above definition does not depend on the chosen compact open subgroup C as in the

case of a (strongly) admissible H-representation, cf. Corollary A.14 for a proof. Also if W is a

(strongly) admissible C-representation, then c − IndH
C (W ) is ind-(strongly) admissible, cf. the

proof of Proposition 4.6.

Clearly any (strongly) admissible H-representation is ind-(strongly )admissible. On the other

hand, a kind of converse is true.

Lemma 2.3. Every admissible representation is ind-strongly admissible.

Proof. Let V be an admissible H-representation. By definition the dual of its restriction to

to C can be written as a countable projective limit of finitely generated modules over Banach

algebras, i.e., M := V ′
C = lim←−n∈NMn. By [29, Cor. 3.1] we can suppose that the finitely many

generators of Mn lift to elements mi
n, i ∈ In, of M . We consider the topological closure Tn :=

⟨mi
n | i ∈ Is, s ≥ n⟩ of the submodule generated by the above lifts which is a closed submodule

of M . The quotient M/Tn is thus by [29, Lemma 3.6] a coadmissible module which is generated

by the finite set
⋃

r<n{mr
i | i ∈ Ir}. Hence the dual Vn := (M/Tn)′ is strongly admissible and a

closed subrepresentation of V . We get V =
⋃

n Vn with Vm ⊂ Vn for m < n as M = lim←−n
M/Tn.

2

It follows that every ind-admissible representation is ind-strongly admissible. In the sequel

we often say simply ind-admissible for convenience.

Lemma 2.4. Let V = lim−→n
Vn be an ind-admissible representation. Then Vn is a closed subrep-

resentation of V|C for all n ∈ N. Moreover, V is of compact type. In particular it is Hausdorff,

complete, bornological and reflexive.

Proof. The first statement follows from [26, Prop. 5.5 iii)]. The last assertion is the content of

[27, Theorem 1.1]. The second statement follows from [27, Theorem 1.2] since any admissible

representation is of compact type by definition. 2

Proposition 2.5. Let V = lim−→n
Vn be an ind-admissible H-representation. Then V ′

b = lim←−n
(Vn)′b

is the locally convex projective limit of the Fréchet spaces (Vn)′b. In particular V ′
b is a Fréchet

space.

Proof. We follow the proof of [26, Prop. 16.10] dealing with compact inductive limits. We let

Ψ : V ′
b → lim←−n

(Vn)′b be the natural map. Then Ψ is clearly injective since V =
⋃

n Vn. On the
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other hand, let (ln)n be an element of lim←−n
(Vn)′b. We define l ∈ V ′ by l(v) := li(vi) if v ∈ Vi.

This construction gives rise to a well-defined element of the algebraic dual of V. But it follows by

the topology on V , that it is continuous , as well. Indeed we follow the argument as in the proof

of [26, 5.5 i)]. Let Li ⊂ Vi be a lattice which is in the preimage of of some fixed lattice M ⊂ K

under li. Then we may construct inductively lattices Ln, n ≥ i such that that Ln+1 ∩ Vn ⊂ Ln

and Ln is in the preimage of the lattice M under ln. Then L :=
∑

i Li is a lattice in V which

lies in the preimage of M under l.

The map Ψ is continuous since the maps V ′
b → (Vn)′b, n ∈ N, are continuous and by the very

definition of the initial topology on the right hand side.

The space V is bornological by [26, Ex. 2 after Prop. 6.13]. Moreover, for each bounded

subset B ⊂ V there is by [26, Prop. 5.6] some i ∈ N such that B ⊂ Vi is a bounded subset.

Since each Vi is a countable limit of Banach spaces by [29, Prop 6.5] it follows by using Prop.

6.19 ii) and the argumentation in the proof of [26, Prop. 16.10] that the topology of V ′ can be

defined by a countable limit of lattices. Hence it is by [26, Prop. 8.1] metrizable and thus a

Fréchet space by [26, Prop. 9.1] since V is bornological.

On the other hand, the right hand side is also Fréchet space since it is the projective limit of

Fréchet spaces (e.g. use [26, Prop 8.1]). It follows by the open mapping [26, Prop. 8.6] theorem

that Ψ is a topological isomorphism. 2

We continue with another definition which might be useful.

Definition 2.6. A locally analytic H-representation V is called ind-fJH if V|C = lim−→n
Vn is a

strict inductive limit of locally analytic C-representations Vn which admit a finite Jordan-Hölder

series.

Clearly any locally analytic representation which has a finite Jordan-Hölder series is strongly

admissible. Hence any ind-fJH representation is ind-(strongly )admissible.

Proposition 2.7. Let W = lim−→n
Wn be an ind-admissible H-representation. Let f : V →W be

continuous map of C-representations where V is locally analytic C-representation which has a

finite JH-series. Then f factorizes over some subspace Wn.

Proof. We claim that the image f(V ) is closed in W. Indeed write V =
⋃

n f
−1(Wn). Then each

subspace Vn := f−1(Wn) is closed in V as f is continuous and Wn ⊂ W is closed. Since closed

subrepresentations of admissible representations are admissible again [29, Prop. 6.4] we see that

the restriction fn : Vn → Wn is a homomorphism of admissible C-representations. As such the

image fn(Vn) = f(Vn) is closed in Wn by loc.cit. We apply [26, Remark 7.1 v) and Lemma 7.9]

to deduce that f(V ) =
⋃

n f(Vn) is closed in W . It follows that f(V ) ∼= V/ker(f) as admissible

representations by [29, Prop. 6.4].

For the last assertion we may suppose that V ⊂W. Let Wm be a subspace with Wm∩V ̸= (0).

If V is topologically irreducible it follows that V ⊂ Wm. Otherwise, one argues by the number

of irreducible constituents of V that there must be an index n with V ⊂Wn. 2
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We denote by Repind−adm
K (H) the full subcategory of ReplaK(H) consisting of ind-admissible

objects. The full subcategory consisting of objects which are ind-fJH is denoted by Repind−fJH
K (H).

Proposition 2.8. The categories Repind−adm
K (H) and Repind−fJH

K (H) are abelian.

Proof. Let f : V → W be a homomorphism of ind-admissible representations. Write as before

V = lim−→n
Vn and W = lim−→n

Wn. We suppose first that Vn and Wn have a finite Jordan-Hölder

series for all n. Then by Proposition 2.7 for every n there is some τ(n) ∈ N such that f(Vn) ⊂
Wτ(n). It follows by the same reasoning as above that f(V ) =

⋃
n f(Vn) is closed in W. In

particular it follows that coker(f) = W/im(f) = lim−→n
Wn + im(f)/im(f) = lim−→n

Wn/im(f)∩Wn

is ind-fJH again. Further ker(f)∩Vn is closed in Vn and has a finite Jordan-Hölder series. Hence

ker(f) = lim−→n
ker(f) ∩ Vn is closed in V and ind-fJH. Finally, we prove that f is strict. Any

closed subspace Y of V is of the shape lim−→n
Yn with Yn ⊂ Vn closed. As the induced maps

fn : Vn → Wτ(n) are all strict their images fn(Yn) = f(Yn) are closed in Wτ(n). We get by the

above reasoning that f(Y ) is closed in W and hence in f(V ). The other properties of an abelian

category are checked easily.

If Vn and Wn are admissble for all n, then we deduce in the same way as above that f(Vn) is

admissble again. Hence Wn+f(Vn) is admissible, as well, and we may replace Wn by Wn+f(Vn)

for all n. Then we may assume that f(Vn) ⊂Wn for all n and proceed as before. 2

3. Cuspidal Lie algebra representations

In this section we recall the theory of cuspidal modules of a Lie algebra over the field of

complex numbers C. We thus replace here our p-adic field L by the field of complex numbers C.

Recall that T ⊂ G is a maximal torus and B ⊂ G is a Borel subgroup with T ⊂ B. We denote

by Φ ⊂ t∗ the attached root system and by Φ+ resp. Φ− its subset of positive resp. negative

roots. Let ρ = 1
2

∑
α∈Φ+ α ∈ t∗ and denote by Q ⊂ t∗ the root lattice. For every α ∈ Φ let xα

be a standard generator of the root space.

A weight module for g is a U(g)-module M such that t acts semi-simply on M with finite-

dimensional weight spaces, i.e.,

M =
⊕
χ∈t∗

Mχ

with Mχ = {m ∈M | tm = χ(t)m∀t ∈ t} and dimMχ <∞ for all χ. The weight modules form

a full subcategory W of the category of all Lie algebra representations.

let Z(g) ⊂ U(g) be the centre of g. For λ ∈ t∗ let χλ : Z(g) → K be the attached central

character. A central character χλ is called regular if the stabiliser of λ + ρ is trivial. Otherwise

it is called singular. It is called integral if λ ∈ Λ where Λ ⊂ t∗ is the weight lattice.

By a result of Fernando [11, Thm. 4.18] every simple weight module is a quotient of a

parabolically induced representation U(g) ⊗U(p) W for some simple weight module W of the
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Levi component in p. A simple weight module M is called cuspidal if it does not admit such a

representation as a quotient with p ̸⊂ g. By loc.cit. this is equivalent to the property that all xα

with α ∈ Φ act injectively on M . Moreover, in this case there exists an integer d ≥ 1 such that

dimMχ = d for all χ with Mχ ̸= 0, cf. [15, Cor. 1.5]. In particular xα acts bijectively on M for

all α ∈ Φ. We call the integer d the degree of M . Again by a result of Fernando [11, Thm. 5.2]

for simple Lie algebras g cuspidal representations only exists for g of type An or Cn.

We extend the definition of cuspidality as in the paper [12] of Grantcharov and Serganova to

non-simple modules.

Definition 3.1. A weight module M ∈ W is called cuspidal if the multiplication maps Mχ
xα→

Mχ+α are bijective for all α ∈ Φ and for all χ ∈ t∗.

Remark 3.2. Such cuspidal modules are sometimes also called torsion free modules, cf. [15,

Remark below Cor. 1.4]. By definition the latter modules are those weight modules such that

elements of g \ t act bijectively on M , cf. [4].

We let C be the category of cuspidal g-modules. This is an abelian category where each object

admits a finite Jordan-Hölder series.

In the case of G = GLn+1, or rather G = SLn+1, we can describe these modules explicitly.

We follow the construction of Britten, Lemire [3] and Grantcharov and Serganova [12], respec-

tively. We start with degree 1 cuspidal modules. We suppose that t is the diagonal torus in g

and identify its dual space t∗ with Cn+1 in the usual way.

Let µ = (µ0, . . . , µn) ∈ Cn+1. We set as in [12]

|µ| = µ1 + · · ·+ µn ∈ C and tµ := tµ0
0 · · · t

µn
n

for the multivariable t = (t0, . . . , tn) 1 Set

Mµ := {f ∈ tµC[t±1
0 , . . . , t±1

n ] | |µ|f = Ef}.

Here E is the differential operator defined as E =
∑

i ti∂/∂ti. The action of xα with α =

ϵi − ϵj , i ̸= j, is given by applying the operator ti · ∂/∂tj . The action of t = (x0, . . . , xn) ∈ t on

tλ0
0 · · · tλn

n is given by multiplication with
∑

i xiλi.

Lemma 3.3. Suppose that µi ̸∈ Z for all i. Then Mµ is simple cuspidal. Moreover, Mµ = Mν

if µ− ν ∈ Q.

Proof. The proof is an easy exercise. Cf. also [3, Thm. 2.2, Thm. 1.8], [12, p. 5]. 2

In order to introduce cuspidal modules of higher degree we let P = P(1,n) be the maximal

standard parabolic subgroup of G attached to the decomposition (1, n). Let Z be additionally an

algebraic P -representation. Thus we get a homogeneous vector bundle EZ on projective space

Pn
C and therefore an action of g on EZ(D+(t0)) ∼= OPn(D+(t0))⊗C Z. Then we set

Mµ(Z) := Mµ ⊗C Z = Mµ ⊗OPn (D+(t0)) EZ(D+(t0))

1considered as meromorphic functions or as formal symbols with the same arithmetic properties.
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and supply this with the diagonal g-action on the right hand side. This is again a cuspidal

U(g)-module but in general not simple. For every exact sequence 0→ Z1 → Z2 → Z3 → 0, the

induced sequence

(3.3.0) 0→Mµ(Z1)→Mµ(Z2)→Mµ(Z3)→ 0

is exact, as well.

We recall the following theorem of Matthieu, cf. [12, Thm.2.5].

Theorem 3.4. Let G = SLn+1. Let M be a cuspidal g-module and suppose that its central

character χM is non-integral or singular integral. Then there is some simple finite-dimensional

algebraic P -representation Z such that M ∼= Mµ(Z).

