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Abstract

Convergence, consistency, stability and pathwise positivity of balanced Milstein methods for numerical
integration of ordinary stochastic differential equations (SDEs) are discussed. This family of numerical
methods represents a class of highly efficient linear-implicit schemes which generate mean square converging
numerical approximations with qualitative improvements and global rate 1.0 of mean square convergence,
compared to commonly known numerical methods for SDEs.

1 Introduction

This paper deals with numerical methods for systems of ordinary stochastic differential equations (SDEs)

(1) dXt = a(t, Xt)dt +
m∑

j=1

bj(t,Xt)dW j
t

with Wiener processes W j = (W j
t )0≤t≤T . The stochastic integration is interpreted in the Itô sense. Furthermore,

we assume that a ∈ C0,0 ([0, T ]× D, D) and bj ∈ C0,1 ([0, T ]× D, D) where D ⊆ Rd is a nonrandom set such
that, for all 0 ≤ t ≤ T , we have

(2) P({Xt ∈ D}) = 1.

In various areas we are confronted with the problem of invariance-preserving of certain subsets D of Rd. A
first approach to tackle this problem is the class of balanced implicit methods (BIMs) as introduced by Milstein,
Platen and Schurz [14], studied by Kahl [8] and Schurz [17, 18, 22]. In the following we use the notation of
multi-indices to describe the Itô integrals we have to use. Therefore we have

Is,t
(0) = (t− s),

Is,t
(j) = (W j

t −W j
s ) ∈ N (0, t− s),

Is,t
(i,j) =

t∫
s

u∫
s

dW i
vdW j

u .

One integration step of the BIMs is given by

(3) Yn+1 = Yn +
m∑

j=0

bj(tn, Yn)Itn,tn+1

(j) +
m∑

j=0

cj(tn, Yn)|Itn,tn+1

(j) | (Yn − Yn+1)

where b0(tn, Yn) = a(tn, Yn) and suitable weight functions cj ∈ C0,0([0, T ]× D, D) along the discretization

(4) 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn ≤ . . . tnT
≤ T.

We assume the stepsizes to be variable and the maximum stepsize is given by

(5) ∆max = max
n=0,...,nT−1

|tn+1 − tn|.
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We already know that the BIMs have a strong and mean square order of convergence rg = 0.5. Improving the
order of convergence requires more information about the underlying Wiener path. Using a stochastic Taylor
expansion leads to the forward Milstein method with order rg = 1.0 of mean square convergence. Unfortunately
this scheme is neither very stable nor positive-preserving (hence not dynamically consistent). For details on
these facts, see [18]. For improving the stability, we can derive the balanced Milstein methods (BMMs) based
on the (explicit) Milstein method governed by

Yn+1 = Yn +
m∑

j=0

bj(tn, Yn)Itn,tn+1

(j) +
m∑

i,j=1

Libj(tn, Yn)Itn,tn+1

(i,j)(6)

+

d0(tn, Yn)Itn,tn+1

(0) +
m∑

j=1

dj(tn, Yn)Itn,tn+1

(j,j)

 (Yn − Yn+1)

with

(7) Li =
m∑

k=1

bi
k(tn, Yn)

∂k

∂xk
for x ∈ D, 0 ≤ t ≤ T.

Here the functions dj ∈ C0,0([0, T ]×D, D) play the same role as the weights cj in case of the BIMs (3) and will
be specified later on (see section 5.2 and 5.3). The BMM (6) possesses also a one-step representation

Ys,y(t) = y + M−1
s,y (t)

 m∑
j=0

bj(s, y)Is,t
(j) +

m∑
i,j=1

Libj(s, y)Is,t
(i,j)

(8)

where

Ms,y(t) = Id + d0(s, y)Is,t
(0) +

m∑
j=1

dj(s, y)Is,t
(j,j).(9)

The paper is organized as follows. In Section 2 we state the basic concepts of consistency and main as-
sumptions, and analyse the BMM with respect to conditional mean and mean-square consistency. Section 3
investigates the stability behavior in view of uniform boundedness of its moments. In Section 4 we shall prove
that the BMM has a global strong and mean square order of convergence rg = 1.0 which is the same as the
underlying Milstein method. Finally, Section 5 discusses the almost sure positivity of BMM with diagonal noise
and reports on numerical experiments related to some stochastic volatility models relevant to mathematical
finance. Apart from our theoretical results, these experiments will support the obvious evidence of applicability
and superiority of appropriately chosen BMMs compared to commonly used numerical methods.

2 Conditional mean and mean square consistency

Consider the following definitions. Throughout the paper, fix the time interval [0, T ] with finite and nonrandom
terminal time T . Let ‖.‖d be the Euclidean vector norm on Rd and Mp([s, t]) the Banach space of (Fu)s≤u≤t-
adapted, continuous, Rd-valued stochastic processes X with finite norm ‖X‖Mp

= (sups≤u≤t E ||X(s)||pd)1/p <
+∞ where p ≥ 1, M([0, s]) the space of Fs-measurable stochastic processes and B(S) the σ-algebra of Borel
sets of inscribed set S.
Definition 2.1. A numerical method Y with one-step representation Ys,y(t) is said to be mean consistent
with rate r0 on [0, T ] if ∃ Borel-measurable function V : D → R1

+ and ∃ real constants KC
0 ≥ 0, δ0 > 0 such

that ∀(Fs,B(D))-measurable random variables Z(s) with Z ∈M2([0, s]) and ∀s, t : 0 ≤ t− s ≤ δ0

||E [Xs,Z(s)(t)− Ys,Z(s)(t)|Fs]||d ≤ KC
0

√
V (Z(s)) (t− s)r0 .(10)

Remark. It is well-known from Milstein [13] and Kloeden and Platen [11] that the standard Milstein method
is mean consistent with worst case rate r0 ≥ 2.0 and moment control function V (x) = 1 + ||x||2d for SDEs (1)
with global Lipschitz-continuous and linear growth-bounded coefficients bj ∈ F ⊂ C1,2([0, T ]× D).
Definition 2.2. A numerical method Y with one-step representation Ys,y(t) is said to be mean square
consistent with rate r2 on [0, T ] if ∃ Borel-measurable function V : D → R1

+ and ∃ real constants KC
0 ≥

0, δ0 > 0 such that ∀(Fs,B(D))-measurable random variables Z(s) with Z ∈M2([0, s]) and ∀s, t : 0 ≤ t−s ≤ δ0(
E [||Xs,Z(s)(t)− Ys,Z(s)(t)||2d|Fs]

)1/2

≤ KC
2

√
V (Z(s)) (t− s)r2 .(11)
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Remark. It is well-known from Milstein [13] and Kloeden and Platen [11] that the standard Milstein method
is mean square consistent with worst case rate r2 ≥ 1.5 and moment control function V (x) = 1+ ||x||2d for SDEs
(1) with global Lipschitz-continuous and linear growth-bounded coefficients bj ∈ F ⊂ C1,2([0, T ]× D).

2.1 The main assumptions

Let ||.||d×d denote a matrix norm on Rd×d which is compatible to the Euclidian vector norm ||.||d on Rd, and
〈., .〉d the Euclidean scalar product on Rd. Furthermore we have to assume that the coefficients a and bj are
Caratheodory functions such that a strong, unique solution X = (Xt)0≤t≤T exists. Recall that D ⊆ Rd is
supposed to be a nonrandom set. To guarantee the convergence of the BMM the following conditions have to
be satisfied:

(A0) ∀s, t ∈ [0, T ] : s < t =⇒ P({Xt ∈ D|Xs ∈ D}) = P({Ys,y(t) ∈ D|y ∈ D}) = 1.

(A1) ∃ constants KB = KB(T ),KD = KD(T ),KV = KV (T ) ≥ 0 such that

∀t ∈ [0, T ] ∀x ∈ D :
m∑

j=0

||bj(t, x)||2d ≤ (KB)2 V (x)(12)

∀t ∈ [0, T ] ∀x ∈ D :
m∑

i,j=1

||Libj(t, x)||2d ≤ (KD)2 V (x)(13)

sup
0≤t≤T

E V (Xt) ≤ KV E V (X0) < +∞(14)

with appropriate Borel-measurable function V : D → R1
+.

