Linear and Network Optimization Handout 2

Algorithm 2.15: The Simplex Method

Input: LP in standard form: $\min \{\underline{c} \underline{x}: A \underline{x}=\underline{b}, \underline{x} \geq \underline{0}\}$ and BFS $\underline{x}=\left(\underline{x}_{B}, \underline{x}_{N}\right)$ with respect to a given basis B.

Step 1: Find the simplex tableau $T(B)$
Step 2: If $t_{0 j} \geq 0 \forall j=1, \ldots, n$
then STOP, $\underline{x}=\left(\underline{x}_{B}, \underline{x}_{N}\right)$ with $x_{B(i)}=t_{i n+1}(i=1, \ldots, m), \underline{x}_{N}=\underline{0}$ and the objective value $-t_{0 n+1}$ is an optimal solution of LP.

Step 3: Choose j with $t_{0 j}<0$
Step 4: If $t_{i j} \leq 0 \forall i=1, \ldots, m$
then STOP, the LP is unbounded.
Step 5: Identify $r \in\{1, \ldots, m\}$ such that $\frac{t_{r n+1}}{t_{r j}}=\min \left\{\frac{t_{i n+1}}{t_{i j}}: t_{i j}>0, i \in\{1, \ldots, m\}\right\}$ and perform a pivot operation with $t_{r j}$. Go to Step 2.

