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9. Show that Lemma 3.5 is “tight” in the sense that an example with two or more local
minima can be constructed if the radius is π/4 + ε, where ε > 0.

10. Find an algorithm to solve problems of the type 1/P/R/l2
2
/
∑

where the forbidden
region R is a non-convex polyhedron given by its corner points (y1, . . . , yL).

Apply the algorithm to an example problem with existing facility locations a1 = (1; 1),
a2 = (1; 4), a3 = (2; 1), a4 = (4; 1), a5 = (4; 4), weights w1 = 2, w2 = 1, w3 = 1, w4 = 2,
w5 = 4 and forbidden region R with corner points (in clockwise order) y1 = (0; 0.4),
y2 = (0; 5), y3 = (7; 5), y4 = (7; 3), y5 = (5; 3), y6 = (5; 0.4).

11. Consider a PCB of the size [1; 9] × [1; 5]. A circular part has to be placed at each of
the locations (2; 2), (4; 4), (5; 3) and (8; 3). This is done using a robot arm which needs
a time proportional to max{|x1 − y1|, |x2 − y2|} to move from a point X = (x1; x2)
to another point Y = (y1; y2). Find an optimal location for a container containing the
circular parts that has a security distance of 1 to the PCB using the boundary search
algorithm. It is sufficient to search for the solution along the upper boundary of the
forbidden region, that is, along the segment {(x1; x2) : x1 ∈ [0; 10], x2 = 6}.
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12. Prove the following result:
Let R ⊂ R

2 be closed and convex, and let X∗ ⊆ int(R) for 1/P/ • /l1/
∑

. Then there
is an optimal solution X∗

R of 1/P/R/l1/
∑

such that

X∗

R ∈ ∂R and X∗

R ∈ Gl1

where

Gl1 =
{

(x1, x2) ∈ R
2 : x1 = aj1 , j ∈ {1, . . . , n}

}

∪
{

(x1, x2) ∈ R
2 : x2 = aj2 , j ∈ {1, . . . , n}

}

is the construction line grid with respect to the existing facility locations at a1, . . . , an.

13. Solve the problem from exercise 11. using the construction line algorithm for 1/P/R/l1/
∑

.


