Optimization and feasibility problems with expensive functions

<u>Markus Kaiser</u>¹, Alexander Thekale², Kathrin Klamroth¹ and Philippe Toint³

¹University of Wuppertal, ²University of Erlangen-Nuremberg, ³University of Namur

16-th European Conference on Mathematics for Industry Wuppertal, July 27, 2010

Outline

Motivation and Problem Formulation

Expensive Functions General Expensive Feasibility and Optimization Problem

Solution Methods

Basic Ideas Outline of EFNES Main Convergence Results

Numerical Results Performance Profiles for EFNES Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation Expensive Functions EEP and EOP

Solution methods

FNES

Convergence Results

What are Expensive Functions?

Expensive functions are in general time-consuming or cost-intensive black-boxes, e.g.

- simulations,
- experiments or
- applications of algorithms to a testset.

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions

EFP and EOP

Solution methods

Basic Ideas

EFNES

Convergence Results

What are Expensive Functions?

Expensive functions are in general time-consuming or cost-intensive black-boxes, e.g.

- simulations,
- experiments or
- applications of algorithms to a testset.

- \Rightarrow No derivative information available.
- \Rightarrow Avoid evaluations of expensive functions whenever possible.

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions

EFP and EOP

Solution methods

Basic Ideas

Convergence Results

Expensive Feasibility and Optimization Problem

nonlinear feasibility problem (EFP)

$$c_{\mathcal{I}}(x, u(x)) \leq 0$$

 $c_{\mathcal{E}}(x, u(x)) = 0$
 $x \in \mathbb{R}^n$

- *u* : expensive function (sufficiently smooth)
- $c_{\mathcal{I}}, c_{\mathcal{E}}$: twice continuously differentiable

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions

EFP and EOP

Solution methods Basic Ideas EFNES Convergence Results Numerical Results

Expensive Feasibility and Optimization Problem

nonlinear feasibility problem (EFP)

 $c_{\mathcal{I}}(x, u(x)) \leq 0$ $c_{\mathcal{E}}(x, u(x)) = 0$ $x \in \mathbb{R}^n$ nonlinear constrained optimization problem (EOP)

 $\begin{array}{l} \min \ f(x, u(x)) \\ \text{s.t.} \ c_{\mathcal{I}}(x, u(x)) \leq 0 \\ \ c_{\mathcal{E}}(x, u(x)) = 0 \\ \ x \in \mathbb{R}^n \end{array}$

- *u* : expensive function (sufficiently smooth)
- $f, c_{\mathcal{I}}, c_{\mathcal{E}}$: twice continuously differentiable

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions

EFP and EOP

Reformulation: Sequence of Cheap Systems

nonlinear feasibility problem (EFP)

 $egin{aligned} & c_{\mathcal{I}}(x,m_k^u(x))\leq 0 \ & c_{\mathcal{E}}(x,m_k^u(x))=0 \ & x\in \mathcal{Q}_k(x_k,\delta_k) \end{aligned}$

- m_k^u : model of the expensive function in iteration k
- $\mathcal{Q}_k^{\hat{}}$: trust region $\mathcal{Q}_k(x_k,\delta_k) := \{x \in \mathbb{R}^n \mid \|x x_k\| \le \delta_k\}$

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions

EFP and EOP

Reformulation: Sequence of Cheap Systems

nonlinear feasibility problem (EFP)

 $egin{aligned} & c_{\mathcal{I}}(x,m_k^u(x))\leq 0 \ & c_{\mathcal{E}}(x,m_k^u(x))=0 \ & x\in \mathcal{Q}_k(x_k,\delta_k) \end{aligned}$

nonlinear constrained optimization problem (EOP)

 $\begin{array}{l} \min f(x, m_k^u(x)) \\ \text{s.t. } c_{\mathcal{I}}(x, m_k^u(x)) \leq 0 \\ c_{\mathcal{E}}(x, m_k^u(x)) = 0 \\ x \in \mathcal{Q}_k(x_k, \delta_k) \end{array}$

 m_k^u : model of the expensive function in iteration k

 \mathcal{Q}_k : trust region $\mathcal{Q}_k(x_k, \delta_k) := \{x \in \mathbb{R}^n \mid ||x - x_k|| \le \delta_k\}$

