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Abstract

In Heston’s stochastic volatility framework [Hes93], semi-analytical formulæ for plain vanilla
option prices can be derived. Unfortunately, these formulæ require the evaluation of logarithms with
complex arguments during the involved inverse Fourier integration step. This gives rise to an inherent
numerical instability as a consequence of which most implementations of Heston’s formulæ are not
robust for moderate to long dated maturities or strong mean reversion. In this article, we propose a
new approach to solve this problem which enables the use of Heston’s analytics for practically all
levels of parameters and even maturities of many decades.

1 Introduction

The Heston stochastic volatility model is given by the system of stochastic differential equations

dSt = µStdt +
√

VtStdWS(t),(1)

dVt = κ(θ − Vt)dt + ω
√

VtdWV (t)(2)

with correlated Brownian motions dWS(t)dWV (t) = ρdt. Heston [Hes93] found a semi-analytical
solution for pricing European calls and puts using Fourier inversion techniques. The price for a European
Call with strikeK and time to maturityτ can be expressed very similar to the Black-Scholes one, namely

(3) C(S, K, V0, τ) = P (τ) ·

1
2

(F −K) +
1
π

∞∫
0

(F · f1 −K · f2) du


wheref1 andf2 are

(4) f1 := Re

(
e−iu ln Kϕ(u− i)

iuF

)
and f2 := Re

(
e−iu ln Kϕ(u)

iu

)
,

with F = Seµτ , andP (τ) is the discount factor to the option expiry date. The functionϕ(·) is defined
as the log-characteristic function of the underlying asset valueSτ at expiry:

(5) ϕ(u) := E
[
eiu ln Sτ

]
.
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Note that by virtue of definition (5) we have

(6) ϕ(0) = 1 and ϕ(−i) = F .

Equation (3) for the price of a call option given the log-characteristic function of the underlying asset at
expiry is generic and applies to any model, stochastic volatility or otherwise. It can be derived directly by
the aid of the general result from functional analysis that the Fourier transform of the Heaviside function
is given by a Dirac and a hyperbolic component:

(7)
∫

e−2πiuxh(x) dx =
1
2
δ(u) +

1
2πiu

.

Specifically for the Heston model, we have

(8) ϕ(u) = eC(τ,u)+D(τ,u)V0+iu ln F .

The coefficientsC andD are solutions of a two-dimensional system of ordinary differential equation of
Riccati-type. They are

C(τ, u) =
κθ

ω2

(
(κ− ρωui + d(u)) τ − 2 ln

(
c(u)ed(u)τ − 1

c(u)− 1

))
,(9)

D(τ, u) =
κ− ρωui + d(u)

ω2

(
ed(u)τ − 1

c(u)ed(u)τ − 1

)
(10)

with the auxiliary functions

c(u) =
κ− ρωui + d(u)
κ− ρωui− d(u)

, d(u) =
√

(ρωui− κ)2 + iuω2 + ω2u2.(11)

What remains to be done for the valuation of plain vanilla options is the numerical computation of the
integral in equation (3). This calculation is made somewhat complicated by the fact that the integrands
fj are typically of oscillatory nature. Still, the integration can be done in a reasonably simple fashion by
the aid of Gauss-Lobatto quadrature [GG00]. The real problem, however, starts when the functionsfj

are evaluated as part of the quadrature scheme since the calculation of the embedded complex logarithm
on the right hand side of equation (9) is not as straightforward as it may look at first sight.

2 Two types of complex discontinuity

The first obvious problem with the inverse Fourier transformation (3) is the choice of branch of the
multivalued complex logarithm embedded inC in equation (9). This is a generic problem with option
pricing calculations based on the inverse Fourier transformation (3) of an expression derived from the
log-characteristic function. One suggestion in the literature to remedy this is to carefully keep track of
the branch [SZ99, Lee05] along a discretised path integral offj(u) asu goes from0 to∞.

Let us recall that the logarithm of a complex variablez = a + ib = rei(t+2πn) can be written as
t ∈ [−π, π] andn ∈ Z

(12) ln z = ln |r|+ i(t + 2πn).

