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ABSTRACT 
The characteristic functions of many affine jump-diffusion models, such as Heston’s 
stochastic volatility model and all of its extensions, involve multivalued functions like 
the complex logarithm. If we restrict the logarithm to its principal branch, as is done in 
most software packages, the characteristic function can become discontinuous, leading 
to completely wrong option prices if options are priced by Fourier inversion. In this 
paper we prove without any restrictions that there is a formulation of the characteristic 
function in which the principal branch is the correct one. Seen as this formulation is 
easier to implement and numerically more stable than the so-called rotation count 
algorithm of Kahl and Jäckel [2005], we solely focus on its stability in this article. The 
remainder of this paper shows how complex discontinuities can be avoided in the 
Variance Gamma and Schöbel-Zhu models, as well as in the exact simulation algorithm 
of the Heston model, recently proposed by Broadie and Kaya.  
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1. Introduction 
 
In this paper we will analyse the complex discontinuities one finds when evaluating the 

characteristic function of several popular option pricing models, in particular the seminal 
stochastic volatility model of Heston [1993]. Since the initial breakthrough by Heston a whole 
range of models have appeared that allow for closed-form characteristic functions. In these 
models, prices of European options can be calculated semi-analytically by means of Fourier 
inversion. This approach has in recent years been refined by Carr and Madan [1999], Lewis 
[2001] and Lee [2004] whose combined works show that if a model has a characteristic function, 
the forward price of e.g. a European call on an underlying asset S can be written as: 
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is a residue term, arising from the poles of the integrand in (1). This representation only holds for 
values of the damping coefficient α satisfying φ(-i(α+1)) < ∞, i.e. for those values of α where the 
(α+1)th moment of S(T) is finite. In theory, the option price is independent of the parameter α; in 
practice however, α affects the behaviour of the integrand and choosing the right value for it is 
crucial. The optimal choice of α is considered in Lee [2004] and Lord and Kahl [2007]. 

If we use equations (1)-(2) to evaluate the option price, discontinuities in a characteristic 
function will clearly lead to discontinuities in the integrand of (1). In turn, this will produce 
completely wrong option prices, as we will see shortly. The problem at hand is not unique to 
option pricing, but will occur in any application where one requires an evaluation of a 
characteristic function. Another example of this is the calculation of density functions via 
inversion of the characteristic function, see the exact simulation algorithm of Broadie and Kaya 
[2006] for an application of this in the Heston model. 

To fix ideas, we will focus on the Heston stochastic volatility model throughout this paper, 
though we explore other models in the penultimate section. Two formulations of the characteristic 
function are prevalent in the literature. The first, which is the original formulation of Heston 
[1993], is known to suffer from discontinuities when the complex logarithm is restricted to its 
principal branch. Schöbel and Zhu [1999] first mentioned such problems in the literature. They 
proposed an ad-hoc workaround by letting the integration algorithm used to calculate (1) pick up 
any discontinuities and correct for them. As this is not foolproof, Kahl and Jäckel [2005] 
considered the same problem recently and came up with the rotation count algorithm, an easily 
implementable algorithm that aims to keep the complex logarithm in the Heston model 
continuous. Though the algorithm seems to work perfectly well, a formal proof is required as one 
does not want to be caught by a counterexample. 

The second and less widespread formulation has to our knowledge first appeared in Bakshi, 
Cao and Chen [1997, eq. A.11] and later in Duffie, Pan and Singleton [2000] and Gatheral [2006] 
among others. Interestingly most of the authors using this formulation never mentioned any 
problems with regard to the complex logarithm, and in fact Duffie et al. specify to use the 
principal branch of the complex logarithm. In this paper we prove that Duffie et al. were right to 
do this, as no complex discontinuities arise in this formulation, something that has already been 
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conjectured by Lord and Kahl [2006] and Gatheral [2006]. In Lord and Kahl [2006] we proved 
this result under a mild constraint on the correlation coefficient ρ. In particular, the result 
certainly holds true when ρ is non-positive, which seems to be the practically most relevant case. 
In addition we verified the correctness of the rotation count algorithm under this same constraint. 
Albrecher et al. [2007] proved the continuity of this second formulation without any restrictions 
on the parameters. However, they do restrict α in φ(v-(α+1)i) to be positive. As results in Lee 
[2004] and Lord and Kahl [2007] demonstratively show that a robust option pricer would need to 
able to choose α freely, this restriction would hamper the implementation hereof. A final paper to 
appear on this topic, Fahrner [2007], considers the special case when α = -1/2. The restriction on 
the correlation coefficient is exactly the same as in Lord and Kahl. 

As the union of the results from Lord and Kahl and Albrecher et al. do not fully prove the 
aforementioned conjecture, we set out to finally prove this result without any restrictions on the 
parameters, and more importantly, without any restrictions on α. The remainder of this paper is 
structured as follows. In Section 2 we state the two formulations of the Heston characteristic 
function and show what problems can be caused by using the wrong branch of the complex 
logarithm. Section 3 proves that the second formulation is continuous when the complex 
logarithm is restricted to its principal branch. Section 4 considers the rotation count algorithm and 
analyses in which parameter region we can guarantee that it works. Finally, in section 5 we 
consider other models with similar problems and show how to avoid the complex discontinuities 
there. The models considered are the Variance Gamma model of Madan and Seneta [1990] and 
the stochastic volatility model of Schöbel and Zhu [1999], as well as the recent exact simulation 
algorithm that Broadie and Kaya [2006] developed for the Heston model and extensions thereof. 
Section 6 concludes. 

2. Complex discontinuities in the Heston model 
 

In this section we will first derive the characteristic function of the underlying asset in the 
Heston model. In the second subsection we discuss the potential complex discontinuities that are 
present in the Heston model, and present several examples of the impact this could have on 
option prices.  

 
2.1. Derivation of the characteristic function 
 

Under the risk-neutral pricing measure the Heston stochastic volatility model is specified by 
the following set of stochastic differential equations: 
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where the Brownian motions satisfy dWS(t) · dWv(t) = ρ dt. The underlying asset S has a 
stochastic variance v, which is modelled as a mean-reverting square root process. The parameter 
κ is the rate of mean reversion of the variance, θ is the long-term level of variance and ω is the 
volatility of variance. Finally, the drift μ(t) is used to fit to the forward curve of the underlying. 
We make the following assumption on the parameters: 
 
Assumption: 
 
 κ > 0, ω > 0, |ρ| < 1                 (4) 
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If ω = 0, the model in (3) collapses to the Black-Scholes model with a time-dependent volatility. 
Similarly, if |ρ| = 1, the model is a special case of the local volatility model. The assumption that 
κ > 0 is not essential, though it will facilitate the analysis. Though the Heston model as postulated 
here is typically used for asset classes such as equity and foreign exchange, the mean-reverting 
square root process can be used as a stochastic volatility driver in any asset class, see e.g. 
Andersen and Andreasen [2002] and Andersen and Brotherton-Ratcliffe [2005] for applications 
in an interest rate context, and Mercurio and Moreni [2006] for an inflation context.   

Although the model in (3) is not affine in the underlying asset S and the stochastic variance v, 
it is affine in ln S and v. Furthermore, note that the only time-inhomogeneous part of the model is 
the forward curve of the underlying asset. Hence, following the analysis of Duffie et al. [2000] 
we know that the characteristic function of the logarithm of the underlying will be exponentially  
affine in the logarithm of the forward, and the stochastic variance: 
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Here u ∈  and f is shorthand for ln F(T), the logarithm of the forward price. The functions A and 
Bv satisfy the following system of ODEs: 
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subject to the initial conditions A(u,0) = 0 and B(u,0) = 0. The auxiliary variables we introduced 
are )ui(u)u(ˆ 2
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immediately leads to the following solution: 
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The roots of the Riccati equation for Bv are a = (β+D)/ω2 and b = (β-D)/ω2 with 

γα−β= )u(ˆ4)u()u(D 2 . The solution for Bv thus equals: 
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a great role in the remainder of the paper. The solution to A now follows from: 
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Clearly there are numerous ways of writing the characteristic function, and over the years many 
different formulations have been used. It turns out to be fundamentally important which 
formulation one uses for the function A(u,τ), in particular what one keeps under the logarithm in 
(10) and what one takes out of it. The formulation we have now derived is what we will refer to 
as the second formulation, as it is different to the original formulation in Heston [1993]. To the 
best of our knowledge this formulation has first appeared in Bakshi, Cao and Chen [1997] 3, and 
later in e.g. Duffie, Pan and Singleton [2000] and Gatheral [2006]: 
 
Formulation 2: 
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The first formulation is the original one used by Heston, and also appears in e.g. the articles of 
Lee [2004] and Kahl and Jäckel [2005]: 
 
Formulation 1: 
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where we introduced c(u) = 1/G(u). Though both formulations are algebraically equivalent, it is 
well-known that formulation 1 causes discontinuities when the principal branch of the complex 
logarithm is used, whereas for formulation 2 this turns out not to be the case. As an example of 
yet another formulation we mention Zhu [2000]. As this formulation also causes discontinuities 
when the principal branch of the logarithm is used, we restrict ourselves to these two 
formulations. The next subsection discusses the complex discontinuities caused by formulation 1. 
 