Remark 3.5. i) By [12, Lemma 2.3] the central character of Mµ(Z) is given by χγ(|µ|ϵ0)+τ

where ϵ0, ϵ1, . . . , ϵn ∈ Cn+1 is the standard basis and γ : Cn+1 → t∗ is the projection with kernel

generated by ϵ0 + ϵi + · · ·+ ϵn. Further τ is the highest weight of Z.

ii) There is also a description of simple cuspidal modules with non-singular and integral

weights [12]. We will address this case in an upcoming paper.

4. The functor FG
κ

Now we come back to our p-adic situation. We replace C by our coefficient field K and

consider the exponential series exp(X) =
∑

iX
n/n!. Its disc of convergence is the open disc

Dp−1/p−1(0) = {x ∈ K | |x| < p−1/p−1}. Further let log(X) =
∑

(−1)n+1Xn/n the logarithm

series which converges on the open disc D1(1) := {x ∈ K | |x− 1| < 1}.

Lemma 4.1. For each µ ∈ K there is some locally analytic character χµ : O×
K → J× for some

finite field extension J of K such that χµ(x) = exp(µ log(x)) for |x− 1| ≪ ϵ.

Proof. Let q be the number of elements of the residue field of OK . Write O×
K = R×D1(1) where

R is the set of q − 1-roots of unity in K. We consider as in [24, Thm 47.10] the power series

xµ :=
∑∞

n=0

(µ
n

)
(x − 1)n which converges on its disc D of convergence depending of course on

µ. We have D ⊂ D1(1). Now the group D1(1) is finitely generated over its subgroup D. Hence

by the constructive proof [24, Prop. 45.6] we can extend the function xµ to a locally analytic

character χµ : D1(1) → J× for some finite field extension J of K. On the subgroup R the

character χµ is extended trivially. 2

Remark 4.2. The locally analytic character with the above property is not uniquely determined.

We fix for µ ∈ K a locally character χµ : O×
K → J× as above and write also tµ for χµ(t).

Then let µ = (µ0, . . . , µn) ∈ Kn+1. We set again |µ| = µ0 + · · ·+ µn ∈ K, tµ := tµ0
0 · · · t

µn
n and

Mµ := {f ∈ tµJ [t±1
0 , · · · , t±1

n ] | |µ|f = Ef}.
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Here E is again the operator defined as E =
∑

i ti∂/∂ti.

Since the character χµ is a locally analytic character of T (OK) we get by scalar restriction

from T (OK) to T0 = T (OL) a locally analytic action of T0 on Mµ in the sense of [20]2. Let Z

be an algebraic P(1,n)-representation. Let V be additionally a smooth T0-representation. Then

we get a locally analytic T0-action on Mµ(Z) ⊗K V ′ and thus via the trivial action g on V a

D(g, T0)-module structure on Mµ(Z)⊗KV ′. Here we denote by D(g, T0) ⊂ D(G0) the subalgebra

generated by g and D(T0). We set

Fµ(Z, V ) := c− IndG
G0

(D(G0)⊗D(g,T0) (Mµ(Z)⊗K V ′)′).

This construction is functorial in each entry. Hence for a fixed µ we get thus a bifunctor

Fµ : RepalgK (P(1,n))×Rep∞K (T0)→ ReplaJ (G).

Proposition 4.3. The functor Fµ is bi-exact.

Instead of proving this statement we extend our functor by considering arbitrary weight mod-

ules instead of Mµ since this is needed for the proof anyway. We can extend the above functor

in fact to weight modules as long as the weights are bounded. Consider the set Kn+1/Zn+1 and

choose for any µ̄ ∈ Kn+1/Zn+1 a representative µ ∈ Kn+1 and a locally analytic character χµ

as above. By identifying the set Zn+1 in the usual way with algebraic characters on T we get

for any element in µ + ν ∈ µ̄ a locally analytic character χµ+ν := χµ · χν . In this way we have

declared for each element in Kn+1 a locally analytic character of T (OK).

We consider for a real number κ ≥ 1 the subcategoryW≤κ consisting of objects whose weights

λ ∈ Kn+1 are bounded by κ, i.e. such that |λi| ≤ κ for all 0 ≤ i ≤ n. Hence all characters χµ

appearing as weights have a common p-adic extension field J as the target coefficient field. We

can thus generalize the above construction by defining for every M ∈ Wκ, Z ∈ RepalgK (P(1,n))

and V ∈ Rep∞K (T0),

FG
κ (M,Z, V ) := c− IndG

G0
(D(G0)⊗D(g,T0) (M(Z)⊗K V ′)′).

Here M(Z) is defined as above. Thus we obtain a tri-functor

FG
κ :Wκ ×RepalgK (P )×Rep∞K (T0)→ ReplaJ (G).

For later use we set

X = XM,Z,V := D(G0)⊗D(g,T0) (M(Z)⊗K V ′).

This is a continuous D(G0)-module such that FG
κ (M,Z, V ) = c− IndG

G0
(X ′

M,Z,V ).

Proposition 4.4. The functor FG
κ is exact in each entry.

2In loc.cit. we have considered only objects in the category O and a parabolic subgroup. This definition

extends obviously to our situation.
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Proof. Since c− IndG
G0

and M(·) are exact functors by (3.3.0) it is enough to see that the

expression XM,Z,V defines an exact functor in M and V. Here the approach is as in [21, Prop.

4.9 a)] resp. [20, Prop. 3.7]. As for the exactness in the smooth entry, we choose a locally analytic

section s of the projection G0 → G0/T and set H = s(G0/T0). Then XM,Z,V = D(H) ⊗U(g)

M ⊗K V ′ as vector spaces.

As for the exactness in M the proof is the same as in [20, Prop. 3.7] replacing the parabolic

subgroup P by T and Verma modules by free weight modules M(λ) := U(g) ⊗U(t) Kλ with

λ ∈ Kn+1. For such free weight modules we have D(G0) ⊗D(T0,g) M(λ) = D(G0) ⊗D(T0) Jλ.

Then we let I ⊂ G0 be the Iwahori subgroup and write D(G0) ⊗D(T0) Jλ =
⊕

g∈G0/I
δg ·

D(I)⊗D(T0) Jλ. Thus we may replace for proving the exactness G0 by I. Then we consider the

Iwahori decomposition I = (U−
B ∩ I)(T0 ∩ I)(UB ∩ I) = (U−

B ∩ I)T0UB. Hence we may write

D(I)⊗D(T0) Jλ = D((U−
B )∩ I)⊗J D(UB)⊗ Jµ). Then we proceed as in loc.cit for the remaining

argument considering the tensor product D((U−
B ) ∩ I) ⊗J D(UB) (In loc.cit. only the factor

D(U−
B ) is treated but the generalisation to the tensor product works in the same way.) 2

Let U ⊂M(Z) be a finite-dimensional T0-subspace generating M(Z) as a U(g)-module. Then

we may identify similarly to [21] our representation FG
κ (M,Z, V ) with the closed subrepresen-

tation

c− IndG
T0

(U ′ ⊗ Z)d := {f ∈ c− IndG
T0

(U ′ ⊗ V ) | ⟨x, f⟩ = 0∀x ∈ d}

of c− IndG
T0

(U ′ ⊗ V ) where

(4.4.0)

⟨·, ·⟩ :
(
D(G0)⊗D(T0) U

)
⊗J IndG0

T0
(U ′ ⊗ V ) −→ Can(G0, V ).

(δ ⊗ w)⊗ f 7→
[
g 7→

(
δ ·r (f(·)(w))

)
(g)

]
Here, by definition, we have

(
δ ·r (f(·)(w))

)
(g) = δ(x 7→ f(gx)(w)).

We denote by 1 the trivial representation of P and by 1∞ the trivial (smooth) representation

of T0. If Z or V is the trivial representation then we simply omit it from the input in our functor

as in [21]. E.g., we write FG
κ (M) for FG

κ (M,1,1∞).

Proposition 4.5. Let M ∈ Wκ, Z ∈ RepalgK (P(1,n)), V ∈ Rep∞K (T0). Suppose that V is admis-

sible. Then the representation X ′
M,Z,V is strongly admissible.

Proof. The Lie algebra representation M is finitely generated. As Z and V are finite-dimensional

the module XM,Z,V = D(G0)⊗D(g,T0) M(Z)⊗ V ′ is finitely generated, as well. 2

Proposition 4.6. Let M ∈ Wκ, Z ∈ RepalgK (P(1,n)), V ∈ Rep∞K (T0). Suppose that V is admis-

sible. Then the representation FG
κ (M,Z, V ) is ind-admissible.

Proof. By the proposition before the representation X ′ = X ′
M,Z,V is strongly admissible. Let

S ⊂ G be a set of representatives for the double cosets G0\G/G0. For each s ∈ S, let Rs ⊂ G0
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be a set of representatives for the finite set G0sG0/G0. As for representations of finite groups

[31] we have

c− IndG
G0

(X ′)|G0
=

⊕
s∈S

s ·
( ⊕
t∈Rs

t ·X ′)
=

⊕
s∈S

s ·
(
IndG0

G0∩sG0s−1X
′) =

⊕
s∈S

s ·
(
(IndG0

G0∩sG0s−11)⊗X ′).
Now G is second countable hence G0\G/G0 is countable. Since any locally convex sum is a

strict inductive limit and IndG0

G0∩sG0s−11 is finite-dimensional the claim follows. 2

5. Irreducibility

In general we cannot expect the represenation Fµ(Z, V ) to be topologically irreducible even

if Z and V are irreducible due to the action of the centre Z(G) of G. For this reason we consider

the following variant of Fµ. Suppose that Z and V are irreducible. Then the action of Z(G)∩T0

on (Mµ(Z)⊗K V ′)′ is given by a locally analytic character ηµ,Z,V . We fix a locally character η

on Z(G) which extends ηµ,Z,V . Then we set

Fµ(Z, V ) := c− IndG
Z(G)G0

((D(Z(G)G0)⊗D(g,T0) (Mµ(Z)⊗K V ′)⊗ J ′
η)′).

We denote by W the Weyl group of G. For n = 1, the parabolic subgroup P(1,n) is just the

Borel subgroup B and any irreducible algebraic representation Z of B is given by an algebraic

character λ ∈ X∗(T ) of the maximal torus T. Thus we may write λ = (λ0, λ1) with λi ∈ Z, i =

0, 1.

Theorem 5.1. Let n = 1. Let µ ∈ K2 and let λ ∈ RepalgK (T ), V ∈ Rep∞K (T0) be simple objects.

Then Fµ(Z, V ) is topologically irreducible if w(µ)−µ ̸∈ Z2 for the non-trivial reflection w ∈W ,

|µi| /∈ |L|, i = 0, 1, |µ0| ≠ |µ1| and

a) |µ0| ≤ 1 or |µ1| ≤ 1 if λ0 + λ1 = 0.

b) |µ0| ≤ 1 and |µ1| ≥ 1 or |µ0| ≥ 1 and |µ1| ≤ 1 if λ0 + λ1 ̸= 0.

Remark 5.2. It is tempting to generalize the above statement to arbitrary n in form of a

conjecture. At least the condition w(µ)− µ ̸∈ Zn+1 for all w ∈ W,w ̸= 1 seems to be necessary

as we see from the proof below.

Proof. We abbreviate Mµ by M. If λ0 + λ1 = 0 then λ is absorbed by J [t±1
0 , t±1

1 ] and hence

Mµ = Mµ(Z) so that we can assume that Z is the trivial representation. In general, the

character µ′ := µ + λ satisfies again the assumptions w(µ′)− µ′ ̸∈ Z2. Suppose that µ0 < 1 and

µ1 > 1 Then |µ′
0| ≥ 1 and |µ′

1| = |µ1|. By adding the character t−m0
0 tm0

1 ∈ J [t±1
0 , t±1

1 ] to µ′ we

get a new character µ
′′

with µ0 = µ
′′
0 and that the other conditions are still satisfied. So the

upshot is that we may assume that Z = 1. The case |µ0| > 1 and |µ1| < 1 is symmetric.
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As for V it is given by a smooth character χ : T0 → J×. We start by proving that X is a

simple D(G0)-module. Here we mimic the proof of [21, Thm 5.3] dealing with principal series

representations and use the notation there. The proof is at the beginning verbatim the same as

in loc.cit. by replacing P0 by T0 and with the obvious (notational) changes. Here we consider

as mentioned above arbitrary n and specialize later in the proof to n = 1. We go through the

proof of loc.cit. and recollect the main constructions in our modified version. But there is one

difference. In contrast to loc.cit. we include the smooth character in the proof and do not

handle it separately since it induces only a twist of the objects therein. Thus we denote by

M(χ) = M ⊗ χ′ the D(g, T0)-module with the trivial g-action on χ and the tensor product

action of T0.

