
Peter Jäckel∗ and Christian Kahl†

Hyp Hyp Hooray

First version: 9th June 2007
This version: 9th June 2007

Abstract

A new stochastic-local volatility model is introduced. The new model’s structural features
are carefully selected to accommodate economic principles, financial markets’ reality, mathe-
matical consistency, and ease of numerical tractability when used for the pricing and hedging of
exotic derivative contracts. Also, we present a generic analytical approximation for Black [Bla76]
volatilities for plain vanilla options implied by any parametric-local-and-stochastic-volatility model,
apply it to the new model, and demonstrate its accuracy.

1 Introduction

The use of stochastic volatility models has become popular in financial mathematics, both by prac-
titioners and in academia. The reasons for the use of stochastic volatility models differ across re-
searchers working on different underlying financial markets. For some, they are predominantly a
mechanism to have control over the curvature of the model-implied volatility smile. For others, they
are a representation of the actual uncertainty of asset class volatility, and used to model its impact
on exotic derivatives that depend significantly on the variation of short term realised volatility such
as volatility and variance swaptions, globally capped and/or floored cliquets, Napoleons, options on
CPPIs, and so on. Whilst the use of these models is widespread, and the reasons for their use are
diverse, the actual number of different models used in practice is comparatively small. A very pop-
ular one, the so-called SABR model [HKL02], appears to be used predominantly for the marking
and management of implied volatility surfaces. Similarly, some stochastic volatility research is ex-
plicitly targeted at a better understanding of the impact stochastic volatility has on the probability
distribution of the underlying financial asset class such as the excellent works by Fouque [FPS00]
and Gatheral [Gat04, Gat06]. With respect to the consistent use of a stochastic volatility model for
both vanilla options’ smile representation and numerical evaluation of exotic derivatives, the most
popular model is almost certainly the Heston [Hes93] model, and possibly its extensions with Con-
stant Elasticity of Variance [AL05, For06] for local volatility. In comparison, researchers into the
scaling of volatility of volatility as a function of the level of volatility suggest that the stochasticity
of volatility observed in the market is probably closer to the SABR (also known as Scott [Sco87],
Hull-White [HW88], and Wiggins [Wig87]) model [Wig87, Wil06]. In summary, it seems to emerge
nowadays that the main reason the Heston model started being used is that there are analytics for its
calibration, and not that it matches market dynamics particularly realistically. In terms of its numerical
tractability, it turns out that the Heston model is not as analytically solvable as was first thought, nor
that its numerical implementation by means of Monte Carlo simulations or finite difference solving is
as trivial as one might hope [Klu02, AA02, MN03, KJ05, And07, AMST07].
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Whilst the SABR model seems to have a better representation of the scaling of volatility of volatil-
ity with the level of instantaneous volatility, it has its own drawbacks. For starters, the most com-
monly used vanilla option pricing approximation [HKL02] does not permit for term structures of
parameters nor for mean reversion of volatility as it was proposed in the original formulations of the
model [Sco87, HW88], albeit that some progress seems to have been made in the direction of reme-
dying that [Osa06, HL05]. Alas, for a decent fit to market observable implied volatility smiles, term
structures of risk-neutral parameters are often needed. Equally worrying, not having the process for
volatility to mean-revert means that the uncertainty in relative volatility grows indeterminately over
time, which is in contrast with both market implied levels and basic economics. Further, the SABR
dynamics, unfortunately, have recently been found to give rise to serious concern as to whether sec-
ond and higher moments of the underlying financial observable are well defined or not [AP04]. This
last point is a rather subtle one with several implications. For one, it means that many analytical ap-
proximations for mildly volatility smile dependent products such as CMS swaps are not necessarily
convergent, a feature that is somewhat reminiscent of the explosion of futures prices in instanta-
neously lognormal interest rate models [HW93, SS94]. Secondly, any numerical implementation is
prone to suffering from suddenly arising convergence failures. This can happen both for finite differ-
encing methods as well as for Monte Carlo simulations, and any practitioner who has been called over
by a trader and had to explain why, for a certain product with associated market observable implied
volatility smile, the respective simulation model every now and then shows a path that is a complete
outlier knows what I am referring to. What all this amounts to is this: there is a need for a new
stochastic volatility model that is designed to have the same desirable properties as all the above, but
fewer, or ideally none, of the undesirable ones.

