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Abstract

In this article we discuss a method to complete the correlation matrix in a multi-dimensional stochas-
tic volatility model. We concentrate on the construction of a positive definite correlation matrix. Fur-
thermore we present a numerical integration scheme for this system of stochastic differential equations
which improves the approximation quality of the standard Euler-Maruyama method with minimal addi-
tional computational effort.

1 Introduction

In stochastic models, especially in finance, often only some part of a correlation matrix is given by measured
data. This incomplete model may easily be completed by defining the respective correlations in a reasonable
way. However, the problem is to guarantee the positive definiteness of the matrix after completion. This
paper develops and describes an efficient and feasible algorithm to accomplish this task, which is based on
combining Gaussian-elimination with arguments from graph theory.
In comparison to the results of Grone et al. [GJSW84] and Barrett et al. [BJL89] our algorithm shows that
it is possible to find a symmetric positive definite completion of the correlation matrix under the additional
restriction that all matrix entries have to satisfy |a(i,j)| < 1. Moreover we verify that our choice of the
unspecified entries leads to the unique determinant maximising completion without the necessity of solving
a sequence of optimisation problems.
The paper is organized as follows. Section 1 defines the problem of completing a correlation matrix and
introduces the model setup. The basic idea of the algorithm is motivated by inspecting a small 2× 2 example
in section 2, and is applied to the general multi-dimensional case in the subsequent section. Finally, we
show how the completed correlation matrix can be incorporated into numerical integration schemes for
multi-dimensional volatility models.

2 Model setup

We consider the following 2n-dimensional system of stochastic differential equations

dSi = µiSidt + fi(Vi)SidW(S,i)(1)

dVj = aj(Vj)dt + bj(Vj)dW(V,j)(2)

with i, j = 1, . . . , n and Brownian motions W(S,i),W(V,j). This article focuses on the question how to
correlate the 2n Brownian motions. Furthermore, we assume that the diffusion of the underlying Si is only
directly coupled to one volatility Vi. If we concentrate on just one volatility-underlying-pair we obtain a
typical stochastic volatility model to describe the non-flat implied volatility surface in European option’ s
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prices. This problem is intensively discussed in the literature in the recent years. More details can be found
in the articles of Heston [Hes93], Scott-Chesney [CS89] and Schöbel-Zhu [SZ99].

We assume that we already know the correlation between the Wiener processes WS,i and WV,i

(3) dWS,idWV,i = ηidt ,

which in short-hand may be written as

(4) WS,i ·WV,i $ ηi .

Neglecting the stochastic volatility we also have to decide how to couple the underlyings Si. This question
is quite common in finance and we assume that we know these correlations, too:

(5) WS,i ·WS,j $ ρ(i,j).

This leads to the following structure for the correlation matrix

(6) A = a(i, j)1≤i,j,≤2n =



ρ(1,1) . . . ρ(1,n) η1 ?
...

...
. . .

ρ(n,1) . . . ρ(n,n) ? ηn

η1 ? 1 ?
. . . . . .

? ηn ? 1


,

with the undefined correlations marked with ?. The problem of completing a matrix A which is only
specified on a given set of positions, the so called pattern, is directly related to the structure of the graph
G = (V,E) of A. In case of completing symmetric positive definite matrices, Grone et al. [GJSW84, Thm.
7] proved that the partial matrix A is completable if and only if the corresponding graph G is a chordal
graph and each principal submatrix is positive semidefinite. Unfortunately this theorem is not applicable in
our case as a correlation matrix has the further requirement that all entries are restricted by |a(i,j)| < 1. For
more informations on matrix completions problems we refer the reader to [Lau01, Joh90].

The problem we have to deal with now is to define the yet unspecified correlations. To make this point
clear we will discuss the simplest example of two underlyings and two stochastic volatility processes in the
next section and we generalise this to the multi-dimensional case in section 4.

Before we start with the discussion of a two-dimensional example we have to state the following general
result which helps us to prove the positive definiteness of the correlation matrix.

Remark 2.1 A square matrix A ∈ Rn×n is positive definite if the Gaussian-algorithm1 can be done with
diagonal pivots pi and if each pivot pi is greater zero.

