Linear and Network Optimization Exercise 12

Please return your solutions by Tuesday, July 1^{st} , 10:30 a.m., in the mailbox No. 5.

Problem 1 (5 points)

Apply the algorithm of Floyd-Warshall to the following digraph G_1 :

Problem 2 (5 points)

Project planning:

Suppose that a project for the selection and installation of an automated warehouse system is based on the following activities:

	Activity	Immediate Predecessors
А	Determine equipment needs	None
В	Obtain vendor proposals	None
С	Select vendor	A, B
D	Order system	\mathbf{C}
Е	Design new warehouse layout	\mathbf{C}
\mathbf{F}	Lay out warehouse	E
G	Design computer interface	\mathbf{C}
Η	Interface computer	D, F, G
Ι	Install system	D, F
J	Train system operators	Н
Κ	Test system	I, J

- (a) Construct a network representing this problem.
- (b) Find the longest path in the network constructed in Part (a).
- (c) Let E(x) be the earliest time at which event x can possibly be completed and let L(x) be the latest time at which event x has to be completed such that the project will still be completed on time. Find two algorithms to compute E(x) resp. L(x) for all events x in the network constructed in Part (a).

Consider the following network with upper bounds on the edges:

Write down the linear programming formulation for the maximum flow problem with source node s = 1 and sink node t = 5, its dual problem and the complementary slackness conditions. Interprete your results.