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Abstract

In Heston’s stochastic volatility frameworkips93, semi-analytical formulee for plain vanilla
option prices can be derived. Unfortunately, these formulae require the evaluation of logarithms with
complex arguments during the involved inverse Fourier integration step. This gives rise to an inherent
numerical instability as a consequence of which most implementations of Heston’s formulae are not
robust for moderate to long dated maturities or strong mean reversion. In this article, we propose a
new approach to solve this problem which enables the use of Heston’s analytics for practically all
levels of parameters and even maturities of many decades.

1 Introduction

The Heston stochastic volatility model is given by the system of stochastic differential equations

(1) dS, = uSidt +/ViS;dWs(t),
) dVi = k(0 — Vi)dt + w/VidWy (1)

with correlated Brownian motionsiig(t)dWy (t) = pdt. Heston Hes93 found a semi-analytical
solution for pricing European calls and puts using Fourier inversion techniques. The price for a European
Call with strike K and time to maturity- can be expressed very similar to the Black-Scholes one, namely

(3) C(S, K, Vo, 7) = P(r) - %(F_K)'f‘%

/(F-fl—K-fg)du
0

wheref; and f> are

(4) £ o= Re(e_mn%(“i)) and fy = Re(e_m.%(“)) :

wul’ U

with ' = Se*”, and P(7) is the discount factor to the option expiry date. The functidn is defined
as the log-characteristic function of the underlying asset véjuat expiry:

(5) olu) = E[eiulnsf} .
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Note that by virtue of definitions) we have
(6) 0(0) =1 and  p(—i)=F.

Equation 8) for the price of a call option given the log-characteristic function of the underlying asset at
expiry is generic and applies to any model, stochastic volatility or otherwise. It can be derived directly by
the aid of the general result from functional analysis that the Fourier transform of the Heaviside function
is given by a Dirac and a hyperbolic component:

—2miux _ 1+
7 /e W) de = So(u)+ 5
Specifically for the Heston model, we have
® o(u) = €T HDruVotiun F

The coefficients” and D are solutions of a two-dimensional system of ordinary differential equation of
Riccati-type. They are

K c(u)edwT —
(9) C(r,u) = w—z ((m — pwui 4+ d(u)) T —2In <(C)(e:)_11>> ;
k= pwui + d(u) edwr
(10) D(r,u) = 2 (C(U)ed(U)T - 1>

with the auxiliary functions

K — pwui + d(u)

(11) c(u) = , d(u) = /(pwui — K)? + iuw? + wu.

Kk — pwui — d(u)
What remains to be done for the valuation of plain vanilla options is the numerical computation of the
integral in equation3d). This calculation is made somewhat complicated by the fact that the integrands

[f; are typically of oscillatory nature. Still, the integration can be done in a reasonably simple fashion by
the aid of Gauss-Lobatto quadratu@$0(. The real problem, however, starts when the functigns

are evaluated as part of the quadrature scheme since the calculation of the embedded complex logarithm
on the right hand side of equatio®) (s not as straightforward as it may look at first sight.

2 Two types of complex discontinuity

The first obvious problem with the inverse Fourier transformati@®nig the choice of branch of the
multivalued complex logarithm embeddeddhin equation 9). This is a generic problem with option
pricing calculations based on the inverse Fourier transforma8pof(an expression derived from the
log-characteristic function. One suggestion in the literature to remedy this is to carefully keep track of
the branch $799 Lee09 along a discretised path integral 6f(v) asu goes from0 to cc.

Let us recall that the logarithm of a complex variable= a + ib = r€(+2™) can be written as
t € [—m,mlandn € Z

(12) Inz =In|r|+i(t + 2mn).

