I Vektorräume

§1 Erste Notationen

Mengentheoretische Grundbegriffe

Eine *Menge* ist eine Zusammenfassung gewisser Objekte (genannt die *Elemente* dieser Menge) zu einem Ganzen.

Eine Menge ist dadurch gegeben, indem man angibt, welche Elemente zu ihr gehören.

Beispiele

- (i) $\{1, 2, 3, 4, \ldots\}$ ist die Menge der natürlichen Zahlen. Sie wird mit \mathbb{N} bezeichnet. Setze $\mathbb{N}_0 := \{0, 1, 2, 3, 4, \ldots\}$.
- (ii) $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ ist die Menge der ganzen Zahlen. Sie wird mit \mathbb{Z} bezeichnet.
- (iii) R bezeichnet die Menge der reellen Zahlen.
- (iv) Es gibt genau eine Menge, die keine Elemente hat. Sie heißt die $leere\ Menge$ und wird mit \emptyset bezeichnet.

Bezeichnungen

- (i) Ist ein Objekt x ein Element einer Menge M, so setzt man dafür $x \in M$. Beispiele: $-2 \in \mathbb{Z}$ und $-2 \notin \mathbb{N}_0$.
- (ii) Sind M, N Mengen, so heißt M eine Teilmenge von N (geschrieben $M \subseteq N$), wenn jedes Element von M ein Element von N ist.
 - Beispiele: a) Es gilt $\emptyset \subseteq X$ für jede Menge X und $\mathbb{N} \subseteq \mathbb{N}_0 \subseteq \mathbb{Z} \subseteq \mathbb{R}$.
 - b) Für Mengen X, Y gilt X = Y genau dann, wenn $X \subseteq Y$ und $Y \subseteq X$.
- (iii) Ist E eine Eigenschaft, so bezeichnet

$$\{x \mid x \text{ hat die Eigenschaft } E\}$$

die Menge aller Objekte x, die die Eigenschaft E haben. Sind M eine Menge und E eine Eigenschaft, so bezeichnet

$$\{x \in M \mid x \text{ hat die Eigenschaft } E\}$$

die Menge aller Elemente x von M, die die Eigenschaft E haben. Also

$$\{x \in M \mid x \text{ hat die Eigenschaft } E\} = \{x \mid x \in M \text{ und } x \text{ hat die Eigenschaft } E\}$$

Beispiele: a) $\{x \in \mathbb{Z} \mid x \geq 0\} = \mathbb{N}_0$.

b) $\mathbb{Q}:=\{x\in\mathbb{R}\mid \text{es gibt }p,q\in\mathbb{Z}\text{ mit }q\neq 0\text{ und }x=\frac{p}{q}\}$ ist die Menge der rationalen Zahlen.

Konstruktionen von Mengen

(i) Sind A, B Mengen, so heißt

$$A \cup B := \{x \mid x \in A \text{ oder } x \in B\}$$

die Vereinigung von A und B. Allgemeiner, sind $n \in \mathbb{N}$ und X_1, X_2, \ldots, X_n Mengen, so setzt man

$$X_1 \cup X_2 \cup \ldots \cup X_n := \{x \mid \text{es gibt ein } i \in \{1, 2, \ldots, n\} \text{ mit } x \in X_i\}.$$

(ii) Sind A, B Mengen, so heißt

$$A \cap B := \{x \mid x \in A \text{ und } x \in B\}$$

der Durchschnitt von A und B. Allgemeiner, sind $n \in \mathbb{N}$ und X_1, X_2, \ldots, X_n Mengen, so setzt man

$$X_1 \cap X_2 \cap \ldots \cap X_n := \{x \mid \text{für jedes } i \in \{1, 2, \ldots, n\} \text{ gilt } x \in X_i\}.$$

(iii) Sind A und B Mengen, so heißt

$$A - B := \{x \mid x \in A \text{ und } x \notin B\}$$

die Differenzmenge von A, B.

(iv) Sind A und B Mengen, so heißt

$$A \times B := \{(a, b) \mid a \in A \text{ und } b \in B\}$$

das kartesische Produkt von A, B. Allgemeiner, sind $n \in \mathbb{N}$ und X_1, X_2, \ldots, X_n Mengen, so setzt man $X_1 \times X_2 \times \ldots \times X_n := \{(x_1, x_2, \ldots, x_n) \mid \text{ für jedes } i \in \{1, 2, \ldots, n\} \text{ ist } x_i \in X_i\}$. Ist $X_1 = X_2 = \ldots = X_n =: X$, so setzt man

$$X^n := X \times X \times \ldots \times X.$$

Beispiel: Für Mengen A, B, C gilt

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

Beweis. Wir zeigen

(I) $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$

(II) $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$

zu (I): Sei $x \in A \cap (B \cup C)$. Dann $x \in A$ und $x \in B \cup C$. Da $x \in B \cup C$, gilt $x \in B$ oder $x \in C$. Wir betrachten diese beiden Fälle.

Fall 1: $x \in B$

Dann haben wir $x \in A$ und $x \in B$. Hieraus folgt $x \in A \cap B$ und damit $x \in (A \cap B) \cup (A \cap C)$.

Fall 2: $x \in C$

Dann haben wir $x \in A$ und $x \in C$. Hieraus folgt $x \in A \cap C$ und damit $x \in (A \cap B) \cup (A \cap C)$.

zu (II): Sei $x \in (A \cap B) \cup (A \cap C)$. Dann $x \in A \cap B$ oder $x \in A \cap C$. Wir betrachten diese beiden Fälle.

Fall 1: $x \in A \cap B$

Dann haben wir $x \in A$ und $x \in B$. Aus $x \in B$ folgt $x \in B \cup C$. Also haben wir $x \in A$ und $x \in B \cup C$, woraus folgt $x \in A \cap (B \cup C)$.

Fall 2: $x \in A \cap C$

Dann haben wir $x \in A$ und $x \in C$. Aus $x \in C$ folgt $x \in B \cup C$. Also haben wir $x \in A$ und $x \in B \cup C$, woraus folgt $x \in A \cap (B \cup C)$.

Für eine Menge M heißt

$$P(M) := \{X \mid X \text{ ist eine Teilmenge von } M\}$$

die Potenzmenge von M.

Für jede Menge A definiert man ein $|A| \in \mathbb{N}_0 \cup \{0\}$ durch

$$|A| := \left\{ \begin{array}{ll} \text{Anzahl der Elemente von } A & \quad \text{wenn } A \text{ endlich} \\ \infty & \quad \text{wenn } A \text{ unendlich} \end{array} \right.$$

|A| heißt die Mächtigkeit von A.

Abbildungen

Seien X und Y Mengen. Eine Abbildung f von X nach Y ist eine Zuordnung, die jedem Element $x \in X$ genau ein Element $y \in Y$ (bezeichnet mit f(x)) zuordnet, $f: X \to Y, x \mapsto f(x)$.

f(x) heißt das Bild von x unter f, X heißt die Definitionsmenge von f, Y heißt die Zielmenge von f.

Beispiele

- (i) $\mathbb{R} \to \mathbb{R}$, $x \mapsto x + 1$.
- (ii) $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $(x, y) \mapsto x y + 1$.
- (iii) Für eine Menge X heißt die Abbildung $X \to X, x \mapsto x$ die *Identität* von X. Sie wird mit id $_X$ bezeichnet.

Sei $f: X \to Y$ eine Abbildung. Für jede Teilmenge M von X heißt

$$f(M): = \{y \in Y \mid \text{ es gibt ein } x \in M \text{ mit } y = f(x)\}$$
$$= \{f(x) \mid x \in M\}$$

das Bild von Munter f.Für jede Teilmene N von Yheißt

$$f^{-1}(N) := \{x \in X \mid f(x) \in N\}$$

das Urbild von N unter f. Für jede Teilmenge M von X heißt

$$f|M:M\to Y, x\mapsto f(x)$$

die Restriktion von f auf M.

Eine Abbildung $f: X \to Y$ heißt

- *injektiv*, wenn es zu jedem $y \in Y$ höchstens ein $x \in X$ mit y = f(x) gibt, oder äquivalent, sind $x, x' \in X$ mit $x \neq x'$, so ist $f(x) \neq f(x')$, oder äquivalent, sind $x, x' \in X$ mit f(x) = f(x'), so ist x = x'.
- surjektiv, wenn es zu jedem $y \in Y$ ein $x \in X$ mit y = f(x) gibt.
- bijektiv, wenn sie injektiv und surjektiv ist, d.h. zu jedem $y \in Y$ gibt es genau ein $x \in X$ mit y = f(x).

Beispiele

- (i) Die Abbildung $f: \mathbb{R} \to \mathbb{R}, x \mapsto x+1$ ist bijektiv, denn zu jedem $y \in \mathbb{R}$ gibt es genau ein $x \in \mathbb{R}$ mit y = f(x), nämlich x = y 1.
- (ii) Die Abbildung $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $(x,y) \mapsto x-y+1$ ist surjektiv und nicht injektiv.
- (iii) Für jede Menge X ist die Abbildung $id_X: X \to X$ bijektiv.

Zu einer bijektiven Abbildung $f: X \to Y$ haben wir die Abbildung

$$Y \longrightarrow X, y \longmapsto \operatorname{das} x \in X \operatorname{mit} y = f(x).$$

Sie heißt die *Umkehrabbildung* von f und wird mit f^{-1} bezeichnet.

Beispiele

- (i) Nach dem obigen Beispiel ist $\mathbb{R} \to \mathbb{R}$, $y \mapsto y-1$ die Umkehrabbildung zu der bijektiven Abbildung $\mathbb{R} \to \mathbb{R}$, $x \mapsto x+1$.
- (ii) Die Umkehrabbildung der bijektiven Abbildung id $_X: X \to X$ ist id $_X$, also $(\mathrm{id}_X)^{-1} = \mathrm{id}_X$.

Zu Abbildungen $f: X \to Y$ und $g: Y \to Z$ haben wir die Abbildung

$$X \longrightarrow Z, x \longmapsto g(f(x)).$$

Sie heißt die Verknüpfung oder das Kompositum von f und g und wird mit $g \circ f$ bezeichnet. Also für alle $x \in X$ gilt $(g \circ f)(x) = g(f(x))$.

