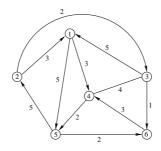
Universität Erlangen-Nürnberg Naturwissenschaftliche Fakultät I Sommersemester 2006 Prof. Dr. K. Klamroth Eva Bijick

Netzwerkoptimierung Übungsblatt 5

Problem 1:

Gegeben sei die folgende Zirkulation ($b_i = 0 \quad \forall i \in N$); zerlegen Sie die Zirkulation mit Hilfe des Verfahrens aus dem Beweis von Satz 4.10 in Dikreisflüsse.



Problem 2:

Finden Sie einen Beweis von Satz 4.15 (Max-Flow-Min-Cut-Theorem), der auf Dualität in der Linearen Optimierung beruht.

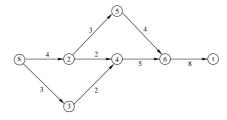
Problem 3: Satz von Menger

Gegeben sei ein Digraph G=(N,A) und Knoten $s,t\in N$. Zwei Diwege P_1 und P_2 von s nach t in G heißen kantendisjunkt, wenn $A(P_1)\cap A(P_2)=\emptyset$. Sie heißen knotendisjunkt, wenn $N(P_1)\cap N(P_2)=\{s,t\}$. Zeigen Sie mit Hilfe von Satz 4.15:

- (a) Die maximale Anzahl kantendisjunkter Diwege von s nach t in G ist gleich der minimalen Anzahl von Kanten, die aus G entfernt werden müssen, um alle Diwege von s nach t zu trennen.
- (b) Die maximale Anzahl knotendisjunkter Diwege von s nach t in G ist gleich der minimalen Anzahl von Knoten, die aus G entfernt werden müssen, um alle Diwege von s nach t zu trennen.

Problem 4:

Finden Sie den maximalen s-t – Fluss in G mit Hilfe des Labeling Algorithmus von Ford und Fulkerson:



Geben Sie außerdem in jeder Iteration das Inkrementnetzwerk von G an und bestimmen Sie am Ende des Algorithmus den minimalen s-t – Schnitt.