3 The 2× 2-dimensional example

In this section we discuss how to complete the correlation matrix in the easiest case of two underlyings and
two stochastic volatilities. We will refer to this as two-dimensional even though, strictly speaking, it would
be more correct to call it 2× 2-dimensional. The correlation matrix (6) is given by

(7) A =


1 ρ(1,2) η1 ?

ρ(2,1) 1 ? η2

η1 ? 1 ?
? η2 ? 1

 .

We recognize that we have to specify the cross-correlations between S1 ∼ V2 and S2 ∼ V1, as well as the
correlation between the different volatilities V1 and V2. This problem becomes more clear if we have a look
at the corresponding graph2 of the matrix (7) as shown in figure 1 . One ad-hoc and pragmatic way3 to

1The Gauss-algorithm we are referring to is the standard Gaussian-elimination in kij-form as in Duff, Erisman and Reid [DER86,
Section 3.3]

2Graph theory and sparse matrices are closely linked topics. One can represent a symmetric matrix by an undirected graph. For
more information see Golub and van Loan[GvLC96] or Frommer[Fro03].
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ρ(1,2)

η1

η2

V 2S 2

S 1 V 1

Figure 1: Corresponding graph to matrix (7). The nodes (sometimes also called vertices) are referred by S1, S2, V1 and V2. This
is not entirely consistent with the notation used in the literature as it would be correct to fill these nodes with the diagonal entries
a(i, i) = 1. In the following we always choose the notation which provides the necessary information. The undirected edges are

given by the non-diagonal entries of the matrix (7).

define the correlation between V1 and S2 is the product of the correlation between V1 ∼ S1 and S1 ∼ S2

(8) a(3, 2) $ WV,1 ·WS,2 $ (WV,1 ·WS,1) (WS,1 ·WS,2) $ η1 · ρ(1,2).

In the same way we are able define the correlation of the volatilities as the product of the correlation between
V1 ∼ S1, S1 ∼ S2 and S2 ∼ V2

(9) a(4, 3) $ WV,1 ·WV,2 $ (WV,1 ·WS,1) (WS,1 ·WS,2) (WS,2 ·WV,2) $ η1 · ρ(1,2) · η2.

On the corresponding graph we just multiply the values of the edges on the path from V1 to V2. In the two-
dimensional example there is just one possibility for this path but in the multi-dimensional case we have to
choose the shortest one. The matrix now looks like

(10) A =


1 ρ(1,2) η1 η2 · ρ(1,2)

ρ(2,1) 1 η1 · ρ(1,2) η2

η1 η1 · ρ(2,1) 1 η1 · ρ(1,2) · η2

η2 · ρ(2,1) η2 η1 · ρ(2,1) · η2 1

 .

Figure 2 shows the corresponding graph to matrix (10)

ρ(1,2)

η1

η2

η1 · ρ(1,2) · η2

η2 · ρ(1,2)

η1 · ρ(1,2)

V 2S 2

S 1 V 1

Figure 2: Corresponding graph to matrix (10).

Next we have to verify that this choice of correlations leads to a positive definite matrix. In order to
show this we use the Remark 2.1. In the kth step of the Gaussian-elimination we have to choose the diagonal

3This idea goes back to P. Jäckel [Jäc05]
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element a(k, k) as the pivot pk and we only operate on the elements a(i, j) with i, j ≥ k. To indicate the
kth elimination step we denote the matrix A as A(k) with entries a(i, j)(k) which will be updated via

(11) a(i, j)(k+1) = a(i, j)(k) − a(i, k)(k)a(k, j)(k)

a(k, k)(k)
, i, j > k .

The first pivot is p1 = a(1, 1)(1) = 1 which is indeed greater zero and the remaining matrix looks as follows

(12) A(2) =


1 ρ(1,2) η1 η2 · ρ(1,2)

0 1− ρ2
(1,2) 0 η2

(
1− ρ2

(1,2)

)
0 0 1− η2

1 0

0 η2

(
1− ρ2

(1,2)

)
0 1−

(
η2ρ(1,2)

)2

 .