If we restrict our choice to the principal branch, the functionsfj as defined in equation (4) incur discon-
tinuities as is shown in figure1 for f1. Integrating this function with an adaptive quadrature scheme will
not only result in the wrong number (because the area under the discontinuous curve shown in figure1 is
not the same as the area under the continuity-corrected curve), it will also take unnecessarily long due to
the fact that the adaptive routine refines the number of sampling points excessively near the discontinuity.
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Figure 1: The functionf1 defined in (4). Underlying: dSt = µStdt +
√

VtStdWS(t) with S = 1 andµ = 0. Variance:
dVt = κ(θ − Vt)dt + ω

√
VtdWV (t) with V0 = 0.2, κ = 1, θ = 0.2, ω = 0.5 andρ = 0.3, time to maturity:τ = 30, strike:

K = 1, red curve: implementation using only the principal branche, green dashed curve: adjusted curve using formula (32)

In order to understand the mechanisms that gives rise to the discontinuity, we now examine more
closely the componentC defined in equation (9). To simplify the notation further on, we divide this term
as follows:

C(τ, u) = R(τ, u)− 2α lnG(τ, u)(13)

R(τ, u) := α(κ− ρωui + d)τ(14)

α :=
κθ

ω2
(15)

G(τ, u) :=
cedτ − 1
c− 1

(16)

Looking at the whole functionϕ(u) in (8), one could argue that it is not necessary to evaluate a complex
logarithm at all since

(17) ϕ(u) = G(τ, u)−2αeR(τ,u)+D(τ,u)V0+iu ln F .

This is true, though, we just shifted the problem from the logarithm to the evalutation ofG(u)α as
this is exactly the part of the function where the jump arises. Indeed, if we try this formula in our
implementation, the discontinuities do not go away (yet). The branch switching of the complex logarithm
is in fact not the main problem that gives rise to the jumps off(u). A second effect is at work here and
we will have to investigate further.

In the following, we make repeated use of the fact that, for any complex variable, we can choose
either a real/imaginary part or a radius/phase1 representation:

(18) z = az + ibz = rzeitz , tz ∈ [−π, π) .

The fact that we restrict the phasetz ∈ [−π, π) means that we cut the complex plane along the negative
real axis. Takingz to the powerα gives

(19) zα = rα
z eiαtz .

1Note that the phase, as we refer to it here, is also known as theargumentand some mathematical software packages use
the expressionarg for the calculation of the phase of a complex number.
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WheneverG(u) crosses the negative real axis along its path (asu varies) the sign of the phase ofG(u)
changes from−π to π and therefore the phase ofG(u)α changes from−πα to πα. This leads to a jump
since

(20) eiπ = e−iπ ⇒

{
eiαπ 6= e−iαπ if α /∈ Z
eiαπ = e−iαπ else

In other words, what appeared earlier as a problem with the branch choice of the multivalued complex
logarithm in the evaluation off given by equation (4) is in fact a problem with thebranch switching
of the complex power functionwhich is related, though slightly different. To demonstrate this further,
consider the case when, by coincidence, the parameter setting leads toα ∈ Z. In this scenario, there
is no jump at all as we can see in figure2. In general, though, we haveα /∈ Z. This wouldn’t be a
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Figure 2: The functionf1 defined in (4) in the case thatα ∈ Z. Underlying: dSt = µStdt +
√

VtStdWS(t) with S = 1 and
µ = 0. Variance: dVt = κ(θ − Vt)dt + ω

√
VtdWV (t) with V0 = 0.25, κ = 1, θ = 0.25, ω = 0.5 andρ = 0.3, exponent:

α = −2, time to maturity:τ = 30, strike:K = 1.

problem ifG(u) didn’t cross the negative real axis. However, as it turns out, the trajectory ofG(u) in the
complex plane asu is varied from 0 to∞, tends to start initially with a rapidly outwards moving spiral,
prior to entering an asymptotic escaping behaviour. This is displayed in figure3 for G(u). Note that the
shown trajectory is that ofγ(u) := G(u) ln ln |G(u)|

|G(u)| , i.e. we have rescaled the coordinate system double-
logarithmically in radius to compensate for the rapid outward movement of the spiralling trajectory of
G(u). The hue2 h ∈ [0, 1) of the curve is given byh = log10(u + 1) mod 1 which means that segments
of slowly varying colour represent rapid movement ofG(u) as a function ofu.