2.2. Complex discontinuities 
 

An easy way to avoid any complex discontinuities is to integrate the ODEs in (6) numerically, 
as this would automatically lead to the correct and continuous solution. A comparative advantage 
of the Heston model is however that it has a closed-form characteristic function, something which 
significantly reduces the computational effort and would be forsaken if we proceeded in this way. 
From a computational point of view it is therefore certainly worthwhile to investigate how to 
avoid discontinuities in the closed-form solution. 

                                                           
3  Although our formulation appears slightly different than that of Bakshi et al. and Duffie et al., the term 

under the logarithm is actually equivalent. 
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By taking a closer look at the characteristic function, it is clear that two multivalued functions 
are present, both of which could cause complex discontinuities. The first candidate is the square 
root used in D(u). It turns out that the characteristic function is even in D, so that we will from 
hereon use the common convention that the real part of the square root is nonnegative. The 
complex logarithm used in (11) and (12) is the second candidate. Let us recall that the logarithm 
of a complex variable z can be written as: 
 

)n2)z(arg(i|z|lnzln π++=                          (13) 
 
where arg(z) is the argument of the complex number, |z| is its radius and n ∈ . A typical choice 
used by most software packages is to restrict the logarithm to its principal branch, by letting 
arg(z)4 be the principal argument, arg(z) ∈ [-π,π), and setting n = 0. In this case the branch cut of 
the complex logarithm is (-∞, 0], and the complex logarithm is discontinuous along it. It is well-
documented that by restricting the complex logarithm to its principal branch formulation 1 will 
yield discontinuities in the characteristic function and hence in the option price. For any set of 
parameters, unless of course 2κθ/ω2 ∈ , problems will arise if τ is sufficiently large, and in fact 
the number of discontinuities will grow with the time to maturity. A first mention of this problem 
was made by Schöbel and Zhu [1999], who encountered the same problem in the implementation 
of their own stochastic volatility model. They mention: “Therefore we implemented our formula 
carefully keeping track of the complex logarithm along the integration path. This leads to a 
smooth CF…”. It seems that over the past years this approach was, and perhaps still is, best 
market practice when it comes to the implementation of stochastic volatility models. The problem 
with this approach is that it requires a very fine integration grid in order to be sure that no 
discontinuities can arise. Even then, one is not sure that the integration routine has singled out and 
corrected for all discontinuities, as one does not know a priori how many discontinuities there are. 

A significant improvement on this ad-hoc approach has been made by Kahl and Jäckel [2005], 
who came up with the rotation count algorithm. This algorithm aims to ensure that the principal 
argument of ψ1 in (12) is continuous. Most importantly, this algorithm is easily implementable 
and allows for any numerical integration scheme to be used to evaluate the option price in (1), 
hereby opening up myriads of possibilities for improving the efficiency of implementations of 
stochastic volatility models. We return to this algorithm in section 4. 

Though Kahl and Jäckel have in their paper documented extensively what can and will go 
wrong if one uses the principal argument of the complex logarithm in conjunction with 
formulation 1, it is good to stress this again in a realistic example. For this we take the parameters 
that Duffie et al. [2000] implied from market data of S&P500 index options. The left panel of 
Figure 1 shows the discontinuities we would get in the argument or phase of ( ))1(iv1 +α−ψ  if 
we would use the principal branch only, compared with the argument obtained by applying the 
rotation count algorithm. In the right panel the impact of these discontinuities on the integrand in 
equation (1) are shown. Here we used the optimal α and transformed the integrand to the unit 
interval with a logarithmic transformation, as outlined in Lord and Kahl [2007]. Note that the 
values in the graphs do not include the scaling by 1/π. 

The chosen example is a 10 year at-the-forward European call, whose true price is 0.1676. The 
option price found from the green dashed line would have been 0.0119, a marked difference that 
will certainly not go unnoticed. At smaller maturities however, the differences may not stand out 
so clearly. With a maturity of 2.5 years there is only one discontinuity; the true option price is 
0.0816 whereas the option price found by bluntly using the principal argument in formulation 1 
yields 0.0839. 

                                                           
4 In the remainder arg(z) will denote the principal argument of z. 
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                               (A)      (B) 

Figure 1: Complex discontinuities in the Heston model 
Parameters: κ = 6.21, ω = 0.61, ρ = -0.7, θ = 0.019, v(0) = 0.010201, F = K = 1, τ = 10, α = 3.35861 

(A) The principal argument/phase of ψ1 with (red solid line) and without (green dashed line) correction 
(B) Integrand in equation (1) in formulation 1 (green dashed line) vs. formulation 2 (red solid line) 

 

3. Why the principal branch can be used 
 

In this section we prove the conjecture of Lord and Kahl [2006] that formulation 2 in (11) 
remains continuous when the complex logarithm is restricted to its principal branch. As 
mentioned, both Lord and Kahl [2006] and Albrecher et al. [2007] have provided partial proofs 
for this conjecture, though the combination of their results involves restrictions on both the 
parameters as well as on Im(u). 

In order to discover which part of the puzzle is still missing, we will need to analyse the proofs 
used in both papers. Let us first introduce some notation. Throughout this paper we will write      
u = x + yi for u ∈ , with x = Re(u) and y = Im(u). For any complex valued number, say z ∈ , 
we will sometimes use the shorthand notation zr = Re(z) and zi = Im(z). 

We only need to consider u ∈ Λx, the strip of regularity of the characteristic function for 
which |φ(u)| < ∞. Analysing the strip of regularity, or moment stability, entails analysing the 
range of ζ ∈  for which φ(-ζi) < ∞. Clearly this range will be of the form (ζ− , ζ+). It can be seen 
that Λx = {u ∈  | -Im(u) ∈ (ζ− , ζ+)}, as we then immediately have: 
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Though moment stability in the Heston model is dealt with in great detail in Andersen and 
Piterbarg [2007], we will require the following result in the proof of our conjecture.  
 
Theorem 1 
The characteristic function of the Heston model is analytic for u ∈ Λ ⊂ , where u ∉ Λ if            
ζ = -Im(u) satisfies one of the two following conditions: 
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Proof: 
Analysing the strip of regularity boils down to analysing the stability of the system of ODEs in 
equation (6) for u = -ζi. As the function A will simply be an integral over Bv, the stability of Bv is 
what matters. The solution in (9) is clearly stable if and only if the denominator is not equal to 
zero, modulo those cases where both the numerator and the denominator are zero and (9) remains 
well-defined. Let us first check those cases when the numerator equals zero, namely β = D or      
D = 0. In the first case, the denominator will be equal to 1 and we have Bv(u,τ) = 0. In the last 
case we need one application of l’Hôpital’s rule to find: 
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so that (9) remains well-defined, provided that τ ≠ -2β(u)-1 whenever D(u) = 0. Note that this can 
only happen when Re(u) = 0, the situation we have here. Combined with the condition following 
from the denominator of (9) we arrive at the conditions (15)-(16). Note that Λx ⊂ Λ.  
 