(A2) The forward Milstein method Y M applied to Itô SDE (1) is assumed to be mean consistent with
rate rM

0 ≥ 2.0 and mean square consistent with rate rM
2 = 1.5 with respect to V with real constants

KM
0 ,KM

2 , 0 < δ0 ≤ 1.

(A3) ∃ real constants KM = KM (T ) ≥ 0, and KOB = KOB(T ) such that, for the chosen weight matrices
dj ∈ Rd×d of BMMs (6), we have

∀s, t : 0 ≤ t− s ≤ δ0,∀x ∈ D M−1
s,x(t) exists(15)

with ||M−1
s,x(t)||d×d ≤ KM

〈x,M−1
s,x(t)b0(s, x)〉d ≤ KOBV (x)

(A4) ∃ real constants KI = KI(T ) ≥ 0 and KII = KII(T ) ≥ 0 such that, for the chosen weight matrices
dj ∈ Rd×d of BMMs (6), we have

∀t ∈ [0, T ] ∀x ∈ D : ||d0(t, x)b0(t, x)||2d ≤ K2
I V (x)(16)

∀t ∈ [0, T ] ∀x ∈ D :
m∑

j=1

||dj(t, x)Ljbj(t, x)||2d ≤ K2
IIV (x)(17)

(A5) ∃ real constants KIII = KIII(T ) ≥ 0, KIV = KIV (T ) ≥ 0, KV = KV (T ) ≥ 0 and KV I = KV I(T ) ≥
0 such that, for the chosen weight matrices dj ∈ Rd×d of BMMs (6), we have
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∀t ∈ [0, T ] ∀x ∈ D :
m∑

j=0

||d0(t, x)bj(t, x)||2d ≤ K2
IIIV (x)(18)

∀t ∈ [0, T ] ∀x ∈ D :
m∑

i,j=1

||d0(t, x)Libj(t, x)||2d ≤ K2
IV V (x)(19)

∀t ∈ [0, T ] ∀x ∈ D :
m∑

l=1

m∑
j=0

||dl(t, x)bj(t, x)||2d ≤ K2
V V (x)(20)

∀t ∈ [0, T ] ∀x ∈ D :
m∑

l=1

m∑
i,j=1

||dl(t, x)Libj(t, x)||2d ≤ K2
V IV (x)(21)

Remark 2.1. The assumption (A1) guarantees the existence of unique and continuous solutions for the system
(1) with boundedness of moments along the function V . (A2) is neccessary to prove the mean and mean square
consistency of the BMM while comparing it with the forward Milstein method. Assumption (A3) ensures that
the BMM (6) is well defined and a first proposal for the parameters choice is given in Theorem 2.2 below.
To prove the mean consistency of the BMM we have to restrict the weight functions by the conditions given
in (A4) and (A5) is needed to guarantee the mean square consistency and, above all, to prevent any possible
local explosions and to guarantee uniform boundedness of its increments and moments (i.e. these methods are
indeed well-defined). If both the exact solution X and numerical approximation Y leave the metric space D ⊂ Rd

invariant with probability one as required by (A0), then the conditions (A1)-(A5) can be relaxed to x ∈ D instead
of whole-space requirement x ∈ Rd. Note, the constant KOB of one-sided boundedness can be estimated from
above by the positive constant KOB ≤ (1 + K2

MK2
B)/2 if V (x) ≥ ‖x‖2d. However, for the later purpose of more

efficient results on stability, by (A3) we allow it to be negative as well.

Theorem 2.2. The assumption (A3) under (A0) with ‖x‖2d ≤ ρ2V (x) and constant ρ2 > 0 for all x ∈ D can
be fulfilled by weight functions dj satisfying

(A6) ∀t ∈ [0, T ] ∀x ∈ D : d0(t, x)− 1
2

∑m
j=1 dj(t, x) is positive semi-definite and

(A7) ∀j = 1, 2, ...,m ∀t ∈ [0, T ] ∀x ∈ D : dj(t, x) is positive semi-definite.

Proof. Set ∆ = t− s. We can easily verify that Ms,x(t) is positive definite

Ms,x(t) = Id + d0(t, x)∆ +
1
2

m∑
j=1

dj(t, x)
((

∆W j
)2 −∆

)

= Id +

d0(t, x)− 1
2

m∑
j=1

dj(t, x)


︸ ︷︷ ︸

positive semi-definite

∆ +
1
2

m∑
j=1

dj(t, x)︸ ︷︷ ︸
positive semi-definite

(
∆W j

)2︸ ︷︷ ︸
≥0

.

Therefore, ∃KM ≤ 1 such that ‖M−1
s,x(t)‖d×d ≤ KM ≤ 1 for all ∆ = (t− s) > 0. Moreover, one finds that

〈x,M−1
s,x(t)b0(s, x)〉 ≤ 1

2

(
‖x‖2d + K2

M‖b0(s, x)‖2d
)
≤ 1

2
(ρ2 + K2

MK2
B)V (x)

since 2ab ≤ a2 + b2, i.e. ∃KOB ≤ (ρ2 + K2
MK2

B)/2. Thus, the proof is complete.

Remark 2.3. Conditions of Theorem 2.2 imply that the constant KM involved in (A3) can be estimated by
KM ≤ 1. Of course, a uniform estimation of KM under (A6)-(A7) for all t ≥ s ≥ 0 leads to the computation of
KM = 1 since ∆ = t− s can be chosen arbitrarily small. However, for fixed partitions of [0, T ], we can observe
that the better the estimate on KM is the greater the stabilizing effects on numerical dynamics of BMM (6)
along the underlying partition (cf. also its use in later estimates with respect to consistency and stability). Note
that the choice of KM is strongly related to the estimation of constant KOB resulting from (A3), which can be
negative too.
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2.2 Mean consistency of BMMs (6)

Using the mean consistency of forward Milstein methods, we are able to prove the mean consistency of the
BMM.

Theorem 2.4. Assuming that the conditions (A0)-(A5) hold with a worst case rate rM
0 ≥ 2.0, control functional

V and consistency constants KM
0 and δ0. Then the BMM (6) is also mean consistent with worst case rate

r0 ≥ 2.0, control functional V with δ0 and consistency constant

(22) KC
0 ≤ KM

0 + KM (KI +
1
2
KII

√
m)

Before we can prove this theorem we have to recall some facts about the expectation of multiple Itô integrals.
This is done by the following Lemma. Let δl,j denote the Kronecker symbol.

Lemma 2.5. The following properties of multiple Itô integrals hold:

∀j = 0, ...,m E
[
Is,t
(0)I

s,t
(j)

]
= δ0,j(t− s)2,

∀i, j = 1, ...,m E
[
Is,t
(0)I

s,t
(i,j)

]
= 0,

∀i, j = 1, ...,m E
[
Is,t
(j)I

s,t
(i,i)

]
= 0,

∀l, i, j = 1, ...,m E
[
Is,t
(l,l)I

s,t
(i,j)

]
=

1
2
δl,iδi,j(t− s)2.

Proof. Set ∆W j = W j
t −W j

s and ∆ = t − s for each t ≥ s. Consider the following conclusions. First, for all
j = 0, 1, ...,m, we have

E
[
Is,t
(0)I

s,t
(j)

]
= Is,t

(0) E
[
Is,t
(j)

]
= (t− s) E

 t∫
s

dW j
u

 = δ0,j(t− s)2

since W 0
u = u and E [W j

t −W j
s ] = 0 for j ≥ 1. Next, for i, j = 1, ...,m, we arrive at

E
[
Is,t
(0)I

s,t
(i,j)

]
= Is,t

(0) E
[
Is,t
(i,j)

]
= (t− s) E

 t∫
s

u∫
s

dW i
vdW j

u

 = 0

since I(i,j) is a martingale starting at 0. Furthermore, for all i, j = 1, ...,m, we may conclude that

E
[
Is,t
(j)I

s,t
(i,i)

]
= (1− δj,i) E

[
Is,t
(j)

]
E

[
Is,t
(i,i)

]
+ δj,i

1
2

E
[
∆W j

(
(∆W j)2 −∆

)]
= δj,i

1
2

E
[
(∆W j)3 −∆(∆W j)

)]
= 0

while using the fact E [ξ]4 = 3 · σ4 whenever ξ ∈ N(0, σ2) is Gaussian with variance σ2 = t − s. Finally, we
exploit orthogonality of Itô integrals as known from Lemma 5.7.2 of [11] (see page 191 and page 223). Thus,
for all l, i, j = 1, ...,m, we have

E
[
Is,t
(l,l)I

s,t
(i,j)

]
= δl,iδi,j E [(Is,t

(l,l))
2] =

1
2
δl,iδi,j(t− s)2

since independence of Wiener processes and Itô integrals holds for independent factors of them and, more
precisely, one obtains

E
[(

Is,t
(l,l)

)2
]

= E
[
(∆W l)2 −∆

2

]2

=
1
4

E
[
(∆W l)4 − 2∆(∆W l)2 + ∆2

]
=

1
4
(t− s)2[3− 2 + 1] =

1
2
(t− s)2.

