A Two-Stage Stochastic Programming Approach for Location-Allocation Models in Uncertain Environments

Markus Kaiser, Kathrin Klamroth

Optimization & Approximation Department of Mathematics University of Wuppertal

EWGLA XIX Nantes, October 12-14, 2011

Outline

Motivation

Examples Problem description

Mathematical Modelling

Solution Approaches Heuristics Branch & Bound

Numerical Results

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models M. Kaiser, K. Klamroth

Motivation

xamnles

Problem description

Mathematical Modelling Solution Approaches

Heuristics Branch & Bound

Two forcasts describing the population development in Germany until 2025:

 $Sources: www.bertelsmann-stiftung.de/cps/rde/xchg/bst/hs.xsl/nachrichten_91824.htm \ and \ www.berlin-institut.org/weitere-veroeffentlichungen/demografischer-wandel.html$

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Examples

Problem description

Mathematical Modelling

Solution Approaches
Heuristics
Branch & Bound

Flood scenarios with various probabilities:

 $Source: www.lfu.bayern.de/wasser/hw_ue_gebiete/informationsdienst/index.htm$

2-Stage Stochastic Programming for Uncertain Loc-Alloc

M. Kaiser, K. Klamroth

Motivation

Examples

Models

Problem description

Mathematical Modelling Solution Approaches

Heuristics Branch & Bound

Flood scenarios with various probabilities:

 $Source: www.lfu.bayern.de/wasser/hw_ue_gebiete/informationsdienst/index.htm$

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Examples

Problem description

Mathematical Modelling

Solution Approaches
Heuristics
Branch & Bound

Flood scenarios with various probabilities:

 $Source: www.lfu.bayern.de/wasser/hw_ue_gebiete/informationsdienst/index.htm$

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Examples

Problem description

Mathematical Modelling Solution Approaches

Heuristics Branch & Bound

Continuous location-allocation problem

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Problem description

Mathematical Modelling

Solution Approaches
Heuristics

Branch & Bound

Continuous location-allocation problem

distance measure: Manhattan-Norm weights: $w^1 = (1, ..., 1)$,

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Problem description

Mathematical Modelling

Solution Approaches

Heuristics

Branch & Bound

Continuous location-allocation problem with uncertain development of the according environment:

- various forbidden regions,
- different customer weights.

distance measure: Manhattan-Norm weights: $w^1=(1,\dots,1),\ w^2=(1,1,0.7,0.7,0.7,0.7,0.7,0.7,1.1),$

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Problem description

Mathematical Modelling

Solution Approaches

Heuristics

Branch & Bound

Continuous location-allocation problem with uncertain development of the according environment:

- various forbidden regions,
- different customer weights.

distance measure: Manhattan-Norm weights: $w^1=(1,\ldots,1),\ w^2=(1,1,0.7,0.7,0.7,0.7,0.7,0.7,1.1),\ w^3=(0.5,\ldots,0.5)$

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Problem description

Mathematical Modelling

Solution Approaches

Heuristics Branch & Bound

Continuous location-allocation problem with uncertain development of the according environment:

- various forbidden regions,
- different customer weights.


```
distance measure: Manhattan-Norm weights: w^1=(1,\ldots,1),\ w^2=(1,1,0.7,0.7,0.7,0.7,0.7,0.7,1.1),\ w^3=(0.5,\ldots,0.5)
```

Goal: Find a solution, which is "optimal" for the expectation of the future scenarios and the current situation.