Another aspect why the correct treatment of the phase jumps ofG(u) is so important is the fact that
it does not require unusual or particularly large parameters for the numerically induced discontinuity to
occur. We show in figure4 how the discontinuities in the complex phase ofG(u) arise simply as time to
maturity is increased.

What we can learn from all of the above is that the only way to avoid the discontinuity of the inte-
grandsfj(u) altogether is to ensure that the phase ofG(u) is continuous. Various authors [SZ99, Lee05,
Sep04] propose the idea to keep track of the number of jumps by comparingG(uk) andG(uk+1) where
uk anduk+1 are adjacent points in their respective numerical integration scheme. This is an involved
technical procedure leading to the need for a particularly complicated algorithm if we want to use an

2 Thehueis a number in the range[0, 1) which varies the colour from red at 0 through the entire rainbow spectrum to purple
(around 0.8), and then reconnecting to red at 1.
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γ(u) := G(u) ln ln |G(u)|
|G(u)|

Re[γ(u)]

Im[γ(u)]

hue: log10(u + 1) mod 1
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Figure 3: Part of the trajectory of the functionG(u) in the complex plane has the structural shape of a spiral which gives rise
to repeated crossing of the negative real axis. Here:ρ = −0.8, κ = 1, ω = 2, time to maturityτ = 10.

adaptive quadrature method. Furthermore, we have to make sure that we account forall jumps which
means that, for this to work reliably, we ought to have an estimate for the total number of discontinuities.
Fortunately, however, there is a much simpler procedure to guarantee the continuity ofG(u) which we
present in the following.

First, we introduce the notation

c =: rce
itc ,(21)

d =: ad + ibd.(22)

The next step is to have a closer look at the denominator ofG which was defined in equation (16):

c− 1 = rce
itc − 1

=: r∗ei(χ∗+2πm)(23)

where

m := int
[
tc + π

2π

]
(24)

χ∗ := arg (c− 1)(25)

r∗ := |c− 1|(26)

and withint[·] denoting Gauss’s integer brackets. Note that we have assumedarg(z) ∈ [−π, π)∀ z. The
key observation is that the subtraction of the number1 from the complex variablec is simply a shift
parallel to the real axis and therefore the phase of(c− 1) ∈ [−π, π) if tc ∈ [−π, π), or in general, both
χ∗ andtc can be assumed to be on the same phase interval. In other words, taking a complex number
of arbitrary phase, and adding the real number−1, cannot possibly give rise to this operation moving
the complex number across the negative real axis since this would require the addition of an imaginary
component. This works as long asc(u) never crosses the real axis in [0,1]. Fortunately, forc(u), we
have:
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Figure 4: Without special handling, the phase ofG(u) incurs more and more jumps as time to maturity is increased. Here:
ρ = −0.8, κ = 1, ω = 2, time to maturity:τ ∈ [0, 10].

Proposition 2.1 The functionc(u) given in (11) only crosses the negative real axis.

The proof is given in the appendix.

We now do the same calculation with the numerator ofG

cedτ − 1 = rce
itce(ad+ibd)τ − 1(27)

= rce
adτei(tc+bdτ) − 1

Defining

n := int
[
(tc + bdτ + π)

2π

]
(28)

χ∗∗ := arg
(
cedτ − 1

)
(29)

r∗∗ :=
∣∣∣cedτ − 1

∣∣∣ ,(30)

we have

cedτ − 1 = r∗∗ei(χ∗∗+2πn).(31)

Again, we used the fact that the subtraction of1 does not affect the rotation count of the phase of a
complex variable as well as the fact thatc(u)ed(u)τ never crosses the real axis in [0,1]. The latter is
guaranteed if the following holds:

Conjecture 2.2 The absolute value of the termc(u)ed(u)τ is greater than 1.