Since short term skews are very difficult to calibrate with purely stochastic volatility models,
local volatility extensions have become popular. Also, in order to simplify issues arising from the
volatility process on the chosen measure, some practitioners favour to use local volatility techniques
to explain the skew of the implied volatility profile, and use the stochasticity of volatility to match
the curvature [Pit03, Pit07]. Alas, the most commonly used local volatility extensions for which ana-
lytical approximations for plain vanilla options are know, namely the Constant Elasticity of Variance
model [CR76] and the Displaced Diffusion model [Rub83] both have the feature that for some asset
classes such as equities or commodities, when calibrated to the observable skew, allow for the under-
lying asset value to attain zero, or even cross over into the negative domain. For many contracts, as for
instance common for interest derivatives, this is no issue. However, many other derivative contracts
involve the concept of forward performance whereby the ratio of two future fixings at times T1 and
T2 is used as the effective underlying for a final payoff. These financial products have no well defined
expected value when the underlying can attain zero. Even when the case of the underlying value
dropping to zero is handled by an explicit rule in the derivatives payoff description, it is economically
undesirable to have significant contributions from the positive probability of being at zero or below, as
is usually the case for market-calibrated CEV or displaced diffusion local volatility models. In a nut-
shell, just like there is a need for a different stochastic volatility setting, there is also some advantage
to be gained from revisiting the question as to what local volatility model make sense.

2 A hyperbolic-local hyperbolic-stochastic volatility model

After a long and careful selection process from all the possible mathematical formulations we could
think of, we chose the new model’s dynamics to be given by

dx = σ0 · f(x) · g(y) · dW (1)
dy = −κy · dt + α

√
2κ · dZ (2)
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with correlated Brownian motions 〈dW, dZ〉 = ρ · dt, y(0) = 0 and the transformation functions

f(x) =
[
(1− β + β2) · x + (β − 1) ·

(√
x2 + β2(1− x)2 − β

)]/
β (3)

g(y) = y +
√

y2 + 1 (4)

wherein x is the financial observable that underlies the given derivatives pricing problem, y is the
driver of volatility, and β > 0. Both f(·) and g(·) are hyperbolic versions of conic sections whence
we refer to this model as the hyperbolic-local hyperbolic-stochastic volatility model, or the Hyp-
Hyp model for short. We shall elaborate the reasons for the particular parametric choiced in detail
throughout the remainder of this article.

First, though, note that, in the following, we assume that g(0) = 1 which is obviously without
loss of generality. Further, we assume that x(0) = 1 and f(1) = 1. That this is also without loss of
generality can be seen as follows. Starting with an arbitrary local volatility parametrisation

dS = σ̃ · f̃(S) · g(y) · dW (5)

and initial spot level S(0) = S0, we can always choose

σ0 := σ̃ · f̃(S0)
/

S0 (6)

x := S/ S0 (7)

f(x) := f̃(x · S0)
/

f̃(S0) (8)

to arrive at the formulation (1) with x(0) = 1 and f(1) = 1. The valuation of a plain vanilla call or
put option on S(T ) struck at K then can be done by valuing the same type of option on x(T ) struck
at

k := K/ S0 (9)

and multiplying with S0.

2.1 Hyperbolic local volatility

The local volatility form (3) is designed to resemble the CEV functional form xβ of local volatility at
the forward up to second order. Unlike the CEV or the displaced diffusion functional form of local
volatility1, though, the hyperbolic form (3) not only converges to zero for small x, but also has finite
slope for x → 0, as well as positive slope for x → ∞. The specific shapes are demonstrated in
figures 1 and 2. As a consequence of its zero value at zero, finite slope at zero, and finite positive
slope for large x, when no stochasticity of volatility is present, the local volatility form (3) gives rise
to finite positive implied volatilities for options for very high and very low strikes according to

lim
k→0

σ̂hyperbolic local(k) = σ0 · 1/ β (10)

lim
k→∞

σ̂hyperbolic local(k) = σ0 ·
(
β − 1 +

√
1 + β2 +

(
1−

√
1 + β2

)/
β
)