If we restrict our choice to the principal branch, the functignas defined in equatiod) incur discon-
tinuities as is shown in figurgéfor f;. Integrating this function with an adaptive quadrature scheme will

not only result in the wrong number (because the area under the discontinuous curve shown Irigigure

not the same as the area under the continuity-corrected curve), it will also take unnecessarily long due to
the fact that the adaptive routine refines the number of sampling points excessively near the discontinuity.
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Figure 1: The functionf; defined in 4). Underlying: &; = uS:dt + /V;S:dWs(t) with S = 1 andp = 0. Variance:
dV; = k(0 — Vy)dt + wy/VedWy () with Vo = 0.2,k = 1,0 = 0.2, w = 0.5 andp = 0.3, time to maturity:r = 30, strike:
K =1, red curve: implementation using only the principal branche, green dashed curve: adjusted curve using3@mula (

In order to understand the mechanisms that gives rise to the discontinuity, we now examine more
closely the componerit defined in equatior9). To simplify the notation further on, we divide this term
as follows:

(13) C(r,u) = R(t,u) —2alnG(7,u)
(14) R(r,u) = a(k— pwui+d)T

(15) a = Z—g

(16) G(r,u) = ce:”_—ll

Looking at the whole functiop () in (8), one could argue that it is not necessary to evaluate a complex
logarithm at all since

(17) o(u) = G(r, u) " 20eRW+DrwVotiun F

This is true, though, we just shifted the problem from the logarithm to the evalutatioh(«of* as

this is exactly the part of the function where the jump arises. Indeed, if we try this formula in our
implementation, the discontinuities do not go away (yet). The branch switching of the complex logarithm
is in fact not the main problem that gives rise to the jumpg(@f). A second effect is at work here and

we will have to investigate further.

In the following, we make repeated use of the fact that, for any complex variable, we can choose
either a real/imaginary part or a radius/phasspresentation:

(18) z=a, +ib, = re', t, € [—-m,m).

The fact that we restrict the phasec [—n, 7) means that we cut the complex plane along the negative
real axis. Taking: to the powen gives

(19) 2% = pogots,

INote that the phase, as we refer to it here, is also known aar¢henentand some mathematical software packages use
the expressioarg for the calculation of the phase of a complex number.



WhenevelG(u) crosses the negative real axis along its pathu(aaries) the sign of the phase 6fu)
changes from-r to 7 and therefore the phase @) changes from-7« to wa. This leads to a jump
since

QLT — LT H
(20) é’f:e”:»{e. Fem ifagZ

gem =g T else
In other words, what appeared earlier as a problem with the branch choice of the multivalued complex
logarithm in the evaluation of given by equation4) is in fact a problem with théranch switching
of the complex power functiorwhich is related, though slightly different. To demonstrate this further,
consider the case when, by coincidence, the parameter setting leads 8. In this scenario, there
is no jump at all as we can see in figi2e In general, though, we have ¢ 7Z. This wouldn't be a

f4(u)

u

0.5 1 15 2

Figure 2: The functiory; defined in 4) in the case that: € Z. Underlying: &; = uS;dt 4+ /V;S:dWs(t) with S = 1 and
u = 0. Variance: &; = x(0 — V;)dt + w/VidWy (¢) with Vo = 0.25, k = 1,0 = 0.25, w = 0.5 andp = 0.3, exponent:
a = —2, time to maturity:r = 30, strike: K = 1.

problem ifG(u) didn’t cross the negative real axis. However, as it turns out, the trajecta#y:ofin the
complex plane as is varied from 0 toxo, tends to start initially with a rapidly outwards moving spiral,
prior to entering an asymptotic escaping behaviour. This is displayed in fifore7 (). Note that the
shown trajectory is that of(u) := G(u)%, i.e. we have rescaled the coordinate system double-
logarithmically in radius to compensate for the rapid outward movement of the spiralling trajectory of
G(u). The hué h € [0, 1) of the curve is given by = log;,(u + 1) mod 1 which means that segments

of slowly varying colour represent rapid movementi{fu) as a function of..

Another aspect why the correct treatment of the phase jum@§©f is so important is the fact that
it does not require unusual or particularly large parameters for the numerically induced discontinuity to
occur. We show in figurd how the discontinuities in the complex phase&if.) arise simply as time to
maturity is increased.

