Exact Solution Approaches for Location-Allocation Problems with Uncertain Environment

Markus Kaiser, Kathrin Klamroth

Optimization & Approximation Department of Mathematics University of Wuppertal

ISOLDE XII Nagoya and Kyoto, July 19-24, 2012

Outline

Introduction Problem description Goals and assumptions

Mathematical modeling

Theoretical properties Convexity features Discretization result

Combinatorial Branch & Bound algorithm Outline of the algorithm Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description Goals and assumptions

Mathematical modeling

Theoretical properties Convexity features Discretization result

Continuous location-allocation problem

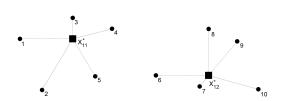
Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introductio

Problem description Goals and assumptions Mathematical modeling Theoretical properties Convexity features Discretization result Combinatorial B&B

algorithm Outline of the algorithm

Continuous location-allocation problem



distance measure: Manhattan-Norm weights: $w^1 = (1, \ldots, 1)$,

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

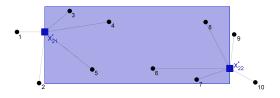
Introductio

Problem description Goals and assumptions Mathematical modeling Theoretical properties Convexity features Discretization result Combinatorial B&B

algorithm Outline of the algorithm

Continuous location-allocation problem with uncertain development of the according environment:

- various forbidden regions,
- different customer weights.



distance measure: Manhattan-Norm weights: $w^1 = (1, \dots, 1), w^2 = (1, 1, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 1, 1),$

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introductio

Problem description

Goals and assumptions

Mathematical modeling

Theoretical properties

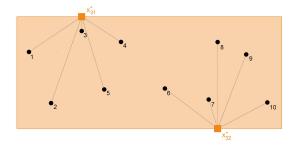
Convexity features

Discretization result

Combinatorial B&B algorithm

Continuous location-allocation problem with uncertain development of the according environment:

- various forbidden regions,
- different customer weights.



distance measure: Manhattan-Norm weights: $w^1 = (1, ..., 1), w^2 = (1, 1, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 1, 1), w^3 = (0.5, ..., 0.5)$ Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introductio

Problem description

Goals and assumptions

Mathematical modeling

Theoretical properties Convexity features

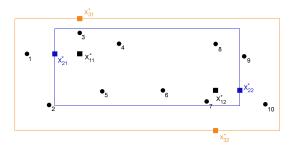
Discretization result

Combinatorial B&B algorithm Outline of the algorithm

BERGISCHE UNIVERSITÄT WUPPERTAL

Continuous location-allocation problem with uncertain development of the according environment:

- various forbidden regions,
- different customer weights.



distance measure: Manhattan-Norm weights: $w^1 = (1, ..., 1), w^2 = (1, 1, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 1, 1), w^3 = (0.5, ..., 0.5)$ Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introductio

Problem description

Goals and assumptions

Mathematical modeling

Theoretical properties

Convexity features

Discretization result

Combinatorial B&B algorithm

Find a solution, which is "optimal" for a "combination" of the additional scenarios and the current situation, i.e.

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction

Problem description

Goals and assumptions

Mathematical modeling

Theoretical properties Convexity features

Discretization result

Combinatorial B&B algorithm

Find a solution, which is "optimal" for a "combination" of the additional scenarios and the current situation, i.e.

▶ locate *M* new facilities in the plane \mathbb{R}^2 such that:

Introduction Problem description

Goals and assumptions

Mathematical modeling

Theoretical properties Convexity features Discretization result

Combinatorial B&B algorithm

Find a solution, which is "optimal" for a "combination" of the additional scenarios and the current situation, i.e.

- locate M new facilities in the plane \mathbb{R}^2 such that:
- under each scenario s, at least one facility remains available, i.e. it is not inside a forbidden region

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description Goals and assumptions

Mathematical modeling

Theoretical properties Convexity features Discretization result

Find a solution, which is "optimal" for a "combination" of the additional scenarios and the current situation, i.e.

