Location Analysis, Handout 5: Set Covering Problems, $\#/D/\bullet/\bullet/\sum_{cov}$

Algorithm 6.8: Branch and Bound Algorithm for $\#/D/\bullet/\bullet/\sum_{cov}$

Input: Finite set of demand nodes I, finite set of candidate sites J, $a_{ij} \in \{0,1\} \ \forall i \in$ $I, j \in J$.

Step 1: Initial solution:

> Apply the reduction rules 1, 2a and 2b to obtain a reduced IP-formulation of the problem.

Let \bar{z} be an upper bound on the optimal objective value (sufficiently large).

Step 2: Initial relaxation:

Solve the LP-relaxation of the problem determined in Step 1

and let \underline{z}_1 be its objective value (lower bound).

Node P_1 of the Branch and Bound tree represents the present problem and is the only live node.

Step 3: Branch and Bound procedure:

Does any live node exist in the solution tree?

Choose a live node P_k (e.g., the node with the best lower bound \underline{z}_k), and goto Step 4.

If no: The best known feasible solution is optimal.

(If no such solution is known, the problem is infeasible.)

Is the solution represented by node P_k feasible (for the original problem)? Step 4:

(STOP), the solution in node P_k is optimal.

If no: Goto Step 5.

Step 5: Branching:

> Select a decision variable X whose value in the relaxed problem at node P_k is $X = \gamma \notin \mathbb{N}$ but must be integer in a feasible solution.

> Branch from node P_k to nodes P_{s+1} , P_{s+2} , so that, in addition to the constraints added earlier, at node P_{s+1} we set $X \leq \lfloor \gamma \rfloor$ and at node P_{s+2} we set $X \geq \lceil \gamma \rceil$.

Step 6: Bounding:

For each node P_{s+k} , k = 1, 2, do:

Solve the LP relaxation including the constraints added in Step 5.

Let its objective value be \underline{z}_{s+k} .

If $\underline{z}_{s+k} \geq \overline{z}$, fathom node P_{s+k} .

and the solution is feasible, set $\bar{z} := \underline{z}_{s+k}$ and fathom node P_{s+k} .

If $\underline{z}_{s+k} < \bar{z}$ If $\underline{z}_{s+k} < \bar{z}$ and the solution is infeasible, the node P_{s+k} is live.

Goto Step 3.

Optimal solution of $\#/D/\bullet/\bullet/\sum_{cov}$ with objective value \bar{z} .