. (11)

An additional advantage of the finite slope near zero is that the local volatility form f(x), unlike the
CEV and displaced diffusion models, does not give rise to the underlying stochastic process attaining
or even crossing zero, which is of considerable convenience for both numerical implementations as
well as for the pricing of forward performance options. In essence, it is the careful selection of
all of the above mentioned desirable traits of a parametric local volatility form, combined with an
inspiration as to a simple yet suitable functional form, that gave rise to the function f(x) given in
equation (3). Further details of its derivation can be found in [Jäc06].

1the latter being β · x + (1− β) · x0
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Figure 1: Absolute volatility for constant elasticity of variance (red, solid), displaced diffusion (green, long dashes), and
hyperbolic (blue, short dashes) local volatility forms for β = 1/4 (left) and β = 3/2 (right).
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Figure 2: Absolute volatility on a logarithmic scale for constant elasticity of variance (red, solid), displaced diffusion
(green, long dashes), and hyperbolic (blue, short dashes) local volatility forms for β = 1/4 (left) and β = 3/2 (right).

2.2 Hyperbolic stochastic volatility

The design of the stochastic volatility component of the new model was to balance the ideal to be
as close as possible to the case of absolute volatility of volatility scaling like σp with p ≈ 1 for the
reasons mentioned in the introduction, whilst avoiding the fat tails of a log-normal distribution for
volatility in order to circumvent any moment explosions. A log-normal distribution for volatility is
attained when gexp(y) = ey. The chosen hyperbolic function (4) shares level, slope, and curvature
with the exponential function in y = 0, but differs as of the third derivative at y = 0 which is 0 for
the hyperbolic g(·), as opposed to 1 for gexp(·). The consequence of the difference in the higher order
terms is that the hyperbolic form (4) grows less rapidly than the exponential function with increasing
y, as well as decreases less strongly as y → −∞. This is shown in figure 3 where we have included
the functional form gaff(y) = y + 1 for comparison. In figure 4, we show the associated densities for

σ = σ0 · g(y) (12)

with σ0 = 25%, κ = 1/2, T = 5, η = 1/2, α = η/
√

1− e−2κT , together with the volatility density of
a parameter-fitted CIR process given by

dv = κCIR(θCIR − v)dt + αCIR

√
v · dZ , (13)
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Figure 3: The exponential (ey), hyperbolic (y +
√

y2 + 1), and affine (y + 1) transformation functions.
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Figure 4: Densities of instantaneous volatility using the exponential, hyperbolic, and affine transformation of the driving
Ornstein-Uhlenbeck process for σ = σ0 · g(y) with σ0 = 25%, κ = 1/2, T = 5, η = 1/2, α = η/

√
1− e−2κT , plus the

volatility density from a CIR process fitted to the hyperbolic density. The CIR process parameters are elaborated in the
text. Note the distinctly different tails of the distributions.

The CIR process parameters were chosen to match the initial level of volatility, the initial absolute
value of volatility of volatility, the expectation at T , and the variance of the hyperbolic volatility pro-
cess at T using the analytics in [And07, GJY99], and some numerical integration for the expectation
of volatility, resulting in v(0) = 0.0625, αCIR = 0.250847, κCIR = 0.389852, and θCIR = 0.098938. It
can be seen in these figures that with respect to the tail behaviour of the densities, the fitted CIR pro-
cess is approximately mid-way between a normal and a log-normal distribution, as one would expect.
In addition, it can be seen that whilst the hyperbolic form gives rise to a density that, near the bulk
of the distribution, resembles the log-normal distribution reasonably closely, it has much thinner tails
for very low and very high values of volatility, which is precisely what we want to achieve with the
selection of the functional form (4). Analytically, we can understand the thin tails of the hyperbolic
volatility process by considering the solution of (4) and (12) for y:

y =
1

2
·
(

σ

σ0

− σ0

σ

)
(14)
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It follows straight away from this equation that in the limit of σ → ∞, we have σ ∼ 2σ0 · y, which
means that the upper tail of the hyperbolic volatility form converges to that of a Gaussian distribution.
Conversely, for σ → 0, the relationship σ ∼ −σ0/(2y) holds, i.e. we obtain the density of an inverse
Gaussian near zero. The density of an inverse Gaussian near zero stands out as a function which
not only in its value converges to zero as one approaches zero, but also in all of its derivates. It is
an almost flat function with zero value, slope, and curvature at zero. We consider the suppression
of volatility levels near zero another desirable feature for economic reasons, which is why we find
the hyperbolic form (4), when applied to a standard Ornstein-Uhlenbeck process, very well suited to
represent market-realistic dynamics of instantaneous volatility.

3 Analytical approximation for implied volatilities

Having established which local-stochastic volatility model we find suitable for reasons of realism,
numerical tractability, and financial appropriateness, we turn our attention to the important issue of
calibration to market-observable implied volatilities for plain vanilla options. At the heart of this
issue for any efficient risk-management and exotic derivative valuation is an analytical approximation
for plain vanilla option prices, or better even, directly for implied volatilities. Following the lead of
Watanabe and several follow-up publications [Wat87, KT03, Kaw03, Osa06], we have derived the
generic formula

σ̂(k, T ) ≈ σ̂0,sl(k, T ) + σ̂1,sl(k, T ) + σ̂2,sl(k, T ) + σ̂3,l(k, T ) + σ̂4,l(k, T ) (15)

with

σ̂0,sl(k, T ) = σ0 (16)

σ̂1,sl(k, T ) =
zσ0

2
√

T
·
(
(f1 − 1)σ0T +

√
8g1αρ

(
κT + e−κT − 1

)/ (
κ

3/2T
))

(17)

σ̂2,sl(k, T ) =
σ0 · e−2Tκ

24T 3κ3
·[

12
√

2 · eTκf1g1ακ
3/2

(
eTκ(Tκ− 1) + 1

)
ρσ0T

2

− κT ·
[
e2Tκ

(
f 2

1 − 2f2 − 1
)
T 3κ2σ2

0

− 6g2α
2
(
2e2TκT 2κ2 − 5e2TκTκ + Tκ− 8eTκ + 6e2Tκ + 2

)
ρ2

]
− 6g2

1α
2 ·

[
2e2TκT 3

(
ρ2 − 1

)
κ3 + T 2

(
−9e2Tκρ2 + ρ2 + 5e2Tκ − 1

)
κ2

− 2
(
eTκ − 1

)
T

(
−7eTκρ2 + ρ2 + 3eTκ − 1

)
κ− 4

(
eTκ − 1

)2
ρ2

]
+ z2 ·

[
− 12

√
2 · eTκg1ακ3/2

(
eTκ(Tκ− 1) + 1

)
ρσ0T

2

− κT
[
e2Tκ

(
2f 2

1 + 6f1 − 4f2 − 8
)
T 3κ2σ2

0

− 6g2α
2
(
4e2TκTκ + 8eTκ − 6e2Tκ − 2

)
ρ2

]
− 6g2

1α
2
[
T 2

(
12e2Tκρ2 − 4e2Tκ

)
κ2 + 8

(
eTκ − 1

)2
ρ2

− 2
(
eTκ − 1

)
T

(
11eTκρ2 − ρ2 − 3eTκ + 1

)
κ
]]]

(18)

σ̂3,l(k, T ) =
T 3/2zσ4

0

48
·
[
− f 3

1 + f 2
1 + (2f2 + 3)f1 − 2f2 + 2f3 − 3
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+ 2z2 ·
[
f 3

1 + f 2
1 + (4− 2f2)f1 − 2f2 + f3 − 6

]]
(19)

