Solution to Exercise 4.4

- In a non-degenerate pivot-operation, the simplex method moves from one extreme point to an adjacent extreme point of P.
- Let \underline{x} be a bfs (\Leftrightarrow extreme point)

$$\underline{x} = (x_1, \ldots, x_m, 0, \ldots, 0)^T$$

and let

$$y = (y_1, \ldots, y_{m-1}, 0, y_{m+1}, 0, \ldots, 0)^T$$

be a bfs after one pivot operation.

To show:

 $\underline{x}, \underline{y}$ are adjacent extreme points of P or (by Definition 4 on the exercise sheet): $[\underline{x}, \underline{y}]$ is an edge of the (convex) polytope P, i.e.

$$[\underline{x}, \underline{y}] = \{ \underline{z} \in \mathbb{R}^n \mid \underline{z} = \lambda \underline{x} + (1 - \lambda) \underline{y}, \lambda \in [0, 1] \}$$

Proof:

Let $\underline{\hat{z}} \in [\underline{x}, \underline{y}]$ $\Rightarrow \underline{\hat{z}} = \lambda \underline{x} + (1 - \lambda) \underline{y} = (\lambda x_1 + (1 - \lambda) y_1, \dots, \lambda x_m, (1 - \lambda) y_{m+1}, 0, \dots, 0)^T$

Now let $\underline{\hat{z}} = \mu \underline{z}' + (1 - \mu) \underline{z}''; \mu \in (0, 1); \underline{z}', \ \underline{z}'' \in P$ (see Definition 3).

To show:

 $\underline{z}', \underline{z}'' \in [\underline{x}, \underline{y}]$

Proof by contradiction:

Assume that $\underline{z}' \notin [\underline{x}, \underline{y}]$ (wlog assume that $\underline{z}' \in P$ is not an extreme point and that \underline{z}' does not ly on another edge of P).

 $\Rightarrow \underline{z}'$ has at least one positive component in $\{z'_{m+2}, \ldots, z'_n\}$. Let wlog $z'_n > 0$. Consider the last component of \hat{z} :

$$\hat{z}_n = \underbrace{\mu}_{>0} \cdot \underbrace{z'_n}_{>0} + \underbrace{(1-\mu)}_{>0} \cdot \underbrace{z''_n}_{>0} > 0$$

On the other hand, $\underline{\hat{z}} \in [\underline{x}, y]$ implies that

$$\hat{z}_n = \underbrace{\lambda x_n}_{=0} + (1 - \lambda) \underbrace{y_n}_{=0} = 0$$

which is a contradiction to $\underline{z}' \notin [\underline{x}, \underline{y}]$ $\Rightarrow \underline{z}' \in [\underline{x}, \underline{y}]$ and similarly $\underline{z}'' \in [\underline{x}, \underline{y}]$ $\Rightarrow [\underline{x}, \underline{y}]$ is an edge of $P \Rightarrow \underline{x}, \underline{y}$ are adjacent extreme points of P.