Lineare Algebra II

6. Übungsblatt

Aufgabe 1: (5 Punkte) Betrachten Sie die orthogonale Matrix

$$A = \frac{1}{4} \begin{pmatrix} 3 & -1 & -\sqrt{6} \\ -1 & 3 & -\sqrt{6} \\ \sqrt{6} & \sqrt{6} & 2 \end{pmatrix} \in \mathbb{R}^{3 \times 3}.$$

Bestimmen Sie eine orthogonale Normalform von A.

Aufgabe 2: (4 Punkte) Entscheiden Sie, ob die Matrizen

$$A_1 = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \end{pmatrix} \text{ und } A_2 = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 4 & 0 & 0 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & -2 & 5 \end{pmatrix}$$

positiv definit oder positiv semidefinit sind.

Aufgabe 3: (4 Punkte) Es sei $\alpha \in [0, \pi)$ und $D(\alpha) \in \mathbb{R}^{2 \times 2}$ die Drehmatrix zu α . Zeigen Sie, daß $D(\alpha)$ orthogonal ähnlich zu $D(2\pi - \alpha)$ ist.

Aufgabe 4: (1+3=4 Punkte) Sei $f:\mathbb{N}\to\mathbb{N}$ eine Abbildung. Wir definieren auf \mathbb{N} eine Relation durch

$$x \sim y :\Leftrightarrow f(x) = f(y).$$

- (a) Zeigen Sie, daß \sim eine Äquivalenzrelation ist.
- (b) Bestimmen Sie ein Repräsentantensystem der Äquivalenzklassen, falls
 - (a) f injektiv
 - (b) f konstant
 - (c) $f(n) = n^2$.

ist.