Remark 1 
For ζ ∈ Λz where D(-ζi) = 0 and β(-ζi) < 0 we have τ ≤ -2β(-ζi)-1. When τ = -2β(-ζi)-1, Theorem 
1 states that ζ ∉ Λ, so that certainly φ(-ζi) is infinite for τ > -2β(-ζi)-1.  
 
Remark 2 
Condition (15) is sufficient when ρ ≤ κ/ω, as is proven in Lord and Kahl [2006]. We note that this 
condition, together with the restriction that ρ ≤ κ/ω also appears in Lee [2004, Appendix A.2], 
however without any hint as to how it can be derived.  
 
Finally, we note that solving ζ+ and ζ− from (15) is not a well-posed problem, as there are an 
infinite number of solutions. To this end it is convenient to use the critical time analysed in 
Andersen and Piterbarg [2007]. In Lord and Kahl [2007] good starting solutions are provided. 

 
3.1. The proof of Lord and Kahl 
 

The proof used by Lord and Kahl [2006] heavily hinges on the observation that |G| ≤ 1 for a 
large range of parameter values. If this is the case, it is not difficult to show that ψ2 cannot cross 
the negative real line. Before turning to the main result, we state the following lemmas. 
 
Lemma 1 
When G(u) = 1, ψ1 and ψ2 will never cross the negative real line. 
 
Proof: 
When G(u) = 1, we have D(u) = 0 and hence: 
 

τβ+=τψ=τψ
→→

)u(1),u(lim),u(lim 2
1

20)u(D10)u(D
           (18) 

 
One can check that D(u) = 0 can only occur when Re(u) = 0. If β(u) ≥ 0 the result is immediately 
clear. For β(u) < 0 we can appeal to Remark 1 to conclude that τ ≤ -2β(-ζi)-1 which precludes ψ1 
and ψ2 from crossing the negative real line.  
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Lemma 2 
If ρ ≤ κ/ω, or Im(u) ≥ y2 and κ/ω ≤ ρ ≤ 2κ/ω, we have: 

 

1
)u(D)u(
)u(D)u()u(G ≤

+β
−β=                          (19) 

 
Proof: The proof for ρ ≤ 0 is stated in the appendix. For a full proof we refer the interested reader 
to Lord and Kahl [2006].  
 
The main result from Lord and Kahl now follows. It uses the result from Lemma 2 and proves 
that under these conditions ψ2 can never cross the negative real line. 
 
Theorem 2 
Let u ∈ Λx, ρ ≤ κ/ω, or Im(u) ≥ -κ/(ρω) and κ/ω ≤ ρ < 2κ/ω. If we are evaluating the 
characteristic function by means of formulation 2 in (11), the principal branch of the complex 
logarithm is the right one.  
 
Proof: 
We have to prove that ψ2(u,τ), defined in (11), never crosses the negative real line for the 
parameter combinations under consideration. Suppose that it does, i.e. that: 
 

ξ−=
−
−=τψ
τ−

1)u(G
1e)u(G),u(

)u(D

2              (20) 

 
for some ξ ≥ 0. We can assume that G ≠ 1 as this case is covered by Lemma 1. Also, as u ∈ Λx 
the numerator cannot equal zero when D(u) ≠ 0, due to condition (15) in Theorem 1. Hence, we 
can assume that ξ is strictly larger than zero. Rearranging (20) yields: 
 

1)e(G D +ξ=+ξ τ−               (21) 
 
In view of ξ, τ, Dr ≥ 0 and |G| ≤ 1 we can take the modulus of the left-hand side: 
 

1)e(|G||)e(G| rDD +ξ≤+ξ⋅≤+ξ τ−τ−             (22) 
 
The first inequality is strict unless Diτ = 2nπ with n ∈ , and the second inequality is strict unless 
|G| = 1 and Dr = 0. Equality in (21) can therefore only occur if |G| = 1, Dr = 0 and Diτ = 2nπ. First, 
one can check that |G| = 1 implies βi = 0 or n = 0. If n = 0, G = 1, which we excluded a priori. 
Second, Dr can only be zero when u = yi. This shows that ψ2 = 1, contradicting (20).  
 
The restrictions on the parameters in Lemma 2 and Theorem 2 are mainly formulated in terms of 
the correlation coefficient ρ as it characterises the main difference between stochastic volatility 
models among various asset classes. Whereas in an equity or FX context ρ is used to fit to the 
skew or smile present in that market, the correlation parameter ρ is often set to zero when used in 
a term structure context. Though there is empirical evidence for this, see references in e.g. 
Andersen and Brotherton-Ratcliffe [2005], the main reason is of a practical nature. If ρ would be 
unequal to zero, a change of probability measure would change the structure of the stochastic 
volatility driver and in a term structure context would cause forward rates to appear in its drift. By 
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setting ρ equal to zero this is avoided. A displacement coefficient is often added to the underlying 
order to be able to fit the implied volatility skew. 

Negative values of ρ are typically required to be able to fit to a skew. Moreover, an implied 
calibration usually yields κ > ω in an implied calibration, implying that ρ ≤ κ/ω holds. For 
evidence of this in the literature we refer the reader to e.g. Bakshi, Cao and Chen [1997], Duffie, 
Pan and Singleton [2000] and Jäckel [2004]. Nevertheless, there are conceivable situations where 
this condition may not hold true, spurring us to prove Theorem 2 without restrictions.  

 
3.2. Filling in the missing gaps 

 
Whereas the proof of Lord and Kahl uses the observation that |G| ≤ 1 for a large range of 

parameter values, Albrecher et al. [2007] assume that the characteristic function φ(u) is being 
evaluated in u ∈  with u = x + yi and y < -1, corresponding to using a positive α in (1). Not 
being able to choose Im(u) freely when valuing options via Fourier inversion would restrict the 
implementation of a robust option pricer, see Lee [2004] and Lord and Kahl [2007]. 

With y2 = -κ/(ρω) and i)y,x(q)y,x(p)yix(D ⋅+=+ , where both p and q are functions 
on the real line, it can be shown that the proof of Albrecher et al. is split into five cases: 

 
1. ρ ≤ 0 and q(1,0)(x,y) ≥ 0 
2. ρ ≤ 0 and q(1,0)(x,y) < 0 
3. ρ > 0 and y ≥ y2 
4. ρ > 0, y < y2 and q(1,0)(x,y) < 0 
5. ρ > 0, y < y2 and q(1,0)(x,y) ≥ 0 

 
The proofs of Cases 1 and 3 use similar arguments to those used in Lemma 2. In the remaining 
cases it is proven that ψ2 cannot be in either the second or third quadrant, and henceforth can 
never cross the negative real line. 

Though the authors assume that y < -1, this assumption is not explicitly made clear in their 
proofs of the above cases. In fact, a closer look at their proof reveals that only Cases 1 and 3 use 
this assumption. First, in the proof of Case 1 it is stated that ρ ≤ 0 and q(1,0)(x,y) ≥ 0 imply y ≤ y2. 
Though this is certainly true when y < -1, it is not true in general. Since the case where ρ ≤ 0 is 
dealt with in full generality by our Theorem 2, encompassing Cases 1 and 2, we need not worry 
about this. 

Second, in the proof of Case 3 the authors state that ρ > 0 and y ≥ y2 implies q(1,0)(x,y) ≤ 0. 
One can check that this is only true when y ≤ -1/2. Hence we have y2 ≤ y ≤ -1/2, implying that     
ρ ≤ 2κ/ω. Once again this case is dealt with in our Theorem 2. The case where q(1,0)(x,y) is larger 
than zero is an open problem, and is dealt with in the following lemma. 
 
Lemma 3 
When ρ > 0, y ≥ y2 and q(1,0)(x,y) > 0, ψ2 does not cross the negative real line. 
 
Proof: See the appendix.  

 
Finally, though Case 4 has a minor overlap with Theorem 2, both Cases 4 and 5 deal with the 

situation where ρ > 2κ/ω, which is not at all covered by our previous work. Since the only open 
problem has been dealt with in Lemma 3, we are ready to prove the main result of this paper, that 
formulation 2 should be used when restricting the complex logarithm to its principal branch. 
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Theorem 3 
Evaluating the Heston characteristic function by means of formulation 2, where we restrict the 
complex logarithm to its principal branch, ensures that the characteristic function of the Heston 
model remains continuous. 
 