This completes the proof of Lemma 2.5.

Remark 2.6. A more general discussion on relations between Itô-integrals can be found in [11].
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Proof of Theorem 2.4. Let Z(s) ∈ M([0, s]) (i.e. Z(s) is at least Fs-measurable). Then, ∀s, t : 0 ≤ t − s ≤ δ0,
we get

||E
[
Xs,Z(s)(t)− Ys,Z(s)(t)|Fs

]
||d

≤ ||E
[
Xs,Z(s)(t)− Y M

s,Z(s)(t)|Fs

]
||d + ||E

[
Y M

s,Z(s)(t)− Ys,Z(s)(t)|Fs

]
||d

≤ KM
0

√
V (Z(s))(t− s)2

+||E [M−1
s,z (t) (Ms,z(t)− Id)

 m∑
j=0

bj(s, z)Is,t
(j) +

m∑
i,j=1

Libj(s, z)Is,t
(i,j)

]
∣∣∣
z=Z(s)

||d

≤ KM
0

√
V (Z(s))(t− s)2

+KM ||E
[ m∑

j=0

d0(s, z)bj(s, z)Is,t
(0)I

s,t
(j) +

m∑
i,j=1

d0(s, z)Libj(s, z)Is,t
(0)I

s,t
(i,j)

+
m∑

l=1

m∑
j=0

dl(s, z)bj(s, z)Is,t
(l,l)I

s,t
(j) +

m∑
l=1

m∑
i,j=1

dl(s, z)Libj(s, z)Is,t
(l,l)I

s,t
(i,j)

]∣∣∣
z=Z(s)

||d

≤ KM
0

√
V (Z(s))(t− s)2

+KM ||E
[
d0(s, z)b0(s, z)Is,t

(0)I
s,t
(0) +

m∑
j=1

dj(s, z)Ljbj(s, z)Is,t
(j,j)I

s,t
(j,j)

]∣∣∣
z=Z(s)

||d

≤ KM
0

√
V (Z(s))(t− s)2 + KM

(
||d0(s, Z(s))b0(s, Z(s))||2d

)1/2

+
1
2
KM

√
m

 m∑
j=1

||dj(s, Z(s))Ljbj(s, Z(s))||2d

1/2

(t− s)2

≤
(
KM

0 + KM (KI +
1
2
KII

√
m)

)√
V (Z(s))(t− s)2

where we have used the discrete Hölder inequality and Lemma 2.5. Thus, the verification of local rate 2.0 of
mean consistency with related consistency constant KC

0 along the control function V is complete.

2.3 Mean square consistency of BMMs (6)

In a similar way we can prove the worst case rate of mean square consistency of BMMs.

Theorem 2.7. Assuming that the conditions (A0)-(A5) hold with a worst case rate rM
2 ≥ 1.5, control functional

V and consistency constants KM
2 and δ0 ≤ 1. Then the BMM (6) is also mean consistent with worst case rate

r2 ≥ 1.5 control functional V with δ0 ≤ 1 and consistency constant

KC
2 ≤

(
KM

2 + 2KM (
√

m + 1KIII

√
KI

5 + mKIV

√
KI

6(23)

+
√

m
√

m + 1KV

√
KI

7 + m3/2KV I

√
KI

8 )
)

where KI
5 ≤ 1,KI

6 ≤ 1/2,KI
7 ≤ 5/2 and KI

8 ≤
√

1350.

Before we can prove this theorem we have to recall some further facts about the moments of multiple Itô
integrals. This is done in the following Lemma. Recall that δl,j denotes the Kronecker symbol.

Lemma 2.8. Assume that 0 ≤ t−s ≤ 1. The following properties of multiple Itô integrals hold: ∃ real constants
KI

5 , KI
6 , KI

7 and KI
8 such that

∀j = 0, ...,m E
[(

Is,t
(0)I

s,t
(j)

)2
]

= KI
5 (t− s)3 ≤ (t− s)3, (equal if j = 1, ...,m)

∀i, j = 1, ...,m E
[(

Is,t
(0)I

s,t
(i,j)

)2
]

= KI
6 (t− s)3 =

1
2
(t− s)4,

∀l, j = 1, ...,m E
[(

Is,t
(j)I

s,t
(l,l)

)2
]

= KI
7 (t− 3)3 =

(
δj,l

5
2

+ (1− δj,l)
1
2

)
(t− s)3 ≤ 5

2
(t− s)3

∀l, i, j = 1, ...,m E
[(

Is,t
(l,l)I

s,t
(i,j)

)2
]

= KI
8 (t− s)4 ≤

√
1350(t− s)4 (KI

8 =
15
4

if l = i = j).
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Proof. The proof of this Lemma relies on elementary relationships between Itô integrals, the fact E [ξ]2n =
(2n− 1)!! · σ2n whenever Gaussian ξ ∈ N(0, σ2) with σ2 = t− s, the binomial theorem, Cauchy-Bunjakowskii-
Schwarz inequality and above all the isometry property of Itô integrals. In details: Set ∆W j = W j

t −W j
s and

∆ = t− s ≤ 1 for each t ≥ s. Recall that Is,t
(i,j) represents a square-integrable martingale. Let < M >t

s denote
the quadratic variation of inscribed martingale M on [s, t]. Note, by isometry of Itô integrals, that

E [< Is,t
(i,j) >t

s] =
(t− s)2

2
= E [(Is,t

(i,j))
2] = E [

t∫
s

(W i
u −W i

s)
2du]

for i, j ≥ 1. Now, consider the following conclusions. First, for all j = 0, 1, ...,m, we have

E
[(

Is,t
(0)I

s,t
(j)

)2
]

= δ0,j(t− s)4 + (1− δ0,j)(t− s)2 E
[(

W j
t −W j

s

)2
]

≤ (t− s)3.

Next, for all j = 1, ...,m, we may elementarily calculate that

E
[(

Is,t
(0)I

s,t
(j,j)

)2
]

= (t− s)2 E

[(
(∆W j)2 −∆

2

)2
]

=
(t− s)2

4
E

[
(∆W j)4 − 2∆(∆W j)2 + ∆2

]
=

1
2
(t− s)4

by binomial theorem and the fact E [(∆W j)4] = 3∆2 = 3(t− s)2. More general, for all i, j = 1, ...,m, we arrive
at

E
[(

Is,t
(0)I

s,t
(i,j)

)2
]

= (t− s)2 E


 t∫

s

u∫
s

dW i
vdW j

u

2


= (t− s)2 E
[
< Is,t

(i,j) >t
s

]
=

(t− s)4

2

by applying the isometry property of Itô integrals to the martingale Is,t
(i,j). Furthermore, for all l, j = 1, ...,m,

we can show that

E
[(

Is,t
(j)I

s,t
(l,l)

)2
]

=
1
4

E
[(

∆W j
(
(∆W l)2 −∆

))2
]

=
δj,l

4
E

[(
∆W j

(
(∆W j)2 −∆

))2
]

+
1− δj,l

4
E

[
(∆W j)2

]
E

[(
(∆W l)2 −∆

)2
]

=
δj,l

4
E

[
(∆W j)6 − 2∆(∆W j)4 + ∆2(∆W j)2

]
+

1− δj,l

4
(t− s) E

[
(∆W l)4 − 2∆(∆W l)2 + ∆2

]
=

δj,l

4
(t− s)3 [5 · 3− 2 · 3 + 1] +

1− δj,l

4
(t− s)3 E [3− 2 · 1 + 1]

=
(
δj,l

5
2

+ (1− δj,l)
1
2

)
(t− s)3 ≤ 5

2
(t− s)3

since
E [(∆W j)2n] = (2n− 1)!!∆n = (2n− 1) · (2n− 3) · ... · 3 · 1 · (t− s)n

for all n ∈ N. Finally, for all l, i, j = 1, ...,m with l = i = j or l 6= i, j, we find that