After the first elimination step we can exclude the first row and first column from further consideration as
they do not participate in the following calculations. Thus concentrating on the active part of the matrix we
recognize that in the third row and third column only the diagonal element a(3, 3)(2) is not zero. Therefore
this node has lost any connection to other vertices in the corresponding graph, which means that in the
following Gaussian-elimination steps this whole row and column stays unmodified. In addition a(3, 3)(2) =
1 − η2

1 > 0 hence we can choose this element as a positive pivot in elimination step k = 3. The next pivot
is a(2, 2)(2) = 1− ρ2

(1,2) > 0 and we obtain

A(3) =


1 ρ(1,2) η1 η2 · ρ(1,2)

0 1− ρ2
(1,2) 0 η2

(
1− ρ2

(1,2)

)
0 0 1− η2

1 0

0 0 0 1−
(
η2ρ(1,2)

)2 − η2
2

“
1−ρ2

(1,2)

”2

1−ρ2
(1,2)

(13)

=


1 ρ(1,2) η1 η2 · ρ(1,2)

0 1− ρ2
(1,2) 0 η2

(
1− ρ2

(1,2)

)
0 0 1− η2

1 0
0 0 0 1− η2

2

 .(14)

The active part is now only the 2× 2 submatrix containing all entries a(i, j)(2) with i, j > 2. In the last two
elimination steps we can just choose the elements a(3, 3)(3) = 1 − η2

1 > 0 and a(4, 4)(4) = 1 − η2
2 > 0 as

pivots p3 and p4 which proves that the original matrix A is positive definite. In the next section we show
that the Gaussian-algorithm is quite similar in the multi-dimensional case.

4 Multi-dimensional correlation

In this section we show how it is possible to complete the correlation matrix in the multi-dimensional
setting in a very similar way as in the two-dimensional case. Moreover we verify that our choice leads
to the determinant maximising completion. To get a first impression we draw the graph of six volatility-
underlying-pairs and their corresponding correlations in figure 3. Within this figure we only show the fixed
correlation between the underlyings Si and the volatility-underlying correlation between Sj and Vj . As in
the two-dimensional case we define the cross-correlation between the volatility Vi and the underlying Sj by
the product of the correlation between Vi ∼ Si and Si ∼ Sj

(15) a(i + n, j) $ WV,i ·WS,j $ (WV,i ·WS,i) (WS,i ·WS,j) $ ηi · ρ(i,j).

In the same way we define the correlation between two volatilities as

(16) a(i + n, j + n) $ WV,i ·WV,j $ (WV,i ·WS,i) (WS,i ·WS,j) (WS,j ·WV,j) $ ηi · ρ(i,j) · ηj .

This corresponds to the shortest connection4 in the graph between Vi and Vj . With this choice of the
undefined correlations we are able to prove the following:

4In the shortest connection we only take into consideration the predefined paths between two underlyings Si and Sj as well as
the fixed underlying-volatility correlation between Si and Vi
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V 6

S 1 S 2

V 1 V 2

V 3S 3

S 4

V 4V 5

S 5

S 6

Figure 3: Multi-dimensional correlation graph corresponding to matrix (6) with n = 6 where the unspecified correlations are
interpreted as zero.

Theorem 4.1 If the correlations between the underlyings

(17) WS,i ·WS,j = ρ(i,j)

are given such that the correlation matrix

(18) B = b(i, j) = ρ(i,j)

is positive definite and if we choose the cross-correlations due to (15) and (16) then the whole correlation
matrix

(19) A = a(i, j)1≤i,j,≤2n =



ρ(1,1) . . . ρ(1,n) η1 . . . ηn · ρ(1,n)
...

. . .
...

...
. . .

...
ρ(n,1) . . . ρ(n,n) η1 · ρ(n,1) . . . ηn

η1 . . . η1 · ρ(n,1) 1 . . . η1 · ρ(1,n) · ηn
...

. . .
...

...
. . .

...
ηn · ρ(1,n) . . . ηn η1 · ρ(n,1) · ηn . . . 1


is positive definite.

Proof: In the two-dimensional setting we observed that the volatility V1 given by the diagonal entry
a(1 + n, 1 + n)(2), where n is the number of volatility-underlying-pairs, lost any connection in the corre-
sponding graph after choosing S1 = a(1, 1)(1) as the first pivot. In the multi-dimensional setting this is
equivalent to

(20) a(n + 1, j)(2) = 0, j = 2, . . . , n, n + 2, . . . , 2n .

