Universität Erlangen-Nürnberg Naturwissenschaftliche Fakultät I Prof. Dr. K. Klamroth

Algorithm 2.24: 2-Phase Method

(Input) LP $\min\{\underline{c}\,\underline{x}: A\underline{x} = \underline{b}, \ \underline{x} \ge \underline{0}\}$

(1) Transformation of the system $A\underline{x} = \underline{b}$:

- a) Multiply all those equations $A^i \underline{x} = b_i$ by (-1), for which $b_i < 0$.
- b) Identify those equations $A^i \underline{x} = b_i$ for which a variable $x_{s(i)}$ exists that occurs only in this equation and for which $a_{i\,s(i)} > 0$. Transform these equations to

$$\frac{1}{a_{i\,s(i)}}A^i\underline{x} = \frac{b_i}{a_{i\,s(i)}}.$$

Let $I \subseteq \{1, \ldots, m\}$ be the index set of the corresponding equations.

c) Introduce an artificial variable \hat{x}_i for all $i \in \overline{I} := \{1, \ldots, m\} \setminus I$, i.e. replace $A^i \underline{x} = b_i$ by $A^i \underline{x} + \hat{x}_i = b_i$. Denote the new constraint matrix by \tilde{A} and the extended solution vector by $\underline{\tilde{x}}$.

(2) Phase 1 of the simplex method

a) Set $(\underline{\tilde{x}}_B, \underline{\tilde{x}}_N)$ with

$$\tilde{x}_{B(i)} := \begin{cases} x_{s(i)} = \frac{b_i}{a_{i\,s(i)}} & \text{if } i \in I\\ \hat{x}_i = b_i & i \in \overline{I} \end{cases}$$

If $\overline{I} = \emptyset$, goto Step (3).

b) Find an optimal solution $\underline{\tilde{x}}^*$ of the LP

$$\min\left\{\sum_{i\in\overline{I}}\hat{x}_i:\tilde{A}\underline{\tilde{x}}=\underline{b},\ \underline{\tilde{x}}\geq\underline{0}\right\}.$$

- c) If $\sum_{i \in \overline{I}} \hat{x}_i^* > 0$ (STOP), the LP min{ $\underline{c} \underline{x} : A\underline{x} = \underline{b}, \ \underline{x} \ge \underline{0}$ } is infeasible.
- d) If $\sum_{i \in \overline{I}} \hat{x}_i^* = 0$, pivot all artificial variables \hat{x}_i out of the basis (if they are not yet non-basic variables).
- e) Remove all those columns corresponding to artificial variables from the last tableau and replace the auxiliary objective function $\sum_{i \in \overline{I}} \hat{x}_i$ by the original objective function $\underline{c x}$.
- f) Apply elementary row operations to the resulting tableau such that $t_{0B(i)} = 0$ for all basic variables $x_{B(i)}$.

(3) Phase 2 of the simplex method

Apply the simplex method to the tableau found in Step (2f).