- locate M new facilities in the plane \mathbb{R}^2 such that:
- under each scenario s, at least one facility remains available, i.e. it is not inside a forbidden region
- and the (expected) total weighted transportation cost is minimized.

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description Goals and assumptions

Mathematical modeling

Theoretical properties Convexity features Discretization result

Assumptions

Assumptions on the forbidden regions R_{si} , $s \in S$, $i \in I_s$:

- convex and polyhedral,
- ▶ possibility of more than one forbidden region in each scenario (i.e. $|\mathcal{I}_s| \in \mathbb{N}$),
- not necessarily disjoint.

ntroduction

Problem description

Goals and assumptions

Mathematical modeling

Theoretical properties Convexity features

Discretization result

Assumptions

Assumptions on the forbidden regions R_{si} , $s \in S$, $i \in I_s$:

- convex and polyhedral,
- ▶ possibility of more than one forbidden region in each scenario (i.e. $|\mathcal{I}_s| \in \mathbb{N}$),
- not necessarily disjoint.

Assumption on the distance measure:

block-norm or polyhedral gauge (i.e., d = || · ||₁, d = || · ||_∞ or d(x) = max{λ > 0 : x ∈ λX}, for a convex polyhedral set X ⊂ ℝ²). Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description Goals and assumptions Mathematical modeling Theoretical properties Convexity features Discretization result

Assumptions

Assumptions on the forbidden regions R_{si} , $s \in S$, $i \in I_s$:

- convex and polyhedral,
- ▶ possibility of more than one forbidden region in each scenario (i.e. $|\mathcal{I}_s| \in \mathbb{N}$),
- not necessarily disjoint.

Assumption on the distance measure:

block-norm or polyhedral gauge (i.e., d = || · ||₁, d = || · ||_∞ or d(x) = max{λ > 0 : x ∈ λX}, for a convex polyhedral set X ⊂ ℝ²).

Assumption on the representation of the future uncertainty:

- discrete set of scenarios with $|\mathcal{S}| < \infty$,
- ▶ probabilities given by p_s ($0 \le p_s \le 1$, $\sum_{s \in S} p_s = 1$).

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description Coals and assumptions Mathematical modeling Theoretical properties Convexity features Discretization result Combinatorial B&B algorithm

Two-stage stochastic location-allocation model (SLAP)

$$\begin{split} &\min\sum_{n=1}^{N}\sum_{m=1}^{M}z_{nm}w_{n}d(x_{m},a_{n})+\mathbb{E}(\zeta^{s})\\ &\text{s.t.}\ &\sum_{m=1}^{M}z_{nm}=1 \qquad \forall n\in\mathcal{N}\\ &\sum_{m=1}^{M}z_{nm}^{s}=1 \qquad \forall n\in\mathcal{N},\ \forall s\in\mathcal{S}\\ &z_{nm}^{s}\leq 1-y_{m}^{s} \qquad \forall n\in\mathcal{N},\ \forall s\in\mathcal{S}\\ &z_{nm},z_{nm}^{s}\in\{0,1\} \qquad \forall n\in\mathcal{N},\ \forall m\in\mathcal{M},\ \forall s\in\mathcal{S}\\ &x_{m}\in\mathbb{R}^{2} \qquad \forall m\in\mathcal{M} \end{split}$$

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description Goals and assumptions Mathematical modeling Theoretical properties Convexity features Discretization result