In general we have to show that after selecting a(k, k)(k) as the kth pivot the corresponding volatility entry
a(k + n, k + n)(k+1) is greater zero and has no further connection in the graph of A(k), which means that

(21) a(n + k, j)(k+1) = 0, j = k + 1, . . . , n + k − 1, n + k + 1, . . . , 2n .
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We will prove the positivity by showing that the following invariant holds

a(k + n, k + n)(k+1) −
(
a(k, k + n)(k+1)

)2
a(k, k)(k+1)

=(22)

a(k + n, k + n)(k) −
(
a(k, k + n)(k)

)2
a(k, k)(k)

=

. . . =

a(k + n, k + n)(1) −
(
a(k, k + n)(1)

)2
a(k, k)(1)

= 1− η2
k.(23)

We show this by induction. First we verify the following invariants:

a(i + n, j)(k) =
a(i + n, i)(k)a(i, j)(k)

a(i, i)(k)
,(24)

a(i + n, j + n)(k) =
a(i + n, i)(k)a(i, j)(k)a(j + n, j)(k)

a(i, i)(k)a(j, j)(k)
,(25)

with i, j > k. Before we start proving these statements, we explain the origin of the invariants (24) and (25).
Having a look at the corresponding graph (see figure 4) in the elimination step k and bearing in mind that
a(i+n, j +n)(k) describes the correlation between Vi and Vj then the equation (25) is just the product over
the values of the edges on the shortest path from Vi to Vj divided by the values of the vertices Si = a(i, i)(k)

and Sj = a(j, j)(k).

a(i, i) Vi

a(j, j) Vj

a(i, j)

a(i + n, i)

a(j + n, j)

a(i + n, j + n)

a(j + n, i)

a(i + n, j)

Figure 4: Graph describing the correlation structure of the underlyings Si and Sj as well as Vi and Vj in the kth step of the
Gaussian-algorithm. To simplify the notation we dropped all superscripts (k). The nodes on the left side belong to Si and Sj which

are here filled with the corresponding diagonal entries in the matrix A(k).

First we show by induction that (24) holds. The start of the induction is due to the construction (15)

(26) a(i + n, j)(1) =
a(i + n, i)(1)a(i, j)(1)

a(i, i)(1)
= a(i + n, i) · a(i, j) = ηi · ρ(i,j).

Now we assume that (24) is valid until elimination step k and we want to verify that

(27) a(i + n, j)(k+1) =
a(i + n, i)(k+1)a(i, j)(k+1)

a(i, i)(k+1)
, for all i, j > k + 1 .

Due to the Gaussian-algorithm we know that5

(28) a(i + n, j)(k+1) = a(i + n, j)(k) − a(i + n, k)(k)a(k, j)(k)

a(k, k)(k)
.

5In the following calculation we will not mention the index (k) indicating a variable in the elimination step k.
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We thus calculate

a(i + n, j)(k+1) = a(i + n, j)(k) − a(i + n, k)(k)a(k, j)(k)

a(k, k)(k)
(29)

=
1

a(k, k)
(a(k, k)a(i + n, j)− a(i + n, k)a(k, j))

=
1

a(k, k)

(
a(k, k)

a(i + n, i)a(i, j)
a(i, i)

− a(i + n, i)a(i, k)
a(i, i)

a(k, j)
)

=
1

a(k, k)
a(i + n, i)

a(i, i)
(a(k, k)a(i, j)− a(i, k)a(k, j))

=
1

a(k, k)
(a(k, k)a(i, j)− a(i, k)a(k, j))

·
a(i+n,i)

a(i,i) (a(i, i)a(k, k)− a(i, k)a(i, k))

(a(i, i)a(k, k)− a(i, k)a(i, k))

= a(i, j)(k+1)
a(k, k)

(
a(i + n, i)− a(i,k)a(i,k)

a(k,k)

)
a(k, k)

(
a(i, i)− a(i,k)a(i,k)

a(k,k)

)
=

a(i, j)(k+1)a(i + n, i)(k+1)

a(i, i)(k+1)
.(30)

The proof of invariant (25) can be done in the same way. Next we show that equation (23) holds. Again the
begin of the induction is valid due to construction (15). Assuming that the equation is valid up to elimination
step l ≤ k, we obtain6

a(k + n, k + n)(l+1) − a(k, k + n)(l+1)a(k, k + n)(l+1)

a(k, k)(l+1)
=

a(k + n, k + n)− a(k + n, l)a(k + n, l)
a(l, l)

