## Solution to Exercise 4.4

- In a non-degenerate pivot-operation, the simplex method moves from one extreme point to an adjacent extreme point of $P$.
- Let $\underline{x}$ be a bfs ( $\Leftrightarrow$ extreme point)

$$
\underline{x}=\left(x_{1}, \ldots, x_{m}, 0, \ldots, 0\right)^{T}
$$

and let

$$
\underline{y}=\left(y_{1}, \ldots, y_{m-1}, 0, y_{m+1}, 0, \ldots, 0\right)^{T}
$$

be a bfs after one pivot operation.

## To show:

$\underline{x}, \underline{y}$ are adjacent extreme points of $P$ or (by Definition 4 on the exercise sheet): $[\underline{x}, \underline{y}]$ is an edge of the (convex) polytope $P$, i.e.

$$
[\underline{x}, \underline{y}]=\left\{\underline{z} \in \mathbb{R}^{n} \mid \underline{z}=\lambda \underline{x}+(1-\lambda) \underline{y}, \lambda \in[0,1]\right\}
$$

## Proof:

Let $\underline{\hat{z}} \in[\underline{x}, \underline{y}]$
$\Rightarrow \underline{\hat{z}}=\lambda \underline{x}+(1-\lambda) \underline{y}=\left(\lambda x_{1}+(1-\lambda) y_{1}, \ldots, \lambda x_{m},(1-\lambda) y_{m+1}, 0, \ldots, 0\right)^{T}$
Now let $\underline{\hat{z}}=\mu \underline{z}^{\prime}+(1-\mu) \underline{z}^{\prime \prime} ; \mu \in(0,1) ; \underline{z}^{\prime}, \underline{z}^{\prime \prime} \in P($ see Definition 3).

## To show:

$\underline{z}^{\prime}, \underline{z}^{\prime \prime} \in[\underline{x}, \underline{y}]$
Proof by contradiction:
Assume that $\underline{z}^{\prime} \notin[\underline{x}, \underline{y}]$ (wlog assume that $\underline{z}^{\prime} \in P$ is not an extreme point and that $\underline{z}^{\prime}$ does not ly on another edge of $P$ ).
$\Rightarrow \underline{z}^{\prime}$ has at least one positive component in $\left\{z_{m+2}^{\prime}, \ldots, z_{n}^{\prime}\right\}$. Let wlog $z_{n}^{\prime}>0$.
Consider the last component of $\hat{z}$ :
$\hat{z}_{n}=\underbrace{\mu}_{>0} \cdot \underbrace{z_{n}^{\prime}}_{>0}+\underbrace{(1-\mu)}_{>0} \cdot \underbrace{z_{n}^{\prime \prime}}_{>0}>0$
On the other hand, $\underline{\hat{z}} \in[\underline{x}, \underline{y}]$ implies that
$\hat{z}_{n}=\underbrace{\lambda x_{n}}_{=0}+(1-\lambda) \underbrace{y_{n}}_{=0}=0$
which is a contradiction to $\underline{z}^{\prime} \notin[\underline{x}, \underline{y}]$
$\Rightarrow \underline{z}^{\prime} \in[\underline{x}, \underline{y}]$ and similarly $\underline{z}^{\prime \prime} \in[\underline{x}, \underline{y}]$
$\Rightarrow[\underline{x}, \underline{y}]$ is an edge of $P \Rightarrow \underline{x}, \underline{y}$ are adjacent extreme points of $P$.