Two-stage stochastic location-allocation model (SLAP)

$$\begin{split} \min \sum_{n=1}^{N} \sum_{m=1}^{M} z_{nm} w_n d(x_m, a_n) + \mathbb{E}(\zeta^s) \\ \text{s.t.} & \sum_{m=1}^{M} z_{nm} = 1 \qquad \forall n \in \mathcal{N} \\ & \sum_{m=1}^{M} z_{nm}^s = 1 \qquad \forall n \in \mathcal{N}, \ \forall s \in \mathcal{S} \\ & z_{nm}^s \leq 1 - y_m^s \qquad \forall n \in \mathcal{N}, \ \forall s \in \mathcal{S} \\ & z_{nm}, z_{nm}^s \in \{0, 1\} \qquad \forall n \in \mathcal{N}, \ \forall m \in \mathcal{M}, \ \forall s \in \mathcal{S} \\ & x_m \in \mathbb{R}^2 \qquad \forall m \in \mathcal{M} \end{split}$$

with

$$\mathbb{E}(\zeta^{s}) = \sum_{s \in S} p^{s} \sum_{n=1}^{N} \sum_{m=1}^{M} z_{nm}^{s} w_{n}^{s} d(x_{m}, a_{n}) \quad (\text{expectation of the 2nd stage objective})$$

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description Goals and assumptions Mathematical modeling Theoretical properties Convexity features Discretization result Combinatorial B&B

Two-stage stochastic location-allocation model (SLAP)

$$\begin{split} \min \sum_{n=1}^{N} \sum_{m=1}^{M} z_{nm} w_n d(x_m, a_n) + \mathbb{E}(\zeta^s) \\ \text{s.t.} & \sum_{m=1}^{M} z_{nm} = 1 \qquad \forall n \in \mathcal{N} \\ & \sum_{m=1}^{M} z_{nm}^s = 1 \qquad \forall n \in \mathcal{N}, \ \forall s \in \mathcal{S} \\ & z_{nm}^s \leq 1 - y_m^s \qquad \forall n \in \mathcal{N}, \ \forall s \in \mathcal{S} \\ & z_{nm}, z_{nm}^s \in \{0, 1\} \qquad \forall n \in \mathcal{N}, \ \forall m \in \mathcal{M}, \ \forall s \in \mathcal{S} \\ & x_m \in \mathbb{R}^2 \qquad \forall m \in \mathcal{M} \end{split}$$

with

$$\mathbb{E}(\zeta^{s}) = \sum_{s \in S} p^{s} \sum_{n=1}^{N} \sum_{m=1}^{M} z^{s}_{nm} w^{s}_{n} d(x_{m}, a_{n}) \quad \text{(expectation of the 2nd stage objective)}$$

and

$$y_m^s = \left\{ egin{array}{ccc} 1 & ext{if } x_m \in \mathcal{R}^s \\ 0 & ext{otherwise} \end{array} \; \; \forall m \in \mathcal{M}, \; \forall s \in \mathcal{S} \end{array}
ight.$$

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description Goals and assumptions Mathematical modeling Theoretical properties Convexity features Discretization result Combinatorial B&B

"Standard" location-allocation problem:

$$\begin{split} \min \sum_{n=1}^{N} \sum_{m=1}^{M} z_{nm} d(x_m, a_n) \\ \text{s.t.} & \sum_{m=1}^{M} z_{nm} = 1 \qquad \forall n \in \mathcal{N} \\ & z_{nm} \in \{0, 1\} \qquad \forall n \in \mathcal{N}, \ \forall m \in \mathcal{M} \\ & x_m \in \mathbb{R}^2 \qquad \forall m \in \mathcal{M} \end{split}$$

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description Goals and assumptions

Mathematical modeling

Theoretical properties

Convexity features

Discretization result

"Standard" location-allocation problem:

$$\min \sum_{n=1}^{N} \sum_{m=1}^{M} z_{nm} d(x_m, a_n)$$
s.t.
$$\sum_{m=1}^{M} z_{nm} = 1 \qquad \forall n \in \mathcal{N}$$

$$z_{nm} \in \{0, 1\} \qquad \forall n \in \mathcal{N}, \ \forall m \in \mathcal{M}$$

$$x_m \in \mathbb{R}^2 \qquad \forall m \in \mathcal{M}$$

For fixed z_{nm} ∀n ∈ N, ∀m ∈ M and x_m ∈ ℝ² ∀m ∈ M \ {m̄} the objective function is convex in x_{m̄}. Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

