Linear and Network Optimization Exercise 3

Please return your solutions by Tuesday, April $29^{\text {th }}, 10: 00$ a.m., in the mailbox No. 5 .
Problem 1 (6 points)
Consider the following constraints:

$$
\begin{aligned}
x_{1}+x_{2} & \leq 3 \\
-2 x_{1}+x_{2} & \leq 2 \\
x_{1}-2 x_{2} & \leq 0 \\
x_{1}, x_{2} & >0
\end{aligned}
$$

(a) Draw the feasible region.
(b) Identify the extreme points in the x_{1}, x_{2}-space, and at each extreme point identify all possible basic and nonbasic variables.
(c) Suppose that a move is made from the extreme point $(2,1)^{T}$ to the extreme point $(0,0)^{T}$ in the x_{1}, x_{2}-space. Specify the possible entering and leaving variables.

Problem 2 (3 points)

Does the objective function value get stricly better in each basis exchange? (Proof or counterexample.)

Problem 3 (5 points)

Consider the polyhedral set consisting of all points $\underline{x} \in \mathbb{R}^{2}$ such that

$$
x_{1}+x_{2} \leq 1
$$

(No nonnegativity constraints given!) Verify geometrically and algebraically that this set (in the x_{1}, x_{2}-space) has no extreme points. Formulate an equivalent set in a higher dimension where all variables are restricted to be nonnegative. Show that extreme points of the new set indeed exist.

Problem 4 (8 points)
Let $P=\left\{\underline{x} \in \mathbb{R}^{n}: A \underline{x}=\underline{b}, \underline{x} \geq \underline{0}\right\}$ where A is an $m \times n$-matrix of rank m.
Let \underline{x} be a feasible solution such that x_{1}, \ldots, x_{q} are positive and x_{q+1}, \ldots, x_{n} are zero. Assuming that the columns A_{1}, \ldots, A_{q} of A corresponding to the positive variables are linearly dependent, construct feasible points \underline{x}^{\prime} and $\underline{x}^{\prime \prime}$ such that \underline{x} is a convex combination of these points. Hence argue that if \underline{x} is an extreme point of P, it is also a basic feasible solution.
Conversely, suppose that \underline{x} is a basic feasible solution of P with basis B and that $\underline{x}=$ $\lambda \underline{x}^{\prime}+(1-\lambda) \underline{x}^{\prime \prime}$ for some $0<\lambda<1$ and $\underline{x}^{\prime}, \underline{x}^{\prime \prime} \in P$. Denoting \underline{x}_{B} and \underline{x}_{N} as the corresponding basic and nonbasic variables, show that $\underline{x}_{N}^{\prime}=\underline{x}_{N}^{\prime \prime}=\underline{0}$ and $\underline{x}_{B}^{\prime}=\underline{x}_{B}^{\prime \prime}=A_{B}^{-1} \underline{b}$. Hence argue that \underline{x} is an extreme point of P.
(Hint: Use Definition 2 on the back of this sheet.)

Definition 1 A set $X \subseteq \mathbb{R}^{n}$ is convex if the linear segment joining any two points in the set lies entirely in the set, i.e.

$$
\forall \underline{x}, \underline{y} \in X: \quad \lambda \underline{x}+(1-\lambda) \underline{y} \in X \quad \forall \lambda \in[0,1] .
$$

Definition 2 (Alternative definition of extreme points).
An extreme point (or a vertex) of a convex set $X \subseteq \mathbb{R}^{n}$ is a point $\underline{x} \in X$ such that \underline{x} cannot be represented in the form

$$
\underline{x}=\lambda \underline{x}_{1}+(1-\lambda) \underline{x}_{2}, 0<\lambda<1
$$

with $\underline{x}_{1}, \underline{x}_{2} \in X, \underline{x}_{1} \neq \underline{x}_{2}$.
Theorem 1 The feasible set $P:=\left\{\underline{x} \in \mathbb{R}^{n}: A \underline{x}=\underline{b}, \underline{x} \geq \underline{0}\right\}$ is convex.