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions

EFP and EOP

Properties of the Model m_k^u

▶ linear function $(n+1 \text{ sample points } \overline{X} = {\overline{x_0, ..., x_n}} \subset Q_k, x_k \in \overline{X})$

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions

EFP and EOP

Solution methods Basic Ideas

EFNES

Convergence Results

Properties of the Model m_k^u

- ▶ linear function $(n+1 \text{ sample points } \overline{X} = {\overline{x_0}, ..., \overline{x_n}} \subset Q_k, x_k \in \overline{X})$
- based on Lagrange basis polynomials

$$m_k^u(x) = \sum_{i=0}^n u(\bar{x}_i) L_i(x)$$

with

$$L_i(x) = \begin{cases} 1 & \text{if } x = \bar{x}_i \\ 0 & \text{if } x \in \overline{X} \setminus \{\bar{x}_i\} \end{cases}$$

Optimization and feasibility problems with expensive functions Kaiser, Thekale,

Klamroth & Toint

Notivation and Problem Formulation Expensive Functions EFP and EOP Solution methods Basic Ideas EFNES Convergence Results Numerical Results EFNES

Properties of the Model m_k^u

- ▶ linear function $(n+1 \text{ sample points } \overline{X} = {\overline{x_0}, ..., \overline{x_n}} \subset Q_k, x_k \in \overline{X})$
- based on Lagrange basis polynomials

$$m_k^u(x) = \sum_{i=0}^n u(\bar{x}_i) L_i(x)$$

with

$$L_i(x) = \begin{cases} 1 & \text{if } x = \bar{x}_i \\ 0 & \text{if } x \in \overline{X} \setminus \{\bar{x}_i\} \end{cases}$$

Λ-poisedness of the sample points, i.e.

$$\max_{i=0,...,n} \max_{x \in \mathcal{Q}(x_k,\delta_k)} |L_i(x)| \leq \Lambda$$

can be verified and established if neccessary

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions

EFP and EOP

Least-Squares Reformulation of (EFP)

Find a (local) minimum of the unconstrained problem

$$\min_{x\in\mathbb{R}^n} f(x,u(x)) = \frac{1}{2} \|\vartheta(x,u(x))\|_2^2$$

where

$$\vartheta(x, u(x)) := \begin{pmatrix} c_{\mathcal{E}}(x, u(x)) \\ [c_{\mathcal{I}}(x, u(x))]_+ \end{pmatrix} \in \mathbb{R}^{p+q}$$

is the vector of violations of the equations and inequalities.

Optimization and feasibility problems with expensive functions Kaiser, Thekale, Klamroth & Toint Formulation Expensive Functions EFP and EOP Solution methods Basic Ideas EFNES Convergence Results Numerical Results EFNES

Trust-Region Subproblem of (EFP)

Find a (local) minimum of the constrained problem

$$\min_{x \in \mathbb{R}^n} f(x, m_k^u(x))$$

s.t. $x \in \mathcal{Q}(x_k, \delta_k)$

where

$$f(x, m_k^u(x)) = \frac{1}{2} \|\vartheta(x, m_k^u(x))\|_2^2$$
$$\mathcal{Q}(x_k, \delta_k) = \{x \in \mathbb{R}^n \mid \|x - x_k\|_{\infty} \le \delta_k\}$$
$$\vartheta(x, m_k^u(x)) := \begin{pmatrix} c_{\mathcal{E}}(x, m_k^u(x)) \\ [c_{\mathcal{I}}(x, m_k^u(x))]_+ \end{pmatrix} \in \mathbb{R}^{p+q}.$$

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions

EFP and EOP

Trust-Region Subproblem of (EFP)

Find a (local) minimum of the constrained problem

$$\min_{x \in \mathbb{R}^n} f(x, m_k^u(x))$$

s.t. $x \in \mathcal{Q}(x_k, \delta_k)$

where

$$f(x, m_k^u(x)) = \frac{1}{2} \|\vartheta(x, m_k^u(x))\|_2^2$$
$$\mathcal{Q}(x_k, \delta_k) = \{x \in \mathbb{R}^n \mid \|x - x_k\|_{\infty} \le \delta_k\}$$
$$\vartheta(x, m_k^u(x)) := \begin{pmatrix} c_{\mathcal{E}}(x, m_k^u(x)) \\ [c_{\mathcal{I}}(x, m_k^u(x))]_+ \end{pmatrix} \in \mathbb{R}^{p+q}.$$

