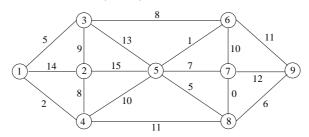
Universität Erlangen-Nürnberg Naturwissenschaftliche Fakultät I Sommersemester 2006 Prof. Dr. K. Klamroth Eva Bijick

Netzwerkoptimierung Übungsblatt 2

Problem 1:

Gegeben sei der folgende Graph G = (N, A):



Bestimmen Sie einen minimalen spannenden Baum von G

- (a) mit Hilfe des Algorithmus von Kruskal
- (b) mit Hilfe des Algorithmus von Prim
- (c) mit Hilfe des Algorithmus von Sollin.

Problem 2:

Sei T=(N,A(T)) ein spannender Baum von G=(N,A). Für $i,j\in N$ sei mit $\beta[i,j]$ diejenige Kante in T bezeichnet, die die minimalen Kosten unter allen Kanten hat, die auf dem Weg von i nach j in T liegen. Geben Sie einen (effizienten!) Algorithmus an, mit dem man $\beta[i,j]$ für alle Paare $[i,j]\in N\times N$ bestimmen kann.

Problem 3:

Sei $T^* = (N, A(T^*))$ ein minimaler spannender Baum von G = (N, A). Für jede Kante $[i, j] \in A$ wird als Kostenintervall diejenige Menge aller Gewichte $c_{ij} \geq 0$ bezeichnet, für die T^* ein minimaler spannender Baum bleibt. Geben Sie einen (effizienten!) Algorithmus an, der das Kostenintervall für eine gegebene Kante $[i, j] \in A$ bestimmt.

Problem 4:

Beweisen Sie für einen spannenden Baum T = (N, A(T)) des Graphen G = (N, A):

- (a) T hat mindestens zwei Blätter.
- (b) T hat genau n-1 Kanten.
- (c) Je zwei Knoten sind in T durch genau einen Weg verbunden.
- (d) $T + a := (N, A(T) \cup \{a\})$ enthält für jedes $a \in A \setminus A(T)$ genau einen Kreis.
- (e) Sei $a \in A \setminus A(T)$ und C der Kreis in T + a aus (d). Dann ist $T + a \setminus \tilde{a} := (N, A(T) \cup \{a\} \setminus \{\tilde{a}\})$ für jedes $\tilde{a} \in C$ ein spannender Baum.
- (f) $T \setminus a := (N, A(T) \setminus \{\tilde{a}\})$ zerfällt für jedes $a \in A(T)$ in zwei Unterbäume (X, A(X)) und $(\bar{X}, A(\bar{X}))$. $Q = (X, \bar{X})$ ist ein Schnitt in G.
- (g) Sei $a \in A(T)$ und $Q = (X, \overline{X})$ der gemäß (f) durch $T \setminus a$ definierte Schnitt. Dann ist $T \setminus a + \tilde{a} := (N, A(T) \setminus \{a\} \cup \{\tilde{a}\})$ für jedes $\tilde{a} \in Q$ ein spannender Baum.