We consider thus for an arbitrary open normal subgroup H of G0 the decomposition

X =
⊕

g∈G0/H

δg ⋆
(
D(HT0)⊗D(g,T0) M(χ)

)
.

Here we recall that for a D(H)-module N and g ∈ G0, we denote by δg⋆N the space N , equipped

with the structure of a D(H)-module given by δ ·g n = (δg−1δδg)n, where n ∈ N , δ ∈ D(H), and

the product δg−1δδg ∈ D(G0) is contained in D(H).

We arrive at the following modified version of Thm. 5.5 loc.cit. in a reduced version which

proves our theorem.

Theorem 5.3. Let H be an open normal subgroup of G0, and let g, g1, g2 ∈ G0. Then

(i) The D(H)-module δg ⋆
(
D(HT0)⊗D(g,T0) M(χ)

)
is simple.

(ii) The D(H)-modules δg1 ⋆
(
D(HT0)⊗D(g,T0) M(χ)

)
and δg2 ⋆

(
D(HT0)⊗D(g,T0) M(χ)

)
are

isomorphic if and only if g1HT0 = g2HT0.

Proof. The first step is to reduce to the case of a suitable subgroup H0 ⊂ H which is normal in

G0 and uniform pro-p. We recall the definition below in the first step.

Step 1: reduction to H0. Let Lie(G0), Lie(T0) etc. be the Lie algebras of G0, T0 etc. These are

OL-lattices in g = Lie(G), t = Lie(T ) etc. respectively. Moreover, Lie(G0), Lie(T0) etc. are Zp-

Lie algebras, and we have as usual a decomposition Lie(G0) = Lie(UB,0)⊕Lie(T0)⊕Lie(U−
B,0).

For m0 ≥ 1 (m0 ≥ 2 if p = 2) the OL-lattices pm0Lie(G0), pm0Lie(T0) and pm0Lie(UP,0)

are powerful Zp-Lie algebras, cf. [7, sec. 9.4], and hence expG : g 99K G converges on these

OL-lattices. We set

(5.3.1) H0 = expG

(
pm0Lie(G0)

)
, H0

0 = expG

(
pm0Lie(T0)

)
,

H+
0 = expG

(
pm0Lie(UB,0)

)
, H−

0 = expG

(
pm0Lie(U−

B,0)
)
,

which are uniform pro-p groups. Moreover H0 is normal in G0 and H0
0 in T0, respectively. We

choose m0 large enough such that H0 is contained H. With the same argument as in [21] we

may assume from now on that H0 = H.
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Step 2: passage to Dr(H). We put

κ =

®
1 , p > 2

2 , p = 2

and denote by r a real number in (0, 1) ∩ pQ with the property that there is m ∈ Z≥0 such that

s = rp
m

satisfies3

(5.3.2) max{1

p
, |π|p−1/(p−1)} < s and sκ < p−1/(p−1)

where π ∈ OL is an uniformizer. We let ∥ · ∥r denote the norm on D(H) associated to the

canonical p-valuation. Here Dr(H) is the corresponding Banach space completion. This is a

noetherian Banach algebra, and D(H) = lim←−r<1
Dr(H). Let M(χ) := D(HT0) ⊗D(g,T0) M(χ).

As explained in loc.cit. it is enough to show that

Mr(χ) := Dr(H)⊗D(H) M(χ) = Dr(HT0)⊗D(g,T0) M(χ)

are simple Dr(H)-modules for a sequence of r’s converging to 1. From now on we assume that,

in addition to (5.3.2), that r is chosen such that Mr(χ) ̸= 0, and we consider M(χ) as being

contained in Mr(χ).

Step 3: passage to Ur(g). Let Ur(g) = Ur(g, H) be the topological closure of U(g) in Dr(H).

Then

(5.3.3) U(g) is dense in Dr(H) if rκ < p
− 1

p−1 and Ur(g) = Dr(H).

Let (Pm(H))m≥1 be the lower p-series of H, cf. [7, 1.15]. Note that P1(H) = H. For m ≥ 0

put Hm := Pm+1(H) so that H0 = H. Then Hm is a uniform pro-p group with Zp-Lie algebra

equal to pmLieZp(H). Thus our subgroups above have the following description. Let gZ be a

Z-form of g, i.e. gZ ⊗Z L = g. We fix a Chevalley basis (xγ , yγ , hα | γ ∈ Φ+, α ∈ ∆) of [gZ, gZ].

We have xγ ∈ gγ , yγ ∈ g−γ , and hα = [xα, yα] ∈ t, for α ∈ ∆. Then

LieZp(H−) = pm0Lie(U−
B,0) =

⊕
β∈Φ+

OLy
(0)
β ,

where y
(0)
β = pm0yβ. Moreover, the Zp-Lie algebra of H−,m is

LieZp(H−,m) = pmLie(H−) =
⊕
β∈Φ+

OLy
(m)
β ,

where y
(m)
β = pm0+myβ. In the same way

LieZp(H+,m) = pmLie(H+) =
⊕
β∈Φ+

OLx
(m)
β ,

where x
(m)
β = pm0+mxβ.

Let s = rp
m

be as in (5.3.2). Denote by ∥ ·∥(m)
s the norm on D(Hm) induced by the canonical

p-valuation on Hm. Then, by [25, 6.2, 6.4], the restriction of ∥ · ∥r on D(H) to D(Hm) is

3This asssumption seems to be also necessary in [21]
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equivalent to ∥ · ∥(m)
s , and Dr(H) is a finite and free Ds(H

m)-module on a basis any set of coset

representatives for H/Hm. By (5.3.3) we can conclude

(5.3.4) If s = rp
m

is as in (5.3.2), then U(g) is dense in Ds(H
m), hence Ur(g, H) = Ds(H

m).

In particular, Ur(g) ∩H = Hm is an open subgroup of H. Let

mr(χ) := Ur(g)M(χ)

be the Ur(g)-submodule of Mr(χ) generated by M(χ). The module M(χ) is dense in mr(χ)

with respect to this topology. It follows from [10, 1.3.12] or [19, 3.4.8] that mr(χ) is a simple

Ur(g)-module, and in particular a simple Dr(g, T0)-module. Thus for every g ∈ G0 the Ur(g)-

module δg ⋆mr(χ) (which is defined as above by composing the natural action with conjugation

with g) is simple. As in [21] we have for T0,r := HT0 ∩Dr(g, T0)

(i) T0,r = HmT0 = H+,mT0H
−,m, where H−,m = Pm(H−) and H+,m = Pm(H+).

(ii) Dr(HT0) =
⊕

g∈HT0/T0,r
δgDr(g, T0).

By (ii) we have mr(χ) = Dr(g, T0)⊗D(g,T0) M(χ) ⊂ Dr(HT0)⊗D(g,T0) M(χ) = Mr(χ) and

(5.3.5) Mr(χ) = Dr(HT0)⊗D(g,T0) M(χ) = Dr(HT0)⊗Dr(g,T0) mr(χ) =
⊕

g∈HT0/T0,r

δgmr(χ) .

Here the action of Ur(g) on δgmr(χ) is the same as on δg ⋆ mr(χ). Thus it suffices to show

the theorem below. Here we only consider mr as a module over Ur(g). This suffices to prove

Theorem 5.3. Therefore we omit χ for the remainder of this section.

Theorem 5.4. Assume that all the above assumptions are satisfied. Then for any g1, g2 ∈ G0

with g1T0,r ̸= g2T0,r the Ur(g)-modules δg1 ⋆mr and δg2 ⋆mr are not isomorphic.

Proof. We start with the following observation. By our assumption on r and s we have

Ur(u
−
B) = Ur(u

−
B, H

−) = Ds(H
−,m). Elements in Ur(u

−
B) thus have a description as power

series in (y
(m)
β )β∈Φ+ :

Ur(u
−
B) =

 ∑
n=(nβ)

dn(y(m))n | lim
|n|→∞

|dn|sκ|n| = 0

 ,

where (y(m))n is the product of the (y
(m)
β )nβ over all β ∈ Φ+, taken in some fixed order. Let

∥ · ∥(m)
s be the norm on Ds(H

−,m) induced by the canonical p-valuation on H−,m. Then we have

for any generator y
(m)
β

(5.4.6) ∥y(m)
β ∥(m)

s = sκ ,
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By symmetry the discussion above holds true for the group H+,m. Thus we may write

mr =  ∑
n=(nβ)

dn(y(m))nvµ +
∑

n=(nβ)

cn(x(m))nvµ | lim
|n|→∞

∥dn(y(m))n∥(m)
s = 0, lim

|n|→∞
∥cn(x(m))n∥(m)

s = 0


where vµ ∈M is a fixed generator of weight µ.

So let ϕ : δg ⋆ mr
≃−→ δh ⋆ mr be an isomorphism of Ur(g)-modules. This induces a Ur(g)-

module isomorphism δh−1g ⋆ mr
≃−→ mr, so that we may assume h = 1. Let I ⊂ G0 be the

Iwahori subgroup. Using the Bruhat decomposition

G0 =
∐
w∈W

IwI

we may write g = k−1
1 wk2 with k1, k2 ∈ I, w ∈W . By shifting k1 from the left to the right and

replacing mr by δk−1
2
mr we get an isomorphism

ϕ : δw ⋆mr
≃−→ δh ⋆mr

with h ∈ I.

We write x ·g v for the action of x ∈ g on a vector v with respect to this representation.

Now let vµ ∈ Mµ, vµ ̸= 0. Then v = ϕ(vµ) is of weight w(µ) since x ·h v = ϕ(x ·w vµ) =

ϕ((wµ(x)) · vµ) = (wµ)(x)v. But the weight vectors in Mµ are contained in µ + Zn+1 and the

weights for δh ⋆M are the same as for M i.e. µ+Zn+1. Indeed write h = u+ · t ·u− as a product

of an upper triangular unipotent element, an element t ∈ T0 and a lower unipotent element.

Here we may suppose that t = 1 since it does not affect the weights. But Ad(u+)(x) has the

shape x+
∑

α>0 lαxα and Ad(u−)(x) has the shape x+
∑

α<0 lαxα. Further any element v ∈M

has the shape vµ +
∑

α vµ+α. Now the claim follows by considering the products xαvβ, α, β ∈ Φ.

Since by assumption w(µ)− µ ̸∈ Zn+1 there cannot exist such an isomorphism ϕ.

Remark 5.5. Up to now the proof works for arbitrary n.

From now on n is equal to 1. So we may suppose that w = 1 and there is an isomorphism

ϕ : mr
≃−→ δh ⋆mr

with h ∈ I. By the Iwahori decomposition

I = (I ∩ U−
B ) · (I ∩B)

we may write h = u−tu+ with u− ∈ I ∩ U−
B , u+ ∈ I ∩ U+

B and t ∈ I ∩ T0. Since t normalizes

the other groups and δt ⋆mr = mr we may assume that t = 1. Again we have to show that there

cannot be such an isomorphism ϕ. For this let again v = ϕ(vµ) with vµ = tµ. Write

(5.5.7) v =
∑
i∈Z

cit
µ+iα
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where α is the unique positive simple root and ci ∈ J. We shall prove that this formal series

does not converge if h ̸∈ T0,r. For doing so, we rewrite this series also in the shape

(5.5.8) v =
∑
i<0

diy
(i)
α tµ +

∑
i≥0

dix
(i)
α tµ

since by (5.4.6) this allows us to decide easier whether the power series converges. Then it

follows that

ci =


µ0(µ0 − 1) · · · (µ0 + i + 1)p−i(m0+m)di i < 0

d0 i = 0

µ1(µ1 − 1) · · · (µ1 − i + 1)pi(m0+m)di i > 0.

As above we get by shifting the isomorphism δu+ ⋆mr
∼= δu− ⋆mr and for all v ∈ mr, x ∈ g, the

identity

ϕ(Ad((u+)−1)(x)v) = Ad((u−)−1)(x)ϕ(v).

We shall examine what this means on the weight spaces and for the coefficients ci, respectively.

Thus we consider the identities

ϕ((Ad((u+)−1)(x)vµ))λ = (Ad((u−)−1)(x)ϕ(vµ))λ

where λ ∈ µ + Z2, x ∈ t and where ( )λ indicates the λ weight space.