σ̂4,l(k, T ) = − T 2σ5
0

5760
·[

8 · z4 ·
(
19f 4

1 + 15f 3
1 + (20− 46f2)f

2
1 + 6 (3f3 − 5f2 + 15) f1

− 40f2 +
(
16f 2

2 + 15f3

)
− 6f4 − 144

)
− 2 · z2 ·

[
11f 4

1 + 30f 3
1 + (20− 44f2)f

2
1 + 6 (12f3 − 10f2 − 45) f1

+ 140f2 +
(
44f 2

2 − 60f3

)
+ 36f4 + 209

]
− 3 ·

(
3f 4

1 − 2(6f2 + 5)f 2
1 + 16f3f1 − 8f 2

2 + 20f2 + 8f4 + 7
) ]

. (20)

and

z := (k − 1)/ (σ0

√
T ) (21)

as well as
fj = f (j)(1), for j = 1, 2, 3, 4

gk = g(k)(0), for k = 1, 2
(22)

for any stochastic volatility model of the form given by equations (1) and (2). The details of the deriva-
tion can be found in [Kah07]. Specifically for the hyperbolic-local hyperbolic-stochastic volatility
model, this means

f1 = β, f2 = β(β − 1), f3 = −3β(β − 1), f4 = −3β(β − 1)(β2 − 4),

g1 = 1, g2 = 1 .
(23)

The price of a vanilla option is then given by

v(S0, K, T ) = S0 · B(1, k, σ̂, T ) (24)

with σ̂ given by equation (15), and B(F, K, σ̂, T ) being Black’s [Bla76] formula. It should be noted
that specifically for the hyperbolic stochastic volatility form (4) the formula (15) is accurate up to
third order deviations of the volatility driver from zero even though it only contains terms up to g2.
This is by virtue of the fact that the function g(·) as given in (4) has vanishing coefficient g3 = g′′′(0)
which is another advantage of this particular choice for g(·).

3.1 Scaling correction

Comparing the asymptotic approximation of the implied volatility in the Hyp-Hyp model with the cor-
rect implied volatility given via a Monte-Carlo simulation of the stochastic differential equations (1)
and (2) reveals that formula (15) is less accurate for long times to maturity. For the hyperbolic lo-
cal and stochastic volatility model the Watanabe expansion typically underestimates the true implied
volatility level.

In order to address the problem of not matching the implied volatility at-the-money, we are looking
for a different asymptotic approximation method to rescale the implied volatility formula (15). Since
the Watanabe approximation provides accurate results for short times to expiry, we ideally need a
method which works for long times to maturity. The asymptotic fast mean-reverting approximation
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of Fouque et al. [FPS00] matches this criterium. It is given as a function of the log-moneyness-to-
maturity-ratio ln(K/F)/T :

σ̂Fouque = a · ln (K/F)

T
+ b +O (1/κ) ; (25)

with auxiliary parameters

a =
−V2

2σ̂3
RMS

, and b = σ̂RMS −
V2

4σ̂RMS

, (26)

where σ̂RMS is the root-mean square volatility and

V2 =
−2ρ

α
√

2κ
· 〈G ·

(
g2 − 〈g2〉ϕ

)
〉ϕ . (27)

Here 〈·〉ϕ denotes the integration with respect to the stationary distribution of the underlying Ornstein-
Uhlenbeck process (2) and G is the primitive of the hyperbolic transformation function (4). In contrast
to the exponential transformation function, it is not possible to find a closed form solution for (27) for
the hyperbolic case (4). Still, assuming α < 1, we have been able to derive the approximation [Kah07,
sec. 4.2.7]

σ̂Fouque(F, K, T ) ≈ σ0 ·
√

(e−2Tκ − 1) α2

Tκ
+ 2α2 + 1− α (α4 − 7α2 − 1) ρσ2

0√
2
(

(e−2Tκ−1)α2

Tκ
+ 2α2 + 1

)
κ

(28)

−
√

2 · Tα (α4 − 7α2 − 1) κρ

((2 · Tκ + e−2Tκ − 1) α2 + Tκ)3/2
· ln

(
F

K

)
.

for Fouque’s generic formula (25) when g(·) is given by (4).