Unfortunately, we have not been able to complete the proof of this conjecture as yet. However, extensive
experiments have as yet not resulted in a single counterexample.
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Combining these results we obtain

(32) G(u) =
cedτ − 1
c− 1

=
r∗∗

r∗
ei[χ∗∗−χ∗+2π(n−m)]

wherein the innocuous but crucial rotation count numbersm andn are given by equations (24) and (28).
We are now in the position to compute the logarithm ofG(u) quite simply as

(33) lnG(u) = ln(r∗∗/ r∗) + i [χ∗∗ − χ∗ + 2π(n−m)] .

In figure 5, we show the rotation count corrected anglearg (G(u)) compared with the result by using
just the principal branch ofG(u). We see that, without the correction, due to the sheer number of dis-
arg(G(u))

u
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(a) (b)
Figure 5: The phase ofG(u) as defined in equation (16) with (dashed) and without (solid) rotation count correction given by

equation (33), for κ = 1 andτ = 30. (a)ρ = 0.8, ω = 0.5. (b) ρ = −0.95, ω = 1.4.

continuities, it can be very difficult indeed to keep track of the jumps by simply comparing neighbouring
integration points. Note that it does not require the choice of unusual parameters: the discontinuities
arise quite naturally for practically all choices of stochastic volatility configurations simply as time to
maturity is increased, as was shown in figure4.

The procedure for the discontinuity-corrected evaluation of functionf2 is summarized in algorithm1.
The evaluation off1(u) is to be done by the same procedure withu replaced by(u− i) in all but the last
step of algorithm1, with a subsequent division by the forward as one would expect from equation (4).

Remark 2.1 Whilst algorithm1 is mathematically correct, it cannot actually be implemented directly in
its presented form. For long times to maturityτ , the numerator termGN can become very large which
leads to numerical overflow. In order to avoid this, we can monitor the expression Re(d) · τ : when this
term becomes greater than− ln(DBL EPSILON) we can neglect3 the subtraction of 1 in steps 6 and 9
and the whole procedure of estimating the termln(G(u)) should be done in logarithmic coordinates.

3 Integration scheme

The choice of the right integration scheme is another crucial point for a robust implementation of the
semi-analytical Heston solution. Due to the fact that the integrand can vary in its shape from almost

3 The C header<float.h> provides the macroDBL EPSILON which is defined as the smallest floating point number
that, when added to the number 1, still results in a number that is distinct from 1 in the computer’s floating point number
representation.
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Algorithm 1: Evaluatef2(u)

Require: F,K, κ, θ, ω, τ > 0,V0 ≥ 0 andρ ∈ (−1, 1)
1: 〈C〉 d :=

√
(ρωui− κ)2 + ω2(ui + u2)

2: 〈C〉 c := κ−ρωui+d
κ−ρωui−d

3: 〈R〉 tc := arg(c)
4: 〈C〉 GD := c− 1 {Denominator ofG(u)}
5: 〈Z〉 m := int

[
tc+π
2π

]
6: 〈C〉 GN := cedτ − 1 {Numerator ofG(u)}
7: 〈Z〉 n := int

[
(tc+Im(d)τ+π)

2π

]
8: 〈C〉 lnG := ln(abs(GN )/ abs(GD)) + i (arg(GN )− arg(GD) + 2π(n−m)) {see (33)}
9: 〈C〉 D := κ−ρωui+d

ω2

(
edτ−1
cedτ−1

)
10: 〈C〉 C := κθ

ω2 [(κ− ρωui + d)τ − 2 · lnG] {see (13)}
11: 〈C〉 ϕ := exp(C + D · V0 + iu ln(F ))
12: 〈R〉 f := Re

[
exp(−iu ln(K))ϕ

iu

]

simply exponentially decaying to highly oscillatory depending on the choice of parameters, most simple
quadrature or numerical integration schemes are bound to fail significantly for some relevant scenarios.
More advanced schemes such as theadaptive Gauss-Lobattoalgorithm [GG00], however, are capable
of handling the wide range of functional forms attainable by the integrand defined in (4). Since the
Gauss-Lobatto algorithm is designed to operate on a closed interval[a, b], we show below how one
can transform the original integral boundaries[0,∞) to the finite interval[0, 1], taking into account our
knowledge of the analytical structure of the integrand for largeu. Adapting the transformation to the
asymptotic structure foru → ∞ not only aids the stability of the adaptive quadrature scheme, it also
makes the integration scheme significantly more efficient in the sense that far fewer evaluation points are
needed.

