Prof. Dr. S. Orlik MSc M. Kuschkowitz

Übungen zur Vorlesung "Kommutative Algebra"

4. Übungsblatt Abgabe am 21.11.2012 in der Übung

Sei R ein kommutativer Ring.

Aufgabe 1. (4 Punkte) Sei N ein R-Modul. Zeigen Sie die Äquivalenz der folgenden Aussagen:

- i) N ist flach.
- ii) Ist $0 \to M' \to M \to M'' \to 0$ eine exakte Sequenz von R-Moduln, so ist auch die Sequenz $0 \to M' \otimes N \to M \otimes N \to M'' \otimes N \to 0$ exakt.
- iii) Ist $f:M'\to M$ ein Monomorphismus von R-Moduln, so ist auch $f\otimes \mathrm{id}:M'\otimes N\to M\otimes N$ ein Monomorphismus.

Aufgabe 2. (2+2=4 Punkte)

- a) Sei R ein Hauptidealring und sei $S \subset R$ multiplikativ abgeschlossen. Zeigen Sie, dass auch $S^{-1}R$ ein Hauptidealring ist.
- b) Beweisen oder widerlegen Sie die nachfolgende Aussage: Ist R[X] ein noetherscher Ring, dann auch R.

 $\bf Aufgabe$ 3. (2 + 2 = 4 Punkte) Sei $S \subset R$ multiplikativ abgeschlossen. Zeigen Sie:

- a) Ist $\mathfrak{a} \subset R$ ein Ideal, so ist $S^{-1}\mathfrak{a}$ ein Ideal in $S^{-1}R$.
- a) Jedes Ideal in $S^{-1}R$ ist von der Form $S^{-1}\mathfrak{a}$ für ein Ideal $\mathfrak{a} \subset R$.
- c) Die Abbildung $\mathfrak{p} \mapsto S^{-1}\mathfrak{p}$ induziert eine Bijektion zwischen $\{\mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{p} \cap S = \emptyset\}$ und $\operatorname{Spec}(S^{-1}R)$.

Aufgabe 4. (4 Punkte) Sei R noethersch. Zeigen Sie, dass dann auch R[[X]] noethersch ist.

(Hinweis. Man führe den Beweis analog zum Beweis des Hilbertschen Basissatzes und betrachte für ein Ideal $I \subset R[[X]]$ das Ideal

$$\mathfrak{a} = \{ r \in R \mid \exists f \in I : f = rX^d + \sum_{i=d+1}^{\infty} r_i X^i \} \subset R.)$$