Für Abbildungen $f: X \to Y, g: Y \to Z, h: Z \to W$ haben wir die Abbildungen

$$h \circ (g \circ f) : X \longrightarrow Z$$

$$(h \circ g) \circ f : X \longrightarrow Z$$

Es gilt

$$h \circ (g \circ f) = (h \circ g) \circ f$$

(Diese Eigenschaft nennt man die $Assoziativit \"{a}t$ der Verknüpfungen von Abbildungen).

Gruppen

Definition. Eine Gruppe ist ein Paar (G,\cdot) mit G eine nichtleere Menge und \cdot eine Abbildung

$$\cdot: G \times G \longrightarrow G, (a,b) \longmapsto a \cdot b$$

so daß gelten

(I) Für alle $a, b, c \in G$ gilt

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

(Assoziativität).

(II) Es gibt ein $e \in G$, so daß für alle $a \in G$ gilt

$$a \cdot e = a = e \cdot a$$

e ist eindeutig bestimmt und heißt das neutrale Element.

(III) Zu jedem $a \in G$ gibt es ein $b \in G$, so daß

$$a\cdot b=e=b\cdot a$$

Zu vorgegebenem $a \in G$ ist b eindeutig bestimmt. Man nennt b das Inverse von a und setzt $a^{-1} := b$.

Eine Gruppe (G, \cdot) heißt *abelsch* oder *kommutativ*, wenn für alle $a, b \in G$ gilt $a \cdot b = b \cdot a$.

Begründung für die Eindeutigkeitsaussagen in (II) und (III):

Ist $e' \in G$ mit $a \cdot e' = e' = e' \cdot a$ für alle $a \in G$, so ist e = e', denn $e = e \cdot e' = e'$. Ist $b' \in G$ mit $a \cdot b' = e = b' \cdot a$, so ist b = b', denn $b = b \cdot e = b \cdot (a \cdot b') = (b \cdot a) \cdot b' = e \cdot b' = b'$.

Beispiele

- (i) Ist · die übliche Multiplikation reeller Zahlen, so ist $(\mathbb{R} \{0\}, \cdot)$ eine abelsche Gruppe. Das neutrale Element ist $1 \in \mathbb{R} \{0\}$, das Inverse zu $a \in \mathbb{R} \{0\}$ ist die reelle Zahl $\frac{1}{a}$.
- (ii) Ist + die übliche Addition reeller Zahlen, so ist $(\mathbb{R}, +)$ eine abelsche Gruppe. Das neutrale Element ist $0 \in \mathbb{R}$, das Inverse zu $a \in \mathbb{R}$ ist die reelle Zahl -a.
- (iii) Sei M eine Menge. S(M) bezeichnet die Menge aller bijektiven Abbildungen $M \to M$. Wir haben die Abbildung

$$: S(M) \times S(M) \longrightarrow S(M), (f,g) \longmapsto f \circ g$$

Das Paar $(S(M), \cdot)$ ist eine Gruppe. Das neutrale Element ist $\mathrm{id}_M \in S(M)$, das Inverse zu $f \in S(M)$ ist die Umkehrabbildung $f^{-1} \in S(M)$. Die Gruppe $(S(M), \cdot)$ heißt die symmetrische Gruppe oder Permutationsgruppe von M.

Lemma 1. Sei (G, \cdot) eine Gruppe. Dann

- (i) Für alle $a \in G$ gilt $(a^{-1})^{-1} = a$.
- (ii) Für alle $a, b \in G$ gilt $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$.

Beweis. i) Nach Definition von a^{-1} gilt $a \cdot a^{-1} = e = a^{-1} \cdot a$, woraus sich die Behauptung von (i) ergibt.

ii) Wir haben zu zeigen $(a \cdot b) \cdot (b^{-1} \cdot a^{-1}) = e = (b^{-1} \cdot a^{-1}) \cdot (a \cdot b)$. Wir zeigen die erste Gleichung: $(a \cdot b) \cdot (b^{-1} \cdot a^{-1}) = a \cdot (b \cdot (b^{-1} \cdot a^{-1})) = a \cdot ((b \cdot b^{-1}) \cdot a^{-1}) = a \cdot (e \cdot a^{-1}) = a \cdot a^{-1} = e$. \square

Ringe und Körper

Definition. Ein Ring ist ein Tripel $(R,+,\cdot)$, wobei R eine Menge und + und \cdot Abbildungen sind

$$+: R \times R \longrightarrow R, \ (a,b) \longmapsto a+b$$

 $\cdot: R \times R \longrightarrow R, \ (a,b) \longmapsto a \cdot b$

so daß gelten

(I) (R, +) ist eine abelsche Gruppe.

(Das neutrale Element von (R, +) wird mit 0 bezeichnet und heißt das Nullelement. Das Inverse zu $a \in R$ in (R, +) wird mit -a bezeichnet).

(II) Für alle $a, b, c \in G$ gilt

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

(Assoziativität von \cdot).

(III) Für alle $a, b, c \in G$ gilt

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

 $(a+b) \cdot c = (a \cdot c) + (b \cdot c)$

(Distributivität).

Ein Ring $(R, +, \cdot)$ heißt

- kommutativ, wenn für alle $a, b \in R$ gilt $a \cdot b = b \cdot a$.
- Ring mit Einselement, wenn es ein $1 \in R$ gibt, so daß für alle $a \in R$ gilt $1 \cdot a = a = a \cdot 1$.

Diese Element ist eindeutig bestimmt (cf. Beweis der Eindeutigkeit des neutralen Elements einer Gruppe) und heißt das Einselement.

Beispiele

- (i) Sind + und \cdot die übliche Addition und Multiplikation ganzer Zahlen, so sind die Tripel $(\mathbb{Z}, +, \cdot)$ und $(\{2x \mid x \in \mathbb{Z}\}, +, \cdot)$ kommutative Ringe. Der erste Ring hat ein Einselement, der zweite nicht.
- (ii) Sind + und \cdot die übliche Addition und Multiplikation reeller Zahlen, so sind die Tripel $(\mathbb{Q}, +, \cdot)$ und $(\mathbb{R}, +, \cdot)$ kommutative Ringe mit Einselement.

Lemma 2. Sei $(R, +, \cdot)$ ein Ring. Es gelten

- (i) Für jedes $a \in R$ ist $a \cdot 0 = 0 \cdot a = 0$.
- (ii) Für alle $a, b \in \mathbb{R}$ gilt $a \cdot (-b) = (-a) \cdot b = -(a \cdot b)$.

Beweis. i) Es gilt $a \cdot 0 = a \cdot (0+0) = (a \cdot 0) + (a \cdot 0)$. Also für $x := a \cdot 0$ gilt x = x + x. Addition von -x auf beiden Seiten dieser Gleichung liefert 0 = x.

ii) Mit (i) gilt
$$0 = a \cdot 0 = a \cdot (b + (-b)) = (a \cdot b) + (a \cdot (-b))$$
, woraus folgt $a \cdot (-b) = -(a \cdot b)$.

Sei $(R,+,\cdot)$ ein Ring mit Einselement. Ein Element $a\in R$ heißt Einheit von $(R,+,\cdot)$, wenn es ein $b\in R$ mit $a\cdot b=1=b\cdot a$ gibt. Das Element b ist eindeutig bestimmt (cf. die Eindeutigkeit des Inversen bei Gruppen). Man nennt b das multiplikative Inverse von a und setzt $a^{-1}:=b$ und $\frac{1}{a}:=b$. Es gelten

- (I) Sind $a,b \in R$ Einheiten, so ist auch $a \cdot b \in R$ eine Einheit (und $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$).
- (II) $1 \in R$ ist eine Einheit.
- (III) Ist $a \in R$ eine Einheit, so ist auch $a^{-1} \in R$ eine Einheit (und $(a^{-1})^{-1} = a$). Für einen Beweis von (I) und (III), siehe Beweis von Lemma 1. R^* bezeichnet die Menge aller Einheiten von R. Nach (I) haben wir die Abbbildung

$$: R^* \times R^* \longrightarrow R^*, (a, b) \longmapsto a \cdot b$$

Das Paar (R^*, \cdot) ist eine Gruppe (denn nach (II) und (III) sind (II) und (III) in der obigen Definition einer Gruppe erfüllt). Sie heißt die *Einheitengruppe* von $(R, +, \cdot)$.

Definition. Ein Körper ist ein kommutativer Ring $(R, +, \cdot)$ mit Einselement, so daß $0 \neq 1$ und jedes von 0 verschiedene Element von R eine Einheit von $(R, +, \cdot)$ ist.

Ist $(R, +, \cdot)$ ein Körper, so ist $R^* = R - \{0\}$. Denn nach Defintion eines Körpers und Lemma 2 gilt $R - \{0\} \subseteq R^*$ und $0 \cdot b = 0 \neq 1$ für jedes $b \in R$, also $0 \notin R^*$.

Beispiele

- (i) Für den Ring der ganzen Zahlen $(\mathbb{Z}, +, \cdot)$ gilt $\mathbb{Z}^* = \{1, -1\}$.
- (ii) Die Ringe $(\mathbb{Q}, +, \cdot)$ und $(\mathbb{R}, +, \cdot)$ sind Körper.
- (iii) Auf der 2-elementigen Menge $\{0,1\}$ definieren wir kommutative Verknüpfungen + und \cdot durch

Das Tripel ($\{0,1\},+,\cdot$) ist ein Körper. Er wird mit \mathbb{F}_2 bezeichnet.

Lemma 3. Sei $(R, +, \cdot)$ ein Körper. Sind a, b Elemente von R mit $a \cdot b = 0$, so ist a = 0 oder b = 0.

Beweis. Angenommen, $a \neq 0$. Wir haben zu zeigen, daß b = 0.

Da $a \neq 0$, haben wir das Inverse a^{-1} . Es gilt $b = 1 \cdot b = (a^{-1} \cdot a) \cdot b = a^{-1} \cdot (a \cdot b) = a^{-1} \cdot 0 = 0$, wobei wir für die vorletzte Gleichung unsere Voraussetzung $a \cdot b = 0$ nutzen und die letzte Gleichheit nach Lemma 2 gilt.