Let

e =

Ç
0 1

0 0

å
, f =

Ç
0 0

1 0

å
, z =

Ç
1 0

0 −1

å
so that u+ = E2 + ae and u− = E2 + bf for some a, b ∈ L. Note that we have

Ad((u+)−1)(x) = x + α(x)ae

and

Ad((u−)−1)(x) = x− α(x)bf.

Hence we get

Ad((u−)−1)(x)ϕ(vµ) = ϕ(Ad((u+)−1)(x)vµ) = ϕ((x + α(x)ae)vµ) = ϕ(xvµ + α(x)aevµ)

= µ(x)v + α(x)aϕ(evµ).

Since one checks that Ad((u+)−1)(e) = e the latter identifies with

µ(x)v + α(x)aAd((u−)−1)(e)v.

But Ad((u−)−1)(e) = −b2f + bz + e. Hence the latter expression coincides with

µ(x)v + α(x)a(−b2f + bz + e)v.

On the other hand, Ad((u−)−1)(x)ϕ(vµ) = (x− α(x)bf)v = xv − α(x)bfv. Thus we get

(5.5.9) µ(x)v + α(x)a(bz + e)v = xv + α(x)(b2a− b)fv.

for all x ∈ t.

Next we compare the weights in the expression above. We have for λ = (λ0, λ1) ∈ J2

etλ = λ1t
λ+α, ftλ = λ0t

λ−α
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and

ztλ = (λ1 − λ0)t
λ.

First case: b = 0, a ̸= 0. Then the equation (5.5.9) is just

µ(x)v + α(x)aev = xv.

For λ = µ we get

µ(x)c0t
µ + α(x)ac−1(µ1 + 1)tµ = µ(x)c0t

µ.

Hence c−1a(µ1 + 1) = 0. It follows that c−1 = 0.

For λ = µ− α we get

µ(x)c−1t
µ−α + α(x)ac−2(µ1 + 2)tµ−α = µ(x)c−1t

µ−α.

By the step before it follows that c−2a(µ1 + 2) = 0 and thus c−2 = 0. Successively we see that

c−i = 0 for all i ∈ N.

For λ = µ + α we get

µ(x)c1t
µ+α + α(x)aµ1c0t

µ+α = (µ + α(x))c1t
µ+α.

Hence aµ1c0 = c1.

For λ = µ + 2α we get

µ(x)c2t
µ+2α + α(x)a(µ1 − 1)c1t

µ+2α = (µ + 2α(x))c2t
µ+2α.

Hence a(µ1 − 1)c1 = 2c2 thus c2 = a(µ1−1)c1
2 . By substituting c1 be the above expression we get

c2 =
a2µ1(µ1 − 1)c0

2
.

By iterating this process we get

ci =
aiµ1(µ1 − 1) · · · (µ1 − (i− 1))c0

i!
.

If c0 = 0, then all coefficients ci vanish, so that v = 0. If c0 ̸= 0 we may suppose by scaling

that c0 = 1. Hence we see that the series (5.5.7) coincides with the series which interpolates the

expression (1 + a)µ1 . By definition of the topology on mr we have rather to consider the power

series (5.5.8) for its convergence which is here given by∑
i≥0

ai

i!pi(m0+m)
(y(m))i.

Here we can argue again as in loc.cit. It is even simpler. Indeed, suppose that u ̸∈ T0,r, i.e. a ̸∈
pm0+mOL. We may write a = 1

πk p
m0+mα with α ∈ O×

L and k ≥ 1. Then ai

i!pi(m0+m) = αi/i!(πk)i.

It follows that

|di| · ||y(m)||(m)
s = 1/|i!||(πk)i|si = π−i(k−1)/|i!| · ( s

|π|
)i.

Since s
|π| > p

− 1
p−1 (which is the convergence radius of the exponential function) and k ≥ 1 this

sequence does not converge to zero.
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Second case: b ̸= 0, a = 0. Then the equation (5.5.9) is just

µ(x)v = xv − α(x)bfv.

For λ = µ we get

µ(x)c0t
µ = µ(x)c0t

µ − α(x)bc1(µ0 + 1)tµ.

Hence bc1(µ0 + 1) = 0. It follows that c1 = 0.

For λ = µ + α we get

µ(x)c1t
µ+α = (µ + α)(x)c1t

µ+α − α(x)bc2(µ0 + 2)tµ+α.

By the step before it follows that bc2(µ0 + 2) = 0 and thus c2 = 0. Successively we see that

ci = 0 for all i ∈ N.

For λ = µ− α we get

µ(x)c−1t
µ−α = (µ− α(x))c−1t

µ−α − α(x)bµ0c0t
µ−α.

Hence bµ0c0 = −c−1.

For λ = µ− 2α we get

µ(x)c−2t
µ−2α = (µ− 2α(x))c−2t

µ−2α − α(x)b(µ0 − 1)c−1t
µ−2α.

Hence b(µ0 − 1)c−1 = −2c−2 and c2 = −b(µ0−1)c1
2 . By substituting c−1 be the above expression

we get

c−2 =
b2µ0(µ0 − 1)c0

2
.

By iterating this process we get

c−i = (−1)i
biµ0(µ0 − 1) · · · (µ0 − (i− 1))c0

i!
.

Hence we see that the series (5.5.7) coincides up to sign with the series in the first case. Hence

the argumentation is symmetric and we get a diverging power series.

Third Case: a ̸= 0, b ̸= 0. Set µ̄ = µ0 − µ1. We suppose that |µ0| > |µ1|. Thus |µ̄| = |µ0|. The

case |µ0| < |µ1| is treated by symmetry.

Case A: |µ0| > 1. Hence 1 > |µ1| by our assumption.

For λ = µ we get

µ(x)c0t
µ + α(x)a(bµ̄c0 + c−1(µ1 + 1))tµ = µ(x)c0t

µ + (b2a− b)α(x)fc1t
µ+α.

Hence a(bµ̄c0 + c−1(µ1 + 1)) = (b2a− b)c1(µ0 + 1) or

c1 =
abµ̄c0 + a(µ1 + 1)c−1

(b2a− b)(µ0 + 1)
.

For λ = µ + α we get

µ(x)c1t
µ+α + α(x)a(b(µ̄ + 2)c1t

µ+α + ec0t
µ) = (µ + α(x))c1t

µ+α + (b2a− b)α(x)(fc2t
µ+2α).
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Hence a(b(µ̄ + 2)c1 + µ1c0) = c1 + (b2a− b)(µ0 + 2)c2 and thus

c2 =
c1(ab(µ̄ + 2)− 1) + aµ1c0

(b2a− b)(µ0 + 2)
.

For λ = µ + 2α we get

µ(x)c2t
µ+2α +α(x)a(b(µ̄+ 4)c2t

µ+2α +ec1t
µ+α) = (µ+ 2α(x))c2t

µ+2α + (b2a− b)α(x)(fc3t
µ+3α).

Hence a(b(µ̄ + 4)c2 + (µ1 − 1)c1) = 2c2 + (b2a− b)(µ0 + 3)c3 and thus

c3 =
c2(ab(µ̄ + 4)− 2) + a(µ1 − 1)c1

(b2a− b)(µ0 + 3)
.

By iterating this process we get

a(b(µ̄ + 2i)ci + (µ1 − i + 1)ci−1) = ici + (b2a− b)(µ0 + i + 1)ci+1

and thus

ci+1 =
ci(ab(µ̄ + 2i)− i) + a(µ1 − i + 1)ci−1

(b2a− b)(µ0 + i + 1)

for all i ∈ N.

Next we examine the negative part. For λ = µ− α we get

µ(x)c−1t
µ−α + α(x)a(b(µ̄− 2)c−1t

µ−α + ec−2t
µ−2α) = (µ− α(x))c−1t

µ−α + (b2a− b)α(x)fc0t
µ.

Hence a(b(µ̄− 2)c−1 + (µ1 + 2)c−2) = −c−1 + (b2a− b)µ0c0. Hence

c−2 =
(b2a− b)µ0c0 − (ab(µ̄− 2) + 1)c−1

a(µ1 + 2)
.

For λ = µ− 2α we get

µ(x)c−2t
µ−2α+α(x)a(b(µ̄−4)c−2t

µ−2α+ec−3t
µ−3α) = (µ−2α(x))c−2t

µ−2α+(b2a−b)α(x)fc−1t
µ−α.

Hence a(b(µ̄− 4)c−2 + (µ1 + 3)c−3) = −2c−2 + (b2a− b)c−1(µ0 − 1) and so

c−3 =
(b2a− b)c−1(µ0 − 1)− (ab(µ̄− 4) + 2)c−2

a(µ1 + 3)
.

By iterating this process we get

(5.5.10) c−i =
(b2a− b)c−i+2(µ0 − i + 2)− (ab(µ̄− 2(i− 1)) + i− 1))c−i+1

a(µ1 + i)

for all i ∈ N.

If two successive elements ck, ck+1 vanish then one checks that all coefficients ci vanish, so

that v = 0.

We make the following case distinction:

Case |abµ0| > 1 : Here we show that the Laurent series part of the series (5.5.8) does not

converge.

Since |µ0| > |abµ0| > 1 it follows that |(ab(µ̄ − 2i) + i| = |ab||µ0| and ti := |µ1 + i| ≤
max{|µ1|, |i|} ≤ 1 for all i ∈ Z. Further |b2a− b| = |b(ba− 1)| = |b| since ba ∈ mL.
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If |ac−1| = |c0| then one checks by the maximum principle of the norm | · | that |ci| = |aic0|
for all i ∈ N since |abµ0| > 1 and |µ1| ≤ 1 Then we are essentially in the First case (a ̸= 0,

b = 0). The difference is that here we even need not to consider the factor 1/i!. With the same

argument we conclude that the series does not converge.

If |ac−1| ≠ |c0| it follows that

|c−2| =
max{|b||µ0||c0|, |ab||µ0||c−1|}

|a|t2
> |b||µ0||c−1|.

We claim that |ac−2| ≠ |c−1|. Indeed suppose that |ac−2| = |c−1|. By multiplication the

above inequality with |a| we get |c−1| = |ac−2| ≥ |ab||µ0||c−1|
t2

. But |ab||µ0| > 1 and t2 ≤ 1. Hence

we get a contradiction. Inductively we see that |ac−i| ≠ |c−i+1| for all i ≥ 1 and therefore that

|c−i−1| =
max{|b||µ0||c−i+1|, |ab||µ0||c−i|}

|a|t−i−1
> |bµ0c−i|.

Then by successive application of this inequality we see that it is enough to show that the series∑
i≤0

b−ic0
(pm0+m)−i (y

(m))−i does not converge if u− ̸∈ T0,r, i.e. b ̸∈ pm0+mOL. This is done as in

the previous case.

The case |abµ0| = 1 is not possible by our assumption that |µ0| ̸∈ |L|.

Case |abµ0| < 1 : We argue similarly as in the previous case but consider the main series of

(5.5.8). Since this time di = ci
µ1(µ1−1)···(µ1−i+1)pi(m0+m) and |µ1| < 1 it suffices to see that the

series
∑

i
ci

pi(m0+m) (y(m))i does not converge. Consider

ci =
ci−1(ab(µ̄ + 2(i− 1))− (i− 1)) + a(µ1 − i + 2)ci−2

(b2a− b)(µ0 + i)
.

We have |µ̄ + 2(i− 1))| = |µ0|. Suppose that |ci−1(abµ0 − (i− 1))| ≠ |a(µ1 − i + 2)ci−2|. Then

we have

|ci| ≥
|ci−1abµ0|
|bµ0|

= |ci−1||a|.

by our assumption |µ0| ̸∈ |L| again. If p ∤ i− 1 then we even have |ci| > |ci−1||a|.

Consider now ci+1. If |ci(abµ0− i)| ≠ |a(µ1− i+ 1)ci−1| then we get as above |ci+1| ≥ |ci||a|.
If |ci(abµ0 − i)| = |a(µ1 − i + 1)ci−1| and p ∤ i − 1, then we may replace cj by cjν for all j ≥ i

for some ν ∈ K with |ν| < 1 such that |ν||ci| > |ci−1||a| since for disproving the convergence

of the series (5.5.8) we can consider the modified series with the ”smaller” coefficients, as well.

Then we are in the previous case. If p | i − 1 then |µ1 − i + 1| < 1. Since di = ci
µ1···(µ1−i+1)

we may replace cj by cjν for all j ≥ i for some ν ∈ K with |µ1 − i + 1| < |ν| < 1 such that

|νci|/|µ1 − i + 1| > |ci−1||a|. Then we are again in the situation considered before.

