Universität Erlangen-Nürnberg Naturwissenschaftliche Fakultät I Prof. Dr. K. Klamroth

Linear and Network Optimization Exercise 3

Please return your solutions by Tuesday, April 29th, 10:00 a.m., in the mailbox No. 5.

Problem 1 (6 points)

Consider the following constraints:

x_1	+	x_2	\leq	3
$-2x_1$	+	x_2	\leq	2
x_1	—	$2x_2$	\leq	0
	x_1, x_2		\geq	0.

- (a) Draw the feasible region.
- (b) Identify the extreme points in the x_1, x_2 -space, and at each extreme point identify all possible basic and nonbasic variables.
- (c) Suppose that a move is made from the extreme point $(2,1)^T$ to the extreme point $(0,0)^T$ in the x_1, x_2 -space. Specify the possible entering and leaving variables.

Problem 2 (3 points)

Does the objective function value get stricly better in each basis exchange? (Proof or counterexample.)

Problem 3 (5 points)

Consider the polyhedral set consisting of all points $\underline{x} \in \mathbb{R}^2$ such that

 $x_1 + x_2 \le 1.$

(No nonnegativity constraints given!) Verify geometrically and algebraically that this set (in the x_1, x_2 -space) has no extreme points. Formulate an equivalent set in a higher dimension where all variables are restricted to be nonnegative. Show that extreme points of the new set indeed exist.

Problem 4 (8 points)

Let $P = \{\underline{x} \in \mathbb{R}^n : A\underline{x} = \underline{b}, \underline{x} \ge \underline{0}\}$ where A is an $m \times n$ -matrix of rank m.

Let \underline{x} be a feasible solution such that x_1, \ldots, x_q are positive and x_{q+1}, \ldots, x_n are zero. Assuming that the columns A_1, \ldots, A_q of A corresponding to the positive variables are linearly dependent, construct feasible points \underline{x}' and \underline{x}'' such that \underline{x} is a convex combination of these points. Hence argue that if \underline{x} is an extreme point of P, it is also a basic feasible solution.

Conversely, suppose that \underline{x} is a basic feasible solution of P with basis B and that $\underline{x} = \lambda \underline{x}' + (1-\lambda)\underline{x}''$ for some $0 < \lambda < 1$ and $\underline{x}', \underline{x}'' \in P$. Denoting \underline{x}_B and \underline{x}_N as the corresponding basic and nonbasic variables, show that $\underline{x}'_N = \underline{x}''_N = \underline{0}$ and $\underline{x}'_B = \underline{x}''_B = A_B^{-1}\underline{b}$. Hence argue that \underline{x} is an extreme point of P.

(Hint: Use Definition 2 on the back of this sheet.)

Definition 1 A set $X \subseteq \mathbb{R}^n$ is *convex* if the linear segment joining any two points in the set lies entirely in the set, i.e.

$$\forall \underline{x}, \underline{y} \in X: \qquad \lambda \underline{x} + (1 - \lambda) \underline{y} \in X \qquad \forall \, \lambda \in [0, 1].$$

Definition 2 (Alternative definition of extreme points).

An *extreme point* (or a *vertex*) of a convex set $X \subseteq \mathbb{R}^n$ is a point $\underline{x} \in X$ such that \underline{x} cannot be represented in the form

$$\underline{x} = \lambda \underline{x}_1 + (1 - \lambda) \underline{x}_2, \ 0 < \lambda < 1$$

with $\underline{x}_1, \underline{x}_2 \in X, \underline{x}_1 \neq \underline{x}_2$.

Theorem 1 The feasible set $P := \{ \underline{x} \in \mathbb{R}^n : A\underline{x} = \underline{b}, \underline{x} \ge \underline{0} \}$ is convex.