ntroduction Problem description Goals and assumptions

Mathematical modeling

Theoretical properties

Convexity features

Discretization result

"Standard" location-allocation problem:

$$\min \sum_{n=1}^{N} \sum_{m=1}^{M} z_{nm} d(x_m, a_n)$$
s.t.
$$\sum_{m=1}^{M} z_{nm} = 1 \qquad \forall n \in \mathcal{N}$$

$$z_{nm} \in \{0, 1\} \qquad \forall n \in \mathcal{N}, \ \forall m \in \mathcal{M}$$

$$x_m \in \mathbb{R}^2 \qquad \forall m \in \mathcal{M}$$

- For fixed z_{nm} ∀n ∈ N, ∀m ∈ M and x_m ∈ ℝ² ∀m ∈ M \ {m̄} the objective function is convex in x_{m̄}.
- Can an analog property be found for (SLAP)?

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

ntroduction Problem description Goals and assumptions

Mathematical modeling

Theoretical properties

Convexity features

Discretization result

▶ Location-allocation problem with demands *w_n*:

$$\begin{split} \min \sum_{n=1}^{N} \sum_{m=1}^{M} z_{nm} w_n d(x_m, a_n) \\ \text{s.t.} \quad \sum_{m=1}^{M} z_{nm} = 1 \qquad \forall n \in \mathcal{N} \\ z_{nm} \in \{0, 1\} \qquad \forall n \in \mathcal{N}, \ \forall m \in \mathcal{M} \\ x_m \in \mathbb{R}^2 \qquad \forall m \in \mathcal{M} \end{split}$$

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description

Goals and assumptions

Mathematical modeling

Theoretical properties

Convexity features

Discretization result

Combinatorial B&B algorithm

Location-allocation problem with future scenarios (without forbidden regions):

$$\begin{split} \min \sum_{n=1}^{N} \sum_{m=1}^{M} z_{nm} w_n d(x_m, a_n) + \sum_{s \in \mathcal{S}} p^s \sum_{n=1}^{N} \sum_{m=1}^{M} z_{nm}^s w_n^s d(x_m, a_n) \\ \text{s.t.} \quad \sum_{m=1}^{M} z_{nm} = 1 \qquad \forall n \in \mathcal{N} \\ \sum_{m=1}^{M} z_{nm}^s = 1 \qquad \forall n \in \mathcal{N}, \ \forall s \in \mathcal{S} \\ z_{nm}, z_{nm}^s \in \{0, 1\} \qquad \forall n \in \mathcal{N}, \ \forall m \in \mathcal{M}, \ \forall s \in \mathcal{S} \\ x_m \in \mathbb{R}^2 \qquad \forall m \in \mathcal{M} \end{split}$$

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description Goals and assumptions Mathematical modeling

Theoretical properties

Convexity features

Discretization result

► (SLAP):

$$\begin{split} \min \sum_{n=1}^{N} \sum_{m=1}^{M} z_{nm} w_n d(x_m, a_n) + \sum_{s \in S} p^s \sum_{n=1}^{N} \sum_{m=1}^{M} z_{nm}^s w_n^s d(x_m, a_n) \\ \text{s.t.} \sum_{m=1}^{M} z_{nm} = 1 \qquad \forall n \in \mathcal{N} \\ \sum_{m=1}^{M} z_{nm}^s = 1 \qquad \forall n \in \mathcal{N}, \ \forall s \in S \\ z_{nm}^s \leq 1 - y_m^s \qquad \forall n \in \mathcal{N}, \ \forall s \in S \\ z_{nm}, z_{nm}^s \in \{0, 1\} \qquad \forall n \in \mathcal{N}, \ \forall m \in \mathcal{M}, \ \forall s \in S \\ x_m \in \mathbb{R}^2 \qquad \forall m \in \mathcal{M} \end{split}$$

with

$$y_m^s = \left\{ egin{array}{ccc} 1 & ext{if } x_m \in \mathcal{R}^s \\ 0 & ext{otherwise} \end{array} \; \; orall m \in \mathcal{M}, \; orall s \in \mathcal{S} \end{array}
ight.$$