Thus it suffices to prove that the series
∑

i
aic0

pi(m0+m) (y(m))i does not converge for a ̸∈ pm0+mOL

which is done as in the previous cases.
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Case B: |µ0| < 1 :

We argue similarly as before. Consider

ci =
ci−1(ab(µ̄ + 2(i− 1))− (i− 1)) + a(µ1 − i + 2)ci−2

(b2a− b)(µ0 + i)
.

Suppose that |ci−1(ab(µ̄ + 2(i− 1))− (i− 1))| ≠ |a(µ1 − i + 2)ci−2|. Then we have

|ci| ≥
|ci−1||i− 1|
|b|

> |ci−1(i− 1)|.

If p ∤ i− 1 then we even have |ci| > |ci−1|. If p | i− 1 then we consider the inequality

|ci| ≥
|ci−1||ab||µ0 − 2(i− 1)|

|b|
> |ci−1||ab||µ0 − 2(i− 1)|.

Hence since p ̸= 2 and |µ0| ≥ |µ1|
|ci|

|µ1 − i + 1|
> |ci−1||ab|.

Consider now ci+1. If |ci(ab(µ̄ + 2i) − i)| = |a(µ1 − i + 1)ci−1| then we may replace again as

above cj by cjν for all j ≥ i for some ν ∈ K with |µ1 − i + 1| < |ν| < 1 such that still the

above inequalities hold and we may assume that |ci(ab(µ̄ + 2i)− i)| ≠ |a(µ1 − i + 1)ci−1|. Then

for disproving the convergence it suffices to prove that the series¸
∑

i
(ab)ic0

pi(m0+m) (y(m))i does not

converge for a, b ̸∈ pm0+mOL which is done as in the previous cases.

Now we show that c − IndG
G0

X ′ is topologically irreducible. For this we check the Mackey

criterion. More precisely we check the levelwise criterion in Theorem A.23 of the appendix. For

r as above let Xr := Dr(G0)⊗D(G0)X be the completion of X. For g ∈ G\G0, let Gg
0 := gG0g

−1

and U = G0 ∩ Gg
0. We have to show that the D(U)-modules Xr and δg ⋆ Xr are disjoint i.e.,

that they do not have a simple constituent in common. We shall show that these modules

are even as Ur(g)-modules disjoint. Let H ⊂ G0 be chosen as in the above proof and write

D(G0) =
⊕

z∈G0/HT0
δz ·D(HT0) where we identify each z ∈ G0/HT0 with a representative in

G0. As Ur(g)-modules we may write Xr thus by (5.3.5) as

Xr =
⊕

z∈G0/T0,r

δz ⋆mr

and thus

δg ⋆ Xr =
⊕

z∈G0/T0,r

δgz ⋆mr.

As we may choose for g a representative of the set of double cosets G0\G/G0 we may suppose

by the Cartan decomposition that g = t = diag(t0, t1) is an element of the torus with |t0| ≥ |t1|.
Since the action of the centre is fixed we may further suppose that t0 = 1. Now suppose that

ϕ : mt → δt ⋆ mr is an isomorphism. Then it obviuosly respects the weight space and without

loss of generalilty we may assume that ϕ(vµ) = vµ. It follows that ϕ(envµ) = (t1t
−1
0 )nenvµ and

ϕ(fnvµ) = (t0t
−1
1 )nfnvµ. Since t ̸∈ G0 we see that |t0t−1

1 | > 1, Hence if v ∈ mr is a series of norm

r the series ϕ(v) has norm > r and does not converge. This is a contradiction to the existence
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of an isomorphism ϕ : mt → δt ⋆mr. Since g /∈ G0 the sets {z ∈ G0/T0,r} and {gz | z ∈ G0/T0,r}
have empty intersection. Hence the summands of the two direct summands are pairwise not

isomorphic which finishes our proof. 2

6. Cuspidality

We consider inside Wκ the subcategory Cκ := C ∩ Wκ of cuspidal modules. Let M ∈ Cκ,

Z ∈ RepalgK (P(1,n)), V ∈ Rep∞K (T0) and recall that X = XM,Z,V := D(G0) ⊗D(g,T0) M(Z) ⊗ V ′.

In this final section we are going to prove that the representation FG
κ (M,Z, V ) = c − IndG

G0
X ′

satisfies the vanishing of the homology groups in the definition of supercuspidality in the sense

of Kohlhaase. We start with the following result.

Proposition 6.1. Let P ⊂ G be a parabolic subgroup and N = UP its unipotent radical. Set

N0 = G0 ∩N. Then H0(N0, X) = 0.

Proof. We follow the proof of [18, Thm. 3.5]. We clearly have H0(N0, X) = H0(n, X)N0 so that

it suffices to see that H0(n, X) = 0. Since the action of n on V is trivial we may suppose that

V = 1∞ is the trivial representation, cf [18, Lemma 3.4].

Let I ⊂ G be the standard Iwahori subgroup. For w ∈W , let M(Z)w be the D(g, I∩wT0w
−1)-

module with underlying vector space M(Z) twisted action given by composition of the given

one with conjugation with w. Let

(6.1.10) w−1 Iw = (U−
B,0 ∩ w−1Iw)(T0 ∩ w−1Iw)(UB,0 ∩ w−1Iw)

be the induced Iwahori decomposition, cf. [19, Lemma 3.3.2]. The Bruhat decomposition

G0 =
∐

w∈W IwI induces a decomposition

D(G0)⊗D(g,T0) M(Z) ≃
⊕
w∈W

D(I)⊗D(g,I∩wT0w−1) M(Z)w

≃
⊕
w∈W

D(w−1Iw)⊗D(g,w−1Iw∩T0) M(Z).

Note that w−1Iw ⊃ T0 since w−1T0w = T0). For each w ∈W , we have

H0(n, D(I)⊗D(g,I∩wT0w−1) M(Z)w) ≃ H0(Ad(w−1)(n), D(w−1Iw)⊗D(g,w−1Iw∩T0) M(Z)).

We can write each summand in the shape

M(Z)w := D(w−1Iw)⊗D(g,w−1Iw∩T0) M = lim←−
r

M(Z)wr

where M(Z)wr = Dr(w
−1Iw) ⊗D(g,w−1Iw∩T0) M(Z). If we denote by M(Z)wr the topological

closure4 of M in M(Z)wr , we get by [21, 5.6.5] finitely many elements u ∈ U−
B,0 and finitely

4here we use the notation of [18].
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many elements v ∈ UB,0 such that

(6.1.10) M(Z)wr ≃
⊕
u,v

δuδv ⊗M(Z)wr

and the action of x ∈ Ad(w−1)(n) is given by

x ·
∑
u,v

δuδv ⊗mu,v =
∑

δuδv ⊗Ad((uv)−1(x))mu,v.

Indeed, by [19, Prop. 3.3.4] we have isomorphisms

Dr(w
−1Iw) ∼= Dr(w

−1Iw ∩ U−
B,0)⊗̂Dr(w

−1Iw ∩ T0)⊗̂Dr(w
−1Iw ∩ UB,0)

which induce isomorphisms

Dr(g, w
−1Iw ∩ T0) ∼= Ur(u

−
B,0)⊗̂Dr(w

−1Iw ∩ T0)⊗̂Ur(uB,0)

where Ur(u
−
B,0) is the closure of U(u−B,0) in Dr(w

−1Iw ∩ U−
B,0) etc. Hence we get

Dr(w
−1Iw)⊗D(g,w−1Iw∩T0) M(Z)

= Dr(w
−1Iw ∩ U−

B,0)⊗̂Dr(w
−1Iw ∩ UB,0)⊗Ur(u

−
B,0)⊗Ur(uB,0)

M(Z)wr .

But by the discussion in [21, (5.5.7)- (5.5.8)] there are for the fixed open subgroup H (which is

contained in w−1Iw) finitely many elements u ∈ U−
B0

such that Dr(H∩U−
B0

) =
⊕

u δuUr(u
−
B0

). On

the other hand there are by the compactness of I finitely many u ∈ U−
B0

such that Dr(w
−1Iw ∩

U−
B0

) =
⊕

u δuDr(H ∩ U−
B0

) which gives the above claim.

But all elements of Ad((uv)−1((Ad(w−1)n)) act injectively on M(Z) since M(Z) is cuspidal.

By a similar argument as in Step 1 of [21, Theorem 5.7] they act injectively on M(Z)wr , as

well since each element in M(Z)wr is again a power series in weight vectors. We conclude that

H0(Ad((uv)−1)(Ad(w−1)(n)),M(Z)wr ) = 0 for all w ∈ W. Hence by passing to the limit we get

H0(Ad(w−1)(n),M(Z)w) = 0 for all w ∈W . The claim follows. 2

Lemma 6.2. With the notation above the Lie algebra n acts bijectively on X.

Proof. Again we may suppose that V = 1∞ is the trivial representation. In the above proposition

we have actually seen that any element s ∈ n acts injectively on X. Now we show that it acts

surjectively, as well. We have thus to show that s ·D(G0)⊗D(g,T0)M(Z) = D(G0)⊗D(g,T0)M(Z).

For this it is enough to see that the tensors δ ⊗m with δ ∈ D(G0) and m ∈ M(Z) are in the

image of the multiplication map by s.. Now by [15, Lemma 4.2] the ad-nilpotent elements n

satisfy Ore’s localizability condition in D(G0). By definition there are δ′ ∈ D(G0) and s′ ∈ S

with sδ′ = δs′. Since s′ acts bijectively on M(Z) as M(Z) is cuspidal there is some m′ ∈M(Z)

with s′m′ = m. Hence δ ⊗m=δ ⊗ s′m′ = δs′ ⊗m′ = sδ′ ⊗m′ and the claim follows. 2

Proposition 6.3. We have Hi(N, c− IndG
G0

(X ′)) = 0 for all i ≥ 0.

Proof. By a result of Kohlhaase [14, Theorem 7.1] we have Hi(N, c − IndG
G0

(X ′)) = Hi(n, c −
IndG

G0
(X ′)) for all i ≥ 0. Since c− IndG

G0
(X ′) is a direct sum

⊕
g∈G/G0

gX ′ of copies of X ′ and
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Hi(n, gX
′) = Hi(Ad(g)(n), X ′) it suffices to see that Hi(n, X

′) = Hi(U(n), X ′) = 0 since we

consider from the very beginning arbitrary parabolic subgroups P.

By Lemma 6.2 elements of n act bijectively on X. Thus they act bijectively on X ′, as well,

and we can consider X ′ as a module for the localisation S−1U(g) where S = nU(n) ⊂ U(g) is

the multiplicative system generated by n. But now projective modules remain projective under

the localisation functor S−1− which is moreover exact. It follows that any projective resolution

of X ′ by U(g)-modules gives rise to a projective resolution of X ′ by S−1U(g)-modules. But for

any S−1U(g)-module Y we have H0(n, Y ) = 0 since elements of n act bijectively on Y. Hence all

cohomology groups vanish. 2
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Appendix A. A Mackey criterion for locally analytic representations, by

Andreas Bode

The purpose of this appendix is twofold: Firstly, we provide some additional background

on the category of ind-admissible representations, advertising a dual perspective using pro-

coadmissible modules over the distribution algebra – in particular, we show that the definition

of ind-admissibility is independent of the choice of compact open subgroup (Corollary A.14),

and that ind-admissible representations form an abelian category (Proposition A.15). Secondly,

we then prove an analogue of Mackey’s irreducibility criterion for compactly induced locally

analytic representations, where we induce from an open subgroup which is compact mod centre

(Theorem A.23).

A.1. Ind-admissible representations and pro-coadmissible modules. Throughout, let L

be a finite extension of Qp and let K be a spherically complete nonarchimedean field extension

of L. Let H be a locally L-analytic group, and let C ≤ H be a compact open subgroup.

We write D(H) for the distribution algebra D(H,K) of locally L-analytic distributions,

likewise D(C) = D(C,K). Choose any increasing sequence 1/p ≤ rn < 1 tending to 1. Then

[29] defines Noetherian Banach algebras Drn(C,K) such that D(C) ∼= lim←−Drn(C,K) exhibits

D(C) as a Fréchet–Stein algebra. We will shorten Drn(C,K) to Dn(C).

Recall from Definition 2.2 that a locally L-analytic H-representation V is called ind-admissible

if it can be written as the inductive limit V ∼= lim−→Vi of a countable chain of admissible C-

subrepresentations.

Note that such an inductive limit is automatically a strict inductive limit, as each morphism

of admissible C-representations is strict ([29, Proposition 6.4]).

For now, we have fixed C and will say ‘ind-admissible’ when we really mean ‘ind-admissible

relative to C’. We will see at the end of this section that our definition does not depend on the

choice of compact open subgroup.