Proposition 3.1 Assuming thatκ, θ, ω, τ > 0 andρ ∈ (−1, 1) we obtain the following asymptotics:

lim
u→∞

d(u)
u

= ω
√

1− ρ2 =: d∞(34)

lim
u→∞

c(u) = −1 + 2ρ2 + 2iρ
√

1− ρ2 =
(
i
√

1− ρ2 + ρ
)2

(35)

lim
u→∞

D(u)
u

= −
√

1− ρ2 + iρ

ω
(36)

lim
u→∞

C(u)
u

= −iαωρτ − αd∞τ(37)

This leads to

(38) lim
u→∞

fj(u) ≈ fj(0) · e−uC∞ · Re

(
eiut∞

iu

)
= fj(0) · e−uC∞ · sin(ut∞)

u

with

(39) C∞ =

(
αd∞τ +

√
1− ρ2

ω
V0

)
=

√
1− ρ2

ω
(V0 + κθτ)

as well as

(40) t∞ = −αωρτ − ρV0

ω
+ ln(F/K) .

The initial valuesfj(0) are given in propositions3.2and3.3.
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The proof can be found in appendixA.

Equation (38) shows that the asymptotic decay of the integrand is at least exponential. In particular,
C∞ > 0 guarantees the existence of the integral. A simple and reliable transformation is to translate the
integration according to

(41)

∞∫
0

fj(u) du =

1∫
0

fj(u(x))
x · C∞

dx

with

(42) u(x) = − lnx

C∞
.

The transformation is only possible whenC∞ > 0. Fortunately, this is given as long as|ρ| 6= 1.

One last step is needed before we can proceed with the implementation. Looking at the functionsfj

in (4), we can see thatfj(u) is, strictly speaking, not defined atu = 0. The continuity of the function
at zero in figures1 and2 gives us hope, though, that we can find the value analytically by the aid of
l’Hospital’s rule.

Proposition 3.2 The function

(43) f1(u) = Re

(
e−iu ln Kϕ(u− i)

iuF

)
has the following property at zero:

(44) lim
u→0

f1(u) = ln(F/K) + Im
(
C ′(−i)

)
+ Im

(
D′(−i)

)
· V0

with

Im
(
C ′(−i)

)
=

e(ρω−κ)τθκ + θκ((κ− ρω)τ − 1)
2(κ− ρω)2

(45)

Im
(
D′(−i)

)
=

1− e−(κ−ρω)τ

2(κ− ρω)
,(46)

provided that(κ− ρω) 6= 0. When(κ− ρω) = 0, we obtain

Im
(
C ′(−i)

)
=

κθτ2

4
(47)

Im
(
D′(−i)

)
=

τ

2
.(48)

The proof can be found in AppendixA.

Proposition 3.3 The function

(49) f2(u) = Re

(
e−iu ln Kϕ(u)

iu

)
has the following property at zero:

(50) lim
u→0

f2(u) = ln(F/K) + Im
(
C ′(0)

)
+ Im

(
D′(0)

)
· V0

with

Im
(
C ′(0)

)
= −e−κτθκ + θκ(κτ − 1)

2κ2
(51)

Im
(
D′(0)

)
= −1− e−

1
2
κτ

2κ
.(52)
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The proof can also be found in AppendixA.

The above analysis enables us to implement the required Fourier inversion as a Gauss-Lobatto integration
over the interval[0, 1] using the transformation given by (41), (42), and (39). Since Gauss-Lobatto
quadrature evaluates its integrand at the boundary values, we need to use the analytical limit values (44)
and (50) for the evaluation offj (u(x))|x=1. The limit values atx = 0 seem at first sight to be more
complicated. However, it is straightforward to see from equation (38) that those limit values are zero as
long asC∞ > 0 which in turn is given as long as|ρ| < 1.