What we can learn from all of the above is that the only way to avoid the discontinuity of the inte-
grandsf;(u) altogether is to ensure that the phasé¢f) is continuous. Various authorS{99 Lee0§
Sep04 propose the idea to keep track of the number of jumps by compéfing) andG (uy1) where
ug, anduy4; are adjacent points in their respective numerical integration scheme. This is an involved
technical procedure leading to the need for a particularly complicated algorithm if we want to use an

2 Thehueis a number in the rande, 1) which varies the colour from red at 0 through the entire rainbow spectrum to purple
(around 0.8), and then reconnecting to red at 1.
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Figure 3: Part of the trajectory of the functiéi(u) in the complex plane has the structural shape of a spiral which gives rise
to repeated crossing of the negative real axis. Here: —0.8, k = 1, w = 2, time to maturityr = 10.

adaptive quadrature method. Furthermore, we have to make sure that we accalinfufops which
means that, for this to work reliably, we ought to have an estimate for the total number of discontinuities.
Fortunately, however, there is a much simpler procedure to guarantee the continility)ofhich we
present in the following.

First, we introduce the notation

(21) c = rele
(22) d =: ag+iby.

The next step is to have a closer look at the denominat6t which was defined in equatiod):

c—1 = rceitc -1
23) o el
where

te
(24) m = int [ i ﬂ-]
27

(25) X" = arg(c—1)
(26) r* o= Jc—1]

and withint[-] denoting Gauss’s integer brackets. Note that we have assuged € [—7, 7)V 2. The

key observation is that the subtraction of the numbémom the complex variable is simply a shift

parallel to the real axis and therefore the phasg-ef 1) € |-, ) if t. € [-m, 7), or in general, both

x* andt. can be assumed to be on the same phase interval. In other words, taking a complex number
of arbitrary phase, and adding the real numbér cannot possibly give rise to this operation moving

the complex number across the negative real axis since this would require the addition of an imaginary
component. This works as long a&:) never crosses the real axis in [0,1]. Fortunately,dar), we

have:



Figure 4: Without special handling, the phase(¥fu) incurs more and more jumps as time to maturity is increased. Here:
p=—0.8, k=1, w = 2, time to maturity:r € [0, 10].

Proposition 2.1 The functionc(u) given in (L1) only crosses the negative real axis.
The proof is given in the appendix.
We now do the same calculation with the numeratatof

(27) & 1 = rglegltatibar
r g7 gitetbar)

Defining

(28) n = int [W‘M]
27

(29) X = arg <ced7—1>

(30) rto= ‘cedT—l ,

we have

(31) 1 = el

Again, we used the fact that the subtractionlafloes not affect the rotation count of the phase of a
complex variable as well as the fact thﬁu)ed(“)T never crosses the real axis in [0,1]. The latter is
guaranteed if the following holds:

Conjecture 2.2 The absolute value of the tereu)e?(™)7 is greater than 1.

Unfortunately, we have not been able to complete the proof of this conjecture as yet. However, extensive
experiments have as yet not resulted in a single counterexample.
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Combining these results we obtain

(32) G(u) = Cedi_l — Lei[x***)(*+2ﬂ'(n7m)}

c—1 r*
wherein the innocuous but crucial rotation count numise@ndn are given by equation24) and 8).
We are now in the position to compute the logarithnGgi:) quite simply as
(33) InG(u) =In(r*™/r*) +i[x™ — x* + 2n(n — m)].

In figure 5, we show the rotation count corrected angte (G(«)) compared with the result by using
just the principal branch off(u). We see that, without the correction, due to the sheer number of dis-

arg(G(u)) arg(G(u))

-10 ¢ 60 |

~15 40 &
-20 20 |
-25 ¢ ] u
f 4 8 10
(@) (b)

Figure 5: The phase a¥(u) as defined in equatior1§) with (dashed) and without (solid) rotation count correction given by
equation 83), for k = 1 andr = 30. (a)p = 0.8,w = 0.5. (b) p = —0.95, w = 1.4.

