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Example for different future scenarios

Two forcasts describing the population development in Germany
until 2025:
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Example for different future scenarios

Flood scenarios with various probabilities:

Examples

©Bayeni§eheVermessinosvealtung
o

L ‘

Source: www.lfu.bayern.de/wasser/hw_ue_gebiete/informationsdienst/index.htm



Example for different future scenarios

Flood scenarios with various probabilities:

Examples

Au

: www.Ifu_bayern.de /wasser/hw_ue_gebiete /informationsdienst /index.htm



Example for different future scenarios

Flood scenarios with various probabilities:

Examples

I‘ Feldiirchner
]

Au




Problem description

Continuous location-allocation problem

Problem description



Problem description

Continuous location-allocation problem

distance measure: Manhattan-Norm
weights: w! = (1,...,1),

Problem description



Problem description
Continuous location-allocation problem with uncertain
development of the according environment:
» various forbidden regions,
» different customer weights.

distance measure: Manhattan-Norm
weights: w! = (1,...,1), w? = (1,1,0.7,0.7,0.7,0.7,0.7,0.7, 1, 1),

Problem description



Problem description

Continuous location-allocation problem with uncertain
development of the according environment:

» various forbidden regions,

Problem description

» different customer weights.

distance measure: Manhattan-Norm
weights: w! = (1,...,1), w? = (1,1,0.7,0.7,0.7,0.7,0.7,0.7, 1, 1),
w? = (05,..., 0.5)



Problem description

Continuous location-allocation problem with uncertain
development of the according environment:

» various forbidden regions,

Problem description

» different customer weights.
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distance measure: Manhattan-Norm
weights: w! = (1,...,1), w? = (1,1,0.7,0.7,0.7,0.7,0.7,0.7, 1, 1),

w? = (05,..., 0.5)
Goal: Find a solution, which is ,,optimal® for the expectation of
the future scenarios and the current situation.



Two-stage stochastic location-allocation model
(SLAP)
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with

N oM
B(z) = E Ps E E ZomsW, d(Xm, an) (expectation of the 2nd stage objective)
s€S n=1 m=1

and

1 ifx, € Rs
Yms = : Vme M, Vs e S
0 otherwise
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Assumptions on the forbidden regions Ry;, s € S, i € Z:
» rectangular with boundaries parallel to the coordinate axes,
> possibility of more than one forbidden region in each scenario
(ie. |Z,] € N),
> not necessarily disjoint.

Assumption on the distance measure:

» block-norm or polyhedral gauge.

Assumption on the representation of the future uncertainty:
» discrete set of scenarios with |S| < oo,

» probabilities given by ps (0 < ps <1, > ps =1).
seS




Discretisation
Theorem

Cy: grid points of the construction grid,

Cy: intersection points of the construction grid with the
boundaries of forbidden regions OR, R = UsesRs,

Cs: intersection points of line segments of boundaries of different
forbidden regions.

Then: there is an optimal solution x* = (x{,...,x.) with
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Location-allocation heuristic

Alternating method to iteratively improve the location variables
X, of the new facilities and the allocations z,,, and Zz,,s of the
customers.

I n p ut Heuristics

Problem data and initial guess for location variables.

Iteration loop

Sequentially solve the 1-median problems defined by the allocation
variables z,, and update the location and the allocation variables.

Stopping condition

Stop after M successively considered not improving iterations.




Location-allocation heuristic (1-median
subproblem)
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Location-allocation heuristic (1-median
subproblem)

Consider a mean-problem for the cluster m' € M with
Znmo = Znmy Po =1 and N :={ne N :3Z,ys = 1} :

N M
min Z Ps Z Z 2nmsWnd(Xm’a an)

seS n=1 m=1

M
s.t.ZZ,,mszl VneN,VseS
m=1
2nmsg]-_yms VHGN,VSES
Zoms € {0,1} VneN,Vme M, VseS
Xm/€R2

Solution approach:
1) Solve the unrestricted 1-median problem.

2) If 3s € §: x;;, € Rs consider additional candidates on the
boundaries of the forbidden regions containing x,.
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Genetic algorithm (GA) - basic ideas

Design

» individuals: coordinates of the M locations of one particular
solution of (SLAP),

> genes: coordinates of one location of one solution of (SLAP),

> fitness function: objective function of (SLAP).
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Genetic algorithm (GA) - basic ideas

Design

» individuals: coordinates of the M locations of one particular
solution of (SLAP),

> genes: coordinates of one location of one solution of (SLAP),

Heuristics

> fitness function: objective function of (SLAP).