In practice, we combine all calculations in (3) into the single numerical integration for the undis-
counted call option price

(53) C(S, K, V0, τ)/P (τ) =

1∫
0

y(x) dx

with

(54) y(x) :=
1
2
(F −K) +

F · f1(− ln x
C∞

)−K · f2(− ln x
C∞

)
x · π · C∞

andF = S · eµτ , as before. The limits ofy(x) at the boundaries of the integral are

(55) lim
x→0

y(x) =
1
2
(F −K)

and

(56) lim
x→1

y(x) =
1
2
(F −K) +

F · limu→0 f1(u)−K · limu→0 f2(u)
π · C∞

with limu→0 f1(u) and limu→0 f2(u) given by (44) and (50), respectively. An example for the set of
sampling points chosen by the adaptive Gauss-Lobatto scheme for a target accuracy of10−6 is shown in
figure6.
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 0 0.2 0.4 0.6 0.8 1

y(x)

Gauss-Lobatto sampling (accuracy=1.E-6)

Figure 6: The sampling points selected by the adaptive Gauss-Lobatto scheme for the integration of equation (53). S = F = 1,
µ = 0, V0 = θ = 0.16, κ = 1, ω = 2, ρ = −0.8, τ = 10, K = 2. The total number of evaluation points was 198, and the

resulting integral value was 4.95212%.

The stability of Gauss-Lobatto integration over the intervalx ∈ [0, 1] of the transformed integrand
fj(u(x))/ (x · C∞) as described is such that even extremely far out-of-the-money option prices can be
computed, as well as very long dated maturities. We demonstrate this in figure7, where implied Black
volatilities are displayed for the same parameters as previously used in figure4.
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Figure 7: Black implied volatilities from the Heston model. Underlying: dSt = µStdt +
√

VtStdWS(t) with S = F = 1 and
µ = 0. Variance: dVt = κ(θ − Vt)dt + ω

√
VtdWV (t) with V0 = θ = 0.16, κ = 1, ω = 2, ρ = −0.8, τ ∈ [1/4, 15], and

K ∈ [1/10, 4].

4 Conclusion

The problem we addressed was that Fourier inversion integrals of the form (3) used for the calculation of
option prices based on analytical knowledge of the log-characteristic function of the underlying stochas-
tic process are particularly prone to numerical instabilities due to their involved complex logarithms and
complex power expressions. We found that the difficulty is ultimately not, as was previously reported,
caused by the multivalued nature of thecomplex logarithm, but instead by the multivalued nature of the
complex power function. We analysed this issue for the Heston stochastic volatility model, though, the
key insight is readily transferable to the calculation of option prices in other models that are amenable
to the Fourier inversion integral approach [Car03, CM99] based on a log-characteristic function. We
also presented a detailed analysis how the Fourier integral itself can be computed reliably by the aid of
adaptive Gauss-Lobatto quadrature, using asymptotic analytical methods to identify the most suitable
transformation from the half-open integration domain[0,∞) to the interval[0, 1]. These results, too, are
not only useful for the purpose of computing option prices for the Heston model, but also to illustrate
how similar methods can be devised for other models that are to be evaluated with Fourier integration
techniques.

A Proofs

In this section we present the missing proofs of sections2 and3.
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Proof:[Prop.2.1] First we need some preliminary calculation

c(u) =
κ− ρωui + d(u)
κ− ρωui− d(u)

(57)

=
κ− ρωui + (ad + ibd)
κ− ρωui− (ad + ibd)

(58)

=
(κ + ad) + i (−ρωu + bd)
(κ− ad)− i (ρωu + bd)

(59)

=
[(κ + ad) + i (−ρωu + bd)] [(κ− ad) + i (ρωu + bd)]
[(κ− ad)− i (ρωu + bd)] [(κ− ad) + i (ρωu + bd)]

(60)

=
κ2 + (ρωu)2 −

(
a2

d + b2
d

)
+ i (bd · κ + ad · ρωu)

C
(61)

Hence we have to show if

(62) bd · κ = −ad · ρωu ,

that

(63) κ2 + (ρωu)2 −
(
a2

d + b2
d

)
< 0 .