Für einen Ring $(R, +, \cdot)$ schreibt man häufig nur R, und für Elemente $a, b \in R$ schreibt man oft ab statt $a \cdot b$.

§2 Vektorräume, Erzeugendensysteme und Dimension

Definition 1. Sei $K = (K, +, \cdot)$ ein Körper. Ein K-Vektorraum oder Vektorraum über K ist ein Tripel $(V, +, \cdot)$ mit V eine Menge und + und \cdot Abbildungen

$$+: V \times V \longrightarrow V, \; (v,w) \longmapsto v + w \quad \text{(Addition)}$$

$$\cdot: K \times V \longrightarrow V, \ (\lambda, v) \longmapsto \lambda \cdot v \quad (Skalarenmultiplikation)$$

so daß gelten

- (I) (V, +) ist eine abelsche Gruppe. (Das neutrale Element von (V, +) wird mit 0 bezeichnet, das Inverse zu $v \in V$ in (V, +) wird mit -v bezeichnet).
- (II) $(\lambda \mu) \cdot v = \lambda \cdot (\mu \cdot v)$ für alle $\lambda, \mu \in K$ und alle $v \in V$.
- (III) $(\lambda + \mu) \cdot v = (\lambda \cdot v) + (\mu \cdot v)$ für alle $\lambda, \mu \in K$ und alle $v \in V$. $\lambda \cdot (v + w) = (\lambda \cdot v) + (\lambda \cdot w)$ für alle $\lambda \in K$ und alle $v, w \in V$.
- (IV) $1 \cdot v = v$ für alle $v \in V$.

Die Elemente von V heißen $Vektoren, \ 0 \in V$ heißt Nullvektor. Für $v,w \in V$ setze v-w:=v+(-w).

Konventionen:

- Skalarenmultiplikation bindet stärker als Addition
- häufig schreibe λv statt $\lambda \cdot v$
- häufig schreibe V statt $(V, +, \cdot)$.

Beispiel 2.

(i) Seien $n\in\mathbb{N}$ und K ein Körper. Wir haben die Menge $K^n=\{(x_1,x_2,\ldots,x_n)\mid x_i\in K$ für jedes $i\in\{1,2,\ldots,n\}\}.$ Wir definieren Abbildungen

$$\begin{array}{cccc} +: K^n \times K^n & \longrightarrow & K^n, \; (x,y) \longmapsto x+y \\ \cdot: K \times K^n & \longrightarrow & K^n, \; (\lambda,x) \longmapsto \lambda \cdot x \end{array}$$

indem wir für alle $(x_1, x_2, ..., x_n), (y_1, y_2, ..., y_n) \in K^n$ und alle $\lambda \in K$ setzen $(x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) := (x_1 + y_1, x_2 + y_2, ..., x_n + y_n) \in K^n$ $\lambda \cdot (x_1, x_2, ..., x_n) := (\lambda x_1, \lambda x_2, ..., \lambda x_n) \in K^n$

Das Tripel $(K^n, +, \cdot)$ ist ein K-Vektorraum. Der Nullvektor ist $(0, 0, \ldots, 0)$, das Inverse zu (x_1, x_2, \ldots, x_n) ist $(-x_1, -x_2, \ldots, -x_n)$.

(ii) Sei K ein Körper. Es gibt einen 1-elementigen K-Vektorraum: Setze $V := \{a\}$ und a+a := a und $\lambda \cdot a := a$ für jedes $\lambda \in K$. Dann ist $(V,+,\cdot)$ ein K-Vektorraum.

(iii) Seien X eine Menge und K ein Körper. M(X,K) bezeichne die Menge aller Abbildungen von X nach K. Wir definieren Abbildungen

$$\begin{array}{cccc} +: M(X,K) \times M(X,K) & \longrightarrow & M(X,K), \ (f,g) \longmapsto f + g \\ & \cdot : K \times M(X,K) & \longrightarrow & M(X,K), \ (\lambda,f) \longmapsto \lambda \cdot f \end{array}$$

indem wir für alle $f,g\in M(X,K)$ und alle $\lambda\in K$ und alle $x\in X$ setzen (f+g)(x):=f(x)+g(x)

 $(\lambda \cdot f)(x) := \lambda \cdot f(x).$

Das Tripel $(M(X,K),+,\cdot)$ ist ein K-Vektorraum. Der Nullvektor ist die konstante Abbildung $X\to K$ mit Wert 0, das Inverse zu $f\in M(X,K)$ ist die Abbildung $X\to K, x\mapsto -(f(x))$.

Für jede Menge S gibt es genau eine Abbildung von \emptyset nach S. Deshalb ist $(M(X,K),+,\cdot)$ für $X=\emptyset$ ein 1-elementiger K-Vektorraum.

Lemma 3. Seien K ein Körper und V ein K-Vektorraum. Für alle $v \in V$ und $\lambda \in K$ gelten

- (i) Ist v = 0 oder $\lambda = 0$, so ist $\lambda v = 0$.
- (ii) Ist $\lambda v = 0$, so ist v = 0 oder $\lambda = 0$.
- (iii) $(-\lambda)v = \lambda(-v) = -(\lambda v)$. Für $\lambda = 1$ erhalten wir (-1)v = -v

Beweis. Analog zu den Beweisen von §1, Lemma 2 und 3.

Definition 4. Seien K ein Körper und $(V, +, \cdot)$ ein K-Vektorraum. Ein *Untervektorraum* von $(V, +, \cdot)$ ist eine Teilmenge U von V, so daß gelten

- (I) $0 \in U$.
- (II) Für alle $v, w \in U$ ist $v + w \in U$.
- (III) Für alle $u \in U$ und $\lambda \in K$ ist $\lambda u \in U$.

Bemerkung 5. Sei U ein Untervektorraum eines K-Vektorraums $(V, +, \cdot)$.

(i) Nach (II) und (III) in Definition 4 haben wir die Abbildungen

$$+: U \times U \longrightarrow U, (v, w) \longmapsto v + w$$

 $\cdot: K \times U \longrightarrow U, (\lambda, u) \longmapsto \lambda u$

Das Tripel $(U, +, \cdot)$ ist ein K-Vektorraum.

(Denn: Wir überprüfen die Eigenschaften (I)-(IV) in Definition 1. Mit $(V, +, \cdot)$ erfüllt auch $(U, +, \cdot)$ die Eigenschaften (II)-(IV). Zu (I): Nach Forderung (I) in Definition 4 hat (U, +) ein neutrales Element. Für $u \in U$ ist -u = (-1)u (nach Lemma 3 (iii)) und $(-1)u \in U$ (nach (III) in Definition 4), also hat u ein Inverses in (U, +)).

(ii) In Verallgemeinerung von (II) und (III) in Definition 4 ist $\lambda_1 u_1 + \lambda_2 u_2 + \ldots + \lambda_n u_n \in U$ für alle $n \in \mathbb{N}, u_1, u_2, \ldots, u_n \in U$ und $\lambda_1, \lambda_2, \ldots, \lambda_n \in K$.

Beispiel 6.

- (i) Jeder Vektorraum V hat die Untervektorräume V und $\{0\}$.
- (ii) Sei $n \in \mathbb{N}$. Die Teilmenge $\{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid x_1 = x_2 = \dots = x_n\}$ von \mathbb{R}^n ist ein Untervektorraum des \mathbb{R} -Vektorraums $(\mathbb{R}^n, +, \cdot)$.
- (iii) Die Teilmenge $\{f \in M(\mathbb{R}, \mathbb{R}) \mid f \text{ ist differenzierbar}\}$ von $M(\mathbb{R}, \mathbb{R})$ ist ein Untervektorraum des \mathbb{R} -Vektorraums $(M(\mathbb{R}, \mathbb{R}), +, \cdot)$.

Lemma 7. Seien K ein Körper und V ein K-Vektorraum. Sind U_1 und U_2 Untervektorräiume von V, so ist auch $U_1 \cap U_2$ ein Untervektorraum von V. Allgemeiner, ist \mathcal{M} eine Menge von Untervektorräumen von V, so ist $\bigcap_{U \in \mathcal{M}} U := \{x \in V \mid x \in U \text{ für jedes } U \in \mathcal{M}\}$ ein Untervektorraum von V.

Beweis. Einfache Verifikation.

Proposition und Definition 8. Seien K ein Körper, V ein K-Vektorraum und M eine Teilmenge von V. Es gibt einen kleinsten Untervektorraum von V, der M enthält. (Denn: Ist \mathcal{M} die Menge aller Untervektorräume von V, die M enthälten, so ist $W := \bigcap_{U \in \mathcal{M}} U$ ein Untervektorraum von V (nach Lemma 7), der M enthält, also $W \in \mathcal{M}$. Es ist $W \subseteq U$ für jedes $U \in \mathcal{M}$, also W das kleinste Element von M)

Dieser Untervektorraum heißt der von M erzeugte Untervektorraum von V und wird mit $\langle M \rangle$ bezeichnet. Ist $M = \{v_1, v_2, \dots, v_n\}$, so schreibt man auch $\langle v_1, v_2, \dots, v_n \rangle$ statt $\langle \{v_1, v_2, \dots, v_n\} \rangle$.

Beispiel: $\langle \emptyset \rangle = \{0\}.$

Proposition 9. Seien K ein Körper, V ein K-Vektorraum und M eine nichtleere Teilmenge von V. Es gilt

$$\langle M \rangle = \{ v \in V \mid \text{es gibt } n \in \mathbb{N} \text{ und } \lambda_1, \lambda_2, \dots, \lambda_n \in K \text{ und } m_1, m_2, \dots, m_n \in M \text{ mit } v = \lambda_1 m_1 + \lambda_2 m_2 + \dots + \lambda_n m_n \}.$$

Beweis. Die Menge auf der rechten Seite obiger Gleichung werde mit N bezeichnet. Es gilt

- (α) N ist ein Untervektorraum von V. ($0 \in N$, da $0 = 0 \cdot m$ für ein $m \in M$).
- (β) $M \subseteq N$. (Denn für jedes $m \in M$ gilt $m = 1 \cdot m$).
- (γ) Ist U ein Untervektorraum von V mit $M\subseteq U$, so ist $N\subseteq U$. (Dies folgt aus Bemerkung 5 (ii)).