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description Goals and assumptions Mathematical modeling

Theoretical properties

Convexity features

Discretization result

Combinatorial B&B algorithm

► (SLAP):

$$\begin{split} \min \sum_{n=1}^{N} \sum_{m=1}^{M} z_{nm} w_n d(x_m, a_n) + \sum_{s \in \mathcal{S}} p^s \sum_{n=1}^{N} \sum_{m=1}^{M} z_{nm}^s w_n^s d(x_m, a_n) \\ \text{s.t.} \sum_{m=1}^{M} z_{nm} = 1 \qquad \forall n \in \mathcal{N} \\ \sum_{m=1}^{M} z_{nm}^s = 1 \qquad \forall n \in \mathcal{N}, \ \forall s \in \mathcal{S} \\ z_{nm}^s \leq 1 - y_m^s \qquad \forall n \in \mathcal{N}, \ \forall s \in \mathcal{S} \\ z_{nm}, z_{nm}^s \in \{0, 1\} \qquad \forall n \in \mathcal{N}, \ \forall m \in \mathcal{M}, \ \forall s \in \mathcal{S} \\ x_m \in \mathbb{R}^2 \qquad \forall m \in \mathcal{M} \end{split}$$

with

$$y_m^s = \begin{cases} 1 & \text{if } x_m \in \mathcal{R}^s \\ 0 & \text{otherwise} \end{cases} \quad \forall m \in \mathcal{M}, \ \forall s \in \mathcal{S} \end{cases}$$

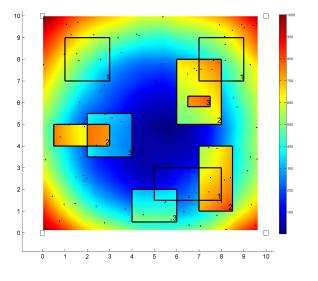
For fixed z_{nm}, z^s_{nm} ∀n ∈ N, ∀m ∈ M, ∀s ∈ S, x_m ∈ ℝ² ∀m ∈ M \ {m̄} and s ∈ S the objective function is convex in x_{m̄}.

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description Goals and assumptions Mathematical modeling Theoretical properties Convexity features Discretization result Combinatorial B&B

algorithm Outline of the algorithm

Examples



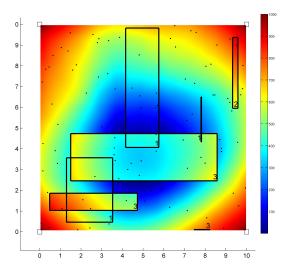
Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description Goals and assumptions Mathematical modeling Theoretical properties Convexity features

Discretization result

- $|\mathcal{N}| = 100, |\mathcal{M}| = 5 \text{ and } |\mathcal{S}| = 3$
- ▶ one new facility $x_{\bar{m}}$ and the allocations z_{nm}, z_{nm}^s are variable

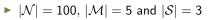
Examples



Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description Goals and assumptions Mathematical modeling Theoretical properties Convexity features Discretization result Combinatorial B&B algorithm

Outline of the algorithm



▶ one new facility $x_{\bar{m}}$ and the allocations z_{nm}, z_{nm}^s are variable

FDS for location-allocation problems with polyhedral gauges

A finite dominating set for the location-allocation problem is

$$\mathcal{P}_{\mathcal{G}} := \mathcal{A} \cup \left(\bigcup_{\substack{n_1, n_2 \in \mathcal{N} \ j_i \in \mathcal{J}_{n_i}}} \bigcap_{i \in \{1,2\}} (a_{n_i} + r_{n_i j_i}) \right).$$