One of the shortcomings of Fouque’s formula for the use of implied volatility approximations
across the whole surface is that it reflects the strike dependence merely by a term proportional to
ln(F/K). However, at-the-money, it is asymptotically exact for large κ · T , and it is this latter fact that
we use for an ad-hoc scaling correction of the level of the implied volatility formula (15). The idea is
to set

σ̂Hyp-Hyp(k, T ) = σ̂(k, T ) ·
(

σ̂Fouque,ATM(T )

σ̂vol.,ATM(T )
(1− h (T )) + h (T )

)
, (29)

where σ̂Fouque,ATM = σ̂Fouque(F, F, T ) and σvol.,ATM denotes the implied volatility of the Watanabe approxi-
mation (15) at-the-money. The transformation function h : R → [0, 1] is required to be monotonically
decaying with boundary conditions h(0) = 1 and limx→∞ h(x) = 0. A function satisfying these prop-
erties is the exponential form

hexponential scaling(T ) = exp(−κ · T ) , (30)

where the parameter κ is added to weight the scaling. The exponential function decays rapidly when
we increase time to maturity, such that the at-the-money volatility is relatively early governed by the
fast mean-reverting expansion of Fouque et al. [FPS00], and we show in figure 5 an example that this
choice of h(·) is generally not accurate enough.

To overcome this problem we want to choose a parametric form for the scaling which does not
decay as fast as the exponential function. Here again the hyperbolic function comes to our rescue:

hhyperbolic scaling(T ) = g
(√

α · κ · T
)

(31)

with the hyperbolic transformation function g as defined in (4). Note that in contrast to the exponential
scaling in (30) we use a slightly different parameter combination here. This is motivated by the
fact that we do not want the at-the-money volatility to approach the Fouque asymptotics too quickly.
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Furthermore, we add the parameter α into the scaling since the Watanabe approximation is particularly
accurate for small values of α such that we need less scaling. In addition to that, we compare with

hexponential scaling (second)(T ) = exp
(√

α · κ · T
)

. (32)

We show the different scalings in figure 5 where we can also see that the Watanabe approximation
typically underestimates the implied volatility whilst the formula of Fouque overestimates the true
level of volatility. We give further evidence of the effectiveness of the hyperbolic scaling formula
later on in section 5 where we show the calibration results to market given implied volatility surfaces.
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Figure 5: At-the-money volatilities for the Watanabe and Fouque approximation over time to maturity with different
scalings Exp-Scaling (30), Hyp-Scaling (31) as well as Exp-Scaling (second) (32). The parameter configuration is given
as (A): α = 3/5, κ = 1/2, σ = 1/5, ρ = 0 as well as (B): α = 2/5, κ = 1, σ = 1/10, ρ = −1/2. The Monte Carlo
result is calculated via a log-Euler scheme (44) with a stepsize of ∆t = 1/16 and N = 212 − 1 paths constructed using

low-discrepancy Sobol’ numbers in conjunction with a Brownian bridge.

3.2 Time dependent instantaneous volatility

The implied volatility parametrisation (15) of the Hyp-Hyp model is a function of the model parame-
ters ΩHyp-Hyp = {σ0, α, β, ρ, κ} as well as the relative strike k and the time to maturity T . In order
to calibrate the model to market implied volatility surfaces one may want to find the set ΩHyp-Hyp

which minimizes the calibration error over a set of strikes K = {k1, k2, . . . , kN} and maturities
T = {T1, T2, . . . , TM} ∑

K,T

||σ̂Market(ki, Tj)− σ̂Hyp-Hyp(ki, Tj)|| . (33)

In order to replicate a term-structure of market implied volatilities σ̂Market(k, ·) over time, we need to
generalise the Watanabe approximation to allow for time dependent instantaneous volatility σ0. It
turns out that one can approximate the constant volatility σ0 at time T with the corresponding realised
variance

||σ||2 =

√
1

T

∫ T

0

σ0(s)
2 ds . (34)

This added flexibility allows to calibrate the Hyp-Hyp model efficiently and accurately to market
implied volatility surfaces. We show in section 5, that using the realised variance (34) works remark-
ably well if we compare the implied volatility formula (15) with results obtained from Monte-Carlo
simulations.
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3.3 Delta

The rescaling of parameters and stochastic variables in equations (6) to (9) was introduced for a
simplification of the subsequent valuation expressions. However, when the sensitivity of an option
price with respect to the underlying is to be computed, one has to be aware of the fact that the rescaled
local volatility parameters may themselves be subject to change as the underlying spot value is shifted,
in accordance with the original local volatility model assumption.