 $(\alpha), (\beta), (\gamma)$ besagen gerade, daß N der kleinste Untervektorraum von V ist, der M enthält. Also $N = \langle M \rangle$.

Ein Vektor der Form $\lambda_1 m_1 + \lambda_2 m_2 + \ldots + \lambda_n m_n$ (mit $\lambda_1, \lambda_2, \ldots, \lambda_n \in K$) heißt Linearkombination der Vektoren m_1, m_2, \ldots, m_n .

Definition 10. Sei V ein Vektorraum.

- (i) Eine Teilmenge M von V heißt Erzeugendensystem von V, oder man sagt auch, V wird von M erzeugt, wenn $V = \langle M \rangle$.
- (ii) V heißt endlich erzeugt, wenn V ein endliches Erzeugendensystem hat, d.h. wenn es eine endliche Teilmenge M von V mit $V = \langle M \rangle$ gibt.

Beispiel 11. Sei K ein Körper.

- (i) Für jeden Vektorraum V ist V ein Erzeugendensystem von V.
- (ii) Sei $n \in \mathbb{N}$. Wir betrachten den K-Vektorraum K^n . Für jedes $i \in \{1, 2, \dots, n\}$ haben wir den Vektor

$$e_i := (0, \dots, 0, 1, 0, \dots, 0) \in K^n$$

dessen *i*-te Koordinate gleich $1 \in K$ ist und alle anderen Koordinaten gleich $0 \in K$ sind. Für jedes $(x_1, x_2, \dots, x_n) \in K^n$ gilt

$$(x_1, x_2, \dots, x_n) = x_1 e_1 + x_2 e_2 + \dots + x_n e_n.$$

Also $K^n = \langle e_1, e_2, \dots, e_n \rangle$. Insbesondere ist K^n endlich erzeugt.

(iii) Ist X eine unendliche Menge, so ist der K-Vektorraum M(X,K) nicht endlich erzeugt. (Beweis später).

Definition 12. Für eine K-Vektorraum V definiert man $\dim V (= \dim_K V) \in \mathbb{N}_0 \cup \{\infty\}$ durch

 $\dim V:=\min\{|E|\mid E\text{ ein Erzeugendensystem von }V\}\in\mathbb{N}_0\cup\{\infty\}$ dim V heißt die Dimension von V.

Bemerkung 13. Für einen Vektorraum V gelten

- (i) Es ist dim $V = \infty$ genau dann, wenn V nicht endlich erzeugt ist.
- (ii) Es ist dim $V \in \mathbb{N}_0$ genau dann, wenn V endlich erzeugt ist.
- (iii) Es ist dim V = 0 genau dann, wenn $V = \{0\}$.

Beweis. (i) Es ist dim $V=\infty$ genau dann, wenn $|E|=\infty$ für jedes Erzeugendensystem E von V, d.h. wenn jedes Erzeugendensystem von V unendlich ist, d.h. wenn V nicht endlich erzeugt ist.

- (ii) Es ist dim $V \in \mathbb{N}_0$ genau dann, wenn es ein Ezeugendensystem E von V mit $|E| \in \mathbb{N}_0$ gibt, d.h. wenn V ein endlichen Erzeugendensystem hat, d.h. wenn V endlich erzeugt ist.
- (iii) Es ist dim V = 0 genau dann, wenn \emptyset ein Erzeugendensystem von V ist. Da $\langle \emptyset \rangle = \{0\}$, ist dies genau dann der Fall, wenn $V = \{0\}$.

Beispiel 14.

- (i) Seien K ein Körper und $n \in \mathbb{N}$. Nach Beispiel 11 (ii) hat der K-Vektorraum K^n ein n-elementiges Erzeugendensystem. Also gilt dim $K^n \leq n$.
- (ii) Sei v ein Element eines Vektorraums V mit $v \neq 0$. Dann $\dim \langle v \rangle = 1$.

§3 Lineare Unabhängigkeit und Basen

Definition 1. Seien K ein Körper, V ein Vektorraum und $n \in \mathbb{N}$. Ein n-Tupel $(v_1, v_2, \ldots, v_n) \in V^n$ heißt linear unabhängig, wenn für alle $(\lambda_1, \lambda_2, \ldots, \lambda_n) \in K^n$ gilt: Ist $\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$, so ist $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$. Ein n-Tupel $(v_1, v_2, \ldots, v_n) \in V^n$ heißt linear abhängig, wenn (v_1, v_2, \ldots, v_n) nicht linear unabhängig ist, also wenn es $\lambda_1, \lambda_2, \ldots, \lambda_n \in K$ gibt, so daß $\lambda_j \neq 0$ für mindestens ein $j \in \{1, 2, \ldots, n\}$ und $\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$.

Beispiel 2.

- (i) Ist $(v_1, v_2, \ldots, v_n) \in V^n$ linear unabhängig, so ist $v_i \neq v_j$ für alle $i, j \in \{1, 2, \ldots, n\}$ mit $i \neq j$. (Denn ist $(v_1, v_2, \ldots, v_n) \in V^n$ und gibt es $i, j \in \{1, 2, \ldots, n\}$ mit $i \neq j$ und $v_i = v_j$, so ist $\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$ für das n-Tupel $(\lambda_1, \lambda_2, \ldots, \lambda_n) \in K^n$ mit $\lambda_i = 1, \lambda_j = -1$ und $\lambda_\ell = 0$ für alle $\ell \in \{1, 2, \ldots, n\} - \{i, j\}$, also (v_1, v_2, \ldots, v_n) linear abhängig).
- (ii) Ist $(v_1, v_2, \ldots, v_n) \in V^n$ linear unabhängig, so ist $v_i \neq 0$ für jedes $i \in \{1, 2, \ldots, n\}$. (Denn ist $(v_1, v_2, \ldots, v_n) \in V^n$ und gibt es $i \in \{1, 2, \ldots, n\}$ mit $v_i = 0$, so ist $\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$ für das n-Tupel $(\lambda_1, \lambda_2, \ldots, \lambda_n) \in K^n$ mit $\lambda_i = 1$ und $\lambda_\ell = 0$ für alle $\ell \in \{1, 2, \ldots, n\} - \{i\}$, also (v_1, v_2, \ldots, v_n) linear abhängig).
- (iii) Ist $(v_1, v_2, \ldots, v_n) \in V^n$ linear unabhängig und sind $i_1, i_2, \ldots, i_m \in \{1, 2, \ldots, n\}$ mit $i_\ell \neq i_k$ für $\ell \neq k$, so ist das m-Tupel $(v_{i_1}, v_{i_2}, \ldots, v_{i_m}) \in V^m$ linear unabhängig.
- (iv) Wir betrachten den Fall n=1: Ist $v\in V$, so ist das 1-Tupel (v) linear unabhängig genau dann, wenn $v\neq 0$. (Denn: Ist (v) linear unabhängig, so ist $v\neq 0$ nach (ii). Umgekehrt, ist $v\neq 0$, so ist (v) linear unabhängig, denn ist $\lambda\in K$ mit $\lambda v=0$, so ist $\lambda=0$ (nach §2, Lemma 3 (ii))).
- (v) Sei $n \in \mathbb{N}$. Das n-Tupel $(e_1, e_2, \ldots, e_n) \in (K^n)^n$ von Vektoren von K^n ist linear unabhängig. (Denn für jedes $(\lambda_1, \ldots, \lambda_n) \in K^n$ gilt $\lambda_1 e_1 + \ldots + \lambda_n e_n = (\lambda_1, \ldots, \lambda_n)$, ist also $\lambda_1 e_1 + \ldots + \lambda_n e_n = 0 \in K^n$, so ist $\lambda_1 = \ldots = \lambda_n = 0 \in K$).

Proposition 3. Seien V ein K-Vektorraum und $n \in \mathbb{N}$. Für jedes $(v_1, \ldots, v_n) \in V^n$ sind äquivalent

- (i) (v_1, \ldots, v_n) ist linear unabhängig.
- (ii) Zu jedem $v \in \langle v_1, \dots, v_n \rangle$ gibt es genau ein $(\lambda_1, \dots, \lambda_n) \in K^n$ mit $v = \lambda_1 v_1 + \dots + \lambda_n v_n$.

Beweis. (i) \Rightarrow (ii): Die Existenz von $(\lambda_1, \ldots, \lambda_n) \in K^n$ folgt aus §2, Proposition 9. Zur Eindeutigkeit: Seien $(\lambda_1, \ldots, \lambda_n), (\mu_1, \ldots, \mu_n) \in K^n$ mit $\lambda_1 v_1 + \ldots + \lambda_n v_n = \mu_1 v_1 + \ldots + \mu_n v_n$. Dann ist $(\lambda_1 - \mu_1) v_1 + \ldots + (\lambda_n - \mu_n) v_n = 0$, und da (v_1, \ldots, v_n) linear unabhängig ist, folgt $\lambda_1 - \mu_1 = \ldots = \lambda_n - \mu_n = 0$, d.h. $(\lambda_1, \ldots, \lambda_n) = (\mu_1, \ldots, \mu_n)$.

(ii) \Rightarrow (i): Sei $(\lambda_1, \dots, \lambda_n) \in K^n$ mit $\lambda_1 v_1 + \dots + \lambda_n v_n = 0$. Wir haben $0v_1 + \dots + 0v_n = 0$. Aufgrund der Eindeutigkeit in (ii) (angewandt auf $v = 0 \in \langle v_1, \dots, v_n \rangle$) folgt $(\lambda_1, \dots, \lambda_n) = (0, \dots, 0)$.

Lemma 4. Seien V ein K-Vektorraum, $n \in \mathbb{N}$ und $(v_1, v_2, \dots, v_n) \in V^n$.