Initial population

Randomly combine all coordinates given by elements of C.

Generating new individuals (crossing-over and mutation)
> combination of single genes of two parent-individuals,

> building pairs (arbitrarily or by bipartite matching) of a gene from
each parent, linking the pairs and choosing points on the
connection line,

> use all genes of the two parents (infeasible solution) and remove
iteratively the worst one until the solution is feasible.




Branch and Bound - basic ideas

Branching

> combinatorial branching based on the allocation variables of the
current scenario,

> successively fix the z,n, - considering one customer in each level of
the branch and bound tree,

> generate M child nodes from one node by realizing every possible
allocation of one unconnected customer.

Branch & Bound




Branch and Bound - basic ideas

Branching
> combinatorial branching based on the allocation variables of the
current scenario,

> successively fix the z,n, - considering one customer in each level of
the branch and bound tree,

> generate M child nodes from one node by realizing every possible
allocation of one unconnected customer.

Bounds
> upper bound by LA heuristic (or objectives of completely
evaluated nodes),

> lower bound of every node by evaluating the contribution of the
partially constructed clusters.

Branch & Bound




LA heuristic

Computation time with Matlab 7.9, Dual-Core 2.80 GHz CPU
and 4 GB memory:
» 2 future scenarios:

[MXN J[ 10 [ 20 [ 50 [ 100 ] 250 ] 500 ] 1000 | 2000 |
2 0.0247 | 00179 | 0.0267 | 00621 | 00724 | 02610 | 08566 | 1.0931
3 00120 | 00279 | 00312 | 00644 | 0.1884 | 0.3793 | 08041 | 2.1899
5 00161 | 00219 | 0.0677 | 00957 | 02601 | 07110 | 10563 | 5.3643
10 0.0202 | 00326 | 00946 | 0.1275 | 04457 | 14313 | 23414 | 5.4916

» 5 future scenarios:

[MXN [ 10 [ 20 [ 50 [ 100 ] 250 | 500 | 1000 | 2000
2 00139 | 00743 | 0.1581 | 0.1340 | 03052 | 02993 | 2.0992 | 2.5409
3 00281 | 00786 | 00441 | 02906 | 05216 | 07545 | 10009 | 6.3129
5 00323 | 01117 | 02134 | 02003 | 04455 | 1.0590 | 2.6459 | 8.7888
10 00492 | 00691 | 02671 | 02554 | 0.9458 | 1.1800 | 7.5720 | 32.7529

» 10 future scenarios:

[M\N ][ 10 [ 20 [ 50 [ 100 ] 250 ] 500 [ 1000 ] 2000 ]
2 0.1685 | 03933 | 02112 | 02706 | 1.2893 | 1.8686 3.2462 18.2116
3 0.1851 | 04454 | 04688 | 06075 | 3.5155 | 3.3666 45204 37.1779
5 0.1373 | 02736 | 06074 | 33337 | 7.1581 | 7.7755 384467 | 49.7630
10 02508 | 06780 | 2.0802 | 36927 | 42054 | 255880 | 38.2305 | 114.1883




LA heuristic and genetic algorithm

Average improvement (in percent) by metaheuristics compared to
average LA heuristic run (considering 5 scenarios):

» LA heuristic with multistart:

[ M\ N ] 100 ] 250 ] 500 | 1000 ] 2000 ]
2 188 | 197 | 192 | 192 8.1
3 191 | 204 | 197 | 195 | 204
5 201 | 1903 | 182 | 175 7.7
10 176 | 185 | 173 | 162 | 160

» GA finished by LA heuristic:

[ MXN J[ 100 | 250 | 500 | 1000 | 2000 |
2 18.8 19.7 19.1 20.3 20.6
3 19.1 20.5 19.5 20.2 20.4
5 20.2 20.0 18.3 20.4 19.7
10 18.1 19.6 21.5 20.5 20.9

» Hybrid GA combined with LA heuristic:

[ MXN J[ 100 | 250 | 500 | 1000 | 2000 |
2 18.8 19.7 19.1 20.2 20.1
3 19.1 20.5 19.4 20.3 20.5
5 20.2 20.0 18.3 19.7 17.9
10 18.3 18.5 20.1 20.5 20.8




Thank you for your
attention!

Markus Kaiser
e-Mail: kaiser@math.uni-wuppertal.de




	Motivation
	Examples
	Problem description

	Mathematical Modelling
	Solution Approaches
	Heuristics
	Branch & Bound

	Numerical Results