E
[(

Is,t
(l,l)I

s,t
(i,j)

)2
]

= δl,iδi,j E
[(

Is,t
(l,l)

)4
]

+ (1− δl,i)(1− δl,j) E
[
(Is,t

(l,l))
2
]
· E

[
(Is,t

(i,j))
2
]

= δl,iδi,j
1
16

E
[(

(∆W j)2 −∆
)4

]
+ (1− δl,i)(1− δl,j)

1
4

E
[(

(∆W l)2 −∆
)2

]
· E

[
< Is,t

(i,j) >t
s

]
= δl,iδi,j

1
16

E
[
(∆W j)8 − 4∆(∆W j)6 + 6∆2(∆W j)4 − 4∆3(∆W j)2 + ∆4

]
+(1− δl,i)(1− δl,j)

1
4

E
[
(∆W l)4 − 2∆(∆W j)2 + ∆

]
· (t− s)2

2

= δl,iδi,j
7 · 5 · 3− 4 · 5 · 3 + 6 · 3− 4 · 1 + 1

16
(t− s)4 + (1− δl,i)(1− δl,j)

1
4
(t− s)2[3− 2 + 1] · (t− s)2

2

= δl,iδi,j
15
4

(t− s)4 + (1− δl,i)(1− δl,j)
(t− s)4

4
≤ 15

4
(t− s)4
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by using the isometry-relation for Itô integrals and the binomial theorem. It remains to check the case for all
l, i, j = 1, ...,m with l = i 6= j or l = j 6= i. Due to symmetry of its analysis, it remains to verify only one of
those two cases. For example, for l = i 6= j, consider

E
[(

Is,t
(l,l)I

s,t
(l,j)

)2
]
≤

(
E

[(
Is,t
(l,l)

)4
])1/2 (

E
[(

Is,t
(l,j)

)4
])1/2

≤
√

15
2

(t− s)2

 E


 t∫

s

(W l
u −W l

s)dW j
u

4



1/2

≤
√

15
2

(t− s)2(KBDG(4))1/2
(

E [(< Is,t
(l,j) >t

s)
2]

)1/2

≤
√

15
2

(t− s)4(KBDG(4))1/2 <
√

1350(t− s)4

by applying Burkholder-Davis-Gundy inequality (see [16]) and Cauchy-Bunjakowskii-Schwarz inequality twice.
Notice also that

E [(< Is,t
(l,j) >t

s)
2] = E

( t∫
s

(W l
u −W l

s)
2 du

)2


≤ (t− s)

t∫
s

E [(W l
u −W l

s)
4] du = 3(t− s)

t∫
s

(u− s)2du = (t− s)4.

Thus, all constants KI
p for p = 5, ..., 8 can be estimated as claimed by Lemma 2.8, hence its proof is complete.

Remark 2.9. The universal constant KBDG resulting from the Burkholder-Davis-Gundy inequality is governed
by

KBDG(p) ≤
(

p

p− 1

)p2/2 (
p(p− 1)

2

)p/2

,

hence we may estimate KBDG(4) < 360 or KBDG(2) ≤ 4. In fact, some of our estimates are essentially better
than those stated in [11] (e.g. as in Lemma 5.7.5 at page 197 for the case l = i = j).

Proof of Theorem 2.7. Let Z(s) ∈ M([0, s]) (i.e. Z(s) is at least Fs-measurable). Then, ∀s, t : 0 ≤ t − s ≤ δ0,
we arrive at(

E [||Xs,Z(s)(t)− Ys,Z(s)(t)||2d|Fs]
)1/2

≤
(

E [||Xs,Z(s)(t)− Y M
s,Z(s)(t)||

2
d|Fs]

)1/2

+
(

E [||Y M
s,Z(s)(t)− Ys,Z(s)(t)||2d|Fs]

)1/2

≤ KM
2

√
V (Z(s))(t− s)3/2

+

 E [||M−1
s,z (t) (Ms,z(t)− Id)

 m∑
j=0

bj(s, z)Is,t
(j) +

m∑
i,j=1

Libj(s, z)Is,t
(i,j)

 ||2d]
∣∣∣
z=Z(s)

1/2

≤ KM
2

√
V (Z(s))(t− s)3/2

+KM

(
E

[
||

m∑
j=0

d0(s, z)bj(s, z)Is,t
(0)I

s,t
(j) +

m∑
i,j=1

d0(s, z)Libj(s, z)Is,t
(0)I

s,t
(i,j)

+
m∑

l=1

m∑
j=0

dl(s, z)bj(s, z)Is,t
(l,l)I

s,t
(j) +

m∑
l=1

m∑
i,j=1

dl(s, z)Libj(s, z)Is,t
(l,l)I

s,t
(i,j)||

2
d

]∣∣∣
z=Z(s)

)1/2

≤ KM
2

√
V (Z(s))(t− s)3/2 + 2KM

(
E

[
||

m∑
j=0

d0(s, z)bj(s, z)Is,t
(0)I

s,t
(j)||

2
d

]∣∣∣
z=Z(s)

+ E
[
||

m∑
i,j=1

d0(s, z)Libj(s, z)Is,t
(0)I

s,t
(i,j)||

2
d

]∣∣∣
z=Z(s)

+ E
[
||

m∑
l=1

m∑
j=0

dl(s, z)bj(s, z)Is,t
(l,l)I

s,t
(j)||

2
d

]∣∣∣
z=Z(s)

+ E
[
||

m∑
l=1

m∑
i,j=1

dl(s, z)Libj(s, z)Is,t
(l,l)I

s,t
(i,j)||

2
d

]∣∣∣
z=Z(s)

)1/2

.
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Using the discrete Hölder inequality and moment properties of products of iterated stochastic integrals leads to(
E [||Xs,Z(s)(t)− Ys,Z(s)(t)||2d|Fs]

)1/2

≤ KM
2

√
V (Z(s))(t− s)3/2 + 2KM

(
(m + 1)

m∑
j=0

E
[
||d0(s, z)bj(s, z)||2d

(
Is,t
(0)I

s,t
(j)

)2]∣∣∣
z=Z(s)

+m2
m∑

i,j=1

E
[
||d0(s, z)Libj(s, z)||2d

(
Is,t
(0)I

s,t
(i,j)

)2]∣∣∣
z=Z(s)

+m(m + 1)
m∑

l=1

m∑
j=0

E
[
||dl(s, z)bj(s, z)||2d

(
Is,t
(l,l)I

s,t
(j)

)2]∣∣∣
z=Z(s)

+m3
m∑

l=1

m∑
i,j=1

E
[
||dl(s, z)Libj(s, z)||2d

(
Is,t
(l,l)I

s,t
(i,j)

)2]∣∣∣
z=Z(s)

)1/2

≤
(
KM

2 + 2KM (
√

m + 1KIII

√
KI

5 + mKIV

√
KI

6

+
√

m
√

m + 1KV

√
KI

7 + m3/2KV I

√
KI

8 )
)√

V (Z(s))(t− s)3/2

where the constants KI
l originating from the moment estimates of Lemma 2.8 are as defined in the statement

of Theorem 2.7. Thus, the proof of its claim is complete.

3 Stability (uniform boundedness) of 2nd moments

Consider the following definition as originally introduced in [22].
Definition 3.1. A numerical method Y with one-step representation Ys,y(t) is said to be weakly V -stable
with real constant KS = KS(T ) on [0, T ] if V : D → R1

+ is Borel-measurable and ∃ real constant δ0 > 0 such
that ∀(Fs,B(D))-measurable random variables Z(s) and ∀s, t : 0 ≤ t− s ≤ δ0 ≤ 1

E [V (Ys,Z(s)(t))|Fs] ≤ exp(KS(t− s))V (Z(s)).(24)

Theorem 3.1. Assume that (A0)-(A5) with V (x) = ρ2 + ||x||2d (ρ ∈ R1 some real constant) hold. Then the
BMMs (6) with ∆max ≤ δ0 ≤ min(1, T ) are weakly V -stable with stability constant

KY
S ≤ 2KOB + (m + 1 + m ·m)(K2

B + K2
D)K2

M(25)

and they satisfy global weak V -stability estimates

E V (Y0,Y0(t)) ≤ exp(KY
S T ) E V (Y0),(26)

sup
0≤t≤T

E V (Y0,Y0(t)) ≤ exp([KY
S ]+T ) E V (Y0)(27)

where [.]+ denotes the positive part of the inscribed expression.