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions

EFP and EOP

expensive function

- ⇒ Λ-poised interpolation models by Conn, Scheinberg, Vicente (2009)
- \Rightarrow conditional trust-region algorithm by Conn, Gould, Toint (2000)
- ▶ general nonlinear system of equations and inequalities ⇒ filter trust-region algorithm FILTRANE by Gould, Toint (2007)
- ▶ general nonlinear constrained optimization problem
 ⇒ trust-region SQP-filter algorithm
 by Fletcher, Gould, Leyffer, Toint, Wächter (2002)
- ▶ general nonlinear trust-region subproblem ⇒ subproblem solver needs to satisfy the sufficient model decrease condition

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions FEP and EOP

Solution methods

Basic Ideas

EFNE

Convergence Results

expensive function

- ⇒ Λ-poised interpolation models by Conn, Scheinberg, Vicente (2009)
- ⇒ conditional trust-region algorithm by Conn, Gould, Toint (2000)
- general nonlinear system of equations and inequalities
 filter trust-region algorithm FILTRANE by Gould, Toint (2007)
- ▶ general nonlinear constrained optimization problem ⇒ trust-region SQP-filter algorithm by Fletcher, Gould, Leyffer, Toint, Wächter (2002)
- general nonlinear trust-region subproblem
 subproblem solver needs to satisfy the sufficient model decrease condition

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions FEP and EOP

EFF and EOF

Solution methods

Basic Ideas

Convergence Results

► expensive function

- ⇒ Λ-poised interpolation models by Conn, Scheinberg, Vicente (2009)
- ⇒ conditional trust-region algorithm by Conn, Gould, Toint (2000)
- general nonlinear system of equations and inequalities
 filter trust-region algorithm FILTRANE
 by Gould, Toint (2007)
- general nonlinear constrained optimization problem
 - ⇒ trust-region SQP-filter algorithm by Fletcher, Gould, Leyffer, Toint, Wächter (2002)
- general nonlinear trust-region subproblem
 subproblem solver needs to satisfy the sufficient model decrease condition

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions

Solution method

Basic Ideas

EFNES

Convergence Results

Numerical Results EFNES

BERGISCHE UNIVERSITÄT WUPPERTAL

► expensive function

- ⇒ Λ-poised interpolation models by Conn, Scheinberg, Vicente (2009)
- ⇒ conditional trust-region algorithm by Conn, Gould, Toint (2000)
- general nonlinear system of equations and inequalities
 filter trust-region algorithm FILTRANE
 by Gould, Toint (2007)
- ▶ general nonlinear constrained optimization problem
 ⇒ trust-region SQP-filter algorithm
 by Fletcher, Gould, Leyffer, Toint, Wächter (2002)
- general nonlinear trust-region subproblem
 - ⇒ subproblem solver needs to satisfy the sufficient model decrease condition

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions

Solution method

Basic Ideas

EFNES

Convergence Results

Step 0: Initialization

Step 1: Stopping test

Step 2: Trial point determination

Step 3: Acceptance of the trial point

Step 4: Model improvement

Step 5: Selection of new iterate

Step 6: Acceptance test

Step 7: Trust region update

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions

Solution methods

Rasic Ideas

EFNES

Convergence Results

Step 0: Initialization

Input initial values for parameters and compute m_k^0 and $c_0 = c(x_0, u(x_0))$.

Step 1: Stopping test

Step 2: Trial point determination

Step 3: Acceptance of the trial point

Step 4: Model improvement

Step 5: Selection of new iterate

Step 6: Acceptance test

Step 7: Trust region update

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions FEP and EOP

Solution methods

Basic Ideas

EFNES

Convergence Results

Step 0: Initialization

Step 1: Stopping test

Stop if $\vartheta(x_k, u(x_k)) = 0$ or $\|\nabla f(x_k)\|_2 < \varepsilon$ for a valid m_k^u . If m_k^u is not valid improve the model.