Proof: 
This immediately follows by combining the results of Theorem 2, Lemma 3 and Cases 4 and 5 of 
Albrecher et al. [2007].  

4. Why the rotation count algorithm works 
 

Having proven that no branch switching of the complex logarithm is required within 
formulation 2 of the Heston characteristic function, it seems that there is no longer a need for the 
rotation count algorithm of Kahl and Jäckel [2005]. In addition to its easier implementation, a 
further distinct advantage of formulation 2 is its numerical stability. Since D(x+yi) tends to 

x1 2ρ−ω  as x tends to infinity, its real part becomes quite large when calculating option prices. 
While this leads to numerical instabilities in the calculation of ψ1 (formulation 1), as mentioned in 
Kahl and Jäckel’s paper, ψ2 (formulation 2) is much better behaved.  

Nevertheless, from a theoretical perspective it is worthwhile to take a closer look at the 
rotation count algorithm, and show why it works. The rotation count algorithm automatically 
adapts the branch of the complex logarithm such that the characteristic function in formulation 1 
is continuous, as it should be. For a, b ∈  and c ∈  the algorithm is basically concerned with 
the evaluation of d in: 
 

caed b +=                (23) 
 
such that its argument is kept continuous if both the complex function b and the argument of a are 
continuous functions. In the algorithm we will use both the classical and polar representations of 
a complex number, i.e. for z ∈  we will write z = zr + zii with zr = Re(z) and zi = Im(z), as well 
as θ= ize|z|z  with |z| being its radius and zθ its argument5. The algorithm follows as: 
 

1. Calculate the phase interval of aeb as ⎣ ⎦)ba(n i2
1 π++= θπ , equal to 0 if it is in [-π, π); 

2. |cae||d| b +=  
3. n2)caearg(d b π++=θ  where arg denotes the principal argument. 

Algorithm 1: The rotation count algorithm of Kahl and Jäckel 
 

The premise under which algorithm 1 is valid is that the addition of the real number c does not 
change the phase interval of the resulting complex number. If this is indeed the case, we can use 
two successive applications of the rotation count algorithm to evaluate the ratio ψ1 in formulation 
1, see equation (12). First we evaluate 1e)u(c),u(d )u(D

1 −=τ τ , subsequently 1)u(c)u(d 2 −= , 
and finally we write: 
 

 ( ))u(d),u(di

2

1
1

21e
|)u(d|
|),u(d|),u( θθ −ττ

=τψ             (24) 

 

                                                           
5  Note that this is not necessarily the principal argument. 



 12

The following lemma shows that evaluating ψ1 in this way leads to a continuous characteristic 
function, if the premise of the rotation count algorithm is valid. 
 
Lemma 4 
Assume that the premise of the rotation count algorithm is valid and that u:  → Λx describes a 
continuous path in the complex plane. Under these conditions applying the rotation count 
algorithm to evaluate the argument of ),u(1 τψ  as )u(d),u(d 21 θθ −τ  yields a continuous 
characteristic function. 
 
Proof: 
Though the arguments d1θ and d2θ are not necessarily continuous, any discontinuities caused by 
arg(c) are cancelled out as they appear in both terms. The remaining term that could cause a 
discontinuity is D(u). If we write u = x + yi, one can check there are values of y where 

)yix(Dlim)yix(Dlim
0x0x

+=+
↓↑

. Nevertheless this is not a problem either, as for u ∈ Λx the 

characteristic function is real on the imaginary axis, so that this discontinuity in D(u) does not 
have an impact on the characteristic function. Under the premise of the rotation count algorithm 
the assertion is thus true.  
 
The remaining problem is now to check that the premise of the rotation count algorithm is true. 
Consider the following complex function: 
 

i)x()x1()x(f 2
1 −−−=                           (25) 

 
where x ∈ . In the following figure we have drawn f(x)+1, f(x), f(x)-1 and f(x)-2 in the complex 
plane, as well as their principal arguments: 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

                               (A)      (B) 
 

Figure 2: Addition of a real number to a complex number can change the phase interval 
(A) f(x)+1, f(x), f(x)-1 and f(x)-2 in the complex plane 
(B) Argument of all four functions as a function of x 

 
While f(x)+1 and f(x) do have a continuous principal argument, f(x)-1 and f(x)-2 clearly do not. 
The discontinuities here are caused by the fact that these functions make a transition from the 
second to the third quadrant, implying that the principal argument changes from the interval     
[½π, π) to [-π, -½π), clearly causing a jump. The following lemma formalises this observation. 
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Lemma 5 
Consider a continuous function z:  → , where both the real and complex part of z are strictly 
monotone. Assume that z never passes through the origin6. Adding y ∈  where y ≠ 0 to z(x) 
does not make the principal argument of z(x) + y discontinuous as a function of x when compared 
to the principal argument of z(x), if and only if: 
 
• Re(z(x)) ∉ (-y,0) for y > 0 whenever Im(z(x)) changes sign; 
• Re(z(x)) ∉ (0,-y) for y < 0 whenever Im(z(x)) changes sign. 
 
Proof: See the appendix.  
 
Lemma 5 immediately gives necessary and sufficient conditions under which algorithm 1 will 
work. Unfortunately, proving the rotation count algorithm works is more involved than the proof 
of Theorem 3. Whereas in the proof of Theorem 3 it was sufficient to check that ψ2 never crossed 
the negative real line, we here have to simultaneously check that: 
 
• whenever the imaginary parts of )u(c  or τ)u(De)u(c  are zero, their real parts are not in [0,1]; 
• if the imaginary part of τ)u(De)u(c  is zero and its real part is in [0,1], this must also be the 

case for )u(c , and vice versa. 
 
Given that formulation 2 should in any case be preferred over the rotation count algorithm, we do 
not venture to provide a full proof. Nevertheless, it turns out that Lemmas 1 and 2 have given us 
enough machinery to prove that the rotation count algorithm works for almost all relevant 
parameter values. The following theorem is akin to Theorem 2. 
 
Theorem 4 
The rotation count algorithm can safely be applied to the Heston model as long as u ∈ Λx,            
ρ ≤ κ/ω, or Im(u) ≥ -κ/(ρω) and κ/ω ≤ ρ < 2κ/ω.  
 
Proof: 
First note that c = 1/G. For the parameter combinations considered here we have |c| ≥ 1 by virtue 
of Lemma 2. Furthermore: 
 

1|c|e|c||ce| rDD ≥≥= ττ               (26) 
 
since we use the convention that the real part of the square root is nonnegative and τ ≥ 0. If the 
inequality is strict, we can immediately conclude that whenever the imaginary parts of )u(c  or 

τ)u(De)u(c  are zero their real parts are not in the interval [0,1]. When the inequality is an equality, 
we need only worry about the cases where G = -1 or G = 1. The first case is not a problem, 
whereas in the second case we need to evaluate ψ1 as indicated in Lemma 1.  

5. Related issues in other models 
 

Having analysed the Heston characteristic function in great detail, it is time to turn to other 
models. Firstly, we show that the Variance Gamma model does not suffer from any complex 
                                                           
6  Note that the principal argument of zero is undefined. As we only consider the characteristic function on 

its strip of regularity, it will always be well-defined and finite by virtue of (14).  
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discontinuities, even though it contains the multivalued complex power function. Secondly, using 
our results from the Heston model, we show how to avoid any complex discontinuities in both the 
the Schöbel-Zhu model and the exact simulation algorithm of the Heston model. Potential issues 
in other extensions of the Heston model are deferred till Section 6. 