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Problem description

Mathematical Modelling

Solution Approaches

Heuristics Branch & Bound

Two-stage stochastic location-allocation model (SLAP)

$$\begin{aligned} & \min \sum_{n=1}^{N} \sum_{m=1}^{M} z_{nm} w_n d(x_m, a_n) + \mathbb{E}(z_s) \\ & \text{s.t. } \sum_{m=1}^{M} z_{nm} = 1 & \forall n \in \mathcal{N} \\ & \sum_{m=1}^{M} \overline{z}_{nms} = 1 & \forall n \in \mathcal{N}, \ \forall s \in \mathcal{S} \\ & \overline{z}_{nms} \leq 1 - y_{ms} & \forall n \in \mathcal{N}, \ \forall s \in \mathcal{S} \\ & z_{nm}, \overline{z}_{nms} \in \{0, 1\} & \forall n \in \mathcal{N}, \ \forall m \in \mathcal{M}, \ \forall s \in \mathcal{S} \\ & x_m \in \mathbb{R}^2 & \forall m \in \mathcal{M} \end{aligned}$$

2-Stage Stochastic Programming for Uncertain Loc-Alloc

Models
M. Kaiser, K. Klamroth

lotivation

Examples

Problem description

Mathematical Modelling

Solution Approaches

Heuristics

Branch & Bound

Two-stage stochastic location-allocation model (SLAP)

$$\min \sum_{n=1}^{N} \sum_{m=1}^{M} z_{nm} w_n d(x_m, a_n) + \mathbb{E}(z_s)$$
s.t.
$$\sum_{m=1}^{M} z_{nm} = 1 \qquad \forall n \in \mathcal{N}$$

$$\sum_{m=1}^{M} \bar{z}_{nms} = 1 \qquad \forall n \in \mathcal{N}, \ \forall s \in \mathcal{S}$$

$$\bar{z}_{nms} \leq 1 - y_{ms} \qquad \forall n \in \mathcal{N}, \ \forall s \in \mathcal{S}$$

$$z_{nm}, \bar{z}_{nms} \in \{0, 1\} \qquad \forall n \in \mathcal{N}, \ \forall m \in \mathcal{M}, \ \forall s \in \mathcal{S}$$

$$x_m \in \mathbb{R}^2 \qquad \forall m \in \mathcal{M}$$

with

$$\mathbb{E}(z_s) = \sum_{s \in S} p_s \sum_{n=1}^{N} \sum_{m=1}^{N} \bar{z}_{nms} w_n^s d(x_m, a_n) \quad \text{(expectation of the 2nd stage objective)}$$

2-Stage Stochastic Programming for Uncertain Loc-Alloc

Models
M. Kaiser, K. Klamroth

lotivation

xamples

Problem description

Mathematical Modelling

Solution Approaches

Heuristics

Branch & Bound

Two-stage stochastic location-allocation model (SLAP)

$$\min \sum_{n=1}^{N} \sum_{m=1}^{M} z_{nm} w_n d(x_m, a_n) + \mathbb{E}(z_s)$$

s.t. $\sum_{n} z_{nm} = 1$ $\forall n \in \mathcal{N}$

$$\sum_{m=1}^{m} \bar{z}_{nms} = 1 \qquad \quad \forall n \in \mathcal{N}, \ \forall s \in \mathcal{S}$$

 $\bar{z}_{nms} \leq 1 - y_{ms} \qquad \forall n \in \mathcal{N}, \ \forall s \in \mathcal{S}$

 $z_{nm}, \bar{z}_{nms} \in \{0, 1\}$ $\forall n \in \mathcal{N}, \ \forall m \in \mathcal{M}, \ \forall s \in \mathcal{S}$ $x_m \in \mathbb{R}^2$ $\forall m \in \mathcal{M}$

 $\mathbf{x}_m \in \mathbb{R}^2 \qquad \qquad orall m \in \mathcal{M}$ with

 $\mathbb{E}(z_s) = \sum_{s \in S} p_s \sum_{n=1}^{N} \sum_{m=1}^{M} \bar{z}_{nms} w_n^s d(x_m, a_n) \quad \text{(expectation of the 2nd stage objective)}$

and

$$y_{ms} = \left\{ egin{array}{ll} 1 & ext{if } x_m \in \mathcal{R}_s \\ 0 & ext{otherwise} \end{array}
ight. orall m \in \mathcal{M}, \ orall s \in \mathcal{S} \end{array}$$

Models
M. Kaiser, K. Klamroth

otivation

......

