Linear and Network Optimization Exercise 10

Please return your solutions by Tuesday, June $17^{\text {th }}, 10: 00$ a.m., in the mailbox No. 5.
Problem 1 (4 points)
Consider the digraph G_{1} :

(a) Determine the incidence matrix of G_{1}.
(b) Identify two spanning trees T_{1} and T_{2} of G_{1}.
(c) How many dicycles can you find in G_{1} ?
(d) Find an s - t-cut with $s=2$ and $t=6$.
(e) Let G_{2} be the undirected graph obtained from G_{1} by making all edges undirected. Determine the adjacency matrix of G_{2}.

Problem 2 (8 points)
Prove the following:
Theorem 5.8. Let $T=(V, E(T))$ be a spanning tree of $G=(V, E)$. Then:
(1) T has at least 2 leafs.
(2) T has exactly $n-1$ edges.
(3) Every pair of vertices in T is connected by exactly 1 path.
(4) Let $e \in E \backslash E(T)$. Then $T+e:=(V, E(T) \cup\{e\})$ contains exactly 1 cycle.
(5) Let $e \in E \backslash E(T)$ and let C be the uniquely defined cycle in $T+e$. Then $T+e \backslash f:=$ $(V, E(T) \cup\{e\} \backslash\{f\})$ is a spanning tree $\forall f \in C$.
(6) Let $T \backslash e:=(V, E(T) \backslash\{e\})$. Then $T \backslash e$ is cut into 2 subtrees $(X, E(X))$ and $(\bar{X}, E(\bar{X}))$. Furthermore, $Q:=(X, \bar{X}):=\{e=[i, j] \in E: i \in X, j \in \bar{X}\}$ is a cut in G.
(7) Let $e \in E(T)$ and let $Q:=(X, \bar{X})$ be the cut in G that is uniquely defined by $T \backslash e$ (c.f. (6)). Then $T \backslash e+f:=(V, E(T) \backslash\{e\} \cup\{f\})$ is a spanning tree $\forall f \in(X, \bar{X})$.

Problem 3: Knapsack Problem (5 points)
Consider n objects, each of which has a weight a_{j} and a value $c_{j}\left(a_{j}, c_{j} \in \mathbb{N}\right)$. We would like to find a subset of the set of all objects for which the sum of the values is maximal while the sum of the weights does not exceed a given capacity $b \in \mathbb{N}$.
Find a model where this problem is equivalent to finding a longest path in a suitable network. (Hint: Introduce a source node s and a sink node t and, for each object, $b+1$ nodes. Then define an acyclic digraph by adding suitable arcs.)
Under what circumstances is it possible to convert a longest path problem on a network into an equivalent shortest path problem?

Problem 4 (3 points)
Prove the following result:
A dipath P in a digraph G from the source node s to a node $k \neq s$ is a shortest dipath in G if and only if

$$
d_{j}=d_{i}+c_{i j} \quad \forall(i, j) \in P,
$$

where d_{i} denotes the distance from s to $i, i \in V(P)$.