Proof. Recall that

E [< Is,t
(i,j) >t

s] =
(t− s)2

2
= E [(Is,t

(i,j))
2] = E [

t∫
s

(W i
u −W i

s)
2du]

for i, j ≥ 1. Now, let y ∈ D be nonrandom. Calculate

E [||Ys,y(t)||2d] = E


∥∥∥∥∥∥y + M−1

s,y (t)

 m∑
j=0

bj(s, y)Is,t
(j) +

m∑
i,j=1

Libj(s, y)Is,t
(i,j)

∥∥∥∥∥∥
2

d


= ‖y‖2d + 2 E [<y,M−1

s,y (t)b0(s, y)>d](t− s) + E


∥∥∥∥∥∥M−1

s,y (t)

 m∑
j=0

bj(s, y)Is,t
(j) +

m∑
i,j=1

Libj(s, y)Is,t
(i,j)

∥∥∥∥∥∥
2

d


≤ ‖y‖2d + 2KOBV (y)(t− s) + K2

M (m + 1 + m ·m)(K2
B + K2

D)V (y)(t− s)2

≤ ‖y‖2d + [2KOB + K2
M (K2

B + K2
D)(m + 1 + m ·m)]V (y)(t− s)

≤ exp
(
KY

S (t− s)
)
V (y)

9



using (A1), (A3), 0 ≤ t − s ≤ 1, well-known martingale properties and Hölder inequality. Now, add ρ2 to the
derived inequality. Suppose that V (y) = ρ2 + ‖y‖2d. For nonrandom y ∈ D and 0 ≤ t− s ≤ δ0, conclude that

E [V (Ys,y(t))] ≤ exp
(
KY

S (t− s)
)
V (y)

where
KY

S ≤ 2KOB + K2
M (K2

B + K2
D)(m + 1 + m ·m)

by using the elementary inequality 1+z ≤ exp(z) for all z ∈ R1. It remains to apply the fairly general Theorem
3.1 from [22] with constant KY

S = 2KOB + K2
M (K2

B + K2
D)(m + 1 + m · m) along V (y) (which is gained by

exploiting the tower property of conditional expectations). This confirms the assertion of Theorem 3.1.

4 Global mean square convergence

The concept of global mean square convergence is understood as follows.
Definition 4.1. A numerical method Y with one-step representation Ys,y(t) is said to be (globally) mean
square convergent with rate rg on [0, T ] if ∃ Borel-measurable function V : D → R1

+ and ∃ real constants
Kg = Kg(T ) ≥ 0,KY

S = KY
S (bj), 0 < ∆max ≤ δ0 ≤ 1 such that ∀(F0,B(D))-measurable random variables Z(0)

with E [‖Z(0)‖2d] < +∞ and ∀t : 0 ≤ t ≤ T(
E [||X0,Z(0)(t)− Y0,Z(0)(t)||2d|F0]

)1/2 ≤ Kg exp
(
KY

S t
)√

V (Z(0))∆rg
max(28)

along any nonrandom partitions 0 = t0 ≤ t1 ≤ ... ≤ tnT
= T .

Using the results of the previous section, the following theorem is rather obvious in conjunction with standard
L2-convergence theorems following stochastic Lax-Richtmeyer principles as presented and proven in [19, 20, 21].

Theorem 4.1. Assume that the conditions (A0)-(A5) hold with a worst case rate rM
2 ≥ 1.5, control functional

V (x) = ρ2+‖x‖2d with ρ ∈ R1, mean KM
0 and mean square consistency constants KM

2 , and δ0 ≤ 1. Furthermore,
let X be conditionally mean square contractive, i.e. ∃ real constant KX

C such that, for all 0 ≤ t − s ≤ δ0 ≤
min(1, T ) and all (Fs,B(Rd))-measurable random variables Y (s), Z(s) with Y,Z ∈M2([0, s]), we have(

E [‖Xs,Y (s)(t)−Xs,Z(s)(t)‖2d|Fs]
)1/2

≤ exp(KX
C (t− s))‖Y (s)− Z(s)‖d.(29)

Assume that the coefficients bj(j = 1, 2, ...,m) are uniform Lipschitz-continuous with Lipschitz constant Ksm

such that

∀t ∈ [0, T ] ∀x, y ∈ Rd
m∑

j=1

‖bj(t, x)− bj(t, y)‖2d ≤ K2
sm‖x− y‖2d.(30)

Then the BMMs (6) are also mean square converging with global worst case rate rg ≥ 1.0 along the control
functional V with maximum stepsize ∆max ≤ δ0 ≤ max(1, T ) and

Kg ≤
(
(KC

0 )2 + (KC
2 )2[1 + (Ksm)2]

)1/2

exp
(
([KX

C ]− + [KY
S ]−)∆max

)
where KC

0 and KC
2 are the constants as estimated by Theorems 2.4 and 2.7, respectively, KX

C is the mean square
contractivity constant of X and KY

S the mean square stability constant of BMM (6) as estimated by (25).

Proof. We may take r0 = 2.0 from Theorem 2.4 and r0 = 1.5 from Theorem 2.7. Furthermore, Theorem
3.1 guarantees us moment stability along V (x) = ρ2 + ‖x‖2d. It remains to apply Theorem 1.1 from Milstein
[13] in the case D = Rd and V (x) = 1 + ‖x‖2d and / or Theorem 2.1 from Schurz [20, 21] with D ⊆ Rd and
V (x) = 1 + ‖x‖2d. For example, a little more detailed, recall the local rates of mean r0 ≥ 2.0 established by
Theorem 2.4 and r2 ≥ 1.5 established by Theorem 2.7. The solutions of the underlying diffusion equations have
Hölder-continuous paths with mean square Hölder-constant rsm = 0.5. Therefore, Theorem 2.1 of [20] as well
as the axiomatic approach described in [21] yield the global rate rg = r2 + rsm − 1.0 ≥ 1.0 of mean square
convergence on the finite time-interval [0, T ]. Furthermore, the error constant Kg can be estimated by

Kg ≤
(
(KC

0 )2 + (KC
2 )2[1 + (Ksm)2]

)1/2

exp
(
([KX

C ]− + [KY
S ]−)∆max

)
using Theorem 2.1 from [20]. So the proof is complete.
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5 Global almost sure positivity of BMMs with diagonal noise

The problem of positive invariance of BIMs (3) has already been studied by Kahl [8] and Schurz [17, 18]. In
this paper, we illustrate that the class of BMMs provides an efficient alternative to generate positive-invariant
numerical approximations.

Consider the following mean-reverting process

dXt = κ(θ −Xt)dt + σXp
t dWt(31)

with θ, κ, σ ≥ 0 which is of great importance in financial mathematics as well as in other areas of applied
science. Focusing on the financial meaning of this equations we obtain the well known Cox-Ingersoll-Ross model
[5] with exponent p = 0.5, describing the short-rate in the interest rate market. Furthermore this SDE can be
used to model stochastic volatility as it is demonstrated in Andersen and Piterbarg [3]. In such a situation the
mean-reverting process is only one part of a two-dimensional system of SDEs

dSt = λ(t)f(St)
√

XtdW1(t)
dXt = κ(θ −Xt)dt + σXp

t dW2(t)

with suitable functions λ and f and correlated Brownian motions dW1(t)dW2(t) = ρdt. Apart from the cor-
relation of the Brownian motions the volatility is independent from the underlying St so that we can focus on
the process Xt itself. This way of coupling is quite common in the modelling of financial markets, e.g. An-
dersen and Brotherton-Ratcliffe [2] used this mean-reverting process to simulate the stochastic volatility in the
Libor market model. Nonetheless as the process X satisfies the positive-invariance property (2) with respect
to the metric space D = (0,+∞) combined with nonexploding higher moments it is a great task for numerical
integration itself.

So this raises up the question whether BMMs (6) with appropriate weights dj possess such a property?
The classical BIMs (3) can preserve positivity almost surely too, however their global rate of mean square
convergence is rg = 0.5 (see relaxation of conditions by [22]) and their weights cj must be chosen very carefully,
e.g.

c0(x) = a, c1(x) = |σ||x|p−1.