Taking the complete differential of the option valuation formula (24) with respect to S0 gives us

dv

dS0

= B + S0 · ∂S0k · ∂kB + S0 · ∂σ̂B ·

[
∂S0σ0 · ∂σ0σ̂ + ∂S0k · ∂kσ̂ +

4∑
n=1

∂S0fn · ∂fnσ̂

]
(35)

with B = B(1, k, σ̂, T ) and σ̂ = σ̂(σ0, k, T, f1, f2, f3, f4, . . .). Starting with equation (8), straightfor-
ward calculation of the required derivatives yields

fn = S0
n · f̃ (n)(S0)

/
f̃(S0) (36)

whence
∂S0fn = ∂S0

(
S0

n · f̃ (n)(S0)
/

f̃(S0)
)

= (fn+1 + fn(n− f1))/ S0 . (37)

Equally, starting from (6), we obtain

∂S0σ0 = ∂S0

(
σ̃ · f̃(S0)

/
S0

)
= σ̃ ·

(
f̃ ′(S0)

/
S0 − f̃(S0)

/
S0

2
)

= σ0 · (f1 − 1)/ S0 . (38)

Substituting this into (35), we obtain the generic formula for the option’s delta:

dv

dS0

= B− k · ∂kB + ∂σ̂B ·

[
σ0 · (f1 − 1) · ∂σ0σ̂ − k · ∂kσ̂ +

4∑
n=1

(fn+1 + fn · (n− f1)) · ∂fnσ̂

]
(39)

For the hyperbolic-local hyperbolic-stochastic volatility model, we obtain for the coefficient f5 needed
for the calculation of dS0v:

f5 = 15β(β − 1)(3β2 − 4) (40)

The remaining terms ∂σ0σ̂, ∂kσ̂, and ∂fnσ̂ have to be determined from the implied volatility for-
mula (15). This can either be done analytically, or, for the sake of speedy implementation and flex-
ibility with respect to the choice of scaling correction as discussed in section 3.1, one can also use
centred finite differencing to compute these terms.

4 Numerical implementation

The pricing of non-vanilla derivatives within the Hyp-Hyp model by the aid of Monte Carlo simula-
tions is facilitated by the fact that volatility is given by a transformed Ornstein-Uhlenbeck [UO30]
process with solution

yt = e−κt

(
y0 + α

√
2κ

∫ t

0

eκu dZu

)
, (41)

where y0 denotes the initial value of y. Thus yt is Gaussian distributed

yt ∼ N
(
y0 · e−κt, α2

(
1− e−2κt

))
. (42)
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With respect to the financial underlying, it is useful to consider the formal solution to (1) in logarith-
mic coordinates:

ln xt = ln x0 −
1

2
σ2

0

∫ t

0

(
f(xs)

xs

g(ys)

)2

ds + σ0

∫ t

0

(
f(xs)

xs

g(ys)

)
dW (s) , (43)

One can approximate (43) on a given time interval [tn, tn+1] by the Euler-Maruyama scheme

ln xtn+1 = ln xtn −
1

2
σ2

0

(
f(xtn)

xtn

g(ytn)

)2

·∆tn + σ0 ·
f(xtn)

xtn

g(ytn) ∆Wn , (44)

whereby ∆tn = tn+1− tn and ∆Wn ∼ N (0, ∆tn). And herein lies one of the reasons for the specific
choice for f(·) given by (3): the scheme (44) remains positive without any further ado by the simple
fact that for x → 0, we have

f(x)/ x =
(
1 + β−1

2β
· x + β−1

2β
· x2 + (β−1)(4β2−1)

8β3 · x3 +O(x4)
)/

β . (45)

In contrast, the functional form for f(·) for the CEV (xβ) or displaced diffusion (βx + (1 − β)x0)
models lead, for β < 1 (as is usually the case in the market), to diverging terms in absolute local
volatility for small values of x which require special treatment in any numerical implementation.
Having said that, we should issue one caveat: whilst the scheme (44) is analytically guaranteed to
stay away from zero, numerically the term ln xt can, for β � 1, become so negative that the value
for xt itself is numerically indistinguishable from zero. This, however, is a feature also shared by
geometric Brownian motion when σ ·

√
T � 1. Still, one ought to be aware of this issue when pricing

exotic options which depend on the reciprocal of the underlying such as cliquets or CPPIs.

