PD Dr. S. Orlik SS 09

Einführung in die komplexe Analysis

3. Übungsblatt

Aufgabe 1: Sei $U \subset \mathbb{C}$ offen und $f: U \to \mathbb{C}$ in $z^0 \in U$ differenzierbar. Man zeige, dass für die Jacobi-Determinante J_f von f in z^0 die Identität

$$J_f(z^0) = \left| \frac{\partial f}{\partial z}(z^0) \right|^2 - \left| \frac{\partial f}{\partial \bar{z}}(z^0) \right|^2$$

erfüllt ist.

Aufgabe 2: Untersuchen Sie, in welchen Punkten die folgenden Funktionen komplex differenzierbar sind:

1.
$$f_1(z) = \bar{z}^2 z + 4|z|^2 + 14z^2 + \bar{z} + 5$$

2.
$$f_2(z) = \exp(2z\bar{z} - \bar{z}^2)$$

3.
$$f_3(z) = (3+i)z\bar{z} + \frac{3-i}{2}\bar{z}^2 + \frac{2}{3}\bar{z}^3 + 2z^2\bar{z}$$

4.
$$f_4(z) = \begin{cases} \frac{1}{z} \sin^2(z) & \text{für } z \neq 0. \\ 0 & \text{für } z = 0 \end{cases}$$

Aufgabe 3: Sei $U \subset \mathbb{C}$ offen und $z^0 \in U$. Sei $f: U \to \mathbb{C}$ eine differenzierbare Funktion, die in z^0 komplex differenzierbar ist. Man zeige: Ist $f'(z^0) \neq 0$, so gibt es offene Umgebungen V von z^0 und W von $w^0 = f(z^0)$ und eine differenzierbare Abbildung $g: W \to V$, die in w^0 komplex differenzierbar ist mit $f \circ g = id$.

Aufgabe 4: Es seien $f, g: \mathbb{C} \to \mathbb{C}$ holomorphe Funktionen mit f(0) = 1, g(0) = 0. Ferner sei f' = -g und g' = f.

a) Für alle $z, w \in \mathbb{C}$ gilt

$$f(z+w) = f(z)f(w) - g(z)g(w), g(z+w) = g(z)f(w) + f(z)g(w).$$

b) Zeigen Sie, dass $f = \cos$ und $g = \sin$ ist.