- (i) Ist (v_1, v_2, \ldots, v_n) linear unabhängig, so gilt $v_i \notin \langle v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n \rangle$ für jedes $i \in \{1, 2, \ldots, n\}$.
- (ii) Ist (v_1, v_2, \ldots, v_n) linear unabhängig und $w \in V \langle v_1, \ldots, v_n \rangle$, so ist $(v_1, v_2, \ldots, v_n, w) \in V^{n+1}$ linear unabhängig.

Beweis. (i) Wäre $v_i \in \langle v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_n \rangle$, so gäbe es $\lambda_1, \dots, \lambda_{i-1}, \lambda_{i+1}, \dots, \lambda_n \in K$ mit $v_i = \lambda_1 v_1 + \dots + \lambda_{i-1} v_{i-1} + \lambda_{i+1} v_{i+1} + \dots + \lambda_n v_n$, also $\lambda_1 v_1 + \dots + \lambda_{i-1} v_{i-1} + (-1) v_i + \lambda_{i+1} v_{i+1} + \dots + \lambda_n v_n = 0$ und somit wäre

 (v_1,\ldots,v_n) linear abhängig.

(ii) Sei $(\lambda_1, \ldots, \lambda_n, \mu) \in K^{n+1}$ mit

$$\lambda_1 v_1 + \dots \lambda_n v_n + \mu w = 0$$

Zeige $\lambda_1 = \ldots = \lambda_n = \mu = 0$.

Es ist $\mu=0$, denn wäre $\mu\neq 0$, so wäre $w=(-\frac{\lambda_1}{\mu})v_1+\ldots+(-\frac{\lambda_n}{\mu})v_n\in \langle v_1,v_2,\ldots,v_n\rangle$, im Widerspruch zu unserer Annahme. Mit (*) folgt $\lambda_1v_1+\ldots\lambda_nv_n=0$. Hieraus und da (v_1,\ldots,v_n) linear unabhängig ist, ergibt sich $\lambda_1=\ldots=\lambda_n=0$.

Lemma 5. Sei V ein Vektorraum, der nicht endlich erzeugt ist. Dann gibt es eine Folge v_1, v_2, v_3, \ldots von Elementen von V, so daß für jedes $n \in \mathbb{N}$ das n-Tupel (v_1, v_2, \ldots, v_n) linear unabhängig ist.

Beweis. Da V nicht endlich erzeugt ist, ist $V \neq \{0\}$. Wähle v_1 als ein Element von V mit $v_1 \neq 0$. Dann ist das Tupel (v_1) linear unabhängig (nach Beispiel 2 (iv)). Seien v_1, v_2, \ldots, v_n schon gewählt, so daß (v_1, \ldots, v_n) linear unabhängig ist. Da V nicht endlich erzeugt ist, ist $\langle v_1, \ldots, v_n \rangle \subsetneq V$. Wähle v_{n+1} als ein Element von $V - \langle v_1, \ldots, v_n \rangle$. Dann ist (v_1, \ldots, v_{n+1}) linear unabhängig nach Lemma 4 (ii). \square

Ist V ein Vektorraum, so verstehen wir unter einem $Tupel\ von\ V$ ein Element eines V^n für $n\in\mathbb{N}$. Für ein Tupel $\mathcal{A}\in V^n$ setzen wir

$$\ell(\mathcal{A}) := n \in \mathbb{N}$$

und nennen $\ell(\mathcal{A})$ die Länge von \mathcal{A} .

Satz 6. Sei V ein Vektorraum über einem Körper K. Sei \mathcal{A} ein Tupel von V, das linear unabhängig ist und sei E ein Erzeugendensystem von V. Dann gilt

$$\ell(\mathcal{A}) \le |E|$$

Beweis. Sei $n \in \mathbb{N}$ die Länge von \mathcal{A} . Wir betrachen die Menge

$$L := \{ \mathcal{B} \in V^n \mid \mathcal{B} \text{ ist linear unabhängig} \}$$

und definieren eine Abbildung

$$f: L \to L$$

folgendermaßen:

Sei $\mathcal{B}=(v_1,v_2,\ldots,v_n)\in L$. Nach Lemma 4 (i) ist $v_1\not\in\langle v_2,v_3,\ldots,v_n\rangle$. Also $\langle v_2,v_3,\ldots,v_n\rangle\neq V$. Da E ein Erzeugendensystem von V ist, folgt $E\not\subseteq\langle v_2,v_3,\ldots,v_n\rangle$. Wir wählen ein $e\in E$ mit $e\not\in\langle v_2,v_3,\ldots,v_n\rangle$. Nach Lemma 4 (ii) ist das Tupel $(v_2,v_3,\ldots,v_n,e)\in V^n$ linear unabhängig, also ein Element von L. Wir setzen $f(\mathcal{B}):=(v_2,v_3,\ldots,v_n,e)\in L$.

Wir betrachten die n-fache Komposition von f mit sich selbst,

$$f \circ f \circ \ldots \circ f : L \to L$$

Wir wählen ein Element \mathcal{B} von L. Sei $(f \circ f \circ f \circ \ldots \circ f)(\mathcal{B}) = (w_1, w_2, \ldots, w_n) \in L$. Da (w_1, w_2, \ldots, w_n) linear unabhängig ist, ist $w_i \neq w_j$ für $i \neq j$ (Beispiel 2 (i)). Nach Konstruktion von f ist $w_1, w_2, \ldots, w_n \in E$. Also gilt $|E| \geq n = \ell(\mathcal{A})$. \square

Korollar 7. Sei V ein Vektorraum.

(i) Für jedes linear unabhängige Tupel \mathcal{A} von V gilt

$$\ell(\mathcal{A}) \leq \dim V$$

(ii) Für jedes Erzeugendensystem ${\cal E}$ von ${\cal V}$ gilt

$$\dim V \leq |E|$$

Beweis. (i) Nach Definition von dim V gibt es ein Erzeugendensystem E von V mit dim V=|E|. Die Behauptung folgt aus Satz 6.

(ii) folgt aus der Definition von $\dim V$.

Beispiel 8. Seien K ein Körper und $n \in \mathbb{N}$. Wir betrachten den K-Vektorraum K^n . Wir wissen, daß das n-Tupel (e_1, e_2, \ldots, e_n) von K^n linear unabhängig ist (Beispiel 2 (v)) und die Menge $\{e_1, e_2, \ldots, e_n\}$ ein Erzeugendensystem von K^n ist (§2, Beispiel 11 (ii)). Mit Korollar 7 erhalten wir

$$n \le \dim K^n \le n$$

Also $\dim K^n = n$.

Definition 9. Sei V ein Vektorraum. Eine Basis von V ist ein Tupel $(v_1, v_2, \ldots, v_n) \in V^n$ (mit $n \in \mathbb{N}$), so daß gelten

- (I) Die Menge $\{v_1, v_2, \dots, v_n\}$ ist ein Erzeugendensystem von V.
- (II) Das Tupel (v_1, v_2, \ldots, v_n) ist linear unabhängig.

Beispiel 10. Seien K ein Körper und $n \in \mathbb{N}$. Das n-Tupel $(e_1, e_2, \ldots, e_n) \in (K^n)^n$ ist eine Basis des K-Vektorraums K^n (Beispiel 2 (v) und §2, Beispiel 11 (ii)). Sie heißt die Standardbasis von K^n oder die Standardbasis von Standardbasis

Theorem 11. (Längen von Basen)

Sei V ein Vektorraum. Für jede Basis \mathcal{A} von V gilt

$$\ell(\mathcal{A}) = \dim V$$

Beweis. Sei $\mathcal{A} = (v_1, v_2, \dots, v_n)$. Wir benutzen Korollar 7. Da (v_1, v_2, \dots, v_n) linear unabhängig ist, gilt $n \leq \dim V$. Da $\{v_1, v_2, \dots, v_n\}$ ein Erzeugendensystem von V ist, gilt $\dim V \leq n$. Also $\dim V = n = \ell(\mathcal{A})$.

Theorem 12. (Existenz von Basen)

Sei V ein Vektorraum.

- (i) Äquivalent sind
 - (a) V hat eine Basis.
 - (b) V ist endlich erzeugt und $V \neq \{0\}$.
 - (c) $\dim V \in \mathbb{N}$.
- (ii) Sei V endlich erzeugt und $V \neq \{0\}$. Sei M ein Erzeugendensystem von V. Es gelten
 - (a) Es gibt eine Basis von V bestehend aus Elementen von M, d.h. es gibt eine Basis $(v_1, v_2, \ldots, v_n) \in V^n$ von V mit $v_i \in M$ für jedes $i \in \{1, 2, \ldots, n\}$.

(b) Sei $(w_1, w_2, ..., w_m) \in V^m$ ein linear unabhängiges Tupel von V. Dann läßt sich $(w_1, w_2, ..., w_m)$ durch Elemente von M zu einer Basis von V ergänzen, d.h. es gibt eine Basis $(v_1, v_2, ..., v_n) \in V^n$ von V mit $n \geq m$, so daß $v_i = w_i$ jedes i mit $1 \leq i \leq m$ und $v_i \in M$ für jedes i mit $m+1 \leq i \leq n$.

Bemerkung. Man kann den Begriff einer Basis eines Vektorraums etwas allgemeiner als Definition 9 fassen. Mit dieser allgemeineren Definition einer Basis erhält man statt Theorem 12 die Aussage: Jeder Vektorraum hat eine Basis. (Siehe Lineare Algebra II)

Beweis von Theorem 12. (ii) (b) Sei L die Menge aller linear unabhängigen Tupel $(v_1,v_2,\ldots,v_n)\in V^n$, wobei $n\in\mathbb{N}$ mit $n\geq m$, so daß $v_i=w_i$ jedes i mit $1\leq i\leq m$ und $v_i\in M$ für jedes i mit $m+1\leq i\leq n$. Es ist $L\neq\emptyset$ (denn das Tupel (w_1,w_2,\ldots,w_m) ist ein Element von L). Die Längen der Tupel $A\in L$ sind nach oben beschränkt (z.B. durch die Mächtigkeit eines endlichen Erzeugendensystems von V, nach Satz 6). Sei (v_1,v_2,\ldots,v_n) ein Element von L maximaler Länge. Nach Lemma 4 (ii) ist $M\subseteq \langle v_1,v_2,\ldots,v_n\rangle$. Da M ein Erzeugendensystem von V ist, folgt, daß $\{v_1,v_2,\ldots,v_n\}$ ein Erzeugendensystem von V ist. Also ist das Tupel (v_1,v_2,\ldots,v_n) eine Basis von V.