continuities, it can be very difficult indeed to keep track of the jumps by simply comparing neighbouring
integration points. Note that it does not require the choice of unusual parameters: the discontinuities
arise quite naturally for practically all choices of stochastic volatility configurations simply as time to
maturity is increased, as was shown in figdre

The procedure for the discontinuity-corrected evaluation of fungtida summarized in algorithrh.
The evaluation off; (u) is to be done by the same procedure witteplaced by« — ) in all but the last
step of algorithmil, with a subsequent division by the forward as one would expect from equdjion (

Remark 2.1 Whilst algorithm1 is mathematically correct, it cannot actually be implemented directly in
its presented form. For long times to maturitythe numerator ternt;y can become very large which
leads to numerical overflow. In order to avoid this, we can monitor the expressiah Re when this
term becomes greater thanin(DBL EPSILON) we can negleétthe subtraction of 1 in steps 6 and 9
and the whole procedure of estimating the téntG(«)) should be done in logarithmic coordinates.

3 Integration scheme

The choice of the right integration scheme is another crucial point for a robust implementation of the
semi-analytical Heston solution. Due to the fact that the integrand can vary in its shape from almost

% The C header<float.h> provides the macr@BL EPSILON which is defined as the smallest floating point number
that, when added to the number 1, still results in a number that is distinct from 1 in the computer’s floating point number
representation.



Algorithm 1: Evaluatefz(u)

Require: F,K,k,0,w,7 >0, > 0andp € (—1,1)
1 (C) d:= /(pwui — k)2 + w?(ui + u2)

2: (C)c:= ::ZZZ;J—FZ

3 (R) t. := arg(c)

4. (C)Gp:=c—1 {Denominator ofz(u)}
5: (Z) m:=int |57 ]

6: (C) Gy :=ce™ — 1 {Numerator ofG(u)}
7: (Z) n := int [7(tc+lm2($ﬁ+ﬂ)

8: (C) InG := In(abs(Gn)/abs(Gp)) + i (arg(Gn) — arg(Gp) + 2m(n —m)) {see B3)}
o: ((C> D=~ p:j;u—&-d <Ce:dT 11)

10: (C) C := 5—2 [(k — pwui + d)T — 2 - InG]| {see (3}
11: (C) p :=exp(C + D -V + iuln(F))

12: (R) f = Re| i |

simply exponentially decaying to highly oscillatory depending on the choice of parameters, most simple
guadrature or numerical integration schemes are bound to fail significantly for some relevant scenarios.
More advanced schemes such asdbaptive Gauss-Lobattalgorithm [GG0(Q, however, are capable

of handling the wide range of functional forms attainable by the integrand definet].irS{nce the
Gauss-Lobatto algorithm is designed to operate on a closed interé we show below how one

can transform the original integral boundarj@sso) to the finite interval0, 1], taking into account our
knowledge of the analytical structure of the integrand for largeAdapting the transformation to the
asymptotic structure fo. — oo not only aids the stability of the adaptive quadrature scheme, it also
makes the integration scheme significantly more efficient in the sense that far fewer evaluation points are
needed.

Proposition 3.1 Assuming thak, 6,w, 7 > 0 andp € (—1, 1) we obtain the following asymptotics:

(34) lim d(u) = wy1l—p2 = dy

u—oo U
2
(35) lim c(u) = —1+420°+2ip/1—p2 = (i\/l—pQ-i-p)
_ 2 ]

(36) lim 20 _V1=ptip

U—00 u w
(37) lim C’Q(Lu) = —iawpT — adooT
This leads to

Mt oo :

(38) lim f;(u) ~ fj(O)-e_“OW-Re<e:_u ) = fj(O)-e‘“CW-Sm(f“ﬁ
with

/1 — p2 /1 — p2
(39) Coo = (adoo7+1wp‘/b) = %(%‘FH@T)

as well as
(40) too = —QWPT — %VO +In(F/K) .

