Linear and Network Optimization Exercise 4

Please return your solutions by Tuesday, May 6th, 10:00 a.m., in the mailbox No. 5.

Problem 1 (3 points)

The following simplex tableau represents a linear program in standard form:

T(B) =	1	0	b	e	0	0	-9
	0	1	С	1	0	0	a
	0	0	d	-1	1	0	2
	0	0	-1	1	0	1	4

Give conditions (for example $b \ge 0$) on the parameters a, b, c, d, and e such that

- (a) the tableau is in optimal form,
- (b) the tableau is in unbounded form,
- (c) the tableau is in infeasible form.

Problem 2 (6 points)

Consider the following linear program:

- (a) Transform the given LP into standard form by introducing the slack variables x_3, \ldots, x_6 .
- (b) Determine the simplex tableau T(B) with respect to the basis $B = \{2, 3, 4, 5\}$.
- (c) Use the basis $B = \{2, 3, 4, 5\}$ as input of the simplex method and find an optimal solution of the given LP.

Problem 3 (5 points)

- (a) Give an example showing that the variable that becomes basic in one iteration of the simplex method can become nonbasic in the next iteration.
- (b) Show that the variable that becomes nonbasic in one iteration of the simplex method cannot become basic in the next iteration.

Problem 4 (6 points)

Prove Theorem 3 on the back of this sheet.

Definition 1 A set $X \subseteq \mathbb{R}^n$ is *convex* if the linear segment joining any two points in the set lies entirely in the set, i.e.

$$\forall \underline{x}, \underline{y} \in X: \qquad \lambda \underline{x} + (1 - \lambda) \underline{y} \in X \qquad \forall \, \lambda \in [0, 1].$$

Definition 2 An *extreme point* (or a *vertex*) of a convex set $X \subseteq \mathbb{R}^n$ is a point $\underline{x} \in X$ such that \underline{x} cannot be represented in the form

$$\underline{x} = \lambda \underline{x}_1 + (1 - \lambda) \underline{x}_2, \ 0 < \lambda < 1$$

with $\underline{x}_1, \underline{x}_2 \in X, \underline{x}_1 \neq \underline{x}_2$.

Theorem 1 The feasible set $P := \{ \underline{x} \in \mathbb{R}^n : A\underline{x} = b, \underline{x} \ge \underline{0} \}$ is convex.

Theorem 2 Any feasible region of an LP can be alternatively viewed as a convex polytope and vice versa.

Definition 3 Let $P \subseteq \mathbb{R}$ be a polytope. The segment $[\underline{\hat{x}}, \underline{\hat{y}}]$ is an *edge* of P if the following is true: For every $\underline{\hat{z}} \in [\underline{\hat{x}}, \underline{\hat{y}}]$: If $\underline{\hat{z}} = \lambda \underline{\hat{z}}' + (1 - \lambda)\underline{\hat{z}}''$ with $0 < \lambda < 1$ and $\underline{\hat{z}}', \underline{\hat{z}}'' \in P$, then $\underline{\hat{z}}', \underline{\hat{z}}'' \in [\underline{\hat{x}}, \underline{\hat{y}}]$.

Definition 4 Two vertices $\underline{\hat{x}}$ and $\underline{\hat{y}}$ of a polytope $P \subseteq \mathbb{R}^n$ are called *adjacent* if the line segment $[\underline{\hat{x}}, \underline{\hat{y}}]$ (i.e. the set $L := \{\underline{x} \in \mathbb{R}^n : \underline{x} = \lambda \underline{\hat{x}} + (1 - \lambda)\underline{\hat{y}}, \lambda \in [0, 1]\}$) is an edge of the polytope.

Theorem 3 In a non-degenerate pivot operation the simplex algorithm moves from one extreme point of the feasible set to an adjacent extreme point.