Einführung in die Optimierung

7. Handout

am 12. Januar 2006 WS 2005/06 Prof. Dr. K. Klamroth S. Gaile

Lehrstuhl für Angewandte Mathematik II Universität Erlangen-Nürnberg

http://www2.am.uni-erlangen.de/~klamroth/optimintro05-06.html

Algorithmus 3.64: Branch & Bound

(Input) (IP) $\max\{\underline{c}\,\underline{x}\,:\,A\underline{x}\leq\underline{b},\,\underline{x}\in\mathbb{Z}^n_+\},\,S:=\{\underline{x}\in\mathbb{Z}^n_+\,:\,A\underline{x}\leq\underline{b}\}.$

(0) Initialisierung:

Erzeuge eine Kandidatenliste \mathcal{L} von IPs

$$(\mathrm{IP}^i) \qquad \max\{\underline{c}\,\underline{x}\,:\,\underline{x}\in S^i\}$$

als
$$\mathcal{L} = \{(IP)\}, S^0 = S, z^* = -\infty.$$

(1) Auswahl eines Kandidaten:

Falls $\mathcal{L} = \emptyset$, dann ist $\underline{x}^* \in S$ mit $\underline{c} \underline{x}^* = z^*$ eine optimale Lösung von (IP) (falls eine solche Lösung existiert), oder (IP) ist unzulässig. Sonst wähle ein Problem (IPⁱ) aus \mathcal{L} .

(2) **Bounding:**

Bestimme eine (oder mehrere) obere Schranke w^i für Problem (IPⁱ). Falls $w^i \leq z^*$, gehe zu (5).

(3) Zulässige Lösung:

Falls möglich, bestimme eine (oder mehrere) zulässige Lösung \underline{x}^i von (IPⁱ). Falls für alle diese Lösungen \underline{x}^i gilt: $\underline{c}\,\underline{x}^i \leq z^*$, oder

falls keine Lösung generiert werden kann, gehe zu (4).

Sonst setze $z^* = \underline{c} \underline{x}^i$ und $\underline{x}^* = \underline{x}^i$.

Falls $z^* = \infty$ STOP, (IP) ist unbeschränkt.

Falls $\underline{c}\underline{x}^i = w^i$ (d.h., \underline{x}^i ist optimal für (IPⁱ)), gehe zu (5).

(4) Branching:

Ersetze (IPⁱ) in \mathcal{L} durch ein oder mehrere weiter eingeschränkte Teilprobleme (IPⁱ¹),(IPⁱ²),...,(IP^{ik}) und gehe zu (1).

(5) Pruning:

Lösche Problem (IPⁱ) aus der Kandidatenliste \mathcal{L} und gehe zu (1).