The initial valuesf;(0) are given in proposition3.2and3.3,
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The proof can be found in appendix

Equation 88) shows that the asymptotic decay of the integrand is at least exponential. In particular,
C~ > 0 guarantees the existence of the integral. A simple and reliable transformation is to translate the
integration according to

fee) 1
(41) /fj(u) du = de
0 0 >
with
(42) u(z) = —lg—x.

The transformation is only possible whéh, > 0. Fortunately, this is given as long asg # 1.

One last step is needed before we can proceed with the implementation. Looking at the fufjctions
in (4), we can see that;(u) is, strictly speaking, not defined at= 0. The continuity of the function
at zero in figuresl and 2 gives us hope, though, that we can find the value analytically by the aid of
I'Hospital’s rule.

Proposition 3.2 The function

(43) fi(u) = Re(eiUIHZg;(u _ i)>

has the following property at zero:

(44) lim fi(u) = In(F/K) +Im (C'(=i)) + Im (D'(=4)) - Vo
with

(45) Im (C'(—i)) = e(pw”)fef‘ﬂ;(r:f(l()z); pw)T — 1)
(46) Im (D'(—i)) = ﬂ,

2(k — pw)
provided tha{x — pw) # 0. When(x — pw) = 0, we obtain

KkOT?

(47) Im (C'(=1)) = =

(48) im(D'(~i)) = 3.

The proof can be found in Appendix.

Proposition 3.3 The function

(49) folu) = Re<W>

has the following property at zero:

(50) lim fo(u) = In(F/K) +Im (C'(0)) + Im (D'(0)) - Vo
with

51) m(C'(0)) = e "0k EZ;@(M -1)

(52) Im (D'(0)) = —ﬂ
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The proof can also be found in Appendix

The above analysis enables us to implement the required Fourier inversion as a Gauss-Lobatto integration
over the intervall0, 1] using the transformation given by1), (42), and @9). Since Gauss-Lobatto
guadrature evaluates its integrand at the boundary values, we need to use the analytical limidgalues (
and 60) for the evaluation off; (u(x))|,_,. The limit values at- = 0 seem at first sight to be more
complicated. However, it is straightforward to see from equatB®) that those limit values are zero as

long asC+, > 0 which in turn is given as long gg| < 1.

In practice, we combine all calculations i8) (into the single numerical integration for the undis-
counted call option price

1

(53) C(S. K. Vo, 1)/P(r) = [ y(a)ds

0
with

1 F-fi(—8%) - K- fo—&5)
4 = (F-K s 0
(54) y(z) = 5l )+ P
andF = S - €7, as before. The limits aj(x) at the boundaries of the integral are
(55) lim y(r) = 3 (F ~ K)
and
. . 1 F - hmuﬁo f1 (u) - K- limuHo f2 (U)

(56) limy(z) = S(F - K)+ o

with lim, o f1(u) andlim, o f2(u) given by @4) and 60), respectively. An example for the set of
sampling points chosen by the adaptive Gauss-Lobatto scheme for a target accufacyisishown in
figure®.

1 — ) .

08 - X O  Gauss-Lobatto sampling (accuracy=1.E-6) -

04

02 -

-0.2 -

-0.6

Figure 6: The sampling points selected by the adaptive Gauss-Lobatto scheme for the integration of &fuafica F = 1,
nw=0,V%=0=016,x =1,w =2, p = —0.8, 7 = 10, K = 2. The total number of evaluation points was 198, and the
resulting integral value was 4.95212%.

The stability of Gauss-Lobatto integration over the intewwat [0, 1] of the transformed integrand
fi(u(z))/ (z - Cx) as described is such that even extremely far out-of-the-money option prices can be
computed, as well as very long dated maturities. We demonstrate this in Tigwhere implied Black
volatilities are displayed for the same parameters as previously used in4igure
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Figure 7: Black implied volatilities from the Heston model. Underlying; &= p.S:dt + /V;S:dWs(t) with S = F = 1 and
u = 0. Variance: &; = (0 — V;)dt + wy/VedWy () with Vo = 0 = 0.16, k = 1, w = 2, p = —0.8, 7 € [1/4, 15], and
K e [1/10, 4].