Note that by Lemma ??, any ind-admissible representation V is of compact type – in partic-

ular, V is reflexive and its dual V ′ is a nuclear Fréchet space.

Explicitly, V |C ∼= lim−→Vi and Vi
∼= lim−→Vi,n, where the Vi,n = (Dn(C)⊗D(C)V

′
i )′ are the Banach

spaces consisting of vectors in Vi with a prescribed radius of analyticity. In particular, there are

natural morphisms Vi,n → Vi+1,n such that the composition Vi,i → Vi+1,i → Vi+1,i+1 is compact

by [26, Remark 16.7], making V ∼= lim−→Vi,i a space of compact type.

We note that the maps Vi → Vi+1 are generally not compact. We thus have two different

presentations for V with distinct advantages and disadvantages: V ∼= lim−→Vi is a strict inductive

limit with transition maps which are not necessarily compact, and V ∼= lim−→Vi,i realizes V as a

(generally non-strict) inductive limit of Banach spaces with compact transition maps.
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Lemma A.1. Let V be an ind-admissible H-representation. As before, write V ∼= lim−→Vi and

V ∼= lim−→Vi,i. The natural morphisms

V ′ → lim←−V ′
i

and

V ′ → lim←−V ′
i,i

are isomorphisms of Fréchet spaces, where the right hand side is equipped with the inverse limit

topology.

Proof. Since the Vi,i exhibit V as a space of compact type, the second isomorphism follows from

[26, Proposition 16.10].

But then V ′ ∼= lim←−i,j
V ′
i,j , and the first isomorphism follows from V ′

i
∼= lim←−j

V ′
i,j for each i.

2

Corollary A.2. Let V be an ind-admissible H-representation and let U be a closed subrepre-

sentation. Then U and V/U are also ind-admissible.

Proof. Let V |C = lim−→Vi, with each Vi an admissible C-representation. Set Ui = Vi∩U , a closed,

and hence admissible, C-subrepresentation of Vi.

Write W = V/U and let Wi = Vi/Ui, an admissible C-representation. By construction, the

natural map Wi → Wi+1 is injective. Since lim−→ is right exact on the category of locally convex

K-vector spaces, W = V/U ∼= lim−→Vi/Ui = lim−→Wi, so W is an ind-admissible representation.

It remains to verify that U is actually isomorphic to lim−→Ui, i.e. that the subspace topology

on U agrees with the inductive limit topology.

For this, note that U , V , W are spaces of compact type by [27, Proposition 1.2], and [27,

Proposition 1.2] then induces a short strictly exact sequence

0→W ′ → V ′ → U ′ → 0,

of nuclear Fréchet spaces, fitting into a commutative diagram

0 // W ′ //

��

V ′ //

��

U ′ //

��

0

0 // lim←−W ′
i

// lim←−V ′
i

// lim←−U ′
i .

By Lemma A.1, the first two vertical arrows are isomorphisms, and by reflexivity, it suffices to

show that the third vertical arrow is also an isomorphism.

Each transition map W ′
i → W ′

i−1 is a surjection of Fréchet spaces, so (W ′
i ) is lim←−-acyclic by

[9, p.45, Lemme 1]. Hence lim←−V ′
i → lim←−U ′

i is surjective, and thus U ′ → lim←−U ′
i is a continuous

bijection of Fréchet spaces and therefore an isomorphism by the Open Mapping Theorem ([26,

Corollary 8.7]). 2

The above readily yields the following.
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Corollary A.3. Let V be a locally analytic H-representation whose underlying locally convex

topological K-vector space is of compact type. Then V is ind-admissible if and only if V ′ is

a (separately continuous, nuclear Fréchet) D(H)-module which can be written as an inverse

limit V ′ ∼= lim←−Mi with each Mi a coadmissible D(C)-module with surjective transition maps

Mi+1 →Mi.

Accordingly, we make the following definition.

Definition A.4. A nuclear Fréchet D(C)-module M is called pro-coadmissible if M ∼= lim←−Mi,

where each Mi is a coadmissible D(C)-module and each transition map Mi+1 →Mi is surjective.

A separately continuous, nuclear Fréchet D(H)-module is called pro-coadmissible if it is pro-

coadmissible as a D(C)-module.

We will prove later that the notion of a pro-coadmissible D(H)-module does not depend on

the choice of compact open subgroup C.

Corollary A.3 then says that the duality in [27, Corollary 3.3] induces an anti-equivalence

between ind-admissible H-representations and pro-coadmissible D(H)-modules.

Note that by Lemma A.1 and [26, Proposition 16.10], if M is a pro-coadmissible D(C)-module,

then

M ∼= lim←−
i

(Di(C)“⊗D(C)Mi).

It is occasionally advantageous to use the D(C)-module perspective, as we can regard pro-

coadmissible modules (which are by definition continuous D(C)-modules on nuclear Fréchet

spaces) as special cases of complete bornological D(C)-modules. For example, this allows us

to exploit a well-behaved theory of completed tensor products: The category B̂cK of complete

bornological K-vector spaces is closed symmetric monoidal, unlike e.g. the category LCV SK of

locally convex topological K-vector spaces.

We refer to [2] for preliminaries on the category ModB̂cK (D(C)) of complete bornological

D(C)-modules.

Recall from [2, subsection 4.1] that there exists a bornologification functor

(−)b : LCV SK → BcK

from locally convex topological K-vector spaces to bornological vector spaces.

When restricted to nuclear Fréchet spaces, (−)b is exact and fully faithful (see [2, Lemma

4.3] for full faithfulness and e.g. [2, Proposition 5.12] for exactness), with a quasi-inverse on the

essential image given by the functor (−)t.

Let ModnF
B̂cK

(D(C)) denote the full subcategory of ModB̂cK (D(C)) whose underlying complete

bornological vector space is of the form Eb for some nuclear Fréchet space E.

Lemma A.5. The bornologification functor (−)b induces a fully faithful functor
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(−)b :


continuous D(C)-modules

on nuclear Fréchet spaces

with continuous D(C)-module morphisms

→ ModB̂cK (D(C))

with essential image ModnF
B̂cK

(D(C)).

If M is nuclear Fréchet D(C)-module and N is a closed submodule (so that N and M/N are

nuclear Fréchet by [26, Proposition 19.4]), then

0→ N b →M b → (M/N)b → 0

is strictly exact.

Proof. By [22, Theorem 8.5.7, Theorem 10.3.13, Theorem 10.4.4] and [2, Corollary 5.20], if M

is a nuclear Fréchet K-vector space, then D(C)“⊗KM is a nuclear Fréchet space and

(D(C)“⊗KM)b ∼= D(C)b“⊗KM b.

Thus (−)b induces a functor between the module categories, which inherits exactness and fully

faithfulness from (−)b (since morphisms in the module category are morphisms in B̂cK fitting

into suitable commutative diagrams, using the equality of tensor products above).

Moreover,

((D(C)“⊗KM)b)t ∼= D(C)“⊗KM

by [2, Lemma 4.3], so specifying a continuous D(C)-module structure on M is equivalent to

specifying a bounded action on M b. Hence (−)b has essential image ModnF
B̂cK

(D(C)). 2

We usually suppress the (−)b from the notation and from now on regard pro-coadmissible

modules as certain complete bornological modules.

Lemma A.6. Let M ∼= lim←−Mi be a pro-coadmissible D(C)-module. Then the natural morphism

Dn(C)“⊗D(C)M → lim←−
i

(Dn(C)“⊗D(C)Mi)

is an isomorphism in ModB̂cK (D(C)).

In particular, the morphism M → lim←−n
(Dn(C)“⊗D(C)M) is an isomorphism.

Proof. By [2, Lemma 5.31], Dn(C)“⊗L
D(C)M ∈ D(ModB̂cK (Dn(C))) can be computed via the

complex

. . .→ Dn(C)“⊗KD(C)
“⊗j“⊗KM → Dn(C)“⊗KD(C)

“⊗j−1“⊗KM → . . .→ Dn(C)“⊗KM → 0

obtained from the Bar resolution of M .

Since each Mi is a coadmissible D(C)-module, Dn(C)“⊗D(C)Mi is simply the bornologification

of the finitely generated Dn(C)-module Mi,n = Dn(C)⊗D(C) Mi from before (see [2, Corollary

5.38]).
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It also follows from [2, Lemma 5.32] that the complex

. . .→ Dn(C)“⊗KDi(C)
“⊗j“⊗KMi,i → . . .→ Dn(C)“⊗Di(C)Mi,i → 0

is strictly exact.

For each i, the inverse system (Dn(C)“⊗Di(C)“⊗j“⊗Mi,i)i is a pre-nuclear system of Banach

spaces with dense images as in [2, Definition 5.24], since the maps Di(C) → Di−1(C) and

Mi,i →Mi−1,i−1 are compact for each i.

Hence [2, Corollary 5.28] implies that

. . .→ lim←−
i

(Dn(C)“⊗Di(C)
“⊗j“⊗Mi,i)→ . . .→ lim←−

i

(Mi,n)→ 0

is strictly exact.

But by [2, Corollary 5.22], we now have

lim←−
i

(Dn(C)“⊗KDi(C)
“⊗j“⊗KMi,i) ∼= Dn(C)“⊗KD(C)

“⊗j“⊗KM,

so the result follows.

Taking the limit over n and applying Lemma A.1 yields the final isomorphism

M ∼= lim←−
n

(Dn(C)“⊗D(C)M).

2

The lemma above allows us to deduce several useful corollaries.

Corollary A.7. Let

0→M →M ′ →M ′′ → 0

be a short strictly exact sequence of pro-coadmissible D(C)-modules. Then

0→ Dn(C)“⊗D(C)M → Dn(C)“⊗D(C)M
′ → Dn(C)“⊗D(C)M

′′ → 0

is short strictly exact.

Proof. We have shown above that Dn(C)“⊗L
D(C)M

∼= Dn(C)“⊗D(C)M for any pro-coadmissible

D(C)-module M . 2

Corollary A.8. A pro-coadmissible module M is coadmissible if and only if the Dn(C)-module

Dn(C)“⊗D(C)M is finitely generated and equipped with its canonical Banach structure for each

n.

Corollary A.9. Let N be a coadmissible D(C)-module and M a pro-coadmissible D(C)-module.

If there exists an injective morphism j : M → N , then M is coadmissible and j is strict.
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Proof. It suffices to show that M is coadmissible, the strictness of the morphism then follows

from [2, Corollary 5.14].

Since Dn(C) is flat as an abstract D(C)-module, j induces an injection

Dn(C)⊗D(C) M → Dn(C)⊗D(C) N.

But the right-hand side is a finitely generated Dn(C)-module, so Dn(C)⊗D(C)M is also finitely

generated and the morphism is strict when both sides are equipped with their canonical Banach

structure.

But now the natural bounded bijection

(Dn(C)⊗M, τ1)→ (Dn(C)⊗M, τ2),

where τ1 denotes the tensor product bornology and τ2 the subspace bornology from Dn(C)⊗N

(i.e. the canonical Banach structure), has a bounded inverse by [2, Lemma 4.27.(ii)], so it is an

isomorphism. In particular, Dn(C)⊗D(C) M is already complete, and

Dn(C)“⊗D(C)M ∼= Dn(C)⊗D(C) M

is indeed a finitely generated Dn(C)-module, endowed with its canonical Banach structure.

We can thus apply Corollary A.8. 2

Corollary A.10. Let N be a coadmissble D(C)-module and M a pro-coadmissible D(C)-module.

Any morphism M → N is strict.

Proof. Let f : M → N be a morphism in ModB̂cK (D(C)). Since N is Fréchet, the kernel of f is

closed. Hence coimf = M/kerf is pro-coadmissible and injects into N .

By the above, coimf is coadmissible and the inclusion coimf → N is strict. In particular, f

is strict. 2

Proposition A.11. Let f : M → N be a morphism of pro-coadmissible D(C)-modules. Then

one can choose presentations M ∼= lim←−Mi, N ∼= lim←−Ni such that f is induced by a family of

morphisms Mi → Ni.

Proof. Let M ∼= lim←−Mi, N ∼= lim←−Ni. Let Ti(M) denote the kernel of the projection M → Mi.

Note that Ti(M) is a closed submodule of M and hence pro-coadmissible.

Let gi : M → Ni denote the morphism obtained by composing f with the natural projection

N → Ni, and let Si = kergi. Once again, this is a closed submodule of M and hence pro-

coadmissible.

In particular, Ti(M)∩Si is a closed submodule of M and we can consider the pro-coadmissible

module M̃i = M/(Ti(M) ∩ Si).

We now claim the following:

(i) Each M̃i is coadmissible.