− (a(l, l)a(k, k + n)− a(k, l)a(k + n, l))2

a(l, l) (a(l, l)a(k, k)− a(k, l)a(k, l))
=

a(k + n, k + n)− (a(k + n, l)a(k, l))2

a(k, k)2a(l, l)
−

(
a(l, l)a(k, k + n)− a(k, l)a(k+n,k)a(k,l)

a(k,l)

)2

a(l, l) (a(l, l)a(k, k)− a(k, l)a(k, l))
=

a(k + n, k + n)− (a(k + n, k)a(k, l))2

a(k, k)2a(l, l)
− a(k + n, k)2 (a(l, l)a(k, k)− a(k, l)a(k, l))

a(k, k)2a(l, l)
=

a(k + n, k + n)(l) − a(k + n, k)(l)a(k + n, k)(l)

a(k, k)(l)
.

Last we have to prove equation (21). Choosing a(k, k)(k) as the kth pivot leads to

a(k + n, j)(k+1) = a(k + n, j)− a(k + n, k)a(k, j)
a(k, k)

= 0 .(31)

The same holds for

a(k + n, j + n)(k+1) = a(k + n, j + n)− a(k + n, k)a(k, j + n)
a(k, k)

(32)

= a(k + n, j + n)− a(k + n, k)a(k, j)a(j, j + n)
a(j, j)a(k, k)

= 0 .(33)

Let us summarize this proof. We know that we can choose the n underlying Si ∼ a(i, i) as the first n pivots
assuming that the coupling of the underlyings leads to a positive definite matrix. During these n steps all
volatilities Vi ∼ a(i + n, i + n) are losing their connection in the corresponding graph and furthermore, we
verified that a(k + n, k + n)(k+1) = 1− η2

k > 0. 2

6The first step is just the calculation rule of the Gaussian-elimination and we drop again the superscript (l).
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Remark 4.1 The result can be generalised to the case where one underlying is not necessarily restricted to
be directly coupled to one stochastic volatility process. It is also possible to have some underlyings without
stochastic volatility and some with two or even more factors. Following the idea of the proof of Theorem 4.1
we just have to make sure that, if one underlying Si is coupled to more than one volatility processes V

(m)
i ,

m = 1, . . . ,M , the matrix Ci with

(34) c(k, l) $ W
V

(k)
i

·W
V

(l)
i

, c(k, M +1) $ W
V

(k)
i

·WS,i, c(M +1,M +1) $ WS,i ·WS,i $ 1,

is positive definite.

Next we verify that the choice of the cross-correlations due to (15) and (16) leads to the unique comple-
tion Ã of the correlation matrix which maximises the determinant. Furthermore we know from [GJSW84,
Thm. 2] that this is equivalent, that the inverse (19) contains zero’s at each position which was previously
unspecified.

Theorem 4.2 Choosing the cross-correlations due to (15) and (16) leads to the unique determinant max-
imising positive completion.

Proof: First we write the matrix A given by equation (19) as

(35) A =
(

B DT

D C

)
with square matrices B,D and C. The entries of B are already specified. Next we introduce the term
C̃ = C−DB−1DT which is the well known Schur-complement. Using this notation we can formally write
the inverse of A as

(36) A−1 =

(
B−1

(
I + DT C̃−1DB−1

)
−B−1DT C̃−1

−C̃−1DT B−1 C̃−1

)
.

Thus we have to show that C̃ and B−1DT are diagonal. Since the Gaussian-elimination on B coincides with
calculating its inverse, equation (21) verifies that C̃ is diagonal. Moreover (21) also shows that B−1DT only
contains zero’s below the diagonal. As this matrix is symmetric, caused by the diagonality of B and D, its
diagonal. Hence the inverse of A contains zero’s at each previously unspecified position which is equivalent
with finding the determinant maximising completion due to Grone et al. [GJSW84]. 2

Now we are able to complete the correlation matrix such that we obtain a symmetric positive definite
matrix. Next we are confronted with the problem of integrating this system of stochastic differential equa-
tions. In case of one volatility-underlying-pair Kahl and Jäckel [KJ05] compared the efficiency of various
numerical integration methods. In the next section we show that these results are also applicable in the
multidimensional setting.

