Linear and Network Optimization Exercise 8

Please return your solutions by Tuesday, June $3^{\text {rd }}, 10: 00$ a.m., in the mailbox No. 5.
Problem 1 (7 points)
Formulate the simplex method for LPs with bounded variables as an algorithm, including the update of the reduced tableau.

Problem 2 (7 points)
Apply your algorithm to the $\operatorname{LP} \min \{\underline{c} \underline{x}: A \underline{x}=\underline{b}, \underline{l} \leq \underline{x} \leq \underline{u}\}$ with

$$
\begin{gathered}
A=\left(\begin{array}{rrrrr}
1 & 1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 1 & 0 \\
0 & -1 & -1 & 0 & 1
\end{array}\right), \quad \underline{b}=\left(\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right) \\
\underline{c}=(1,1,2,3,1), \quad \underline{u}=(3,3,4,2,1)^{T}, \quad \underline{l}=(0,0,0,0,0)^{T} .
\end{gathered}
$$

For the starting solution you can use

$$
B=\{1,3,5\}, \quad L=\{2\}, \quad U=\{4\} .
$$

Problem 3 (6 points)
Consider the Klee-Minty example of an LP where the simplex method goes through all of the 2^{n} basic feasible solutions in the worst case (with $0<\varepsilon<\frac{1}{2}$):

$$
\begin{array}{lll}
\max & x_{n} \\
\text { s.t. } 0 \leq x_{1} \leq 1 & \\
\varepsilon x_{j-1} \leq x_{j} \leq 1-\varepsilon x_{j-1} & \forall j=2, \ldots, n \\
& x_{j} \geq 0 & \forall j=1, \ldots, n
\end{array}
$$

(a) Show that the Klee-Minty problem is equivalent to the following problem, where $\theta:=\frac{1}{\varepsilon}$:

$$
\begin{array}{ll}
\max & \sum_{j=1}^{n} y_{j} \\
\text { s.t. } & \\
& y_{j}+2 \sum_{k=1}^{j-1} y_{k} \leq \theta^{j-1} \quad \forall j=2, \ldots, n \\
y_{j} & \geq 0 \quad \forall j=1, \ldots, n
\end{array}
$$

Hint: Use the transformation $y_{1}:=x_{1}$ and $y_{j}:=\frac{\left(x_{j}-\varepsilon x_{j-1}\right)}{\varepsilon^{j-1}}$ for $j=2, \ldots, n$.
(b) Graph the two problems for $n=2$ and $\varepsilon=\frac{1}{3}$.
(c) Apply the simplex method to the reformulation of subproblem (a) and illustrate the path of the algorithm through the basic feasible solutions in the graphs of subproblem (b).