For more general SDEs (1), only a local ε-positivity can be verified for BIMs under the preservation of conver-
gence properties as known from standard Euler-type methods on the whole axis R1, see [17, 18]. So it would be
advantageous to construct a BMM with positive invariance of D and global rate 1.0 of mean square convergence
to improve the numerical approximation qualitatively farther.

The standard explicit and the drift-implicit Milstein methods as discussed by Kahl [8] and Kahl, Günther
and Roßberg [9] in the context of applications to interest rate modeling provide a possibility of preserving
positivity too. However, certain stepsize restrictions apart from other conditions occur there. In a very natural
way BMMs may inherit this invariance property for all stepsizes and they have the additional feature to control
the stability of numerical integration by using the weight functions d0, d1, . . . in an appropriate manner.

5.1 Positivity preserving property of BMMs with diagonal noise

To simplify the notation we relate our discussion to stochastic differential equations driven exclusively by
diagonal noise. Recall that Libj(t, x) = 0 for all i 6= j where i, j = 1, ...,m. In this case the BMMs (6) with
diagonal noise follow the scheme

Yn+1 = Yn +
m∑

j=0

bj(tn, Yn)Itn,tn+1

(j) +
m∑

j=1

Ljbj(tn, Yn)Itn,tn+1

(j,j)(32)

+

d0(tn, Yn)Itn,tn+1

(0) +
m∑

j=1

dj(tn, Yn)Itn,tn+1

(j,j)

 (Yn − Yn+1) .

Recall the following definition going back to [17, 18] to classify numerical methods with respect to the
preservation of natural boundary conditions. Let the relation x > c on Rd be defined by xi > ci for all
i = 1, 2, ..., d in a componentwise manner.
Definition 5.1. Let X = (Xt)t≥0 be the underlying real-valued stochastic process satisfying

∀t > s ≥ 0 : P({Xt > c|Xs > c}) = 1

11



with a fixed threshold c ∈ Rd. Then, a numerical integration scheme Y = (Yn)n∈N is said to have eternal life
time with respect to the threshold c with |c| < +∞ if

(33) ∀n ∈ N : P({Yn+1 > c|Yn > c}) = 1,

otherwise finite life time.
In particular, in another words, we are interested on the preservation of the natural boundary c = 0 by

numerical approximations. Set D = (0,+∞) for the remaining part of this paper.

Theorem 5.1. The one-dimensional BMM (32) satisfying (A6)-(A7) along partitions

t0 < t1 < ... < tn < tn+1 < ...

has an eternal life time with respect to the threshold c = 0 if the following additional conditions hold:

(A8) ∀j = 1, ...,m ∀tn ∈ [0, T ] and ∀x ∈ D

(34) bj(tn, x)
∂

∂x
bj(tn, x) + dj(tn, x)x > 0,

(A9) ∀tn ∈ [0, T ] and ∀x ∈ D

(35) x−
m∑

j=1

(bj(tn, x))2

2bj(tn, x) ∂
∂xbj(tn, x) + 2dj(tn, x)x

> 0,

(A10) If

D(tn, x) = a(tn, x)− 1
2

m∑
j=1

bj(tn, x)
∂

∂x
bj(tn, x) + d0(tn, x)x− 1

2

m∑
j=1

dj(tn, x)x < 0

for a value x ∈ D at time-instant tn ∈ [0, T ] then the current stepsize ∆n is chosen such that
∀tn ∈ [0, T ], ∀x ∈ D

∆n <
x + N(tn, x)
−D(tn, x)

(36)

where

N(tn, x) = −
m∑

j=1

(bj(tn, x))2

2bj(tn, x) ∂
∂xbj(tn, x) + 2dj(tn, x)x

.

Remark 5.2. The first restriction (A8) guarantees that the BMM inherits the positivity preserving structure
of the underlying Milstein method. Condition (A9) is more technical, but in many applications this is valid
without the use of the weight function d1. (A10) is only neccessary if D(tn, x) < 0, otherwise we can drop
this restriction for positivity. So, we obtain a first idea to apply BMMs as advanced Milstein-type methods to
preserve positivity by choosing d0 and d1 in such a way that D(tn, x) is greater than zero and we do not have
to restrict the stepsize through (36) in this case. Furthermore, for the application of our results on mean and
mean-square consistency to guarantee global mean square convergence with worst case rate 1.0 and positivity
at the same time, we need to require that D(t, x) ≥ 0. Note that the adapted, but random stepsize selection
depending on current random outcomes Yn by condition (A10) in the case of D(t, x) < 0 would contradict to
the exclusive use of nonrandom stepsizes as exploited in our major convergence proof-steps in previous sections.
Moreover, a restricted step size selection as given by (A10) throws out the problem of proving that any terminal
time T can be reached in a finite time with probability one. So it is advantageous to require D(t, x) ≥ 0 for all
x ≥ 0 and 0 ≤ t ≤ T for meaningful and practically relevant approximations.
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Proof of Theorem 5.1. Set x = Yn. Using the one-step representation of the BMM (8) we obtain1 + d0(tn, x) +
1
2

m∑
j=1

dj(tn, x)
(
(∆W j

n)2 −∆n

) Yn+1

=
(
x + a(tn, x)∆n +

m∑
j=1

bj(tn, x)∆W j
n +

1
2

m∑
j=1

bj(tn, x)
∂

∂x
bj(tn, x)

(
(∆W j

n)2 −∆n

)
+d0(tn, x)x∆n +

1
2

m∑
j=1

dj(tn, x)x
(
(∆W j

n)2 −∆n

) )
= R(tn, Yn).

The expression (...) infront of Yn+1 at the left hand side of this equation is positive due to (A6) and (A7).
Rewriting the right hand side leads to
(37)

R(tn, x) = x +

a(tn, x)− 1
2

m∑
j=1

bj(tn, x)
∂

∂x
bj(tn, x) + d0(tn, x)x− 1

2

m∑
j=1

dj(tn, x)x

 ∆n + g(∆W 1
n , ...,∆Wm

n )

with

(38) g(∆W 1
n , ...,∆Wm

n ) =
m∑

j=1

bj(tn, x)∆W j
n +

1
2

m∑
j=1

(
bj(tn, x)

∂

∂x
bj(tn, x) + dj(tn, x)x

)
(∆W j

n)2.

The function g : Rm → R1 possesses a global minimum due to (A8). More precisely, an obvious calculation
shows that

(39) min
z∈Rm

g(z) = −
m∑

j=1

(bj(tn, x))2

2
(
bj(tn, x) ∂

∂xbj(tn, x) + dj(tn, x)x
) .

This enables us to estimate R from below by replacing the value of g(∆W 1
n , ...,∆Wm

n ) by its minimum. So we
arrive at

R(tn, x) ≥ x +

a(tn, x)− 1
2

m∑
j=1

bj(tn, x)
∂

∂x
bj(tn, x) + d0(tn, x)x− 1

2

m∑
j=1

dj(tn, x)x

 ∆n

−
m∑

j=1

(bj(tn, x))2

2
(
bj(tn, x) ∂

∂xbj(tn, x) + dj(tn, x)x
) = x + N(tn, x) + D(tn, x)∆n

We can clearly see that (A9)-(A10) under (A8) are needed to get positive values Yn+1 > 0 whenever Yn > 0 for
all n ∈ N. More precisely, if

D(tn, x) =

a(tn, x)− 1
2

m∑
j=1

bj(tn, x)
∂

∂x
bj(tn, x) + d0(tn, x)x− 1

2

m∑
j=1

dj(tn, x)x

 ≥ 0

then R(tn, x) > 0 and we do not need any restriction of the stepsize ∆n by (A10) at all. If D(tn, x) < 0 then
x + N(tn, x) + D(tn, x)∆n ≥ 0 guarantees that R(tn, x) > 0, hence condition (A10) is needed in this case.
Therefore, assumptions (A8)-(A10) imply the property of eternal life time of related BMMs with respect to the
threshold c = 0.

Remark 5.3. The proof of Theorem 5.1 shows that the condition (A9) can be relaxed to

(40) x−
m∑

j=1

(bj(tn, x))2

2bj(tn, x) ∂
∂xbj(tn, x) + 2dj(tn, x)x

≥ 0

if D(tn, x) > 0.