(ii) The natural morphisms M → M̃i induce an isomorphism M ∼= lim←− M̃i.
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(iii) f is obtained as the inverse limit of the morphisms M̃i → Ni.

For (i), we consider the strictly exact sequence

0→ Si

Ti(M) ∩ Si
→ M̃i →M/Si → 0

of pro-coadmissible D(C)-modules. Since Si
Ti(M)∩Si

injects into Mi
∼= M/Ti(M), it is coadmissible

by Corollary A.9. Likewise, M/Si injects into Ni and is therefore coadmissible.

It follows that M̃i is also coadmissible: Corollary A.7 yields strictly exact sequences

0→ Dn(C)“⊗ Si

Ti(M) ∩ Si
→ Dn(C)“⊗M̃i → Dn(C)“⊗M/S → 0,

where Dn(C)“⊗ Si
Ti(M)∩Si

and Dn(C)“⊗M/S are finitely generated Dn(C)-modules with their

canonical Banach structure. Hence, the same is true of the middle term Dn(C)“⊗M̃i, so M̃i

is coadmissible by Corollary A.8.

For (ii), note that the natural surjections M̃i = M/(Ti(M) ∩ Si)→Mi = M/Ti(M) produce

a section to the natural morphism M → lim←− M̃i. Thus M is a direct summand of lim←− M̃i. But

since M surjects onto each M̃i, it is also a dense subspace, and hence M ∼= lim←− M̃i.

For (iii), it is clear from the definition that gi factors through M̃i, i.e. gi induces a morphism

fi : M̃i → Ni, and f = lim←− fi by construction. 2

Proposition A.12. Any morphism of pro-coadmissible D(C)-modules is strict.

Proof. Let f : M → N be a morphism of pro-coadmissible D(C)-modules. Replacing M by

Coimf and N by Imf , we can assume that f is injective with dense image. We wish to show

that in this case, f is an isomorphism.

We write M ∼= lim←−Mi, N ∼= lim←−Ni. By Proposition A.11, we can assume that f is induced

by morphisms fi : Mi → Ni. Note that, since morphisms of coadmissible modules are strict,

each fi is surjective (but not necessarily injective).

In particular, there is a natural isomorphism M/(M ∩ Ti(N)) ∼= Ni.

Let Si denote the kernel of the natural map M → N → Ni,i, and set M̃i = M/(Si ∩ Ti(M)).

Since Si ∩ Ti(M) is closed, this is a pro-coadmissible module.

We now claim the following, similar to Proposition A.11:

(i) Each M̃i is coadmissible. In particular, lim←− M̃i is pro-coadmissible and

lim←− M̃i
∼= lim←−Di(C)“⊗D(C)M̃i

by Lemma A.1.

(ii) The natural morphisms M → M̃i induce an isomorphism M ∼= lim←− M̃i.

(iii) For each i, f induces an isomorphism

Di(C)“⊗D(C)M̃i → Ni,i.
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Taking the limit, it follows that f is an isomorphism.

For (i), we have a strictly exact sequence

0→ Ti(M)

Ti(M) ∩ Si
→ M̃i →Mi → 0.

Since Si contains Ti(N)∩M , M/Si is a quotient of Ni by a closed submodule and thus coadmis-

sible by [29, Lemma 3.6]. Hence Ti(M)
Ti(M)∩Si

⊆ M/Si is also coadmissible by Corollary A.9. Since

Mi is also coadmissible, it follows as before that M̃i is coadmissible.

The proof for (ii) is the same as in Proposition A.11.

For (iii), f induces by construction a morphism

Di“⊗D(C)M̃i → Ni,i.

Note that applying Corollary A.7 to the strictly exact sequences

0→M ∩ Ti(N)→M → Ni → 0

and

0→ Si →M → M̃i → 0

shows that Di(C)“⊗M̃i is a quotient of Di(C)“⊗M , but the kernel of

Di(C)“⊗M → Di(C)“⊗Ni = Ni,i

consists of Di(C)“⊗(M ∩Ti(N)), which maps to zero in Di(C)“⊗M̃i, since Si contains M ∩Ti(N).

Hence the morphism

Di(C)“⊗M̃i → Ni,i

is injective.

But since M → Ni,i has dense image and morphisms between finitely generated Di(C)-

modules are strict, this yields the desired isomorphism. 2

Corollary A.13. Any morphism of ind-admissible H-representations is strict.

Proof. Compare [29, Proposition 6.4].

If f : V → W is a morphism of ind-admissible H-representations, then the dual map f ′ :

W ′ → V ′ is a morphism of pro-coadmissible D(C)-modules and hence strict, i.e. we have strictly

exact sequences

0→ ker(f ′)→W ′ → coim(f ′)→ 0

and

0→ im(f ′)→ V ′ → coker(f ′)→ 0

of pro-coadmissible modules, with f ′ inducing an isomorphism coim(f ′) ∼= im(f ′).

But then reflexivity implies that V → (im(f ′))′ is a strict epimorphism such that f factors

through a monomorphism (im(f ′))′ →W . Hence (im(f ′))′ is the coimage of f (as the universal

morphism coimf → (im(f ′))′ is then both a strict epimorphism and a monomorphism). By an



36 SASCHA ORLIK

analogous argument, (coim(f ′))′ is the image of f , and the isomorphism between the two shows

that f is strict. 2

Corollary A.14. Let C,C ′ ≤ H denote two compact open subgroups of H. Then a locally

analytic representation V is ind-admissible relative to C if and only if it is ind-admissible relative

to C ′.

Proof. By considering C ∩ C ′, it suffices to treat the case where C ′ ≤ C.

Let V be an ind-admissible H-representation relative to C. Then V |C ∼= lim−→Vi, where each

Vi is an admissible C-representation. But then Vi is also an admissible C ′-representation so V

is also ind-admissible relative to C ′ by [29, Lemma 3.8].

Conversely, if V is an admissible H-representation relative to C ′, write V |C′ ∼= lim−→Vi, where

each Vi is an admissible C ′-representation. For each i, let Wi denote the C-subrepresentation of

V generated by Vi.

Then Wi is the image of the natural morphism α : IndC
C′Vi → V induced by the inclusion

Vi → V . Since C ′ is of finite index in C, IndC
C′Vi is an admissible C-representation, and hence

also an admissible C ′-representation, again by [29, Lemma 3.8].

In particular, α is a morphism between ind-admissible C ′-representations, so is strict by the

above. Hence Wi ⊆ V is endowed with the quotient topology from IndVi and is thus an admissible

C-representation by Corollary A.2. In particular, lim−→Wi is an ind-admissible C-representation.

As a vector space, lim−→Wi = ∪Wi = V , so it now remains to show the topologies agree, i.e.

that the natural continuous bijection lim−→Vi → lim−→Wi is an isomorphism.

But as this is in particular a continuous map of ind-admissible H-representations relative to

C ′ (by the easy direction above), it is strict by Corollary A.13, and thus an isomorphism, as

required. 2

The strictness result Corollary A.13 also yields an alternative, module-theoretic proof of

Proposition 2.8: Writing Repind−adm(H) to denote the full subcategory of ind-admissible H-

representations, we obtain the following.

Proposition A.15.

(i) Repind−adm(H) is an abelian category.

(ii) Repind−adm(H) is closed under the passage to closed subrepresentations and under count-

able direct sums (and hence under countable inductive limits by (i)).

Proof. (i) Clearly, Repind−adm(H) is an additive category. If f : V → W is a morphism

in Rep(H), then the kernel of f is a closed subspace of V and hence also an object

in Repind−adm(H) by Corollary A.2. Likewise, we have already seen in Corollary A.13

cokerf = (kerf ′)′, and thus cokerf is also ind-admissible.

Lastly, we have already seen in Corollary A.13 that f is strict, so that coimf → imf

is an isomorphism. Thus Repind−adm(H) is an abelian category.
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(ii) The statement on closed subrepresentations is proved in Corollary A.2, the statement

on countable direct sums is immediate from the definition.

2

Of course, we have dually that the category of pro-coadmissible D(H)-modules is abelian,

closed under the passage to closed submodules and under countable products.

We also remark that all results for pro-coadmissible D(C)-modules hold in the same way

when working over an arbitrary Fréchet–Stein algebra U , provided that coadmissible U -modules

are nuclear Fréchet spaces (e.g. U = Ū(g) for some finite-dimensional K-Lie algebra g), or at

least nuclear relative to some Noetherian Banach K-algebra A with (almost) Noetherian unit

ball, in the sense of [2, Definition 5.3] (e.g. U = U̇A(L) for an affinoid K-algebra A and a smooth

(K,A)-Lie–Rinehart algebra L).

We conclude this section by highlighting one additional benefit of a complete bornological

approach in the study the distribution algebra.

Recall from [27] that if H is non-compact, then the distribution algebra D(H) is slightly

awkward to work with: the multiplication is only separately continuous, and accordingly, we

usually consider nuclear Fréchet D(H)-modules with a separately continuous action.

We point out that this issue disappears on the bornological side: Let

Db(H) = ⊕
h∈H/C

hD(C) ∈ BcK .

Note Db(H) is a complete bornological vector space by [23, Proposition 5.5], and the multiplica-

tion on D(C) together with multiplication on H induces on Db(H) the structure of a complete

bornological K-algebra, i.e. a monoid in B̂cK .

Moreover, recall that (−)b : LCV SK → BcK admits a left adjoint (−)t : BcK → LCV SK .

Since (−)t commutes with colimits, it follows immediately that

(Db(H))t ∼= D(H).

We remark that while the underlying vector space is the same, it is not true that Db(H) =

D(H)b if H is non-compact, as (−)b does not respect direct sums. Rather Db(H) = Cpt(D(H))

is the vector space D(H) endowed with its compactoid bornology, compare [16, Definition 1.15],

[1, Definition 3.34]. We also point out that much of the nice behaviour of nuclear Fréchet spaces

comes from the fact that for V nuclear Fréchet, V b ∼= Cpt(V ) (compare [2, Lemma 5.11], [26,

Proposition 19.2]).

Lemma A.16. The functor (−)b induces a fully faithful functor

(−)b :


separately continuous D(H)-modules

on nuclear Fréchet spaces

with continuous D(H)-module morphisms

→ ModB̂cK (Db(H))
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whose essential image consists of all complete bornological Db(H)-modules whose underlying

vector spaces are nuclear Fréchet.

For any M in the left-hand side, the natural morphism (M b)t → M is an isomorphism. If

M is nuclear Fréchet D(H)-module and N is a closed submodule, then

0→ N b →M b → (M/N)b → 0

is strictly exact.

Proof. The above description makes it clear that a complete bornological Db(H)-module is the

same as a complete bornological D(C)-module such that the C-action extends to an abstract

H-action with each h ∈ H acting via a bounded linear map.

The result thus follows from Lemma A.5. 2

Viewing complete bornological Db(H)-modules as complete bornological D(C)-modules with

an extended H-action can be useful to define Db(H)-module structures.

For instance, if C is normal in H and M is a complete bornological Db(H)-module, then

Dn(C)“⊗D(C)M

is likewise a complete bornological Db(H)-module, with the H-action obtained by

h ∗ (P ⊗m) = hPh−1 ⊗ hm.

We say that a nuclear Fréchet Db(H)-module is topologically simple if it has no non-trivial

closed submodules. By the above, this is equivalent to requiring that it has no non-trivial closed

H-invariant D(C)-submodules.

In particular, a pro-coadmissible Db(H)-module M is topologically simple if and only if the

ind-admissible H-representation M ′ is topologically irreducible.

The next Corollary can then be used to determine the topological irreducibility of ind-

admissible representations, in analogy to [29, Lemma 3.9].

Corollary A.17. Assume that C is normal in H. Let M be a pro-coadmissible Db(H)-module

such that Dn(C)“⊗D(C)M is a topologically simple Db(H)-module for infinitely many n. Then

M is a topologically simple Db(H)-module.

Proof. Let N be a closed Db(H)-submodule of M . By Corollary A.2, it is pro-coadmissible, and

Corollary A.7 implies that Dn(C)“⊗D(C)N is a closed Db(H)-submodule of Dn(C)“⊗D(C)M .

Thus by assumption, Dn(C)“⊗D(C)N is either zero or equal to the module Dn(C)“⊗D(C)M for

infinitely many n. Since the maps

Dn+1(C)“⊗D(C)N → Dn(C)“⊗D(C)N

are epimorphisms (i.e. have dense image), it follows from Lemma A.6 that either N = 0 (when

Dn(C)“⊗N = 0 for all n) or N = M . 2
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A.2. Mackey decomposition and the irreducibility criterion. In this subsection, let G

denote a locally L-analytic group. We will be interested in the topological irreducibility of the

compact induction c− IndG
HV for some open subgroup H ≤ G which is compact modulo ZG,

and an admissible, topologically irreducible H-representation V .

