Lineare Algebra II

5. Übungsblatt

Aufgabe 1: (4 Punkte) Sei K ein Körper.

- a) Sei $n \in \mathbb{N}$ und sei $A \in K^{n \times n}$ nilpotent. Zeigen Sie, dass Kern $(A) \neq \{0\}$.
- b) Entscheiden Sie, welche der folgenden Matrizen in $K^{3\times3}$ nilpotent sind:

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Aufgabe 2: (4 Punkte) Berechnen Sie die dritte Wurzel von der hermiteschen Matrix

$$A = \begin{pmatrix} 1 & 0 & -i \\ 0 & 2 & 0 \\ i & 0 & 3 \end{pmatrix} \in \mathbb{C}^{3 \times 3}.$$

Aufgabe 3: (2 + 3 = 5 Punkte) Betrachten Sie die Matrix

$$A = \left(\begin{array}{ccc} 1 & 0 & i \\ 0 & 2 & 0 \\ i & 0 & 3 \end{array}\right) \in \mathbb{C}^{3 \times 3}.$$

- (a) Bestimmen Sie hermitesche Matrizen $H_1, H_2 \in \mathbb{C}^{3\times 3}$ mit $A = H_1 + iH_2$.
- (b) Bestimmen Sie die Polarkoordinaten von A, d.h. bestimmen Sie eine hermitesche positiv semidefinite Matrix $H\in\mathbb{C}^{3\times3}$ und eine unitäre Matrix $U\in\mathbb{C}^{3\times3}$ mit

$$A = HU$$
.

Aufgabe 4: (2 + 3 = 5 Punkte) Es sei V ein \mathbb{R} -Vektorraum.

- (a) Jede Drehung in der euklidischen Ebene \mathbb{R}^2 ist das Produkt von zwei Spiegelungen.
- (b) Seien nun $f \in \mathcal{O}(V)$, $v \in V \{0\}$ und $D \in \mathcal{O}(V)$ eine Drehung. Zeigen Sie, dass $f \circ D \circ f^{-1}$ eine Drehung ist.