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

ntroduction Problem description Goals and assumptions

Mathematical modeling

Theoretical properties

Convexity features

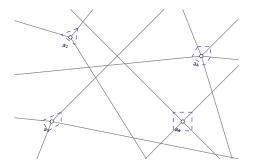
Discretization result

FDS for location-allocation problems with polyhedral gauges

A finite dominating set for the location-allocation problem is

$$\mathcal{P}_{\mathcal{G}} := \mathcal{A} \cup \left(\bigcup_{\substack{n_1, n_2 \in \mathcal{N} \\ n_1 \neq n_2}} \bigcup_{j_i \in \mathcal{J}_{n_i}} \bigcap_{i \in \{1, 2\}} (a_{n_i} + r_{n_i j_i}) \right).$$

▶ Construction grid *G* for mixed polyhedral gauges:



Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description Goals and assumptions Mathematical modeling Theoretical properties Convexity features

Combinatorial B&B

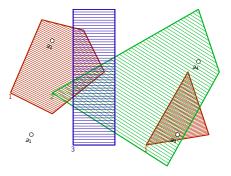
algorithm Outline of the algorithm

Extensions for (SLAP)

Additional grid given by a partition

$$\begin{array}{ll} D_{\bar{\mathcal{S}}} := \bigcap_{s \in \bar{\mathcal{S}}} (\bigcup_{q \in \mathcal{Q}^s} R_q^s) \quad \text{with} \quad \bar{\mathcal{S}} \subseteq \mathcal{S}, \ \bar{\mathcal{S}} = \emptyset \\ \\ \text{and} \quad D_{\emptyset} := \mathbb{R}^2 \setminus R^{\max} = \mathbb{R}^2 \setminus \bigcup_{\substack{\bar{\mathcal{S}} \subseteq \mathcal{S} \\ |\bar{\mathcal{S}}| \ge 1}} D_{\bar{\mathcal{S}}} \end{array}$$

of ${\mathbb R}^2$ due to the forbidden regions:



Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description Goals and assumptions Mathematical modeling Theoretical properties

Convexity features

Discretization result

Finite dominating set for (SLAP)

Theorem

$$\begin{split} \mathcal{P} &:= \mathcal{P}_{G} \cup \mathcal{P}_{D} \cup \mathcal{P}_{GD} \text{ with} \\ \mathcal{P}_{G} &:= A \cup (\bigcup_{\substack{n_{1}, n_{2} \in \mathcal{N} \\ n_{1} \neq n_{2}}} \bigcup_{i \in \mathcal{J}_{n_{i}}} \bigcap_{i \in \{1, 2\}} (a_{n_{i}} + r_{n_{i}j_{i}})), \\ \mathcal{P}_{D} &:= \bigcup_{\substack{s_{1}, s_{2} \in \mathcal{S} \\ q_{1} \in \mathcal{Q}^{s_{1}} \\ q_{2} \in \mathcal{Q}^{s_{2}}}} \bigcup_{\substack{(\partial R_{q_{1}}^{s_{1}} \cup \partial R_{q_{2}}^{s_{2}}) \\ (s_{1}, q_{1}) \neq (s_{2}, q_{2})}} (\partial R_{q_{1}}^{s_{1}} \cup \partial R_{q_{2}}^{s_{2}}) \text{ and} \\ \mathcal{P}_{GD} &:= (\bigcup_{n \in \mathcal{N}} \bigcup_{j \in \mathcal{J}_{n}} (a_{n} + r_{nj})) \cap (\bigcup_{s \in \mathcal{S}} \bigcup_{q \in \mathcal{Q}^{s}} \partial R_{q}^{s}) \end{split}$$

is a FDS for (SLAP).