Moreover, in some cases it is more efficient to verify the following conditions instead of restrictions (A9) and
(A10) known from Theorem 5.1.
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Corollary 5.4. The one-dimensional BMM (32) satisfying (A6)-(A7) along partitions

t0 < t1 < · · · < tn < tn+1 < · · ·

has an eternal life time with respect to the threshold c = 0 if condition (A8) is fulfilled and

(A11) ∀j = 1, ...,m ∀tn ∈ [0, T ] and ∀x ∈ D

(41) x + N(tn, x) + D(tn, x)∆n > 0.

Where the functions N and D are defined in Theorem 5.1.

5.2 First applications of Theorem 5.1

To demonstrate the practial use of this result we present some examples with analytical positivity where the class
of BMMs (6) proves to have preferrable positive-invariant integration schemes with higher order of accuracy.

Example 5.5. Consider the one-dimensional geometric Brownian motion

(42) dXt =
m∑

j=1

σjXt dW j
t , X0 = x0 > 0

without any drift which is a standard example for stability analysis for numerical integration schemes for sto-
chastic differential equations (e.g. see [14], [18], [22]) where the standard numerical methods possess serious
stepsize restrictions or even fail to preserve stability and positivity. Kahl [8] showed that the Milstein scheme
has an eternal life time if m = 1 and

(43) ∆n <
1
σ2

1

.

Obviously, for |σ1| � 1, this condition is very restrictive. Using any BMM with

d0(tn, x) ≥ m

2

m∑
j=1

σ2
j ,

∀l = 1, ...,m dl(tn, x) = (m− 1)σ2
l

can solve this problem with higher order of accuracy very easy since

D(tn, x) = −1
2

m∑
j=1

σ2
j x + d0(tn, x)x− m− 1

2

m∑
j=1

σ2
j x

≥ −m

2

m∑
j=1

σ2
j x +

m

2

m∑
j=1

σ2
j x = 0 and

N(tn, x) = −
m∑

j=1

σ2
j x2

2σ2
j x + 2(m− 1)σ2

j x
= −x

2
< 0

for x ∈ D = (0,+∞). Hence, the restriction (A10) on the stepsize ∆n is not relevant here. However, notice
that a restriction of the form D(tn, x) ≥ −K = constant is important for the finiteness of the related numerical
algorithm (i.e. in particular in order to reach any desired terminal time T > 0 with probability one). Moreover,
all assumptions (A0)-(A9) are satisfied. Consequently, the related BMMs provide positive-invariant, consistent,
stable and mean square converging numerical approximations to test SDE (42) with eternal life-time on D =
(0,+∞).

Remark 5.6. A simple choice to simulate SDE (42) on D = (0,+∞) is given by BMMs (6) with weight
functions d0(t, x) = m

2

∑m
j=1 σ2

j and dj(t, x) = 0 for all j = 1, 2, ...,m. To verify its positivity, one may apply
Corollary 5.4 under the basic assumption that

∑m
j=1 σ2

j > 0. Also, note that the latter example can be even
generalized to SDEs with diagonal noise on D = (0,+∞)d where all weights dj in related diagonal BMMs are
positive diagonal matrices, just by componentwise treatment.
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Next we want to focus our discussion on the mean-reverting process (31) and we will see that appropriately
chosen BMMs possess an eternal life time with a suitable choice of the weight functions d0 and d1. According to
the different behaviour of the mean-reverting process with respect to the parameter p we split up this discussion
into several subclasses.

Corollary 5.7. The one-dimensional BMM (32) satisfying (A6)-(A7) with σ2 > 0 along partitions

t0 < t1 < · · · < tn < tn+1 < · · ·

has an eternal life time with respect to the boundary c = 0 for the mean-reverting process (31) with diffusion
exponent p = 0.5 with the following choice of weight functions

(44) d0(x) = κ, d1(x) = 0.

Proof. We just have to check the requirements (A8)-(A10) of Theorem 5.1 with a(x) = κ(θ−x) and b(x) = σ
√

x
on D = (0,+∞) since the conditions (A6)-(A7) are trivially valid with nonnegative weights d0 and d1. (A8) is
satisfied while σ2 > 0 since

∀x ∈ D : b(x)b′(x) + d1(x) = pσ2x2p−1 =
σ2

2
> 0

with p = 1/2. Next step is to calculate

(45) D(tn, x) = κ(θ − x)− 1
4
σ2 + κx = κθ − 1

4
σ2 > 0

which is due to the requirement κθ > 1
2σ2 needed to guarantee strict positivity of exact solution. Hence we do

not have to restrict the stepsize and (A10) is fulfilled too. The last step is to verify (A9)

(46) x + N(tn, x) = x− σ2x

σ2
= 0 ≥ 0.

Hence, in view of Remark 5.3, the proof is completed.

Remark 5.8. The BMM with the forementioned choice of weight functions dj coincides with the implicit
Milstein method as discussed by Kahl [8] who has already proved the eternal life time of the implicit Milstein
method in this case.

Theorem 5.9. The one-dimensional BMM (32) satisfying (A6)-(A7) with σ2 > 0 along partitions

t0 < t1 < · · · < tn < tn+1 < · · ·

has an eternal life time with respect to the boundary c = 0 for the mean-reverting process (31) with diffusion
exponent p ∈ (0.5, 1] with the following choice of the weight functions

(47) d0(x) = ακ +
1
2
σ2p|x|(2p−2), d1(x) = 0.

with relaxation parameter α ∈ [0, 1] such that

(48) ∆n <
2p− 1

2pκ(1− α)
.

Remark 5.10. The relaxation parameter α is similiar to the implicitness paramter θ in the class of stochastic
θ methods and gives more space to adjust the BMM to the specific problem. The fully implicit case α = 1 is
a safe choice as we do not have to restrict the stepsize in that case. On the other hand numerical tests show
that a reduced level of implicitness leads to better approximation results (see picture 2-4 and 5-7). Therefore
we would recommend to use α = 0.5 whenever the parameter configuration allows this choice, also supported by
results from [18].

Proof. With a(x) = κ(θ− x) and b(x) = σxp on D = (0,+∞) it is easy to see that (A8) is satisfied. Hence it is
enough to check restriction (A11) of Corollary 5.4. Calculating

(49) D(tn, x) ≥ κ(θ − x)− 1
2
σ2px(2p−1) +

(
ακ +

1
2
σ2p|x|(2p−2)

)
x = κθ − κ(1− α)x ≥ −κ(1− α)x

15



as well as

(50) x + N(tn, x) = x− σ2x(2p)

2pσ2x(2p−1)
= x

(
1− 1

2p

)
leads to

(51) x + N(tn, x) + D(tn, x)∆n ≥ x

(
1− 1

2p
−∆n (κ(1− α))

)
.

Eventually, the requirement x + N(tn, x) + D(tn, x)∆n > 0 verifies the restriction (48) for ∆n.

Remark 5.11. The choice of weights dj has to be done with care in order to not to destroy the convergence
rates as predicted in previous sections. This problem is strongly connected with the verification of the existence of
control function V (x) as met in (A1)-(A5) to guarantee the global rate 1.0 of strong and mean square convergence.
In the case p = 0.5 or p = 1 one may take the standard function V (x) = 1 + |x|2 to verify both convergence and
positivity through applying our previous theorems. However, the case p ∈ (0.5, 1) is more complicated.

Remark 5.12. The Cox-Ingersoll-Ross model

dXt = κ(θ −Xt)dt + σ
√

XtdWt

with θ, κ, σ ≥ 0 is also treated in the paper of Alfonsi [1]. There one can find an alternative approach to
numerical approximations of this model and further references on previous works. The main difficulty in this
type of SDE results from the fact that the diffusion (volatility) coefficient is not Lipschitz. Our assumptions
(A0), (A1), (A3) - (A9) for a detailed qualitative analysis of BMMs are clearly fulfilled. However, Theorem
4.1 works only under the assumption (A2) of mean and mean square consistency of related standard Milstein
methods. To the best of our knowledge, mean square consistency for Milstein methods under assumptions other
than of Lipschitz-type ones has not been proven in the literature so far (whereas the mean consistency can be
established due to the Lipschitz-continuous drift coefficient a(x) = κ(θ−x)). Thus, the question of mean square
consistency and mean square convergence remains unsolved (it is left to future research due its complexity). The
same observation applies to models with σXp

t coefficients with p ∈ (0.5, 1). An alternative numerical method is
given by splitting techniques as introduced by Moro and Schurz [15] recently. There a proof of convergence of
their split-step algorithm under Hölder-continuity assumptions of related dynamics can be found (which covers
the case of more general model (31) with p ∈ [0.5, 1) too).