Step 2: Trial point determination

Step 3: Acceptance of the trial point

Step 4: Model improvement

Step 5: Selection of new iterate

Step 6: Acceptance test

Step 7: Trust region update

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions

Solution methods

Basic Ideas

EFNES

Convergence Results

Numerical Results EFNES

BERGISCHE UNIVERSITÄT WUPPERTAL

Step 0: Initialization

Step 1: Stopping test

Step 2: Trial point determination

Try to compute x_k^+ which provides a sufficent model decrease. If this is not possible improve the model and go to Step 1.

Step 3: Acceptance of the trial point

Step 4: Model improvement

Step 5: Selection of new iterate

Step 6: Acceptance test

Step 7: Trust region update

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions

EFP and EOP

Solution methods

Basic Ideas

EFNES

Convergence Results

Numerical Results EFNES

BERGISCHE UNIVERSITÄT WUPPERTAL

Step 0: Initialization

Step 1: Stopping test

Step 2: Trial point determination

Step 3: Acceptance of the trial point

If the ratio of predicted (by m_k^u) and actual (requires evaluation of $u(x_k^+)$) improvement is "good enough" accept the trial point.

Step 4: Model improvement

Step 5: Selection of new iterate

Step 6: Acceptance test

Step 7: Trust region update

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions

Solution methods

Basic Ideas

EFNES

Convergence Results

Step 0: Initialization

Step 1: Stopping test

Step 2: Trial point determination

Step 3: Acceptance of the trial point

Step 4: Model improvement

If neccessary improve m_k^u (dependent on the quality of its prediction). Consider arising alternatives for the trial point.

Step 5: Selection of new iterate

Step 6: Acceptance test

Step 7: Trust region update

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions

Solution methods

Basic Ideas

EFNES

Convergence Results

Step 0: Initialization

Step 1: Stopping test

Step 2: Trial point determination

Step 3: Acceptance of the trial point

Step 4: Model improvement

Step 5: Selection of new iterate

Choose the best candidate among x_k^+ and the points generated during the improvement of the model as final trial point x_k^* .

Step 6: Acceptance test

Step 7: Trust region update

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions

Solution methods

Basic Ideas

EFNES

Convergence Results

Step 0: Initialization

Step 1: Stopping test

Step 2: Trial point determination

Step 3: Acceptance of the trial point

Step 4: Model improvement

Step 5: Selection of new iterate

Step 6: Acceptance test

Decide if x_k^* is accepted as x_{k+1} dependent on the accuracy of the prediction by the model in x_k^* and some additional criterion.

Step 7: Trust region update

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions

Solution methods

Basic Ideas

EFNES

Convergence Results

Step 0: Initialization

Step 1: Stopping test

Step 2: Trial point determination

Step 3: Acceptance of the trial point

Step 4: Model improvement

Step 5: Selection of new iterate

Step 6: Acceptance test

Step 7: Trust region update

Update the radius of the trust-region according to the accuracy of the model if the trust-region was used in the current iteration.

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions

EFP and EOP

Solution methods

Basic Ideas

EFNES

Convergence Results

Assumptions 1 - 6

- 1. $c_{\mathcal{I}}$, $c_{\mathcal{E}}$, u twice continuously differentiable, bounded from above
- 2. iterates remain in bounded domain
- 3. m_k^u twice continuously differentiable
- 4. error bounds on model m_k^u
- 5. check and guarantee model validity, whenever necessary
- 6. the solver for the TR-subproblem achieves a sufficient model decrease

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions FEP and EOP

Solution methods

Basic Ideas

EFNES

Convergence Results

Global Convergence of EFNES

Theorem Suppose that Assumptions 1-6 hold. Then either

$$\|\nabla f(x_k, u(x_k))\|_2 = 0$$

for some finite k or

$$\lim_{k\to\infty} \|\nabla f(x_k, u(x_k))\|_2 = 0.$$

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions EFP and EOP

Err and Eor

Solution methods

Basic Ideas

EFNES

Convergence Results

Global Convergence of EFNES

Theorem Suppose that Assumptions 1-6 hold. Then either

$$\|\nabla f(x_k, u(x_k))\|_2 = 0$$

for some finite k or

$$\lim_{k\to\infty} \|\nabla f(x_k, u(x_k))\|_2 = 0.$$

Moreover, if infinitely many values are added to the filter, then we have that

$$\lim_{k\to\infty} \|\vartheta(x_k, u(x_k))\|_2 = 0.$$

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions FEP and EOP

Err and Eor

Solution methods

Basic Ideas

EFNE

Convergence Results

Test Environment

Testset:

