Linear and Network Optimization Exercise 5

Please return your solutions by Tuesday, May, $13^{\text {th }}, 10: 00$ a.m., in the mailbox No. 5 .
Problem 1 (5 points)
Consider an $L P$ of the form $\min \{\underline{c} \underline{x}: A \underline{x}=\underline{b}, \quad \underline{x} \geq \underline{0}\}$ to be solved with the simplex method. Let \underline{x} be an arbitrary feasible solution.
Formulate an algorithm for finding a basic feasible solution starting from \underline{x}. Apply your algorithm to the following problem:

$$
A=\left(\begin{array}{rrrrrrr}
1 & 1 & 3 & 4 & 0 & 0 & 0 \\
0 & -1 & -1 & -2 & 1 & 0 & 0 \\
0 & 1 & 1 & 2 & 0 & 1 & 0 \\
1 & 0 & 2 & 2 & 0 & 0 & -1
\end{array}\right), \quad \underline{b}=\left(\begin{array}{r}
28 \\
-13 \\
13 \\
15
\end{array}\right), \quad \underline{x}=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
0 \\
0 \\
0
\end{array}\right)
$$

Problem 2 (5 points)
Consider the simplex tableau $T(B)$. Show that whenever a pivot operation is performed to move from a basis B to another basis B^{\prime}, the same tableau $T\left(B^{\prime}\right)$ is obtained as if it was constructed directly with basis B^{\prime}.

Problem 3: Programming Exercise (10 points)
Implement the simplex algorithm (Algorithm 2.15) for LP's of the form min $\{\underline{c} \underline{x}: A \underline{x} \leq$ $\underline{b}, \underline{x} \geq \underline{0}\}$ with a nonnegative right-hand-side vector $\underline{b} \geq \underline{0}$ in Matlab. (The programs should be submitted on a floppy disk.)
Apply your algorithm to the following problems:
(a)

$$
\begin{array}{rlr}
\max & \sum_{i=1}^{5} x_{i} & \\
\text { s.t. } & \sum_{i=1}^{5} \frac{1}{i+k} x_{i} \leq \sum_{i=1}^{5} \frac{1}{i+k} & \forall k=1, \ldots, 5 \\
x_{i} \geq 0 & \forall i=1, \ldots, 5
\end{array}
$$

(b)

$$
\begin{array}{lrl}
\max & 5 x_{1}+4 x_{2}+16 x_{3} \\
\text { s.t. } & 2 x_{1}+x_{2}+3 x_{3} \leq 5 \\
& x_{1}+x_{2}+5 x_{3} \leq 3 \\
& & x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Examine the impact of the value of the right-hand-side vector \underline{b} on the optimal solution of Problem 3(b) by increasing or decreasing its coefficients slightly.
You can (if you wish) compare your solutions with those obtained by a simplex solver available on the internet, for example, at
http://www.mcs.anl.gov/home/otc/Guide/CaseStudies/simplex/ (start with "Try me").