Problem description

Mathematical Modelling

Solution Approaches

Branch & Bound

Heuristics

americal results

Assumptions

Assumptions on the forbidden regions $R_{si}, s \in \mathcal{S}, i \in \mathcal{I}_s$:

- ▶ rectangular with boundaries parallel to the coordinate axes,
- ▶ possibility of more than one forbidden region in each scenario (i.e. $|\mathcal{I}_s| \in \mathbb{N}$),
- not necessarily disjoint.

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Problem description

Mathematical Modelling

Solution Approaches

Heuristics Branch & Bound

Assumptions

Assumptions on the forbidden regions $R_{si}, s \in \mathcal{S}, i \in \mathcal{I}_s$:

- ▶ rectangular with boundaries parallel to the coordinate axes,
- ▶ possibility of more than one forbidden region in each scenario (i.e. $|\mathcal{I}_s| \in \mathbb{N}$),
- ▶ not necessarily disjoint.

Assumption on the distance measure:

▶ block-norm or polyhedral gauge.

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Problem description

Mathematical Modelling

Solution Approaches
Heuristics

Branch & Bound

Assumptions on the forbidden regions R_{si} , $s \in \mathcal{S}$, $i \in \mathcal{I}_s$:

- rectangular with boundaries parallel to the coordinate axes.
- possibility of more than one forbidden region in each scenario (i.e. $|\mathcal{I}_{s}| \in \mathbb{N}$).
- not necessarily disjoint.

Assumption on the distance measure:

block-norm or polyhedral gauge.

Assumption on the representation of the future uncertainty:

- ▶ discrete set of scenarios with $|S| < \infty$,
- ▶ probabilities given by p_s (0 ≤ p_s ≤ 1, $\sum p_s$ = 1).

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Problem description

Mathematical Modelling

Solution Approaches Heuristics Branch & Bound

Theorem

 \mathcal{C}_1 : grid points of the construction grid,

 \mathcal{C}_2 : intersection points of the construction grid with the boundaries of forbidden regions $\partial \mathcal{R}, \ \mathcal{R} = \cup_{s \in \mathcal{S}} \mathcal{R}_s$,

 \mathcal{C}_3 : intersection points of line segments of boundaries of different forbidden regions.

Then: there is an optimal solution $x^* = (x_1^*, \dots, x_m^*)$ with

$$x^* \in \mathcal{C} = \bigcup_{i \in \{1,2,3\}} \mathcal{C}_i$$

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Problem description

Mathematical Modelling

Solution Approaches

Heuristics Branch & Bound

Theorem

 C_1 : grid points of the construction grid,

 \mathcal{C}_2 : intersection points of the construction grid with the boundaries of forbidden regions $\partial \mathcal{R}$, $\mathcal{R} = \cup_{s \in \mathcal{S}} \mathcal{R}_s$,

 C_3 : intersection points of line segments of boundaries of different forbidden regions.

Then: there is an optimal solution $x^* = (x_1^*, \dots, x_m^*)$ with

$$x^* \in \mathcal{C} = \bigcup_{i \in \{1,2,3\}} \mathcal{C}_i.$$

Example (ℓ_1 -norm):

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Problem description

Mathematical Modelling

Solution Approaches
Heuristics

Branch & Bound

Theorem

 C_1 : grid points of the construction grid,

 \mathcal{C}_2 : intersection points of the construction grid with the boundaries of forbidden regions $\partial \mathcal{R}$, $\mathcal{R} = \cup_{s \in \mathcal{S}} \mathcal{R}_s$,

 \mathcal{C}_3 : intersection points of line segments of boundaries of different forbidden regions.

Then: there is an optimal solution $x^* = (x_1^*, \dots, x_m^*)$ with

$$x^* \in \mathcal{C} = \bigcup_{i \in \{1,2,3\}} \mathcal{C}_i.$$

Example (ℓ_1 -norm):

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Problem description

Mathematical Modelling

Solution Approaches

Heuristics Branch & Bound

Theorem

 C_1 : grid points of the construction grid,

 C_2 : intersection points of the construction grid with the boundaries of forbidden regions $\partial \mathcal{R}$, $\mathcal{R} = \cup_{s \in \mathcal{S}} \mathcal{R}_s$,

 \mathcal{C}_3 : intersection points of line segments of boundaries of different forbidden regions.