 
5.1. The Variance Gamma model 
 

To demonstrate that other models besides stochastic volatility models may have complex 
discontinuities, we turn to a model of the exponential Lévy class, the Variance Gamma (VG) 
model, first introduced by Madan and Seneta [1990]. Here the underlying asset is modelled as: 

 
( )( ))t(GW)t(Gtexp)t(F)t(S σ+θ+ω=            (27) 

 
where W(t) is a standard Brownian motion, G(t) is a Gamma process with parameter ν > 0 and 
F(t) is the forward price of the underlying stock at time t. Without loss of generality we assume 
that σ is strictly positive. The parameter ω is chosen such that the expectation of (27) is F(t): 
 

)1ln( 2
2
11 νσ−θν−=ω ν               (28) 

 
To simplify notation we introduce f(t) = ln F(t) and t)t(f)t(f~ ω+= . If we denote τ as the time 
to maturity, the conditional characteristic function of the VG model is specified as: 
  

[ ] ( )
( ) ντνσ+θ−
==φ /2

2
1

)T(Slniu

)ui(iu1

)T(f~iuexpe)u(             (29) 

 
The ζth moment of the underlying asset exists as long as ζ ∈ (ζ− , ζ+), defined by: 
 

24

2

2

2
νσ
+

σ
θ±

σ
θ−=ζ±               (30) 

 
so that the extended characteristic function in (29) is well-defined for u ∈ Λx, its strip of 
regularity. As the VG model is fully time-homogeneous, the maximum and minimum allowed 
moments do not depend on the maturity T, in contrast with the situation in the Heston model. In 
the denominator of (29) we are using the complex power function, again a multivalued function. 
The complex discontinuities in the Heston model were in fact also caused by the branch 
switching of the complex power function. Although the characteristic exponent of the Heston 
model contains a complex logarithm, this term is multiplied by -2κθ/ω2 and subsequently its 
exponent is taken. In essence we are thus raising ψ1 or ψ2 (depending on which formulation we 
use) to the power of -2κθ/ω2, so that the branch switching of the complex power function is the 
cause of our complex discontinuities. As mentioned in Section 2.2, if 2κθ/ω2 ∈ , there will be 
no discontinuities in either formulation if we restrict the logarithm to its principal branch. 

If we here restrict the complex power function to its principal branch, i.e. if we evaluate zα for        
z ∈  and α ∈  as )zarg(ie|z| αα , with arg(z) being the principal argument of z, the characteristic 

function of the VG model will only be continuous if νσ+θ− )ui(iu1 2
2
1  does not cross the 

negative real line. In the following theorem it is proven that this never occurs. 
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Theorem 5 
When evaluating the characteristic function of the VG model in u ∈ Λx, we can safely restrict the 
complex power function to its principal branch. 
 
Proof: 
If we write u = x + yi, the imaginary part of νσ+θ− )ui(iu1 2

2
1  can only equal zero when either 

x = 0 or y = θ/σ2. For x = 0 we have: 
 

22
2
12

2
1 yy1)ui(iu1 νσ−νθ+=νσ+θ−             (31) 

 
which for u ∈ Λx, or here -y ∈ (ζ− , ζ+), is strictly positive. For y = θ/σ2 we find: 
 

1x
2

1)ui(iu1 22
2
1

2

2
2

2
1 ≥νσ+

σ
νθ+=νσ+θ−            (32) 

 
so that νσ+θ− )ui(iu1 2

2
1  can clearly never cross the negative real line. The principal branch of 

the complex power function is the correct one, as this is the only one that leads to real values for 
the moment generating function.  
 
One can similarly check that the popular CGMY model, also known as the KoBoL or generalised 
tempered stable model, which contains the Variance Gamma model as a special case, also does 
not suffer from complex discontinuities in its original formulation. 
 
 5.2. The Schöbel-Zhu model 
 

The first mention of discontinuities in characteristic functions caused by the branch switching 
of the complex logarithm or indeed the complex power function was in the article of Schöbel and 
Zhu [1999], who encountered these problems when implementing their extension of the Stein and 
Stein model to allow for non-zero correlation between the underlying asset and the stochastic 
volatility process. We will investigate whether, as in the Heston model, we can recast its 
characteristic function into a form suitable for the principal branch of the complex logarithm. 

Under the risk-neutral pricing measure the underlying asset in the Schöbel-Zhu model evolves 
according to the following set of SDEs: 

  

( ) )t(dWdt)t()t(d

)t(dW)t(S)t(dt)t(S)t()t(Sd S

σω+θ−σκ−=σ

σ+μ=
                        (33) 

 
where the Brownian motions satisfy dWS(t) · dWσ(t) = ρ dt. The difference with the Heston model 
is that instead of the stochastic variance, now the stochastic volatility itself follows an Ornstein-
Uhlenbeck process. A problem with the Schöbel-Zhu model, as noted by e.g. Jäckel [2004], is 
that when the volatility process becomes negative, the sign of the instantaneous correlation 
between S and σ effectively changes. This is economically implausible. 

Using the classification of Gaspar [2004] and Cheng and Scaillet [2007] one can conclude that 
the Schöbel-Zhu model is a linear-quadratic model in ln S and σ, and by the latter paper therefore 
equivalent to an affine model once we add the coordinate v(t) = σ2(t): 

 
( ) )t(dW)t(2dt)t(2)t(v2dt)t(d)t(2)t(dv 22

σωσ+ω+κθσ+κ−=ω+σσ=        (34) 
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One can check that the model is certainly affine in ln S, σ and v, and its characteristic function 
will therefore have the same exponentially affine form as (5): 
 

[ ] ( ))0(v),u(B)0(),u(B),u(Aiufexpe)u( v
)T(Slniu ⋅τ+σ⋅τ+τ+==φ σ        (35) 

 
where A, Bσ and Bv can be solved from the following system of ODEs: 
 

v
222

2
1

v2
1

v

2
vv

v

BBB
d
dA

B)B)u((B2
d

dB

BB)u()u(ˆ
d

dB

ω+ω+κθ=
τ

⋅γ+β−+κθ=
τ

γ+β−α=
τ

σσ

σ
σ                         (36) 

 
subject to the initial conditions Bv(u,0) = Bσ(u,0) = A(u,0) = 0. The auxiliary variables are similar 
to the ones defined in the Heston model, namely )ui(u)u(ˆ 2

1 +−=α , )ui(2)u( ρω−κ=β  and 
22ω=γ . Indeed, there are more similarities with the Heston model. Following remarks by both 

Heston and Schöbel-Zhu, we know that when θ = 0, the Schöbel-Zhu model collapses to a 
particular instance of the Heston model as can be seen from equation (34) – the variance then has 
a mean-reversion speed of 2κ, a volatility of variance equal to 2ω and a mean-reversion level of 
ω2/2κ. If we denote the Heston characteristic function as ( )τρθωκφ ,,,,),0(v),0(S,uH , the 
Schöbel-Zhu characteristic function becomes: 
 

( ))0()(B)(Aexp

),,2/,2,2,)0(),0(S,u(),,,,),0(),0(S,u( 22
HSZ

σ⋅τ+τ⋅

τρκωωκσφ=τρθωκσφ

σσ

        (37) 

 

where Aσ follows the ODE 22
2
1 BB

d
dA

σσ
σ ω+κθ=
τ

. By recognising that the characteristic 

function of the Schöbel-Zhu model can be expressed as an add-on on top of a special case of the 
Heston model, it is immediately clear that the discontinuities can be avoided in the same way as 
in the Heston model. Note that Schöbel and Zhu’s original formulation of the characteristic 
function is different: the term under the complex logarithm is different to that found by using (37) 
in conjunction with either formulation 1 or 2. This explains why they would have had to correct 
for complex discontinuities when restricting the complex logarithm to its principal branch. 

