Bergische Universität Wuppertal
Fakultät für Mathematik und Naturwissenschaften
Angewandte Informatik - Algorithmik


Efficient eigensystem and SVD computations


Several people

Duration and funding



This page collects publications related to eigensystem and SVD computations, which are not directly related to one of the more focused research projects. Research areas include

Project-related publications

[1] Lars Karlsson, Daniel Kressner, and Bruno Lang. Optimally packed chains of bulges in multishift QR algorithms. ACM Trans. Math. Software, 40(2):12:1--12:15, February 2014. [ Abstract ]
[2] Tina Erica Odaka, Vladen V. Melnikov, Per Jensen, Tsuneo Hirano, Bruno Lang, and Peter Langer. Theoretical study of the double Renner effect for A 2Π MgNC/MgCN: Higher excited rovibrational states. J. Chem. Phys., 126(9):094301, March 2007. [ Abstract ]
[3] Paul R. Willems, Bruno Lang, and Christof Vömel. Computing the bidiagonal SVD using multiple relatively robust representations. SIAM J. Matrix Anal. Appl., 28(4):907--926, 2006. [ Abstract ]
[4] Bruno Lang. Out-of-core solution of large symmetric eigenproblems. Z. angew. Math. Mech., 80:S 809--S 810, 2000. [ Abstract ]
[5] Benedikt Großer and Bruno Lang. Using pentangular factorizations for the reduction to banded form. In P. Amestoy, P. Berger, M. Daydé, I. Duff, V. Frayssé, L. Giraud, and D. Ruiz, editors, EuroPar'99 Parallel Processing, volume 1685 of LNCS, pages 1088--1095, Berlin, 1999. Springer-Verlag. [ Abstract ]
[6] Bruno Lang. Using level 3 BLAS in rotation-based algorithms. SIAM J. Sci. Comput., 19(2):626--634, March 1998. [ Abstract ]
[7] Bruno Lang. Effiziente Orthogonaltransformationen bei der Eigen- und Singulärwertberechnung. Habilitationsschrift, Fachbereich Mathematik, Bergische Universität GH Wuppertal, Germany, 1997.
[8] Bruno Lang. Using level 3 BLAS in the QR algorithm. Z. angew. Math. Mech., 77(S2):S 607--S 608, 1997. [ Abstract ]
[9] Bruno Lang. Parallel reduction of banded matrices to bidiagonal form. Parallel Comput., 22(1):1--18, January 1996. [ Abstract ]
[10] Bruno Lang. Reduction of banded matrices to bidiagonal form. Z. angew. Math. Mech., 76(Supplement 1: ICIAM/GAMM 95 Proceedings):155--158, 1996. [ Abstract ]
[11] Christian H. Bischof, Bruno Lang, and Xiaobai Sun. Parallel tridiagonalization through two-step band reduction. In Proceedings of the Scalable High-Performance Computing Conference, Knoxville, Tennessee, May 23--25, 1994, pages 23--27, Los Alamitos, CA, 1994. IEEE Computer Society. [ Abstract ]
[12] Bruno Lang. Parallele Berechnung von Eigensystemen symmetrischer Bandmatrizen. Z. angew. Math. Mech., 74(6):T541--T544, 1994. [ Abstract ]
[13] Bruno Lang. A parallel algorithm for reducing symmetric banded matrices to tridiagonal form. SIAM J. Sci. Comput., 14(6):1320--1338, November 1993. [ Abstract ]
[14] Bruno Lang. Reducing symmetric banded matrices to tridiagonal form---A comparison of a new parallel algorithm with two serial algorithms on the iPSC/860. In L. Bougé, M. Cosnard, Y. Robert, and D. Trystram, editors, Parallel Processing: CONPAR 92--VAPP V --- Proceedings Second Joint International Conference on Vector and Parallel Processing, Lyon, France, September 1992, volume 634 of LNCS, pages 271--282, Berlin, 1992. Springer-Verlag. [ Abstract ]
[15] Bruno Lang. Parallele Reduktion symmetrischer Bandmatrizen auf Tridiagonalgestalt. Dissertation, Fakultät für Mathematik, Universität Karlsruhe, Germany, 1991.

Project-related theses

[1] Swen Wörlein. Parallelisierung eines Tridiagonalisierungsalgorithmus zur Lösung des symmetrischen Eigenwertproblems bei Bandmatrizen. Diploma thesis, RWTH Aachen, Germany, June 2000.
[2] Holger Arndt. Parallele Varianten der Hessenberg-QR-Iteration. Diploma thesis, Bergische Universität Gesamthochschule Wuppertal, Germany, November 1998.

See also

the projects listed on the Research page

University of Wuppertal
Faculty of Mathematics and Natural Sciences
Department of Mathematics and Computer Science
Applied Computer Science Group

Last modified:   Disclaimer