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description

Goals and assumptions

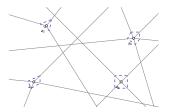
Mathematical modeling

Theoretical properties

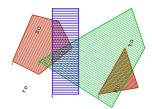
Convexity features

Discretization result

Construction grid for (SLAP)



Construction grid for mixed polyhedral gauges



Partition of \mathbb{R}^2 by forbidden regions of different scenarios

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description Goals and assumptions Mathematical modeling Theoretical properties

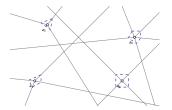
Convexity features

Discretization result

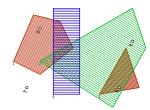
Combinatorial B&B algorithm Outline of the algorithm

BERGISCHE UNIVERSITÄT WUPPERTAL

Construction grid for (SLAP)



Construction grid for mixed polyhedral gauges



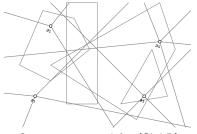
Partition of ${\ensuremath{\mathbb R}}^2$ by forbidden regions of different scenarios

Introduction Problem description Goals and assumptions Mathematical modeling Theoretical properties

Convexity features

Discretization result

Combinatorial B&B algorithm Outline of the algorithm



Construction grid for (SLAP)

BERGISCHE UNIVERSITÄT WUPPERTAL

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description

Goals and assumptions

Mathematical modeling

Theoretical properties

Convexity features

Discretization result

Combinatorial B&B algorithm

Alternating method to iteratively improve the location variables x_m of the new facilities and the allocations z_{nm} and z_{nm}^s of the customers.

Input

Iteration loop

Stopping condition

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

ntroduction Problem description Goals and assumptions

Mathematical modeling

Theoretical properties Convexity features

Discretization result

Combinatorial B&B algorithm

Alternating method to iteratively improve the location variables x_m of the new facilities and the allocations z_{nm} and z_{nm}^s of the customers.

Input

Problem data and initial guess for location variables.

Iteration loop

Stopping condition

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

ntroduction Problem description Goals and assumptions

Mathematical modeling

Theoretical properties Convexity features

Combinatorial B&B algorithm

Alternating method to iteratively improve the location variables x_m of the new facilities and the allocations z_{nm} and z_{nm}^s of the customers.

Input

Problem data and initial guess for location variables.

Iteration loop

Sequentially solve the 1-median problems defined by the allocation variables z_{nm} and update the location and the allocation variables.

Stopping condition

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

ntroduction Problem description Goals and assumptions

Mathematical modeling

Theoretical properties Convexity features Discretization result

Combinatorial B&B algorithm

Alternating method to iteratively improve the location variables x_m of the new facilities and the allocations z_{nm} and z_{nm}^s of the customers.

Input

Problem data and initial guess for location variables.

Iteration loop

Sequentially solve the 1-median problems defined by the allocation variables z_{nm} and update the location and the allocation variables.

Stopping condition

Stop after M successively considered not improving iterations.

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

ntroduction Problem description Goals and assumptions

Mathematical modeling

Theoretical properties Convexity features Discretization result

Combinatorial B&B algorithm

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description

Goals and assumptions

Mathematical modeling

Theoretical properties

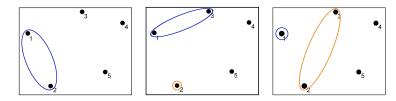
Convexity features

Discretization result

Combinatorial B&B algorithm

Initializing the B&B algorithm

Fixing z_{nm} until one cluster has more than one element.



Bounding

Branching

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

ntroduction Problem description

Goals and assumptions

Mathematical modeling

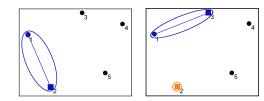
Theoretical properties Convexity features Discretization result

Combinatorial B&B algorithm

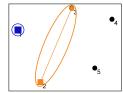
Initializing the B&B algorithm

Bounding

Determine the minimal contribution of the clusters to the objective.



Branching



Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

ntroduction Problem description

Goals and assumptions

Mathematical modeling

Theoretical properties Convexity features

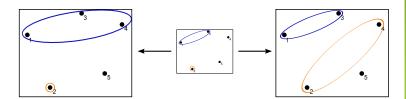
Combinatorial B&B algorithm

Initializing the B&B algorithm

Bounding

Branching

Fixing one additional allocation variable.



Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description

Goals and assumptions

Mathematical modeling

Theoretical properties Convexity features

Combinatorial B&B

algorithm

Step 3: Determine the optimal location and second stage allocation variables

For not rejected leaf nodes of the B&B in Step 2

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description

Goals and assumptions

Mathematical modeling

Theoretical properties

Convexity features

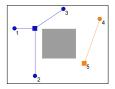
Discretization result

Combinatorial B&B algorithm

Step 3: Determine the optimal location and second stage allocation variables

For not rejected leaf nodes of the B&B in Step 2

 all new facilities may be located outside the forbidden regions,



Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

ntroduction Problem description

Goals and assumptions

Mathematical modeling

Theoretical properties

Convexity features

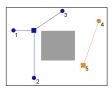
Discretization result

Combinatorial B&B algorithm

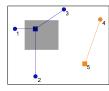
Step 3: Determine the optimal location and second stage allocation variables

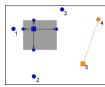
For not rejected leaf nodes of the B&B in Step 2

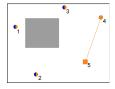
 all new facilities may be located outside the forbidden regions,



▶ or the optimal z^s_{nm}, x_m, ∀n ∈ N, ∀m ∈ M, ∀s ∈ S can be found by relocating or reallocation.







Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

ntroduction Problem description Goals and assumptions

Mathematical modeling

Theoretical properties Convexity features

Discretization result

Combinatorial B&B algorithm

Some numerical results

Computation time for *M* new facilities, *N* demand nodes and *S* scenarios:

	$N \setminus S$	5 2	3	5	
<i>M</i> = 2 :	10	0.4631	3.6366	14.4513	
	15	1.7145	6.6252	32.4374	
	25	8.7551	21.0843	74.4513	
<i>M</i> = 3 :	$N \setminus S$	2	3	5	1
	10	0.9904	7.7156	34.3102	
	15	3.2793	19.1779	71.8686	
	25	21.5336	54.2462	213.5866	1
<i>M</i> = 5 :	$N \setminus S$	2	3	5	1
	10	2.6974	14.1581	87.3337	
	15	19.3129	98.5155	283.6780	'
	25	132.7755	415.1883	1759.137	3

Matlab 7.9, Dual-Core 2.80 GHz CPU and 4 GB memory

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Problem description Goals and assumptions Mathematical modeling Theoretical properties Convexity features Discretization result

Introduction

Some numerical results

relative improvement ^f_{heur}-f^{*}_{B&B}/_{f^{*}_{B&B}} for *M* new facilities, *N* demand nodes and *S* scenarios:

<i>M</i> = 2 :	$N \setminus S$	2	3	5
	10	0.2522	0.2126	0.2040
	15	0.1640	0.1847	0.2344
	25	0.1916	0.2320	0.1520
<i>M</i> = 3 :	$N \setminus S$	2	3	5
	10	0.4038	0.2862	0.2560
	15	0.1834	0.2511	0.2248
	25	0.2712	0.2492	0.3157
<i>M</i> = 5 :	$N \setminus S$	2	3	5
	10	0.2081	0.2927	0.2237
	15	0.2509	0.1988	0.3075
	25	0.2719	0.2682	0.3164

Matlab 7.9, Dual-Core 2.80 GHz CPU and 4 GB memory

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Problem description

Goals and assumptions

Mathematical modeling

Theoretical properties Convexity features Discretization result

Exact Solutions for Location-Allocation Problems with Uncertain Environment M. Kaiser, K. Klamroth

Introduction Problem description Goals and assumptions

Mathematical modeling

Theoretical properties Convexity features Discretization result

Combinatorial B&B algorithm Outline of the algorithm

Markus Kaiser e-Mail: kaiser@math.uni-wuppertal.de

Thank you for your attention!