First we can deduce from (62) that

(64) ρωu =
−bdκ

ad
.

Using this in the left hand side of (63) we obtain

(65) κ2 + (ρωu)2 −
(
a2

d + b2
d

)
=

a2
d + b2

d

a2
d

(
κ2 − a2

d

)
< 0 .

Let

d(u) =
√√√√i · u

(
ω2 − 2κρω

)︸ ︷︷ ︸
q(u)

+ω2u2
(
1− ρ2

)
+ κ2︸ ︷︷ ︸

p(u)

,(66)

z(u) = i · q(u) + p(u) = r(u) (cos(ϕ) + i sin(ϕ)) .(67)

Thus

a2
d(u) = r(u) cos2(ϕ

2 )(68)

> r(u) cos(ϕ)(69)

= ω2u2
(
1− ρ2

)
+ κ2(70)

≥ κ2(71)

which completes the proof. 2

Proof:[Prop.3.1] The proof of equation (34) is basic analysis:

lim
u→∞

d(u)
u

= lim
u→∞

√
ω2(1− ρ2)− 2iω(ρκ− 1

2
ω)
/

u + κ2/ u2(72)

= ω
√

1− ρ2
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Using this result, we are able to confirm equation (35)

lim
u→∞

c(u) =
−ρωi + ω

√
1− ρ2

−ρωi− ω
√

1− ρ2

= −(ω
√

1− ρ2 − ρωi)2

ω2(1− ρ2) + ρ2ω2

= −ω2(1− ρ2)− 2iω2ρ
√

1− ρ2 − ρ2ω2

ω2

= −1 + 2ρ2 + 2iρ
√

1− ρ2 =
(
i
√

1− ρ2 + ρ
)2

.(73)

Note thatlimu→∞ |c(u)| = 1. In order to show equation (36), we need the calculation

lim
u→∞

[
ed(u)τ − 1

c(u)ed(u)τ − 1

]
= lim

u→∞

[
1

c(u)

(
1 +

1− c(u)
c(u)ed(u)τ − 1

)]
= lim

u→∞

1
c(u)

= lim
u→∞

c(u)
|c(u)|

(74)

= −1 + 2ρ2 − 2iρ
√

1− ρ2 .(75)

lim
u→∞

D(u)
u

=
1
ω2

· (−1 + 2ρ2 − 2iρ
√

1− ρ2)(−ρωi + ω
√

1− ρ2)

=
−iρ−

√
1− ρ2

ω
.(76)

Finally, we prove (37)

lim
u→∞

ln

[
c(u)ed(u)τ − 1

c(u)− 1

]
/u = lim

u→∞
ln
[
ed(u)τ c(u)

c(u)− 1

]
/u(77)

= lim
u→∞

(
ln
[
ed(u)τ

]
+ ln

[
c(u)

c(u)− 1

])
/u(78)

= lim
u→∞

d(u)τ/u = d∞τ.(79)

From here, we obtain

(80) lim
u→∞

C(u)
u

= −ατ (d∞ + iωρ) .

Combination of the limit results forD(u) and C(u) makes it straightforward to arrive at the state-
ments (38) and (39) for fj(u). 2

Proof:[Prop.3.2] Considering the functionf1 as given in (4) we see that

(81) lim
u→0

f1(u) = lim
u→0

Im

[
eiu ln(F/K) eC(τ,u−i)+D(τ,u−i)·V0+ln(F )

uF

]
.

The expressions that need attention for the evaluation of this limit arelimu→0 C(τ, u − i) as well as
limu→0 D(τ, u− i). We start with

(82) lim
u→0

d(u− i) = |κ− ρω| .

13



The limit limu→0 c(u− i) depends on the sign ofκ− ρω. We first consider the case whereκ− ρω < 0.
We obtain

(83) lim
u→0

c(u− i) = lim
u→0

κ− iρω(u− i) + d(u− i)
κ− iρω(u− i)− d(u− i)

= 0 .

This allows us to deduce

(84) lim
u→0

D(u− i) = 0, lim
u→0

C(u− i) = 0.

