Jede Aufgabe wird mit vier Punkten bewertet.

Aufgabe 1. Stellen Sie die Gruppentafel für die zyklische Gruppe $(\mathbb{Z}/5,+)$ auf.

Aufgabe 2. Sei (G, \cdot) eine Gruppe.

- a) Seien $a, b \in G$ sodass $a \cdot b = 1$ ("b ist rechtsinvers zu a"). Zeigen Sie, dass b das Inverse von a ist, dass also auch $b \cdot a = 1$ ("b ist linksinvers zu a") gilt.
- b) Sei e' ein Element von G mit der Eigenschaft, dass $e' \cdot a = a$ gilt für jedes $a \in G$. Zeigen Sie, dass e' das neutrale Element von G ist, dass also auch $a \cdot e' = a$ gilt für jedes $a \in G$.

Aufgabe 3. Bestimmen Sie, welche der folgenden Mengen bezüglich der Verknüpfung "·" (Multiplikation) eine Gruppe bilden. Geben Sie in den negativen Fällen jeweils an, welche Gruppenaxiome verletzt werden.

- a) \mathbb{Z}
- b) 0
- c) $\mathbb{Q} \{0\}$
- d) $\mathbb{Q} \mathbb{Z}$

Aufgabe 4. Seien (G, \cdot_G) und (H, \cdot_H) Gruppen. Zeigen Sie, dass die Verknüpfung

$$(G \times H) \times (G \times H) \to G \times H$$
$$((g_1, h_1), (g_2, h_2)) \mapsto (g_1 \cdot_G g_2, h_1 \cdot_H h_2)$$

eine Gruppenstruktur auf dem kartesischen Produkt $G \times H$ definiert.