- (ii) (a) Da $V \neq \{0\}$, hat M ein Element w mit $w \neq 0$. Das 1-Tupel (w) ist linear unabhängig (Beispiel 2 (iv)). Nach (ii)(b) können wir (w) durch Elemente von M zu einer Basis von V ergänzen. Diese Basis besteht dann nur aus Elementen von M
- (i) Die Äquivalenz von (b) und (c) erhält man aus §2, Bemerkung 13.
- (a) \Rightarrow (b) : Sei $(v_1, v_2, \dots, v_n) \in V^n$ eine Basis von V. Da $\{v_1, v_2, \dots, v_n\}$ ein Erzeugendensystem von V ist, ist V endlich erzeugt. Da jedes $v_i \neq 0$ (Beispiel 2 (ii)), ist $V \neq \{0\}$.

(b) \Rightarrow (a) folgt aus (ii)(a).	
--	--

Proposition 13. Sei V ein endlich erzeugter Vektorraum mit $V \neq \{0\}$. Setze $n := \dim V \in \mathbb{N}$. Sei $(v_1, v_2, \dots, v_n) \in V^n$. Äquivalent sind

- (i) (v_1, v_2, \ldots, v_n) ist eine Basis von V.
- (ii) (v_1, v_2, \ldots, v_n) ist linear unabhängig.
- (iii) $\{v_1, v_2, \dots, v_n\}$ ist ein Erzeugendensystem von V.

Beweis. (i) \Rightarrow (ii) trivial.

- (ii) \Rightarrow (i) Nach Theorem 12 (ii)(b) können wir (v_1, v_2, \dots, v_n) zu einer Basis \mathcal{A} von V ergänzen. Da \mathcal{A} die Länge n hat (Theorem 11), folgt $(v_1, v_2, \dots, v_n) = \mathcal{A}$.
- $(i) \Rightarrow (iii)$ trivial.
- (iii) \Rightarrow (i). Nach Theorem 12 (ii)(a) erhalten wir eine Basis \mathcal{A} von V, indem wir eventuell einige Komponenten des Tupels (v_1, v_2, \dots, v_n) streichen. Da \mathcal{A} die Länge n hat, folgt $(v_1, v_2, \dots, v_n) = \mathcal{A}$.

Satz 14. Sei V ein K-Vektorraum. Ein Tupel $(v_1, v_2, \ldots, v_n) \in V^n$ ist eine Basis von V genau dann, wenn es zu jedem $v \in V$ genau ein $(\lambda_1, \lambda_2, \dots, \lambda_n) \in K^n$ mit $v = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n$ gibt.

Beweis. Proposition 3 und §2, Proposition 9.

Proposition 15. (Untervektorräume und Dimension)

Seien V ein endlich erzeugter Vektorraum und U ein Untervektorraum von V. Es gelten

- (i) U ist endlich erzeugt.
- (ii) $\dim U \leq \dim V$.
- (iii) Ist dim $U = \dim V$, so ist U = V.

Beweis. (i) Angenommen, U ist nicht endlich erzeugt. Nach Lemma 5 existiert dann zu jedem $n \in \mathbb{N}$ ein linear unabhängiges Tupel \mathcal{A} von U der Länge n. \mathcal{A} ist auch ein linear unabhängiges Tupel von V. Mit Korollar 7 (i) erhalten wir $n < \dim V$. Also gilt dim $V=\infty$, d.h. V ist nicht endlich erzeugt. Dies ist ein Widerspruch zu unserer Annahme.

(ii),(iii) Die Aussagen (ii) und (iii) gelten, wenn $U = \{0\}$. Sei nun $U \neq \{0\}$. Nach (i) ist U endlich erzeugt. Deshalb hat U eine Basis \mathcal{A} (Theorem 12). \mathcal{A} ist ein linear unabhängiges Tupel von U und damit auch ein linear unabhängiges Tupel von V. Wir erhalten

$$\dim U = \ell(\mathcal{A})$$
 (Theorem 11) und $\ell(\mathcal{A}) \leq \dim V$ (Korollar 7 (i))

Also folgt $\dim U \leq \dim V$.

Sei nun dim $U = \dim V$. Dann haben wir $\ell(A) = \dim V$. Ist $A = (u_1, u_2, \dots, u_n)$, so folgt aus Proposition 13, daß $\{u_1, u_2, \dots, u_n\}$ ein Erzeugendensystem von V ist. Da $\{u_1, u_2, \dots, u_n\} \subseteq U$, folgt $V \subseteq U$. Also U = V.

Veranschaulichung der Untervektorräume des \mathbb{R} -Vektorraums \mathbb{R}^n für $n \in \{1, 2, 3\}$:

- $n=1: \{0\}$ und \mathbb{R} sind die einzigen Untervektorräume von $\mathbb{R}=\mathbb{R}^1$.
- n=2: Für jeden Untervektorraum U von \mathbb{R}^2 gilt (nach Proposition 15 (ii))

$$0 < \dim U < 2$$

- $\{0\}$ ist der einzige Untervektoraum von \mathbb{R}^2 der Dimesion 0. \mathbb{R}^2 ist der einzige Untervektorraun von \mathbb{R}^2 der Dimension 2 (Proposition 15 (iii)).
- Die Untervektorräume von \mathbb{R}^2 der Dimension 1 sind die Geraden durch den Nullpunkt. Denn die Untervektorräume der Dimension 1 sind die Teilmengen von \mathbb{R}^2 der Form $\langle v \rangle$ mit $v \in \mathbb{R}^2 - \{0\}$, und die Teilmenge $\langle v \rangle = \{ \lambda v \mid \lambda \in \mathbb{R} \}$ mit $v \in \mathbb{R}^2 - \{0\}$ ist die Gerade durch die Punkte
- n=3: Für jeden Untervektorraum U von \mathbb{R}^3 gilt (nach Proposition 15 (ii))

$$0 \le \dim U \le 3$$

- $\{0\}$ ist der einzige Untervektoraum von \mathbb{R}^3 der Dimesion 0. \mathbb{R}^3 ist der einzige Untervektorraun von \mathbb{R}^3 der Dimension 3 (Proposition 15 (iii)).

- Die Untervektorräume von \mathbb{R}^3 der Dimension 1 sind die Geraden durch den Nullpunkt. Denn die Untervektorräume der Dimension 1 sind die Teilmengen von \mathbb{R}^3 der Form $\langle v \rangle$ mit $v \in \mathbb{R}^3 - \{0\}$, und die Teilmenge $\langle v \rangle = \{ \lambda v \mid \lambda \in \mathbb{R} \}$ mit $v \in \mathbb{R}^3 - \{0\}$ ist die Gerade durch die Punkte 0, v.
- Die Untervektorräume von \mathbb{R}^3 der Dimension 2 sind die Ebenen durch den Nullpunkt. Denn die Untervektorräume der Dimension 2 sind die Teilmengen von \mathbb{R}^3 der Form $\langle u,v\rangle$ mit $(u,v)\in(\mathbb{R}^3)^2$ linear unabhängig (oder äquivalent, $u \neq 0$ und $v \notin \langle u \rangle$), und die Teilmenge $\langle u,v\rangle=\{\lambda u+\mu v\mid \lambda,\mu\in\mathbb{R}\}$ mit $u\neq 0$ und $v\not\in\langle u\rangle$ ist die Ebene durch die Punkte 0, u, v.

§4 Summe von Untervektorräumen

Sind W_1, W_2, \ldots, W_n Untervektorräume eines Vektorraums V, so setzt man

$$\sum_{i=1}^{n} W_i = W_1 + W_2 + \ldots + W_n := \{ v \in V \mid \text{es gibt } w_1 \in W_1, w_2 \in W_2, \ldots, w_n \in W_n \text{ mit } v = w_1 + w_2 + \ldots + w_n \}$$

 $\sum_{i=1}^{n} W_i$ ist ein Untervektorraum von V. Er ist der kleinste Untervektorraum von V, der $W_1 \cup W_2 \cup \ldots \cup W_n$ enthält, also $\sum_{i=1}^n W_i = \langle W_1 \cup W_2 \cup \ldots \cup W_n \rangle$. $\sum_{i=1}^n W_i$ heißt die Summe von W_1, W_2, \ldots, W_n .

Definition 1. Sind W_1, W_2, \ldots, W_n Untervektorräume eines Vektorraums V, so heißt V direkte Summe von W_1, W_2, \ldots, W_n , geschrieben $V = \bigoplus_{i=1}^n W_i$ oder V = $W_1 \oplus W_2 \oplus \ldots \oplus W_n$, wenn gelten

- (I) $V = \sum_{i=1}^n W_i$ (II) Für jedes $j \in \{1, 2, \dots, n\}$ gilt $W_j \cap \sum_{i \in \{1, 2, \dots, n\} \{j\}} W_i = \{0\}.$

Der Fall n=2 bedeutet: Sind U,W Untervektorräume eine Vektortraums V, so heißt V direkte Summe von U und W, geschrieben $V = U \oplus W$, wenn V = U + Wund $U \cap W = \{0\}.$

Beispiel 2. i) Für jeden Vektorraum V gilt $V = V \oplus \{0\}$.

eine Basis eines Vektorraums V, so gilt V =ii) Ist $(v_1, v_2, ..., v_n)$ $\langle v_1 \rangle \oplus \langle v_2 \rangle \oplus \ldots \oplus \langle v_n \rangle.$

Lemma 3. Für Untervektorräume W_1, W_2, \ldots, W_n eines Vektorraums V sind äquivalent

- (i) $V = \bigoplus_{i=1}^{n} W_i$
- (ii) Zu jedem $v \in V$ gibt es genau ein $(w_1, w_2, \dots, w_n) \in W_1 \times W_2 \times \dots \times W_n$ mit $v = w_1 + w_2 + \ldots + w_n.$

Beweis. $(i) \Longrightarrow (ii)$ Sei $v \in V$. Die Existenz von $(w_1, w_2, \ldots, w_n) \in W_1 \times W_2 \times W_2$ $\dots \times W_n$ mit $v = w_1 + w_2 + \dots + w_n$ folgt aus der Tatsache, daß $V = \sum_{i=1}^n W_i$. Zur Eindeutigkeit: Seien $(w_1, w_2, \dots, w_n), (w'_1, w'_2, \dots w'_n) \in W_1 \times W_2 \times \dots \times W_n$ mit

$$(*) w_1 + w_2 + \ldots + w_n = v = w'_1 + w'_2 + \ldots + w'_n$$

Zeige
$$(w_1, w_2, \dots, w_n) = (w'_1, w'_2, \dots w'_n)$$
.
Aus $(*)$ folgt

$$w_1 - w'_1 = (w'_2 - w_2) + \ldots + (w'_n - w_n)$$

Der Vektor auf der linken Seite dieser Gleichung ist ein Element von W_1 , der Vektor auf der rechten Seite dieser Gleichung ist ein Element von $\sum_{i=2}^{n} W_i$. Da $W_1 \cap \sum_{i=2}^{n} W_i = \{0\}$, folgt $w_1 - w_1' = 0$, d.h. $w_1 = w_1'$. Analog zeigt man $w_j = w_j'$ für $j = 2, 3, \ldots, n$.

