Prof. Dr. S. Orlik MSc M. Kuschkowitz

Übungen zur Vorlesung "Kommutative Algebra"

9. Übungsblatt Abgabe am 09.01.2013 in der Übung

Bei den durch "*" gekennzeichneten Aufgaben 1 und 5 auf diesem Übungsblatt handelt es sich um Zusatzaufgaben, durch deren erfolgreiche Bearbeitung Sie Bonuspunkte erlangen können.

Aufgabe 1.* (4 Punkte) Sei $f: \mathcal{F} \to \mathcal{G}$ ein Morphismus von Garben auf einem topologischen Raum X. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- i) Es ist ker(f) = 0 als Garbe.
- ii) Für jedes $U \subset X$ offen ist $f(U) : \mathcal{F}(U) \to \mathcal{G}(U)$ injektiv.
- iii) Für jedes $x \in X$ offen ist $f_x : \mathcal{F}_x \to \mathcal{G}_x$ injektiv.
- iv) Ist \mathcal{H} eine Garbe auf X und sind $h_1, h_2 : \mathcal{H} \to \mathcal{F}$ Morphismen von Garben mit $f \circ h_1 = f \circ h_2$, dann gilt $h_1 = h_2$.

Aufgabe 2. (2+2+2=6 Punkte) Sei X eine irreduzible k-Varietät. Zeigen Sie:

- a) Die offenen Mengen von X bilden ein filtriertes angeordnetes System.
- b) Es ist $\varinjlim_{U\subset X \text{ offen}} \mathcal{O}_X(U)$ ein Körper (der sogenannte Funktionenkörper k(X) von X).
- c) Ist X affin, so gilt k(X) = Quot(k[X]).

 $\mathbf{Aufgabe}$ 3. (2+2 = 4 Punkte) Sei kein algebraisch abgeschlossener Körper. Zeigen Sie:

- a) Es ist $\mathbb{A}^1_k \setminus \{0\}$ eine affine Varietät und es gilt $\mathbb{A}^1_k \setminus \{0\} \ncong \mathbb{A}^1_k$.
- b) Es ist $\mathbb{A}^2_k \setminus \{(0,0)\}$ keine affine Varietät.

Aufgabe 4. (2+2=4 Punkte) Sei k ein algebraisch abgeschlossener Körper mit $\operatorname{char}(k) = p > 0$ und sei $\varphi : \mathbb{A}^1_k \to \mathbb{A}^1_k$ der durch $x \to x^p$ gegebene Morphismus (der sogenannte Frobenius-Morphismus von \mathbb{A}^1_k). Zeigen Sie:

- a) φ ist ein Homö
omorphismus topologischer Räume.
- b) φ ist kein Isomorphismus von Varietäten.

Aufgabe 5.* (2 + 2 = 4 Punkte) Sei \mathcal{G} eine Unterprägarbe einer Garbe \mathcal{F} . Zeigen Sie, dass \mathcal{G}^{\sharp} als Untergarbe von \mathcal{F} realisiert werden kann, indem Sie wie folgt vorgehen:

a) Zeigen Sie, dass durch

$$\mathcal{H}(U) = \left\{ s \in \mathcal{F}(U) \mid \exists U = \bigcup_{i \in I} U_i \text{ (off. "Überd.")} \ \forall i \in I : s \mid U_i \in \mathcal{G}(U_i) \right\},$$

für $U \subset X$ offen, eine Garbe \mathcal{H} auf X definiert wird.

b) Zeigen Sie, dass ein Isomorphismus $\mathcal{G}^{\sharp} \cong \mathcal{H}$ von Garben auf X exisitiert.