5 Numerical tests for the multidimensional stochastic volatility model

In this section we discuss suitable numerical integration schemes for the multidimensional stochastic volatil-
ity model (1). Without stochastic volatility this problem is comparatively easy to solve as the n underlyings
Si are n-dimensional lognormal distributed. Thus in case of European options we do not have to discretise
the time to maturity at all. The situation becomes much more complicated when stochastic volatility comes
into play. As we do not know the distribution density we have to apply numerical integration schemes for
stochastic differential equations. In the standard model with only one underlying and one stochastic volatil-
ity Kahl and Jäckel [KJ05] discussed different integration methods with special regard to the numerical
efficiency. It turned out that higher order methods, i.e. the Milstein scheme are inappropriate due to the
fact that we have to generate additional random numbers. The finally most efficient integration scheme is
referred to IJK7

lnS(m+1) = lnS(m) +
(
µ− 1

4

(
f2
(
V(m)

)
+ f2

(
V(m+1)

)))
∆t + ρf

(
V(m)

)
∆W(V,m)

+1
2

(
f
(
V(m)

)
+ f

(
V(m+1)

)) (
∆W(S,m) − ρ∆W(V,m)

)
(37)

+1
2

√
1− ρ2f ′

(
V(m)

)
b
(
V(m)

) ((
∆W(V,m)

)2 −∆t
)

7The name IJK refers to the originator’s of this scheme.

8



with correlation dWS ·dWV = ρdt. As one underlying Si is only directly coupled to one stochastic volatility
process Vi we can generalise this integration scheme straightforward to the multidimensional case

lnS(i,m+1) = lnS(i,m) +
(
µi − 1

4

(
f2
(
V(i,m)

)
+ f2

(
V(i,m+1)

)))
∆t + ρf

(
V(i,m)

)
∆W(V,i,m)

+1
2

(
f
(
V(i,m)

)
+ f

(
V(i,m+1)

)) (
∆W(S,i,m) − ρ∆W(V,i,m)

)
(38)

+1
2

√
1− ρ2f ′

(
V(i,m)

)
b
(
V(i,m)

) ((
∆W(V,i,m)

)2 −∆t
)

where Si,m+1 denotes the (m + 1)th step of the ith underlying. For the IJK scheme we assume that we
already know the numerical approximation of the whole path of the process Vt. This path has to be com-
puted with a suitable numerical integration scheme depending on the stochastic differential equation for the
stochastic volatility. This problem is intensively discussed in [KJ05, Section 3]. The benchmark scheme for
the multidimensional IJK scheme is the standard Euler-Maruyama method

lnS(i,m+1) = lnS(i,m) +
(
µi − 1

2fi

(
V(i,m)

))
∆tm + fi

(
V(i,m)

)
∆W(S,i,m)(39)

V(j,m+1) = aj

(
V(j,m)

)
∆tm + bj

(
V(j,m)

)
∆W(V,j,m).(40)

Here one has to bear in mind that if the stochastic volatility Vj is given by a mean-reverting process the
Euler scheme is not able to preserve numerical positivity. Thus if the financial derivative is sensitive to the
dynamic of the variance of the underlying we recommend more advanced numerical integration schemes to
preserve positivity.

Next we set up a 4 × 4-dimensional benchmark model to obtain a first impression on the numerical
efficiency of both integration schemes. The stochastic volatility σt = f(Vt) is described by a hyperbolic
transformed Ornstein-Uhlenbeck process

(41) dyt = −κytdt + α
√

2κdWV ,

with transformation function σt = σ0

(
yt +

√
y2

t + 1
)

which was introduced and discussed in [KJ05]. We
choose the following parameter configuration κ = 1, α = 0.35, σ0 = 0.25 and y0 = 0 throughout the whole
section and for all volatility processes. The initial value of the four underlyings is set to S0 = 100. The
decisive point for these tests is the correlation structure of the Wiener processes. The underlying correlation
matrix (18) is chosen as follows

(42) B =


1 0.2 0 0.5

0.2 1 0.4 0
0 0.4 1 0.6

0.5 0 0.6 1

 .