For completeness we provide the remainder of the characteristic function here. Tedious though 
straightforward manipulations show that Aσ and Bσ can be solved in closed-form as: 
 

( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
β+

+−τ+−τβ
ω
θκ−β=τ

−
−

ω
−βκθ=τ

τ−

τ−
+β
β−τ−

σ

τ−

τ−

σ

D

D
D
2DD

23

22

D

2D

2

Ge1
2ee4

)2D(D)4D(
D2

)D()(A

Ge1
)e1(

D
D),u(B

2
122

2
1

2
1

           (38) 

 
with D defined as before in the Heston model. 
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5.3. The exact simulation algorithm of the Heston model 
 

Though the Heston model was originally proposed in 1993, an exact simulation algorithm for 
the SDEs in (3) was not published until recently by Broadie and Kaya [2006]. It goes too far to 
outline the full algorithm in this paper. The crucial step of the algorithm is the simulation of the 
integrated square root process conditional upon its start and endpoint. As this distribution is not 
known in closed-form, Broadie and Kaya chose to simulate from it by inverting its cumulative 
distribution function, which is itself found by inversion of the characteristic function: 

 

⎟
⎠
⎞

⎜
⎝
⎛ ⋅

⎟
⎠

⎞
⎜
⎝

⎛ ⋅
⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−
+−

−
+κ⋅

ω
+⋅

−κ
−=⎥⎦

⎤
⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛=φ

κτ−

κτ−

τ−

τ−

−ω
κ

ν

−ων

τ−

τ−

κτ−

κτ−

τ−

κτ−τκ−−

∫

)e1(
e4

)e1(
e)u(D4

)u(D

)u(D

2

)u(D

))u(D(
t

s

2
2
1

)u(D2

)u(D
2
1

2
1

)t(v)s(vI

)t(v)s(vI

e1
)e1)(u(D

e1
)e1()t(v)s(vexp

)e1(
)e1(e)u(D)t(v),s(vdu)u(viuexp)u( 

                         (39) 

 

with iu2)u(D 22 ω−κ= , the degrees of freedom ν = 2κθ/ω2 - 1 and Iν representing the 
modified Bessel function of the first kind. Finally, τ equals t – s. As the characteristic function in 
(39) depends non-trivially on the two realisations v(s) and v(t), it is not an easy task to 
precompute major parts of the calculations. As a result this step of the algorithm will be highly 
time-consuming. It is therefore not surprising that Lord, Koekkoek and Van Dijk [2006] find that 
several biased simulation schemes, among which their own full truncation scheme and the 
scheme proposed by Kahl and Jäckel [2006], outperform the exact simulation scheme in terms of 
both speed and accuracy, even when the asset value is only required at one time instance. 
Nevertheless, the exact simulation method can be very useful as a benchmark. 

Turning to (39), we note that its numerator contains a complex-valued modified Bessel 
function. Broadie and Kaya carefully tracked arg(z) when evaluating Iν(z) in (39), and changed 
the branch when necessary by means of the following continuation formula, cf. Abramowitz and 
Stegun [1972]: 

 
)z(Ie)ze(I imim

ν
νππ

ν =                (40) 
 
with m an integer value. To demonstrate it really is necessary to track the branch of Iν, we define: 
 

τ−

τ−

−
= )u(D

)u(D

e1
e)u(D)u(z

2
1

              (41) 

 
which up to a scaling by )t(v)s(v2

4
ω

 is the complex-valued argument of Iν in (39). In Figure 3 

we take the second parameter set Broadie and Kaya considered, and graph γ(u) = z(u) / |z(u)|9/10 as 
a function of u. From Figure 3 it is clear that arg(z(u)) is discontinuous, as (the rescaled version 
of) z(u) repeatedly crosses the negative real line in this plot. The key issue is therefore to find a  
way to keep track of the correct branch of z(u). The insights of the Heston model allow us to do 
exactly this, as the following lemma shows. 
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Figure 3: Plot of γ(u) = z(u) / |z(u)|9/10 with hue function log10 (u+1) for u ∈ [0, 100] 
Parameters from Broadie and Kaya [2006]: κ = ω = 1, θ = 0.09, τ = 5 

 

 
Lemma 6 

The function ( ) ( ))u(farg)u(DIm2
1 +τ−  with τ−−

= )u(De1
)u(D)u(f , corresponding to the 

argument of z(u) in (41), is continuous for u ∈ Λx = {u ∈  | -Im(u) ∈ (-∞, (κ2+4π2)/2ω2) }. 
 
Proof: 
The strip of regularity can easily be checked from (39). That Im(D(u)) is continuous should be 
clear, so that it is sufficient to prove that f(u) never crosses the negative real line. We once again 
write u = x + yi. As )u(f)u(f =−  and f(yi) > 0 since u ∈ Λx, it is sufficient to focus on the case 
where x > 0. We will prove that the imaginary part of f(u) can never be positive, so that it will 
never cross the negative real line. First of all note that the sign of Im(D) coincides with the sign of 
Im(D2) = -2ω2x < 0. To show that Im(f) ≤ 0 is equivalent to proving: 
 

0)dsin(d)dcos(ded irii
d

i
r ≤ττ−ττ−τ τ             (42) 

 
Replacing drτ by a ≥ 0 and diτ by -b ≤ 0 for notational convenience we find: 
 

( ) ( ) 0b)bsin(a1)bcos(b)bsin(a)bcos(bbea ≤−+−≤++−          (43) 
 
where the first inequality followed by a first order expansion of the exponent, and the second 
inequality follows by noting that cos(b) – 1 ≤ 0 and sin(b) - b ≤ 0. Finally, note that when         
D(u) = 0, which happens only when Re(u) = 0 and Im(u) = -κ2/2ω2, we have f(u) = exp(-τ).  
 
This is sufficient information if we use the power series to evaluate the modified Bessel function, 
as we can then evaluate z(u)k as exp(k ln z(u)), where the logarithm is kept continuous if it is 
evaluated as )u(fln)u(D)u(zln 2

1 +τ−= , and ln f(u) is restricted to its principal branch. 
Nevertheless, there are alternative numerical methods available for evaluating the modified 
Bessel function, and we need to come up with a formulation that is independent of the chosen 
numerical algorithm. Theorem 6 provides us with such a formulation. 
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Theorem 6 
The characteristic function is continuous for u ∈ Λx if we evaluate it as: 
 

( )
ν

ν⋅φ
)u(z

)u(zlnexp)u(               (44) 

 
where φ(u) is evaluated by using the principal branch for the modified Bessel function, ln z(u) in 
the numerator is evaluated as sketched above, and the denominator uses the principal branch of 
the complex power function. 
 
Proof: 
Immediately follows by realising that the additional term in (44) is exactly the correction term in 
the continuation formula (40).  
 
To monitor the discontinuity of the characteristic function Broadie and Kaya would have had to 
use a very fine discretisation of the Fourier integral leading to the cumulative density function. 
The method we propose opens up the possibility of using arbitrary quadrature schemes, hereby 
speeding up their exact simulation algorithm considerably. Nonetheless, we expect that biased 
simulation schemes will remain the simulation schemes of choice, certainly after the arrival of the 
highly accurate schemes recently introduced by Andersen [2007]. 

6. Conclusions 
 

In this paper we have analysed the complex discontinuities which are found when evaluating 
the closed-form characteristic function of several popular option pricing models. Such 
discontinuities have first been documented in option pricing by Schöbel and Zhu [1999], and are, 
at least in the Heston and Schöbel-Zhu stochastic volatility models and their extensions, caused 
by the branch switching of the complex logarithm. Being unaware of these issues can lead to 
completely wrong option prices if we price European options by means of Fourier inversion.   

When pricing options via Fourier inversion, the method which most practitioners seem to use 
to correct for these discontinuities is to carefully monitor the imaginary part of the complex 
logarithm and change its branch if a discontinuity is detected. Clearly this method is not 
foolproof, and moreover, highly inefficient. The only method to this date to guarantee a 
continuous characteristic function is to bypass the closed-form solution and numerically integrate 
the ordinary differential equation that gives rise to the complex logarithm. Unfortunately this 
approach forsakes the comparative advantage of these option pricing models, precisely the fact 
that their characteristic function can be calculated in closed-form. 

As a foolproof alternative, Kahl and Jäckel [2005] recently proposed their rotation count 
algorithm, which is an easily implementable algorithm that claims to be able to keep the complex 
logarithm in the Heston model continuous. Lord and Kahl [2006] proved, under relatively mild 
conditions on the parameters, that this is indeed the case. Under the same conditions we had 
already verified in the same paper that in an alternative formulation of the Heston characteristic 
function, which has appeared in e.g. Bakshi, Cao and Chen [1997], Duffie, Pan and Singleton 
[2000] and Gatheral [2006], the principal branch of the complex logarithm is the correct one. 
Other papers have appeared on this issue. Most notably Albrecher et al. [2007] have considered 
the second formulation under the restriction that the imaginary argument of the characteristic 
function is smaller than minus 1, corresponding to positive values of the damping coefficient α in 
Carr and Madan’s option pricing formula, and have proven that in this case the principal branch is 
the correct one. While our proof and theirs do not overlap entirely, the union of both proofs does 
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not cover all possible configurations of the Heston model. In this paper we analysed the cases that 
were still open, and filled in the missing gaps. This proves that with the second formulation we do 
not have to worry about the branch switching of the complex logarithm, and can stick with its 
principal branch. As this formulation is easier to implement than the rotation count algorithm, and 
in addition more numerically stable, it should be the preferred formulation. 