 $\begin{array}{l} (ii) \Longrightarrow (i) \; \text{Offensichtlich gilt} \; V = \sum_{i=1}^n W_i. \; \text{Wir zeigen} \; W_1 \cap \sum_{i=2}^n W_i = \{0\}. \; \text{Dazu sei ein} \; x \in W_1 \cap \sum_{i=2}^n W_i \; \text{gegeben}. \; \text{Es gibt} \; w_1 \in W_1, w_2 \in W_2, \ldots, w_n \in W_n \; \text{mit} \; w_1 \; = \; x \; = \; w_2 \; + \; \ldots \; + \; w_n. \; \; \text{Also für} \; \; (w_1, 0, 0 \ldots, 0), \\ (0, w_2, w_3, \ldots, w_n) \in W_1 \times W_2 \times \ldots \times W_n \; \text{gilt} \; w_1 + 0 + 0 + \ldots + 0 = x = 0 + w_2 + w_3 + \ldots + w_n. \; \text{Aufgrund der Eindeutigkeit folgt} \; (w_1, 0, 0 \ldots, 0) = (0, w_2, w_3, \ldots, w_n). \\ \text{Also} \; 0 = w_1 = x. \; \qquad \square \end{array}$

Lemma 4. Sind U, W Untervektorräume eines Vektorraums V und $(u_1, u_2, \ldots, u_n) \in U^n$ und $(w_1, w_2, \ldots, w_m) \in W^m$ Basen von U und W, so sind äquivalent

- (i) $V = U \oplus W$
- (ii) $(u_1, u_2, ..., u_n, w_1, w_2, ..., w_m) \in V^{n+m}$ ist eine Basis von V.

Allgemeiner, sind W_1, W_2, \ldots, W_n Untervektorräume eines Vektorraums V und $(w_{i1}, w_{i2}, \ldots, w_{im_i}) \in W_i^{m_i}$ eine Basis von W_i für $i = 1, 2, \ldots, n$, so sind äquivalent

- (i) $V = W_1 \oplus W_2 \oplus \ldots \oplus W_n$
- (ii) $(w_{11}, w_{12}, \dots, w_{1m_1}, w_{21}, w_{22}, \dots, w_{2m_2}, \dots, w_{n1}, w_{n2}, \dots, w_{nm_n}) \in V^{m_1 + \dots + m_n}$ ist eine Basis von V.

Beweis. Nach §3, Satz 14 ist (ii) äquivalent zu der Aussage

(*) Zu jedem $v \in V$ gibt es genau ein $(w_1, w_2, \dots, w_n) \in W_1 \times W_2 \times \dots \times W_n$ mit $v = w_1 + w_2 + \dots + w_n$.

Nach Lemma 3 ist (*) äquivalent zu (i). Also sind (i) und (ii) äquivalent.

Korollar 5. Sind W_1, W_2, \ldots, W_n Untervektorräume eines endlich erzeugten Vektorraums V mit $V = W_1 \oplus W_2 \oplus \ldots \oplus W_n$, so gilt dim $V = \dim W_1 + \dim W_2 + \ldots + \dim W_n$.

Definition 6. Seien V ein Vektorraum und S ein Untervektorraum von V. Ein lineares Komplement von S in V ist ein Untervektorraum T von V mit $V = S \oplus T$.

Proposition 7. Sei S ein Untervektorraum eines endlich erzeugten Vektorraums V. Dann hat S ein lineares Komplement T in V.

Beweis. Ist $S = \{0\}$, so setze T := V. Sei nun $S \neq \{0\}$. Nach §3 Proposition 15 (i) und §3, Theorem 12 hat S eine Basis (s_1, s_2, \ldots, s_n) . Nach §3, Theorem 12 (ii) läßt sich (s_1, s_2, \ldots, s_n) zu einer Basis $(s_1, s_2, \ldots, s_n, t_1, t_2, \ldots, t_m)$ von V ergänzen. Setze $T := \langle t_1, t_2, \ldots, t_m \rangle$. Dann gilt $V = S \oplus T$ nach Lemma 4.

Proposition 8. (Dimensionsformel für Untervektorräume) Seien V ein Vektorraum und U,W endlich erzeugte Untervektorräume von V. Dann sind auch die Untervektorräume $U\cap W$ und U+W von V endlich erzeugt und es gilt

$$\dim(U+W) + \dim(U\cap W) = \dim U + \dim W$$

Beweis. Nach Proposition 7 gibt es einen Untervektorraum S von U mit

(1)
$$U = (U \cap W) \oplus S$$

und einen Untervektorraum T von W mit

(2)
$$W = (U \cap W) \oplus T$$
.

Es gilt

(3)
$$U + W = (U \cap W) \oplus S \oplus T$$
.

Beweis von (3). Wir überprüfen die Eigenschaften (I) und (II) von Definition 1.

(I)
$$(U \cap W) + S + T = ((U \cap W) + S) + ((U \cap W) + T) = U + W$$
.

- (II) (α) $((U \cap W) + S) \cap T = \{0\}$ Denn: $((U \cap W) + S) \cap T = U \cap T = (U \cap W) \cap T = \{0\}$, wobei das erste Gleichheitszeichen aus (1), das zweite Gleichheitszeichen aus $T \subseteq W$ und das dritte Gleichheitszeichen aus (2) folgt.
 - (β) $((U \cap W) + T) \cap S = \{0\}$ Denn: Begründung analog zur Begründung von (α) .
 - (γ) $(U \cap W) \cap (S + T) = \{0\}$ Denn: Sei $x \in (U \cap W) \cap (S + T)$, also $x \in U \cap W$ und x = s + t mit $s \in S$, $t \in T$. Dann $s = x - t \in S \cap ((U \cap W) + T) = \{0\}$ (nach (β)). Mit s = 0 folgt $x = t \in (U \cap W) \cap T = \{0\}$ (nach (2)).

Aus (1), (2), (3) und Korollar 5 folgen

- (1)' $\dim U = \dim(U \cap W) + \dim S$
- (2)' $\dim W = \dim(U \cap W) + \dim T$
- (3)' $\dim(U+W) = \dim(U\cap W) + \dim S + \dim T$

Aus (1)',(2)',(3)' folgt die Behauptung.

II Lineare Abbildungen und Matrizen

§1 Definition und erste Eigenschaften linearer Abbildungen

Definition 1. Seien K ein Körper und V, W Vektorräume über K. Eine lineare Abbildung von V nach W, oder Homomorphismus von V nach W, ist eine Abbildung $f: V \to W$, für die gilt

- (I) f(x+y) = f(x) + f(y) für alle $x, y \in V$
- (II) $f(\lambda x) = \lambda f(x)$ für alle $\lambda \in K, x \in V$.

Beispiel 2

- (i) Die konstante Abbildung $V \to W, x \mapsto 0$ ist linear.
- (ii) Sei V ein K-Vektorraum. Für jedes $a \in K$ ist die Abbildung $f: V \to V, \ x \mapsto ax$ linear.

Denn: f(x + y) = a(x + y) = ax + ay = f(x) + f(y) und $f(\lambda x) = a(\lambda x) = (a\lambda)x = (\lambda a)x = \lambda(ax) = \lambda f(x)$.

(iii) Die Abbildung $\mathbb{R}^2 \to \mathbb{R}^3$, $(x_1, x_2) \mapsto (2x_1 + (-1)x_2, x_1, 4x_1 + 9x_2)$ ist linear. Allgemeiner: Seien K ein Körper und $n, m \in \mathbb{N}$. Für jedes $(i, j) \in \{1, 2, \dots, m\} \times \{1, 2, \dots, n\}$ sei ein Element $a_{ij} \in K$ gegeben. Dann ist die Abbildung

$$K^n \to K^m, (x_1, x_2, \dots, x_n) \mapsto (y_1, y_2, \dots, y_m)$$

mit $y_i := a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n$ (für $i = 1, 2, \ldots, m$) linear. (Wir werden später sehen, daß jede lineare Abbildungen $K^n \to K^m$ von dieser Form ist).

Lemma 3. Seien V,W Vektorräume über einem Körper K und $f:V\to W$ eine lineare Abbildung. Es gelten

- (i) f(0) = 0.
- (ii) f(-x) = -f(x) für jedes $x \in V$.
- (iii) Für jeden Untervektorraum V' von V ist das Bild f(V') ein Untervektorraum von W, für jeden Untervektorraum W' von W ist das Urbild $f^{-1}(W')$ ein Untervektorraum von V.
- (iv) Ist f bijektiv, so ist die Umkehrabbildung $f^{-1}: W \to V$ linear.
- (v) Ist U ein K-Vektorraum und $g:W\to U$ eine lineare Abbildung, so ist auch $g\circ f:V\to U$ linear.