- 54 small and medium sized test problems from the CUTEr library
- randomly selected parts are treated as expensive functions

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions EFP and EOP

Solution methods

Basic Ideas

Convergence Results

Numerical Results

Test Environment

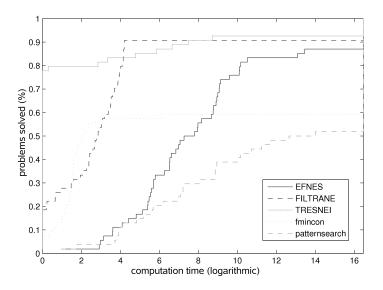
Testset:

- 54 small and medium sized test problems from the CUTEr library
- randomly selected parts are treated as expensive functions
 Compared methods:
 - Matlab implementation of EFNES
 - Matlabfunctions *fmincon* and *patternsearch* (from the optimization- and direct-search toolbox, respectively)
 - TRESNEI (Filter-Trust-Region based solver for nonlinear systems of (in-)equalities by Morini and Porcelli, 2009)
 - ► FILTRANE (part of the Galahad toolbox by Gould, Orban and Toint, 2007)

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation Expensive Functions


Solution methods

Basic Ideas EFNES

Convergence Results

Performance Profile Comparing Computation Time

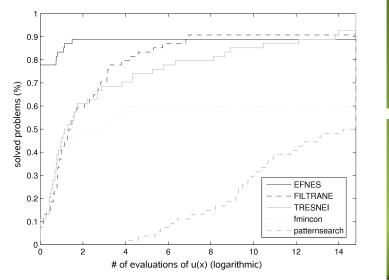
Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation Expensive Functions EFP and EOP

Solution methods

Basic Ideas


EFNES

Convergence Results

Numerical Results

Performance Profile Comparing the Number of Evaluations of the Expensive Function

Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation Expensive Functions

EFP and EOP

Solution methods

Basic Ideas

EFNES

Convergence Results

Numerical Results

Literature

Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. *Trust-Region Methods.* MPS-SIAM Series on Optimization. Society for Industrial Mathematics, 2000.

1 A

Andrew R. Conn, Katya Scheinberg, and Luís N. Vicente. *Introduction to Derivative-Free Optimization*. MPS-SIAM Series on Optimization. Society for Industrial Mathematics, 2009.

Roger Fletcher, Nicholas I. M. Gould, Sven Leyffer, Philippe L. Toint, and Andreas Wächter. Global convergence of a trust-region SQP-filter algorithm for general nonlinear programming. SIAM Journal on Optimization, 13(3):635–659, 2002.

Nicholas I. M. Gould and Philippe L. Toint.

FILTRANE, a Fortran 95 filter-trust-region package for solving nonlinear least-squares and nonlinear feasibility problems.

ACM Transactions on Mathematical Software, 33(1):3-25, 2007.

Test examples for nonlinear feasibility problems with expensive functions. Technical Report, University of Wuppertal, BUW-AMNA-OPAP 10/09.

Markus Kaiser and Alexander Thekale.

Solving nonlinear feasibility problems with expensive functions. Technical Report, University of Wuppertal, BUW-AMNA-OPAP 10/03.

Benedetta Morini and Margherita Porcelli.

TRESNEI, a Matlab trust-region solver for systems of nonlinear equalities and inequalities. Technical report, Dipartimento di Energetica, Università di Firenze, 2009. Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions

EFP and EOP

Solution methods

Basic Ideas

EFNES

Convergence Results

Numerical Results

Thank you for your attention!

Markus Kaiser e-Mail: kaiser@math.uni-wuppertal.de Optimization and feasibility problems with expensive functions

Kaiser, Thekale, Klamroth & Toint

Motivation and Problem Formulation

Expensive Functions EFP and EOP

Solution methods

Basic Ideas

EFNES

Convergence Results

Numerical Results