For the underlying-volatility correlation we assume a highly negative correlation corresponding to a down-
ward sloping implied volatility surface in European vanilla option markets

(43) v =


-0.7
-0.8
-0.9
-0.8

 .

This directly leads to the following correlation matrix completed due to (15) and (16)

(44) A =



1 0.2 0 0.5 -0.7 -0.16 0 -0.4
0.2 1 0.4 0 -0.14 -0.8 -0.36 0
0 0.4 1 0.6 0 -0.32 -0.9 -0.48

0.5 0 0.6 1 -0.35 0 -0.54 -0.8
-0.7 -0.14 0 -0.35 1 0.112 0 0.28

-0.16 -0.8 -0.32 0 0.112 1 0.288 0
0 -0.36 -0.9 -0.54 0 0.288 1 0.432

-0.4 0 -0.48 -0.8 0.28 0 0.432 1


.
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The first numerical test compares the evaluation of a basket option. Thereby we consider the payoff function
to be the mean of the four underlying assets. Thus the fair value of this option is given by

(45) C(T,K) = E

(
1
4

4∑
i=1

Si(T )−K

)+

.

The numerical results are compared with a numerical reference solution computed with the Euler-Maruyama
scheme (39) and a stepsize of ∆texact = 2−10. The prices are calculated for a whole range of strikes K =
{75, . . . , 133.3} and a termstructure of maturities T = {0.5, 1, 1.5, . . . , 4}. As there is a great difference
in prices of at the money options compared to in-the-money and out-of-money options we compute the
implied Black volatility, denoted as IV (C,S, K, r, T ), where C is the given option price, S the initial
value and r the risk free interest rate, to get a fair error measure. The biggest advantage of the implied
volatility is that the error-size throughout the whole level of strikes and maturities becomes comparable.
The first figure 5 (A) shows the numerical reference solutions where we recognize the strongly downward
sloping skew structure of the implied volatility surface as a consequence of the negative correlation between
underlyings and volatilities (43) . In the figure 6 we compare the numerical results of the Euler scheme with

(A) (B)

10
3

10
4

10
−1

10
0

time used [msec]

er
ro

r

Euler

IJK

Figure 5: (A): Implied volatility surface of the reference solution with a stepsize of ∆texact = 2−10 and 32767 paths . (B): Weak
approximation error (46) as a function of CPU time [in msec] for the simulation of 32767 paths. The number generator in (A) and

(B) was Sobol’s method and the paths were constructed via the Brownian bridge.

the multidimensional IJK scheme where we integrate along the maturities with a stepsize of ∆t = 0.5. The
superiority of the IJK scheme is at its most impressive for the first maturity T = 0.5 as we obtain a skew
within one integration step in comparison to the flat implied-volatility of the Euler for this maturity.

(A) (B)
Figure 6: Implied volatility surface calculated with the (A): Euler method and the (B): multidimensional IJK method. The stepsize
was ∆t = 2−1 and the prices were averaged over 32767 paths . The number generator was the Sobol’s method and the paths were

constructed via the Brownian bridge.
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To underscore this result we also compare the error and the computational effort of both integration
schemes for different stepsizes. The error is computed as the sum over the absolute value of the differ-
ences between the implied volatility of the reference solution C(ti,Kj) and the numerical approximation
C̃(ti,Kj)

(46) Error =
∑
i,j

∣∣∣IV (C(ti,Kj), S,Kj , r, ti)− IV (C̃(ti,Kj), S,Kj , r, ti)
∣∣∣ .

In figure 5 (B) we see that the IJK leads to better results comparing the relation between approximation
quality and computational effort. The decisive point is that the computational effort of the IJK scheme is
only slightly higher than the Euler scheme since we do not have to draw any additional random number.

6 Summary

Based on combining Gaussian-elimination and graph theory, we have introduced an algorithm to complete
the correlation matrix, if only an incomplete set of measured data is available, which does not allow to define
all correlations a unique way. Compared to the results of Grone et al. [GJSW84] and Barrett et al. [BJL89],
our algorithm preserves that all entries are bounded by |a(i,j)| < 1, and avoids the costly computation
of optimisation problems. From an application-oriented point of view, our algorithm can be implemented
within pricing tools based on simulating multidimensional stochastic volatility models.
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