5 Accuracy of the approximation

We show in figure 6 comparisons of the numbers given by the asymptotic implied volatility for-
mula (15) (which is quartic in k) with results from a Monte-Carlo simulation of the underlying
dynamics (1) and (2). We consider the scaling-corrected asymptotic formula to be well within the
accuracy required for all practical purposes for at-the-money options. With respect to its slight di-
vergence from the true value for very far out-of-the-money options, it is worth bearing in mind that
calibration is typically only required to be highly accurate within a range that is comparatively close
to the money, especially since far out-of-the-money options typically have extremely little time value
anyway. Nevertheless, when a better match of the stochastic volatility model’s implied volatility be-
haviour in the wings is required, it is straightforward to fit a suitable functional form for implied
volatility to our asymptotic quartic form up to fourth order near the money, and infer the behaviour
far away from the money from the chosen functional form. When the selected function represents
generic stochastic volatility model behaviour well, this typically results in very good matches even
for very far out of the money options. Since the details of such an extension are beyond the scope of
this article, we refer the reader to the generic forms suggested in [Gat04, Gat06]. In figure 7, we show
the impact of using the realised variance (34) within the asymptotic implied volatility formula (15)
to cater for a time dependence of the instantaneous volatility level parameter σ0(t). We see that nei-
ther an upward nor a downward movement of instantaneous volatility leads to a deterioriation of the
approximation quality.

6 Conclusion

We have presented a new stochastic volatility approach whose starting point was to design a model
by choosing desirable features, as opposed to the more conventional approach to select equations and
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Figure 6: Comparison of the implied volatility approximation (15) with scaling function (31) with the results of a Monte-
Carlo simulation, using the log-Euler scheme (44) with a stepsize of ∆t = 1/10 and N = 220 − 1 paths constructed using
low-discrepancy Sobol’ numbers in conjunction with a Brownian bridge. The parameter configuration is given as (A):
β = 3/10, α = 1/2, κ = 1, σ0 = 4/25, ρ = −1/2, and time to maturity T = 3 as well as (B): β = 7/10, α = 3/10, κ = 1,

σ0 = 1/5, ρ = −3/10, and time to maturity T = 1.
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Figure 7: Comparison of the implied volatility approximation (15) with scaling function (31) with the results of a Monte-
Carlo simulation, using the log-Euler scheme (44) with a stepsize of ∆t = 1/10 and N = 220 − 1 paths constructed using
low-discrepancy Sobol’ numbers in conjunction with a Brownian bridge. The parameter configuration is given as (A):
β = 3/10, α = 1/2, κ = 1, σ(2)/(1)(t) = 4/25 ± 3/100 · t, ρ = −1/2, and time to maturity T = 3 as well as (B): β = 7/10,

α = 3/10, κ = 1, σ(2)/(1)(t) = 1/5± 3/100 · t, ρ = −3/10, and time to maturity T = 1.

accomodate undesirable features as a price to pay for the analytical tractability. Since there is no such
thing as a free lunch, we had in turn to invoke more complicated means in order to arrive at analytical
approximations for plain vanilla option calibration equations for the new Hyp-Hyp model. However,
given that we had the liberty to genetically engineer a model that is in our opinion a better compro-
mise between financial suitability and numerical implementation and performance requirements for
the valuation of exotic options, we considered the investment in the analysis worth while, and we pre-
sented the results and demonstrated their accuracy. In addition to the introduction of the new model
and its analytical vanilla option pricing approximations we also produced some generic analytical
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results for the implied volatility for any parametric-local-and-stochastic-volatility model by the aid of
rather involved calculations based on Watanabe’s theorem whose details we omitted in this article for
the sake of brevity.
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