Linear and Network Optimization Exercise 9

Please return your solutions by Wednesday, June $11^{\text {th }}$, 10:00 a.m., in the mailbox No. 5.
Problem 1 (5 points)
Show that the inverse of the matrix $\bar{A} \bar{A}^{T}$ exists, where

$$
\bar{A}:=\binom{A \cdot D}{1 \cdots 1}, \quad D:=\left(\begin{array}{ccc}
x_{1}^{k} & & 0 \\
& \ddots & \\
0 & & x_{n}^{k}
\end{array}\right)
$$

A is a regular $m \times n$-matrix and $\underline{x}^{k}>\underline{0}$ is an n-vector that satisfies $A \underline{x}^{k}=\underline{0}$.
Problem 2 (15 points)
Consider the following LP:

$$
\begin{aligned}
\min & x_{2} \\
\text { s.t. } & x_{1}+x_{2}-2 x_{3}=0 \\
& x_{1}+x_{2}+x_{3}=1 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

(a) Verify that the assumptions of Karmarkar's projective algorithm are satisfied for this LP.
(b) Apply two iterations of Karmarkar's projective algorithm to this LP, starting with $\underline{x}^{0}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)^{T}$.
(c) After 6 iterations the solution $\underline{x}^{6}=\left(0.606509,0.060158, \frac{1}{3}\right)^{T}$ is obtained and the algorithm terminates. (Why?) Use this solution to determine an optimal basic feasible solution of the LP.