Then: there is an optimal solution $x^* = (x_1^*, \dots, x_m^*)$ with

$$x^* \in \mathcal{C} = \bigcup_{i \in \{1,2,3\}} \mathcal{C}_i.$$

Example (ℓ_1 -norm):

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Problem description

Mathematical Modelling

Solution Approaches
Heuristics

Branch & Bound

Alternating method to iteratively improve the location variables x_m of the new facilities and the allocations z_{nm} and \bar{z}_{nms} of the customers

Input

Iteration loop

Stopping condition

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Problem description

Mathematical Modelling

Solution Approaches

Heuristics

Branch & Bound

Alternating method to iteratively improve the location variables x_m of the new facilities and the allocations z_{nm} and \bar{z}_{nms} of the customers.

Input

Problem data and initial guess for location variables.

Iteration loop

Stopping condition

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

lotivation

Problem description

Mathematical Modelling

Solution Approaches

Heuristics

Branch & Bound

Alternating method to iteratively improve the location variables x_m of the new facilities and the allocations z_{nm} and \bar{z}_{nms} of the customers.

Input

Problem data and initial guess for location variables.

Iteration loop

Sequentially solve the 1-median problems defined by the allocation variables z_{nm} and update the location and the allocation variables.

Stopping condition

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Problem description

Mathematical Modelling

Solution Approaches

Heuristics

Branch & Bound

Alternating method to iteratively improve the location variables x_m of the new facilities and the allocations z_{nm} and \bar{z}_{nms} of the customers.

Input

Problem data and initial guess for location variables.

Iteration loop

Sequentially solve the 1-median problems defined by the allocation variables z_{nm} and update the location and the allocation variables.

Stopping condition

Stop after M successively considered not improving iterations.

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Notivation

Problem description

Mathematical Modelling

Solution Approaches

Heuristics

Branch & Bound

Location-allocation heuristic (1-median subproblem)

Consider a mean-problem for the cluster $m' \in \mathcal{M}$ with $\bar{z}_{nm0} = z_{nm}, \ p_0 = 1 \ \text{and} \ \bar{\mathcal{N}} := \{n \in \mathcal{N} : \exists \ \bar{z}_{nm's} = 1\} :$

$$\min \sum_{s \in \mathcal{S}} p_s \sum_{n=1}^{\bar{N}} \sum_{m=1}^{M} \bar{z}_{nms} w_n d(x_{m'}, a_n)$$

s.t.
$$\sum_{n=1}^{M} \bar{z}_{nms} = 1$$

$$\forall n \in \bar{\mathcal{N}}, \ \forall s \in \mathcal{S}$$

$$\bar{z}_{nms} \leq 1 - y_{ms}$$

$$\forall n \in \bar{\mathcal{N}}, \ \forall s \in \mathcal{S}$$

$$\overline{z}_{nms} \in \{0,1\}$$

$$\forall n \in \bar{\mathcal{N}}, \ \forall m \in \mathcal{M}, \ \forall s \in \mathcal{S}$$

$$x_{m'} \in \mathbb{R}^2$$

2-Stage Stochastic Programming for Uncertain Loc-Alloc

M. Kaiser, K. Klamroth

Motivation |

Models

Examples

Problem description

Mathematical Modelling Solution Approaches

Heuristics

Branch & Bound

Location-allocation heuristic (1-median subproblem)

Consider a mean-problem for the cluster $m' \in \mathcal{M}$ with $\bar{z}_{nm0} = z_{nm}, \ p_0 = 1 \ \text{and} \ \bar{\mathcal{N}} := \{n \in \mathcal{N} : \exists \ \bar{z}_{nm's} = 1\} :$

$$\min \sum_{s \in \mathcal{S}} p_s \sum_{n=1}^{\bar{N}} \sum_{m=1}^{M} \bar{z}_{nms} w_n d(x_{m'}, a_n)$$