4 Conclusion

The problem we addressed was that Fourier inversion integrals of the 3puedd for the calculation of

option prices based on analytical knowledge of the log-characteristic function of the underlying stochas-
tic process are particularly prone to numerical instabilities due to their involved complex logarithms and
complex power expressions. We found that the difficulty is ultimately not, as was previously reported,
caused by the multivalued nature of tt@mplex logarithmbut instead by the multivalued nature of the
complex power functionWe analysed this issue for the Heston stochastic volatility model, though, the
key insight is readily transferable to the calculation of option prices in other models that are amenable
to the Fourier inversion integral approacbar03 CM99] based on a log-characteristic function. We

also presented a detailed analysis how the Fourier integral itself can be computed reliably by the aid of
adaptive Gauss-Lobatto quadrature, using asymptotic analytical methods to identify the most suitable
transformation from the half-open integration domiiyo) to the interval0, 1]. These results, too, are

not only useful for the purpose of computing option prices for the Heston model, but also to illustrate
how similar methods can be devised for other models that are to be evaluated with Fourier integration
techniques.

A Proofs

In this section we present the missing proofs of sectibasd3.
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Proof:[Prop.2.1] First we need some preliminary calculation

Kk — pwui + d(u)

(®7) eu) = Kk — pwui — d(u)
K — pwui + (ag + ibg)
(58) k= pwui — (ag + ibg)
(k + aq) + i (—pwu + bg)
59 -
(59) (k —aq) — i (pwu + by)
(60) _ (5 +aq) +i(=pwu +bg)] [(5 — aa) + i (pwu + ba)]
[(k —aq) — i (pwu + bg)] [(k — aq) + i (pwu + by)]
w2+ (pwu)® — (a3 +b2) +i (bg - K+ aq - pwu)
(61) =
C
Hence we have to show if
(62) by Kk = —aq - pwu ,
that
(63) K2+ (pwu)? — (a3 +b7) <O0.
First we can deduce fron62) that
(64) pwu = —bari .
aq
Using this in the left hand side 068) we obtain
a? + b2
(65) K2+ (pwu)? — (a3 +03) = da2 4 (k*—a3) < 0.
d
Let
(66) du) = i-u (w2 — 2Kpw) + w?u? (1- ,02) + K2,
q(u) p(u)
(67) z(u) = i-q(u)+p(u) = r(u)(cos(p) +isin(p)) .
Thus
(68) aj(u) = r(u)cos*(£)
(69) > 7r(u)cos(p)
(70) = wh? (1 — p2) + K2
(71) > K2

which completes the proof.
Proof:[Prop.3.1] The proof of equation34) is basic analysis:

(72) lim d(u) = lim \/w2(1 — p?) — 2iw(pk — ;w)/u+ K2/ u?

U—00 u U—00

= wy/1—p?
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Using this result, we are able to confirm equatidb)(

— pwi 1— 2
lim c(u) = pr p
U—00 —pwi —wy/1 — p?
(Wy/1 = p? = pwi)?
PP P
_w2(1 — p?) = 2iw?p\/1 — p? — p*w?

w2
2
(73) = 142024 2ipy/1- 2= <i\/1—p2+p) .

Note thatlim, . |c¢(u)| = 1. In order to show equatior86), we need the calculation

. gl _q - 1 1 —c(u)
e L(u)ed“”f - 1] =t o (14 s =)

= 1 JE—
oo c(w)

= lim 7)
(74) = 1 )

(75) = —1+2p%—2ip/1—p2.