With the lessons from the Heston model in hand, the remainder of this article investigates the 
complex discontinuities that arise in a selection of other models. First of all we show that 
although the Variance Gamma model involves the complex power function, its characteristic 
function can be evaluated by restricting the complex power function to its principal branch. 
Secondly, we have shown how to avoid complex discontinuities in both the Schöbel-Zhu model 
and the exact simulation algorithm of the Heston model proposed by Broadie and Kaya [2006].  

Many other models may suffer from similar problems, but it is clearly beyond the scope of this 
paper to consider them all here. In conclusion we will merely mention several extensions of  
Heston’s model that are practically relevant. The first example we mention is the pricing of 
forward starting options in Heston’s model, not via the bivariate integral of Kruse and Nögel 
[2005], but via the equivalent univariate integral of Hong [2004] and Lucic [2004], whose work 
demonstrates that we can use Carr-Madan’s pricing formula to price these options, since the 
characteristic function of ln S(T) / S(t) for t ≤ T can be derived in closed-form. It appears that one 
can use our findings from Section 3 to construct a formulation in which we can restrict the 
complex logarithm to its principal branch. The remaining examples we discuss appear to be 
harder to analyse. One such example is, strangely enough, Heston’s model with piecewise 
constant parameters, considered in e.g. Mikhailov and Nögel [2004]. Though it allows for a much 
greater flexibility when calibrating to market data, the fact that its characteristic function is solved 
by repeated application of the tower law of conditional expectation does not facilitate the 
analysis. Other examples are Matytsin’s [1999] model, which we considered in Lord and Kahl 
[2006], and Duffie, Pan and Singleton’s [2000] SVJJ model, which allows for correlated jumps in 
the asset and stochastic variance. Finally, in the joint characteristic function in the Heston model 
we have so far not been able to find a formulation in which we can safely restrict the complex 
logarithm to its principal branch. Though there are no options which directly depend on the latent 
stochastic volatility, the joint characteristic function may be of importance when pricing exotic 
options via lattice-based algorithms such as the CONV algorithm, see Lord, Fang, Bervoets and 
Oosterlee [2008]. 
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Appendix – Proofs 
 
In this appendix we provide the proofs for lemma’s 2, 3 and 5. 
 
Lemma A.1 
If x, y ∈  and xy = , with yr > 0, we can write: 
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if we use the convention that the real part of the square root is positive.  
 
Lemma A.2 

For x, y ∈  we have that if 0)yIm()xIm()yRe()xRe( ≥− , then yxyx 2= . If the 

condition is not satisfied, we have yxyx 2−= .  
 
Lemma A.3 
For x, y ∈  consider the following complex number: 
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Its modulus is equal to 1 if x = 0 or Re(y/x2) ≤ -1 and Im(y/x2) = 0, and less than 1 if: 
 

0)yxIm()Im()yxRe()Re( 2
x
12

x
1 ≥+−+                                                               (A.3) 

 
Proof: 
If x = 0 we immediately have z = -1. Assume that (A.3) holds true and that x ≠ 0. Then:  
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by virtue of lemma A.2. We can write this as z = (1-u)/(1+u) with ur ≥ 0. Its modulus satisfies: 
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with equality attained only when ur = 0, i.e. if and only if Re(y/x2) ≤ -1 and Im(y/x2) = 0. Clearly 
the modulus of z is larger than or equal to 1 if (A.3) does not hold true.  
 
The following proposition collects many properties of some functions that we require hereafter. 
All properties can be proven by using basic algebra, so that we omit the proof. 
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Proposition 
Consider the following two functions: 
 

( )
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where we have introduced the convention that u = x + yi, for x, y ∈ . Furthermore, define: 
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Note that: 
• when ρ < 0 or ρ ≥ 2κ/ω, y2 ≥ y1; 
• when 0 < ρ ≤ 2κ/ω, y2 ≤ y1. 
 
For x ≥ 0 the function p has the following properties: 
• p is maximal w.r.t. y in y1; 
• For y < y1, p is strictly increasing in y, for y > y1, p is strictly decreasing in y; 
• p is always strictly increasing in x; 
 
Similarly, we can show that for x ≥ 0 the function q has the following properties: 
• q(x,y1) = 0; 
• q is positive and strictly increasing in x for y > y1; 
• q is negative and strictly decreasing in x for y < y1; 
• q is strictly increasing in y.  
 
The following lemma is key to proving lemma 2. Its proof uses many of the previous properties. 
 
Lemma A.4 
For x ≥ 0 the functions p and q defined in the previous proposition satisfy: 
 

( ) 0)y,x(xq)y,x(q)y,x(p)y,x(p)y( 22 ≥ωρ−++ωρ+κ                                      (A.8) 
 
if in addition ρ ≤ κ/ω, or y ≥ y2 and κ/ω ≤ ρ ≤ 2κ/ω.  
 
Proof: 
The full proof is given in Lord and Kahl [2006], we only provide the proof for ρ < 0 and ρ = 0 
here. Each case is divided into several sub cases, based on ranges for the variable y. 
 
Case 1: ρ < 0 

 
1a) y ≤ y1 ≤ y2 
We can reshuffle: 
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Since y ≤ y2 implies κ+ωρy ≥ 0, it is sufficient to square both sides and prove the resulting 
inequality. We obtain: 
 

)y21()yx)(2()y,x(f

0)y,x(f)y,x(xq
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Since q is negative for y ≤ y1, we have to prove that f(x,y) ≤ 0. The function f is maximal with 
respect to x for x = 0, and maximal w.r.t. y in: 
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Here we have y3 ≥ 0. Since y1 ≤ 0, it suffices to show that f(0,y1) < 0. We have: 
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Clearly, g(ρ) > 0 for ρ < min(2κ/ω,1). Since the left-hand side is negative for ρ < 0, f(0,y1) < 0. 
 
1b) y1 ≤ y ≤ y2 
We still have κ+ωρy ≥ 0. If p is positive, the inequality is immediately seen to be true. If p is 

negative, we have )y,x(p)y,x(q)y,x(p 22 −≥+ , so that the inequality clearly also holds. 
 
1c) y1 ≤ y2 ≤ y 
Here κ+ωρy ≤ 0. First note that in this region: 
 

0)y,x(xq)y,x(p)y( ≥ωρ−ωρ+κ         (A.13) 
 
If p is negative, the proof is easy, since ρ ≤ 0 and q is nonnegative. So let us assume that p is 
positive. Working out the function shows that x2 is the only power of x in it, and its coefficient is: 
 

( ))y)1(1()1( 222 ρ−+ωρ−ρ+κω                      (A.14) 
 
which is increasing in y, and positive for y ≥ 0. Since y2 ≥ 0 in this region, the coefficient of x2 is 
positive. Because p too is strictly increasing in x, it suffices to check the inequality for that x 
where p(x,y) = 0. But then the remaining inequality is -ωρxq(x,y) ≥ 0 which is immediately seen 
to be true. Hence, if we can prove the inequality from 1a) but now in reverse, we are done: 
 

0)y,x(f)y,x(xq2 ≤ω           (A.15) 
 
Since q is here positive, it remains to show that f(x,y) is negative. As in 1a), f is maximal w.r.t. x 
in x = 0 and maximal w.r.t. y in y3. In this region y2 ≥ y3, so that it is sufficient to check that 
f(0,y2) ≤ 0. It turns out that f(0,y2) = 0, which concludes the proof of case 1. 
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Case 2: ρ = 0 

When ρ = 0, the inequality can be reduced to 0)y,x(q)y,x(p)y,x(p 22 ≥++ . Using the 
rationale of 1b) it is clear that this is true.  
 
We now have the necessary machinery to prove lemma 2. 
 