 $s.t. \sum_{m=1}^{N} \bar{z}_{nms} = 1$

 $\forall n \in \bar{\mathcal{N}}, \ \forall s \in \mathcal{S}$ $\forall n \in \bar{\mathcal{N}}. \ \forall s \in \mathcal{S}$

 $ar{z}_{nms} \leq 1 - y_{ms}$ $ar{z}_{nms} \in \{0, 1\}$

 $\forall n \in \bar{\mathcal{N}}, \ \forall m \in \mathcal{M}, \ \forall s \in \mathcal{S}$

 $x_{m'} \in \mathbb{R}^2$

Solution approach:

- 1) Solve the unrestricted 1-median problem.
- 2) If $\exists s \in \mathcal{S} : x_{m'}^* \in \mathcal{R}_s$ consider additional candidates on the boundaries of the forbidden regions containing $x_{m'}^*$.

2-Stage Stochastic Programming for Uncertain Loc-Alloc

Models
M. Kaiser, K. Klamroth

Motivation

Problem description

Mathematical Modelling
Solution Approaches

Heuristics

Branch & Bound

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Example

Problem description

Mathematical Modelling

Solution Approaches

Heuristics

Branch & Bound

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Examples

Problem description

Mathematical Modelling

Solution Approaches

Heuristics

Branch & Bound

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Example

Problem description

Mathematical Modelling

Solution Approaches

Heuristics

Branch & Bound

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Examp

Problem description

Mathematical Modelling

Solution Approaches

Heuristics

Branch & Bound

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Examp

Problem description

Mathematical Modelling

Solution Approaches

Heuristics

Branch & Bound

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Example

Problem description

Mathematical Modelling

Solution Approaches

Heuristics

Branch & Bound

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Exampl

Problem description

Mathematical Modelling

Solution Approaches

Heuristics

Branch & Bound

Genetic algorithm (GA) - basic ideas

Design

- individuals: coordinates of the M locations of one particular solution of (SLAP),
- ▶ genes: coordinates of one location of one solution of (SLAP),
- fitness function: objective function of (SLAP).

2-Stage Stochastic Programming for Uncertain Loc-Alloc

Models
M. Kaiser, K. Klamroth

Motivation

Problem description

Mathematical Modelling

Solution Approaches

Heuristics

Branch & Bound

Genetic algorithm (GA) - basic ideas

Design

- individuals: coordinates of the M locations of one particular solution of (SLAP),
- genes: coordinates of one location of one solution of (SLAP),
- fitness function: objective function of (SLAP).

Initial population

Randomly combine all coordinates given by elements of C.

2-Stage Stochastic Programming for Uncertain Loc-Alloc

M. Kaiser, K. Klamroth

Motivation

Models

Problem description

Mathematical Modelling

Solution Approaches

Heuristics

Branch & Bound

Genetic algorithm (GA) - basic ideas

Design

- ▶ individuals: coordinates of the M locations of one particular solution of (SLAP),
- genes: coordinates of one location of one solution of (SLAP),
- fitness function: objective function of (SLAP).

Initial population

Randomly combine all coordinates given by elements of $\mathcal{C}.$

Generating new individuals (crossing-over and mutation)

- combination of single genes of two parent-individuals,
- building pairs (arbitrarily or by bipartite matching) of a gene from each parent, linking the pairs and choosing points on the connection line,
- use all genes of the two parents (infeasible solution) and remove iteratively the worst one until the solution is feasible.

2-Stage Stochastic Programming for Uncertain Loc-Alloc

M. Kaiser, K. Klamroth

Motivation

Models

Problem description

Mathematical Modelling

Solution Approaches

Heuristics

Branch & Bound

Branch and Bound - basic ideas

Branching

- combinatorial branching based on the allocation variables of the current scenario,
- successively fix the z_{nm} considering one customer in each level of the branch and bound tree.
- generate M child nodes from one node by realizing every possible allocation of one unconnected customer.