Definition A.18. Let H be a closed (not necessarily compact) subgroup of G, and let V be a

Hausdorff locally convex K-vector space. A locally analytic function f : G → V has compact

support modulo H if there exists a compact subset C ⊆ G such that f(g) = 0 for all g /∈ CH.

Note that if H itself is compact, having compact support modulo H is equivalent to having

compact support.

For our purposes, the following situation will be more important: Suppose that H0 is a

compact open subgroup of G and H = H0ZG, where ZG denotes the centre of G. In this case,

having compact support modulo H is equivalent to the more standard terminology of ‘compact

support modulo centre’, i.e. there exists a compact subset C ⊆ G such that f vanishes outside

of CZG. As H is open, this is equivalent to the following: there exist finitely many elements

g1, . . . , gm ∈ G such that f(g) = 0 for all g /∈ ∪mi=1giH.

It is this viewpoint which will be most convenient for our constructions.

Fix from now on an open compact subgroup H0 and set H = H0ZG. We assume that the set

G/H of cosets is countable – this is for example the case when G is second countable.

Let ρ : H → GL(V ) be a locally L-analytic H-representation over K. We consider the

compact induction

c− IndG
HV =

®
f : G→ V | f loc. an. with compact support modulo H,

f(gh) = ρ(h−1)(f(g)) ∀g ∈ G, h ∈ H

´
with the usual action (g ∗ f)(g′) = f(g−1g′). Note that c− IndG

HV is a locally L-analytic

G-representation which as a topological K-vector space can be written as ⊕
g∈G/H

gV , with the

function f corresponding to the (finite, well-defined) sum
∑

g∈G/H gf(g).

It is clear from the construction that this yields an additive functor

c− IndG
H : Repla(H)→ Repla(G).

We will be concerned with an irreducibility criterion for c− IndG
HV in analogy to the classical

irreducibility criterion of Mackey.

Lemma A.19.

(i) c− IndG
H is a left adjoint to ResGH .

(ii) (Mackey decomposition). There is a natural isomorphism

ResGHc− IndG
HV ∼= ⊕

g∈H\G/H
c− IndH

H∩gHg−1ResgHg−1

H∩gHg−1gV.
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Proof. (i) This is Proposition 2.1 in the case when H is compact. The same argument works

for H compact mod centre.

(ii) Note that

⊕
g∈G/H

gV ∼= ⊕
g∈H\G/H

⊕
h∈H/H∩gHg−1

hgV,

identifying the H-representation ResGHc− IndG
HV with

⊕
g∈H\G/H

c− IndH
H∩gHg−1ResgHg−1

H∩gHg−1gV.

2

We remark that gHg−1 = gH0g
−1ZG, so H ∩ gHg−1 is actually of finite index in H. We

could thus replace the c− IndH
H∩gHg−1 above by IndH

H∩gHg−1 .

Lemma A.20. If V is an admissible H-representation, then c− IndG
HV is an ind-admissible

G-representation.

Proof. By the Mackey decomposition above, it suffices to show that

c− IndH
H∩gHg−1ResgHg−1

H∩gHg−1gV = IndH
H∩gHg−1ResgHg−1

H∩gHg−1gV

is an admissible H-representation for each g.

Clearly, gV is an admissible gHg−1-representation. In particular, (gV )′ is a coadmissible

module over the distribution algebra D(H0 ∩ gH0g
−1), as H0 ∩ gH0g

−1 is a compact open

subgroup. Now

(IndH
H∩gHg−1ResgHg−1

H∩gHg−1gV )′ ∼= D(H)“⊗D(H∩gHg−1)(gV )′

is a Hausdorff quotient of

D(H0)“⊗D(H0∩gH0g−1)(gV )′,

since H0/H0∩gH0g
−1 surjects onto H/H ∩gHg−1 by the remark above. Since D(H0) is a finite

free D(H0 ∩ gH0g
−1)-module,

D(H0)“⊗D(H0∩gH0g−1)(gV )′ = D(H0)⊗D(H0∩gH0g−1) (gV )′

is a coadmissible D(H0 ∩ gH0g
−1)-module and hence also coadmissible as a D(H0)-module,

which proves the result. 2

To discuss the Mackey criterion, we need to make a brief detour discussing semisimplicity of

compact inductions. Let G0 be a compact locally L-analytic group with an open subgroup H0.

Recall that the Fréchet–Stein algebra D(G0) can be written as the limit of Banach completions

lim←−Dr(G0), where the individual norms are dependent on a choice of L-uniform open normal

subgroup U .

Since Upm is contained in H0 for some m (as the Upm form a neighbourhood basis of e), we

can choose these norms compatibly, i.e. for r = p−1/pn with n > m, we can write

Dr(H0) ∼= D1/p(U
pn) ⋊Upn H0
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and

Dr(G0) ∼= D1/p(U
pn) ⋊Upn G0,

so that Dr(H0) is naturally contained in Dr(G0), making Dr(G0) a finite free left and right

Dr(H0)-module, with a basis given by coset representatives.

As usual, we say that a Dr(G0)-module is semisimple if it is the finite direct sum of simple

modules.

Proposition A.21. Let M be a finitely generated Dr(G0)-module. Then M is semisimple if

and only if it is semisimple as a Dr(H0)-module.

Proof. This is adapted from [5, Lemma 2.7], where the same result is shown for smooth complex

representations.

Replacing H0 by ∩g∈G0/H0
gH0g

−1, it suffices to consider the case where H0 is a normal

subgroup. Since H0 is open, it is of finite index in G0, with |G0/H0| = n, say.

Suppose first that M is semisimple over Dr(H0). Let N be a Dr(G0)-submodule of M . Since

M is semisimple over Dr(H0), there exists a Dr(H0)-submodule N ′ ⊆M such that M ∼= N⊕N ′.

Let π : M → N denote the projection map, and consider the stabilisation

πG0 :M → N

m 7→ 1

n

∑
g∈G0/H0

gπ(g−1m)

Since Dr(G0) is a free finite Dr(H0)-module with basis given by coset representatives of G0/H0

and π is Dr(H0)-linear, it follows that πG0 is a Dr(G0)-linear map, and composition with the

embedding N →M thus yields an idempotent, Dr(G0)-linear map with image N . This exhibits

kerπG0 as a complement to N , and M is semisimple as a Dr(G0)-module by standard arguments.

Conversely, let M be a semisimple Dr(G0)-module. It clearly suffices to consider the case

where M is simple. Since M is finitely generated over Dr(H0), it admits an irreducible Dr(H0)-

module quotient N .

The natural map M → N thus induces a non-trivial Dr(G0)-module morphism M →
HomDr(H0)(Dr(G0), N). As a Dr(H0)-module, HomDr(H0)(Dr(G0), N) is isomorphic to the di-

rect sum ⊕g∈G0/H0
gN and hence semisimple.

As M was assumed to be simple over Dr(G0), the morphism M → Hom(Dr(G0), N) is

injective, so M is a Dr(H0)-submodule of a semisimple module, and thus semisimple. 2

This marks the end of the detour, we now return to our earlier setting. The discussion

above allows us to formulate a semisimplicity statement for compact inductions of irreducible

representations (on the Noetherian Banach level).

Corollary A.22. Let U ≤ H0 be an L-uniform open normal subgroup.

Let g ∈ G and let r = p−1/pn, where n is chosen such that Upn is contained in H0 ∩ gH0g
−1.
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Let V be an admissible H-representation with the property that Dr(H0)⊗D(H0) V
′ is simple.

Then

Dr(H0)⊗Dr(H0∩gH0g−1) g(Dr(H0)⊗D(H0) V
′) ∼= Dr(H0)⊗D(H0) (D(H0)⊗D(H0∩gH0g−1) gV

′)

is a semisimple Dr(H0)-module for any g ∈ G.

Proof. Write Mr := Dr(H0)⊗D(H0) V
′, and let

H ′ :=
⋂

h∈H0/H0∩gH0g−1

h(H0 ∩ gH0g
−1)h−1,

an open normal subgroup of H0, contained in gH0g
−1. Note that by construction, Upn is

contained in H ′, so that we can also define Dr(H
′) consistently with the above.

By assumption, gMr is an irreducible Dr(gH0g
−1)-module, and hence a semisimple Dr(H

′)-

module by the second direction of Proposition A.21.

Since Dr(H0) is free of finite rank over Dr(H0 ∩ gH0g
−1), it follows that

Dr(H0)⊗Dr(H0∩gH0g−1) gMr
∼= ⊕

h∈H0/H0∩gH0g−1
hgMr

is a semisimple Dr(H
′)-module, and hence a semisimple Dr(H0)-module by the first direction

of Proposition A.21. 2

Theorem A.23. Let H0 ≤ G be a compact open subgroup and let H = H0ZG.

Let V be an admissible H-representation and set M = V ′. List the double coset representa-

tives g0 = e, g1, g2, . . . of H\G/H and let U ≤ H be an L-uniform open normal subgroup. Let

n1 < n2 < . . . be a sequence of non-negative integers such that for each m,

Upnm ⊆ ∩mi=0giH0g
−1
i ,

and let Drm(H0), Drm(g1H0g
−1
1 ), . . . denote the corresponding Banach completions of the respec-

tive distribution algebras, with rm = p−1/pnm
.

We write accordingly Mm := Drm(H0)⊗D(H0) M .

Assume that the following conditions are satisfied for each m ≥ 0:

(i) Mm is a (topologically) simple Drm(H0)-module.

(ii) For i = 0, 1, . . . ,m, we have

HomDrm (H0∩giH0g
−1
i )(Mm, giMm) =

K if i = 0

0 otherwise.

Then HomDb(H)(Db(G),M) is a topologically simple Db(G)-module. In particular, its dual

c− IndG
HV is a topologically irreducible G-representation.
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Proof. Note that

(c− IndG
HV )′ ∼=

∏
i

(c− IndH
H∩giHg−1

i
Res

giHg−1
i

H∩giHg−1
i

giV )′

∼=
∏
i

lim←−
m

Drm(H0)⊗D(H0) (c− IndH
H∩giHg−1

i
Res

giHg−1
i

H∩giHg−1
i

giV )′

∼= lim←−
m

∏
i

Drm(H0)⊗D(H0) (D(H)⊗D(H∩giHg−1
i ) giM)

∼= lim←−
m

⊕m
i=0Drm(H0)⊗D(H0) (D(H)⊗D(H∩giHg−1

i )giM)

as D(H0)-modules, where the first isomorphism comes from the Mackey decomposition, the

second from the coadmissibility of each factor (c− IndH
H∩giHg−1

i
Res

giHg−1
i

H∩giHg−1
i

giV )′, and the last

two isomorphisms from basic properties of inverse limits.

Let Si,m = Drm(H0)⊗ (D(H)⊗giM), so that (c− IndG
HV )′ ∼= lim←−m

⊕m
i=0Si,m.

Note that, since H0/H0 ∩ giH0g
−1
i surjects onto H/H ∩ giHg−1

i , we know that Si,m is a

quotient of

Drm(H0)⊗D(H0) (D(H0)⊗D(H0∩giH0g
−1
i )giM) ∼= Drm(H0)⊗Drm (H0∩giH0g

−1
i ) giMm,

which is a semisimple Drm(H0)-module by Corollary A.22 and assumption (i). Hence ⊕m
i=0Si,m

is a semisimple Drm(H0)-module.

Now let N ⊆ (c− IndG
HV )′ be a non-zero closed Db(G)-submodule, yielding a non-trivial

morphism N →M . Let Nm denote the image of Drm(H0)“⊗D(H0)N in ⊕m
i=0Si,m, i.e. the closure

of N in ⊕m
i=0Si,m. As N is closed, we then have N ∼= lim←−Nm.

Since Nm is a submodule of ⊕m
i=0Si,m, it is in particular semisimple. By construction, the

projection map onto S0,m = Mm yields a non-trivial morphism Nm → Mm, which thus allows

for a section Mm → Nm.

But by semisimplicity and our second assumption above,

HomDrm (H0)(⊕
m
i=0Si,m,Mm) = K,

so that Mm appears as a summand only once (namely, as the summand S0,m). Therefore, if Nm

contains a submodule which is isomorphic to Mm, it must contain S0,m.

Taking the limit, it follows that N contains M = g0M ⊆ (c− IndG
HV )′, which topologically

generates the module, and hence N = (c− IndG
HV )′, as required. 2
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