Lemma 2 
If ρ ≤ κ/ω, or Im(u) ≥ y2 and κ/ω ≤ ρ ≤ 2κ/ω, we have: 
 

1
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Proof: 
As before, we will write u = x + yi here. It is fairly easy to show that )u(G)u(G =− , so that it 
suffices to focus on the case x ≥ 0. Since D2 = β2 + ω2u(i+u), G(u) is of the form treated in lemma 
A.3. Let us therefore first assume that β ≠ 0. The condition from lemma A.3 which guarantees 
that (A.16) holds, is then: 
 

0)DIm()Im()DRe()Re( ≥β+β          (A.17) 
 
which we obtain from (A.3) by multiplying with |β|2. 
 
Case 1: x ≥ 0, β ≠ 0, Re(D) = 0 
Lemma A.1 shows us that: 
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If Re(D) = 0 we must therefore have q = Im(D2) = 0 and p = Re(D2) ≤ 0. Since qipD += , it is 

clear that we then have piD −= , and (A.17) becomes: 
 

0)y,x(px ≥−ωρ−           (A.19) 
 
Clearly q can only be zero if x = 0 or if y = y1. Tedious but straightforward algebra shows that p 
is strictly positive when y = y1 and x > 0, so that we can conclude that x = 0, and that (A.17) 
always holds in case 1. 
 
Case 2: x ≥ 0, β ≠ 0, Re(D) > 0 
Since Re(D) > 0, we can multiply (A.17) by 2Re(D) and apply lemma A.1 to obtain: 
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This inequality is proven in lemma A.4 under the conditions which we impose on ρ and y. 
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Case 3: x ≥ 0, β = 0 
When β = 0, lemma A.3 states that |G| = 1. We can only have β = 0 when ρ ≠ 0, x = 0 and y = y2.  
 
This concludes the proof.  
 
Lemma 3 
When ρ > 0, y ≥ y2 and q(1,0)(x,y) > 0, ψ2 does not cross the negative real line. 
 
Proof: 
We must have x + yi ∈ Λx, so that ψ2(yi) will not lie on the negative real line by construction. 
Since )u()u( 22 ψ=−ψ , it suffices to prove that ψ2(x+yi) will not cross the negative real line for 
values of x ≥ 0. In addition we can impose |G| > 1 w.l.o.g., as for |G| ≤ 1 we already know that ψ2 
can never cross the negative real line from Theorem 2. Since q(1,0)(x,y) > 0 we have y ≥ y1, and 
one can check that both dr and di are strictly positive. Also, y ≥ y2 implies κ + ωρy ≥ 0. Note that: 
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We will prove that ψ2 cannot lie in the second quadrant, which implies the negative real line can 
never be crossed. Let us define the following positive constants: 
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Positivity of A follows from the fact that |G| > 1, so that the reverse of (A.17) is true. First of all 
note that the imaginary part of ψ2 equals (up to a positive scaling, namely 2|d|2exp(drτ) ): 
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If the sine would be positive, the whole term would obviously be negative, and we would be 
finished. Hence, we can assume that the sine is negative. Let us suppose that ψ2 lies in the second 
quadrant, implying that (A.23) is positive, and hence: 
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We will try to arrive at a contradiction by proving that Re(ψ2) > 0. Up to the same scaling: 
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Since the coefficient of B is positive, we can invoke (A.24) to bound this from below by: 
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We claim that this is positive, which amounts to proving that: 
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The first derivative of the left-hand side w.r.t. τ is: 
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so that it is sufficient to prove that: 
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as then the left-hand side of (A.27) is increasing in τ, and it is zero for τ = 0, so that we can 
conclude that (A.27) is true. When dr ≥ di (A.29) is obviously true. Dividing (A.29) by di

2 > 0: 
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Now, note that since q(x,y) > 0 we can write: 
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In order for dr to be smaller than di, p/q must be negative. As for y > y1 q is positive, this implies 
p must be negative. Now, let us solve the equation p/q = zpq for x. Note that zpq < 0 whereas         
0 ≤ zd < 1. This yields two solutions: 
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with: 
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2
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As p(0,y) = p(x,y) - ω2(1-ρ2)x2 and p(x,y) < 0, we must have p(0,y) < 0, so that h(y) is always 
positive. Note that in (A.32) zpq < 0 and y > y1, implying that the first term is negative. Secondly, 
it is obvious that the smallest solution (x1) is negative, whereas the largest solution (x2) is 
positive. Disregarding the negative solution, we can rewrite inequality (A.30) as: 
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Now, consider p(x2, y). For which values of y is this negative? We have: 
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Tedious algebra shows that the only two real zeroes of this equation coincide with those of p(0,y): 
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Obviously only the positive zero has to be considered here. Let us call this zero y3. It can be 
shown that y3 > y2. Also note that h(y) is minimal in y1, and since h(y3) > 0 and y3 > y1, h(y) is 
positive for y > y3. Finally, since ∞=

±∞→
m)y,x(plim 2y

, we conclude that p(x2, y) is decreasing and 

negative on this domain. 
We now have to investigate (A.34) for y ≥ y3 and 0 < zd < 1 (or zpq < 0). It turns out that (A.34) is 
increasing in y. First of all, note that to show that (A.34) is increasing in y is equivalent to 
proving that: 
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Expanding the left-hand side and rearranging yields: 
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Since both sides are positive and h(y) > 0, we can bound h(y) in (A.33) as: 
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and hence: 
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as we wanted to prove. Hence, it is sufficient to prove (A.34) for y = y3. Equating y to y3 and 
multiplying by (1-ρ2)/zd > 0 yields: 
 

)2()1()2( 222 ρω−κ−>ρ−ω+ωρ−κρ        (A.41) 
 
Clearly, if ρ < 2κ/ω this is true. If the reverse is true, we can square both sides and from the 
assumption that ρ > 2κ/ω it follows that (A.41)  is true. Finally, we can conclude that (A.34) and 
hence (A.29) holds true for dr < di as well. This shows that if Im(ψ2) > 0, ψ2 must lie in the first 
quadrant, so that ψ2 can indeed never lie in the second quadrant. The negative real line can 
therefore never be crossed.  
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Lemma 5 
Consider a continuous function z:  → , where both the real and complex part of z are strictly 
monotone. Assume that z never passes through the origin. Adding y ∈  where y ≠ 0 to z(x) does 
not add any discontinuities to the principal argument of z(x) + y when compared to the principal 
argument of z(x), if and only if: 
 
• Re(z(x)) ∉ (-y,0) for y > 0 whenever Im(z(x)) changes sign; 
• Re(z(x)) ∉ (0,-y) for y < 0 whenever Im(z(x)) changes sign. 
 
Proof: 
Let us first define the difference of the principal arguments of z(x) and z(x) + y as f(x): 
 

( ) ( )y)x(zarg)x(zarg)x(f +−=                                  (A.42) 
 
Let a trajectory from quadrant i to quadrant j, without crossing any quadrants inbetween, be 
denoted as a tuple (i,j). The direction in which the trajectory is traversed does not matter here. 
Trajectories of z that do not cause any discontinuities are (1,2), (1,4), (3,4). A trajectory of z that 
does cause discontinuities is (2,3). Clearly the horizontal trajectories (1,2), (3,4) and vice versa 
can be neglected here, as Im(z(x)) does not change sign here. The diagonal trajectories (1,3) and 
(2,4) can also be excluded, as we assumed that z never passes through the origin. Finally, let x* 
be that x on the trajectory such that Im(z(x*)) = 0. 
Let us start with the trajectory (1,4). Evidently the trajectory of z(x) + y remains (1,4), provided 
that Re(z(x*)) + y > 0. However, if Re(z(x*)) + y < 0, the trajectory will pass through the origin 
in an infinitesimal neighbourhood of x*. This will lead to a discontinuity in the principal 
argument, so we have to exclude this case. The same happens when Re(z(x*)) + y = 0. 
If we start out with (2,3) as the trajectory of z(x), the same analysis leads to the requirement that 
Re(z(x*)) + y < 0, if we want to keep f(x) continuous. Collecting the results we find that f(x) 
remains continuous provided that: 
 
• If Re(z(x*)) < 0, y must satisfy Re(z(x*)) + y < 0; 
• If Re(z(x*)) > 0, y must satisfy Re(z(x*)) + y > 0. 
 
This result is slightly rephrased in the lemma, so this concludes the proof.  