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Problem description

Mathematical Modelling

Solution Approaches
Heuristics

Branch & Bound

Branch and Bound - basic ideas

Branching

- combinatorial branching based on the allocation variables of the current scenario,
- successively fix the z_{nm} considering one customer in each level of the branch and bound tree.
- generate M child nodes from one node by realizing every possible allocation of one unconnected customer.

Bounds

- upper bound by LA heuristic (or objectives of completely evaluated nodes),
- lower bound of every node by evaluating the contribution of the partially constructed clusters.

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Notivation

Problem description

Mathematical Modelling

Solution Approaches
Heuristics

Branch & Bound

LA heuristic

Computation time with Matlab 7.9, Dual-Core 2.80 GHz CPU and 4 GB memory:

2 future scenarios:

$M \setminus N$	10	20	50	100	250	500	1000	2000
2	0.0247	0.0179	0.0267	0.0621	0.0724	0.2610	0.8566	1.0931
3	0.0129	0.0279	0.0312	0.0644	0.1884	0.3793	0.8041	2.1899
5	0.0161	0.0219	0.0677	0.0957	0.2691	0.7110	1.9563	5.3643
10	0.0202	0.0326	0.0946	0.1275	0.4457	1.4313	2.3414	5.4916

▶ 5 future scenarios:

$M \setminus N$	10	20	50	100	250	500	1000	2000
2	0.0139	0.0743	0.1581	0.1340	0.3052	0.2993	2.0992	2.5409
3	0.0281	0.0786	0.0441	0.2906	0.5216	0.7545	1.0009	6.3129
5	0.0323	0.1117	0.2134	0.2003	0.4455	1.0590	2.6459	8.7888
10	0.0492	0.0691	0.2671	0.2554	0.9458	1.1800	7.5720	32.7529

▶ 10 future scenarios:

$M \setminus N$	10	20	50	100	250	500	1000	2000
2	0.1685	0.3933	0.2112	0.2706	1.2893	1.8686	3.2462	18.2116
3	0.1851	0.4454	0.4688	0.6975	3.5155	3.3666	4.5294	37.1779
5	0.1373	0.2736	0.6974	3.3337	7.1581	7.7755	38.4467	49.7630
10	0.2508	0.6780	2.0802	3.6927	4.2954	25.5889	38.2305	114.1883

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Problem description

Mathematical Modelling

Solution Approaches
Heuristics

Branch & Bound

LA heuristic and genetic algorithm

Average improvement (in percent) by metaheuristics compared to average LA heuristic run (considering 5 scenarios):

► LA heuristic with multistart:

$M \setminus N$	100	250	500	1000	2000
2	18.8	19.7	19.2	19.2	18.1
3	19.1	20.4	19,7	19.5	20.4
5	20.1	19.3	18.2	17.5	17.7
10	17.6	18.5	17.3	16.2	16.9

► GA finished by LA heuristic:

$M \setminus N$	100	250	500	1000	2000
2	18.8	19.7	19.1	20.3	20.6
3	19.1	20.5	19.5	20.2	20.4
5	20.2	20.0	18.3	20.4	19.7
10	18.1	19.6	21.5	20.5	20.9

▶ Hybrid GA combined with LA heuristic:

$M \setminus N$	100	250	500	1000	2000
2	18.8	19.7	19.1	20.2	20.1
3	19.1	20.5	19.4	20.3	20.5
5	20.2	20.0	18.3	19.7	17.9
10	18.3	18.5	20.1	20.5	20.8

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

lotivation

Problem description

Mathematical Modelling

Solution Approaches

Heuristics

Branch & Bound

Thank you for your attention!

2-Stage Stochastic Programming for Uncertain Loc-Alloc Models

M. Kaiser, K. Klamroth

Motivation

Problem description

Mathematical Modelling

Solution Approaches
Heuristics

Branch & Bound

Numerical Results

Markus Kaiser e-Mail: kaiser@math.uni-wuppertal.de