The caseκ− ρω > 0 is a little bit more complicated. First we see that

(85) lim
u→0

|c(u− i)| = lim
u→0

|κ− iρω(u− i) + d(u− i)|
|κ− iρω(u− i)− d(u− i)|

= ∞

as the denominator goes to zero. Using this we can see that

lim
u→0

D(u− i) = lim
u→0

κ− iρω(u− i) + d(u− i)
ω2

(
ed(u−i)τ − 1

c(u− i)ed(u−i)τ − 1

)
(86)

= 0 .(87)

Furthermore, we have

lim
u→0

C(u− i) = lim
u→0

α

(
(κ− iρω(u− i) + d(u− i))τ − 2 ln

[
ed(u−i)τ +

ed(u−i)τ − 1
c(u− i)− 1

])
(88)

= 0 .(89)

Last we have to check the caseκ− ρω = 0. First we have to notice that

(90) lim
u→0

d(u− i)√
u

= lim
u→0

√
ω2(1− ρ2)u− iω2 =

√
−iω2.

We have to mention that this limit is not zero asω 6= 0 if κ− ρω = 0 andκ > 0. Using this we obtain

lim
u→0

c(u− i) = −1 + lim
u→0

−2ρωui

−ρωui− d(u− i)
(91)

= −1 + lim
u→0

2ρωi
√

u

ρωi
√

u +
√
−iω2

= −1 .(92)

Again we getlimu→0 D(u− i) = 0 and

lim
u→0

C(u− i) = α · lim
u→0

(
(κ− ρω + d(u− i))τ − 2 ln

[
c(u− i)ed(u−i)τ − 1

c(u− i)− 1

])
(93)

= α · ln
[
2
2

]
= 0 .(94)

Hence in all different cases

(95) lim
u→0

eiu ln(F/K)+C(u−i)+D(u−i)V0 = 1 .

Now we decompose the exponent into a real and imaginary part

(96) iu ln(F/K) + C(τ, u− i) + D(τ, u− i) · V0 =: H(u) + iJ(u)

with functionsH,J : R −→ R. Due to (95), we also know that

(97) lim
u→0

H(u) = 0 , lim
u→0

J(u) = 0 .
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Now we can calculate

f1(0) = lim
u→0

Im

[
eH(u)+iJ(u)

u

]
(98)

= lim
u→0

Im

[
eH(u) cos(J(u)) + i sin(J(u))

u

]
(99)

= lim
u→0

eH(u) sin(J(u))
u

(100)

= lim
u→0

eH(u) · lim
u→0

sin(J(u))
u

(101)

= lim
u→0

J ′(u)
cos(J(u))

1
= lim

u→0
J ′(u) ,(102)

where we applied the rule of l’Hospital in the last step. Thus,

(103) f1(0) = lim
u→0

J ′(u) = J ′(0) = ln(F/K) + Im
(
C ′(−i)

)
+ Im

(
D′(−i)

)
V0 .

The computation ofC ′ andD′ is tedious but straightforward. We obtain

Im
(
C ′(−i)

)
=

e(ρω−κ)τθκ + θκ((κ− ρω)τ − 1)
2(κ− ρω)2

,(104)

Im
(
D′(−i)

)
=

1− e−(κ−ρω)τ

2(κ− ρω)
,(105)

if (κ− ρω) 6= 0, and otherwise

Im
(
C ′(−i)

)
=

κθτ2

4
,(106)

Im
(
D′(−i)

)
=

τ

2
,(107)

which completes the proof. 2

Proof:[Prop. 3.3] The proof of the limitlimu→0 f2(u) can be done in complete analogy to the proof of
limu→0 f1(u). 2
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[SZ99] R. Scḧobel and J. Zhu. Stochastic Volatility With an Ornstein Uhlenbeck Process: An Ex-
tension. European Finance Review, 3:23–46, 1999.pluto.huji.ac.il/˜efr/3/3_
1schoebel.pdf .

16

math.ut.ee/~spartak/papers/stochjumpvols.pdf
math.ut.ee/~spartak/papers/stochjumpvols.pdf
pluto.huji.ac.il/~efr/3/3_1schoebel.pdf
pluto.huji.ac.il/~efr/3/3_1schoebel.pdf