D 1
lim (u) = 3 (=14 2p% — 2ip\/1 — p2)(—pwi + wy/1 — p?)

u—oo U

(76) _ T vi-p

Finally, we prove 87)

) c(u)e™ — 1 L wr_ c(u)
(77) uh_)nolo In [ ) =1 ] Ju = uh_)rgo In [ed o) — 1] Ju
— 3 u)T c(“)
(78) = uh_)rglo <ln [ed( ) } +1In [C(U) - J) Ju
(79) = uh_)ngo d(u)T/u = deoT.
From here, we obtain
(80) lim % = —aT (doo + iwp) .

u—o0o U

Combination of the limit results foD(u) and C(u) makes it straightforward to arrive at the state-
ments 88) and @9) for f;(u). O

Proof:[Prop. 3.2] Considering the functiorf; as given in §) we see that

eC(‘r,ufi)+D(‘r,u7i) Vo+In(F)
ul

(81) lim, f1(u) = lim Im gum(F/K)

The expressions that need attention for the evaluation of this limitiarg .o C(7,u — i) as well as
lim, 0 D(7,u — ). We start with

(82) lim d(u — i) = |k — pw| .

u—0
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The limitlim,_.o c(u — 7) depends on the sign af— pw. We first consider the case whete- pw < 0.
We obtain

Kk —ipw(u—1i) + d(u — 1)

83 li —i) =1 =0.
(83) uli%c(u ) uli%/i—ipw(u—i)—d(u—i)
This allows us to deduce
(84) lim D(u —i) =0, lim C(u — i) = 0.
The case: — pw > 0 is a little bit more complicated. First we see that
(85) lim |e(u — )| = lim 120 =8) Fdu=0)| _

u—0 u—0 |k — ipw(u — i) — d(u — i)
as the denominator goes to zero. Using this we can see that

. g k—ipw(u —d) + d(u — ) gllu—07 _ 1

(86) ili% D(u Z) N 1112% w? c(u — z)ed(u*Z)T -1
(87) = 0.

Furthermore, we have

w0 clu—1)—1

(u—i)7 _
(88)11_% Clu—i) = lima ((m —ipw(u—1i)+d(u—1i))T —2In [ed(“_i)T + edl] )
(89) = 0.

Last we have to check the case- pw = 0. First we have to notice that

. d(u—1) L 5 5 — —
(90) ili% NG fql}ir[l)\/w (1= p?u—iw? =/ —iw?.
We have to mention that this limit is not zerowas 0 if x — pw = 0 andx > 0. Using this we obtain
. ) . —2pwui
(1) }LIL% clu—i) = -1+ IILEI%) —pwui — d(u — 1)
. 2pwir/u
92 = —1+ lim =-1.
2) u=0 pwiy/u + vV —iw?

Again we getlim,, .o D(u — i) = 0 and

©3)  lmClu—i) = ol (0”» — pw + d(u— i))7 — 21n [C(“ —)el T — 1])

clu—i)—1
2
(94) _ M“HZO'
2
Hence in all different cases
(95) lin%) gun(F/K)+C(u=i)+D(u=i)Vo _ |

Now we decompose the exponent into a real and imaginary part
(96) iuln(F/K)+ C(t,u — 1) + D(1,u — 1) - Vo =: H(u) + iJ(u)
with functionsH, J : R — R. Due to 05), we also know that

97) lin% H(u)=0, liH(l] J(u)=0.
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Now we can calculate

%) o) =ty [

(99) — limIm {eHW)COS(J(“))”Sjn(J(“))]
u—0 U

(100) N e Sl CAC)))
u—0 u

(101) = lim e lm n<i<u>>

(%2 — 1 @ iy )

where we applied the rule of I'Hospital in the last step. Thus,

(103) £1(0) = lim J'(u) = J'(0) = In(F/K) + Im (C"(—i)) + Im (D'(=i)) Vo .

u—0

The computation of” and D’ is tedious but straightforward. We obtain

e R0k 4 Ok((k — pw)T — 1)

" _
(104) Im (C'(—i)) 30— pu)? ;

o B 1— e—(li—pw)T
(105) Im (D'(—4)) = =)
if (k — pw) # 0, and otherwise

2

(106) Im (C'(—i)) = “iT :
(107) Im (D'(—i)) = %
which completes the proof. O

Proof:[Prop. 3.3] The proof of the limitlim,_.¢ f2(u) can be done in complete analogy to the proof of
lim,,_.q f1 (u) O
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