5.3 Numerical tests

Finally we want to present some numerical results which underlines the necessity of construction of invariance-
preserving numerical methods for the extended Cox-Ingersoll-Ross model. We compare the numerical approxi-
mations of standard Euler and Milstein methods versus the balanced methods BIM and BMM. In the following
we consider the test equation

(52) dXt = (1−Xt)dt + 1.4Xp
t dWt, X(0) = 1,

with three different values of p (p = 0.5, p = 3/4 or p = 1.0). This parameter configuration guarantees strict
analytical positivity even for p = 0.5 as 1 · 1 > 1.42

2 = 0.98. To get a first impression of this kind of mean-
reverting processes Figure 1 illustrates the simulation of one path generated by the mentioned methods. For
the plotting of the exact solution, we have used an essentially smaller step size dt = 0.00125 to generate the
underlying path of Wiener process, whereas the stepsize ∆n of numerical approximations is labeled by dT .

Due to the theoretical results, BIMs as well as BMMs are able to preserve the analytical positivity of this
stochastic differential equation. Furthermore this parameter configuration forces the trajectories of Euler and
Milstein schemes to become negative with positive probability.

To obtain a better feeling about the problems arising with negative paths we present in Table 1 the percentage
of negative paths simulating the mean-reverting process (52). As one would expect, an increasing of the
integration interval increases the percentage of negative paths in case of the Euler and Milstein methods.
Vice versa, a decreasing of the integration stepsize dt leads to a decreasing number of negative paths. Both
balanced methods BIM and BMM are not affected from this problem as we obtain positivity for all stepsizes
dT independent of the length of integration interval [0, T ].

Next, an important aspect is the convergence speed of different methods where the most interesting aspect
is a comparison of the two balanced methods BIM and BMM. The plots of the strong error of numerical
approximations versus its equidistant stepsize ∆ = dT are depicted in Figure 2-4. There we can clearly see that
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Figure 1: Left figure: p = 0.5, right figure: p = 1.0, time-interval: [0, 4], stepsize of exact solution: dt = 0.00125, stepsize of

numerical approximations: dT = 0.5, κ = θ = 1, σ = 1.4, weight functions of BIM: c0(x) = 1,c1(x) = σ|x|p−1, weight functions of

BMM: for (p = 0.5) - d0(x) = κ, d1(x) = 0 for (p = 1.0) - d0(x) = κ + 0.5σ2

Time Stepsize Euler Milstein BIM BMM

dT = 1
2 26.84% 22.68% 0% 0%

T = 1 dT = 1
4 26.38% 7.92% 0% 0%

dT = 1
8 21.88% 0.7% 0% 0%

dT = 1
2 69.50% 53.50% 0% 0%

T = 4 dT = 1
4 66.42% 19.90% 0% 0%

dT = 1
8 62.7% 1.92% 0% 0%

dT = 1
2 99.08% 93.22% 0% 0%

T = 16 dT = 1
4 98.58% 56.62% 0% 0%

dT = 1
8 98.28% 8.24% 0% 0%

Table 1: Test results for dXt = (1−Xt)dt + 1.4
√

XtdWt; time-interval: [0, T ], stepsize of numerical approximations: dT, weight

functions of BIM: c0(x) = 1,c1(x) = σ/
√

x, weight functions of BMM: d0(x) = κ, d1(x) = 0, number of simulated paths: 10000.

the balanced Milstein method is the best approximation method for relatively large stepsizes ∆ = dT which is
due to the positivity preserving behaviour. Hence we obtain the appearance that a small initial error of the
numerical approximation does not result into an essentially larger becoming error at later integration times -
a kind of fact which exhibits a stabilization effect on commonly known numerical dynamics and which is very
important for simulation in computational finance where we are interested in longterm numerical approximations
with large stepsizes. Nonetheless the better convergence property of the BMM would be useless if one integration
step needs much more time than the Milstein method. Figure 5-7 shows that this is not the case and the BMM
is indeed a superior scheme for large stepsizes.

Remark 5.13. The comparison of the efficiency requires a slight modification of the Milstein method to prevent
its trajectories from becoming negative as this would result in complex numbers. A simple modification is the
absorbing Milstein method which sets negative values to zero in an additional step

(53) Yn+1 = max

Yn +
m∑

j=0

bj(tn, Yn)Itn,tn+1

(j) +
m∑

i,j=1

Libj(tn, Yn)Itn,tn+1

(i,j) , 0

 .

Furthermore Theorem 4.1 shows that the BMM is globally mean square convergent with order rg = 1.0 and
this numerical test indeed verifies all previously proven properties of BMMs by a practically oriented application.
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Figure 2: dXt = (1−Xt)dt+1.4
√

XtdWt, time-interval: [0, 1], stepsize of exact solution: dt = 2−10, number of simulated paths:

100000, number generator: Sobol, L2-Error
�

E [(X0,Z(0)(T )− Y0,Z(0)(T ))2|F0]
�1/2

versus stepsize dT , κ = θ = 1, σ = 1.4, weight

functions of BIM: c0(x) = 1/2,c1(x) = σ/
√

x, weight functions of BMM: d0(x) = κ, d1(x) = 0
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Figure 3: dXt = (1 − Xt)dt + 1.4X
3/4
t dWt, time-interval: [0, 1], stepsize of exact solution: dt = 2−10, number of simulated

paths: 100000, number generator: Sobol, L2-Error
�

E [(X0,Z(0)(T )− Y0,Z(0)(T ))2|F0]
�1/2

versus stepsize dT , κ = θ = 1, σ = 1.4,

weight functions of BIM: c0(x) = 1/2,c1(x) = σ|x|−1/4, weight functions of BMM: d0(x) = 0.5κ + 0.5σ2p/
√

x, d1(x) = 0

So a significant qualitative superiority of BMMs compared to commonly known numerical methods has been
established by this paper.
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Figure 4: dXt = (1−Xt)dt + 1.4XtdWt, time-interval: [0, 1], stepsize of exact solution: dt = 2−10, number of simulated paths:

100000, number generator: Sobol, L2-Error
�

E [(X0,Z(0)(T )− Y0,Z(0)(T ))2|F0]
�1/2

versus stepsize dT , κ = θ = 1, σ = 1.4, weight

functions of BIM: c0(x) = 1/2,c1(x) = σ, weight functions of BMM: d0(x) = 0.5κ + 0.5σ2, d1(x) = 0
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Figure 5: dXt = (1−Xt)dt+1.4
√

XtdWt, time-interval: [0, 1], stepsize of exact solution: dt = 2−10, number of simulated paths:

100000, number generator: Sobol, L2-Error
�

E [(X0,Z(0)(T )−Y0,Z(0)(T ))2|F0]
�1/2

versus elapsed time, κ = θ = 1, σ = 1.4, weight

functions of BIM: c0(x) = 1/2,c1(x) = σ/
√

x, weight functions of BMM: d0(x) = κ, d1(x) = 0,
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Figure 6: dXt = (1 − Xt)dt + 1.4X
3/4
t dWt, time-interval: [0, 1], stepsize of exact solution: dt = 2−10, number of simulated

paths: 100000, number generator: Sobol, L2-Error
�

E [(X0,Z(0)(T )−Y0,Z(0)(T ))2|F0]
�1/2

versus elapsed time, κ = θ = 1, σ = 1.4,

weight functions of BIM: c0(x) = 1/2,c1(x) = σ|x|−1/4, weight functions of BMM: d0(x) = 0.5κ + 0.5σ2p/
√

x. d1(x) = 0
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Figure 7: dXt = (1−Xtdt) + 1.4XtdWt, time-interval: [0, 1], stepsize of exact solution: dt = 2−10, number of simulated paths:

100000, number generator: Sobol, L2-Error
�

E [(X0,Z(0)(T )−Y0,Z(0)(T ))2|F0]
�1/2

versus elapsed time, κ = θ = 1, σ = 1.4, weight

functions of BIM: c0(x) = 1/2,c1(x) = σ, weight functions of BMM: d0(x) = 0.5κ + 0.5σ2, d1(x) = 0
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