Beweis. (i) Es gilt f(0) = f(0+0) = f(0) + f(0), woraus folgt f(0) = 0.

- (ii) Es gilt 0 = f(0) = f(x + (-x)) = f(x) + f(-x), woraus folgt f(-x) = -f(x).
- (iii) Sei V' ein Untervektorraum von V. Wir zeigen, daß f(V') ein Untervektorraum von W ist. Dazu verifizieren wir die Definitionseigenschaften eines Untervektorraums.
 - (I) $0 \in f(V')$ (Denn $0 \in V$ und somit $0 = f(0) \in f(V')$).
 - (II) $y + y' \in f(V')$ für alle $y, y' \in f(V')$. (Denn: Wähle $x, x' \in V'$ mit f(x) = y, f(x') = y'. Es ist $x + x' \in V'$ und somit $y + y' = f(x) + f(x') = f(x + x') \in f(V')$.)
 - (III) $\lambda y \in f(V')$ für alle $\lambda \in K, y \in f(V')$. (Denn: Wähle $x \in V'$ mit y = f(x). Es ist $\lambda x \in V'$ und somit $\lambda y = \lambda f(x) = f(\lambda x) \in f(V')$).

(iv) Seien $y, y' \in W$ und $\lambda \in K$. Seien x und x' die Elemente von V mit y = f(x) und y' = f(x'). Dann y + y' = f(x + x') und $\lambda y = f(\lambda x)$ und somit $f^{-1}(y + y') = x + x' = f^{-1}(y) + f^{-1}(y')$ und $f^{-1}(\lambda y) = \lambda x = \lambda f^{-1}(y)$.

Ist $f: X \to Y$ eine Abbildung und $y \in Y$, so setzt man

$$f^{-1}(y) := f^{-1}(\{y\}) = \{x \in X \mid f(x) = y\}$$

und nennt $f^{-1}(y)$ die Faser von f über y.

Definition 4. Für eine lineare Abbildung $f: V \to W$ setzt man

$$\operatorname{im}(f) := f(V) = \{ f(v) \mid v \in V \} \subseteq W$$

 $\ker(f) := f^{-1}(0) = \{ v \in V \mid f(v) = 0 \} \subseteq V$

im(f) heißt das Bild von f und ker(f) heißt der Kern von f.

Nach Lemma 3 (iii) ist $\operatorname{im}(f)$ ein Untervektorraum von W und $\ker(f)$ ein Untervektorraum von V.

Definition 5. Sei U ein Untervektorraum eines Vektorraums V. Für jedes $a \in V$ setzt man

$$a + U := \{a + u \mid u \in U\} \subseteq V$$

a + U heißt die Nebenklasse von U zu a.

Lemma 6. Ist $f: V \to W$ eine lineare Abbildung, so ist für jedes $w \in W$ die Faser $f^{-1}(w)$ entweder leer oder eine Nebenklasse von $\ker(f)$. Im letzteren Fall gilt $f^{-1}(w) = a + \ker(f)$ für jedes $a \in f^{-1}(w)$.

Beweis. Sei $f^{-1}(w) \neq \emptyset$ und $a \in f^{-1}(w)$. Wir zeigen $f^{-1}(w) = a + \ker(f)$. \subseteq : Sei $x \in f^{-1}(w)$. Für $u := x - a \in V$ gilt f(u) = f(x) - f(a) = w - w = 0, also $u \in \ker(f)$. Es ist $x = a + u \in a + \ker(f)$. \supseteq : Sei $x \in a + \ker(f)$, also x = a + u mit $u \in \ker(f)$. Dann f(x) = f(a + u) = f(a + u)

Korollar 7. Ist $f: V \to W$ eine lineare Abbildung, so sind äquivalent

- (i) f ist injektiv.
- (ii) Ist $v \in V$ mit f(v) = 0, so ist v = 0.

f(a) + f(u) = w + 0 = w, d.h. $x \in f^{-1}(w)$.

(iii) $\ker(f) = \{0\}.$

Beweis. (i) \Longrightarrow (ii): Ist $v \in V$ mit f(v) = 0, so ist f(v) = f(0) und somit v = 0.

- (ii) \Longrightarrow (iii): (ii) besagt ker $(f) \subseteq \{0\}$.
- (iii) \Longrightarrow (i): Mit Lemma 6 folgt, daß jede Faser von f leer oder 1-elementig ist, d.h. f ist injektiv.

Proposition 8. Sei $f: V \to W$ eine lineare Abbildung.

- (i) Für jede Teilmenge M von V gilt $f(\langle M \rangle) = \langle f(M) \rangle$.
- (ii) Sei M ein Erzeugendensystem von V. Es gilt: f ist surjektiv genau dann, wenn f(M) ein Erzeugendensystem von W ist.
- (iii) Sei $(v_1, v_2, \dots, v_n) \in V^n$ eine Basis von V. Es gilt: f ist injektiv genau dann, wenn $(f(v_1), f(v_2), \dots, f(v_n)) \in W^n$ linear unabhängig ist.
- (iv) Sei $(v_1, v_2, \dots, v_n) \in V^n$ eine Basis von V. Es gilt: f ist bijektiv genau dann, wenn $(f(v_1), f(v_2), \dots, f(v_n)) \in W^n$ eine Basis von W ist.

Beweis. (i) Wir zeigen \subseteq und \supseteq .

- \subseteq : Wir haben zu zeigen, daß $\langle M \rangle \subseteq f^{-1}(\langle f(M) \rangle)$. Da $f^{-1}(\langle f(M) \rangle)$ ein Untervektorraum von V ist (Lemma 3 (iii)), genügt es zu zeigen, daß $M \subseteq f^{-1}(\langle f(M) \rangle)$, d.h. $f(M) \subseteq \langle f(M) \rangle$. Die letzte Aussage gilt offensichtlich.
- \supseteq : Da $f(\langle M \rangle)$ ein Untervektorraum von W ist (Lemma 3 (iii)), genügt es zu zeigen, daß $f(M) \subseteq f(\langle M \rangle)$. Dies ist aber klar, da $M \subseteq \langle M \rangle$.
- (ii) f ist surjektiv genau dann, wenn W = f(V). Da M ein Erzeugendensystem von V ist, gilt $V = \langle M \rangle$ und somit $f(V) = f(\langle M \rangle)$ und mit (i) erhalten wir $f(V) = \langle f(M) \rangle$. Also ist f surjektiv genau dann, wenn $W = \langle f(M) \rangle$, d.h. wenn f(M) ist ein Erzeugendensystem von W ist.
- (iii) \Longrightarrow : Seien $\lambda_1, \lambda_2, \dots, \lambda_n \in K$ mit $\lambda_1 f(v_1) + \lambda_2 f(v_2) + \dots + \lambda_n f(v_n) = 0$. Zeige $\lambda_1 = \lambda_2 = \dots = \lambda_n = 0$.
- Es ist $\lambda_1 f(v_1) + \lambda_2 f(v_2) + \ldots + \lambda_n f(v_n) = f(\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n)$. Somit gilt $f(\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n) = 0$, woraus folgt $\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$ (Korollar 7). Aus $\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$ ergibt sich $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$ (da (v_1, v_2, \ldots, v_n) linear unabhängig ist).
- \Leftarrow : Nach Korollar 7 genügt es zu zeigen: Ist $v \in V$ mit f(v) = 0, so ist v = 0.

Dazu: Wir schreiben $v = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n$ mit $\lambda_1, \lambda_2, \ldots, \lambda_n \in K$. Dann $0 = f(v) = f(\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n) = \lambda_1 f(v_1) + \lambda_2 f(v_2) + \ldots + \lambda_n f(v_n)$. Da $(f(v_1), f(v_2), \ldots, f(v_n))$ linear unabhängig ist, folgt $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$ und somit v = 0.

(iv) folgt aus (ii) und (iii).

Korollar 9. Seien V, W endlich erzeugte Vektorräume über einem Körper K und sei $f: V \to W$ eine lineare Abbildung. Es gelte dim $V = \dim W$. Dann sind äquivalent

- (i) f ist bijektiv.
- (ii) f ist injektiv.
- (iii) f ist surjektiv.

Beweis. Sei $(v_1, v_2, ..., v_n)$ eine Basis von V. Setze $w_i := f(v_i) \in W$ für i = 1, 2, ..., n. Nach Proposition 8 sind (i),(ii),(iii) jeweils äquivalent zu den folgenden Aussagen (i)',(ii)',(iii)'

- (i)' $(w_1, w_2, \dots, w_n) \in W^n$ ist eine Basis von W.
- (ii)' $(w_1, w_2, \dots, w_n) \in W^n$ ist linear unabhängig.
- (iii)' $\{w_1, w_2, \ldots, w_n\}$ ist ein Erzeugendensystem von W.

Nach Voraussetzung gilt $\dim W = \dim V = n$. Mit I, §3, Proposition 13 folgt dann, daß (i)',(ii)',(iii)' äquivalent sind. Also sind (i),(ii),(iii) äquivalent.

Lemma 10. Seien V und W Vektorräume über einem Körper K und $f:V\to W$ und $g:V\to W$ lineare Abbildungen. Es gebe ein Erzeugendensystem M von V mit f(x)=g(x) für jedes $x\in M$. Dann gilt f=g.

Beweis. Die Menge $U := \{x \in V \mid f(x) = g(x)\}$ ist ein Untervektorraum von V. Da M ein Erzeugendensystem von V ist mit $M \subseteq U$, folgt V = U. Also f = g.

Satz 11. Seien V und W Vektorräume über einem Körper K. Sei $(v_1, v_2, \ldots, v_n) \in V^n$ eine Basis von V und sei $(w_1, w_2, \ldots, w_n) \in W^n$. Dann gibt es genau eine lineare Abbildung $f: V \to W$ mit $f(v_i) = w_i$ für jedes $i \in \{1, 2, \ldots, n\}$.

Beweis. Die Eindeutigkeit von f folgt aus Lemma 10.

Zur Existenz von f: Wir definieren eine Abbildung $f: V \to W$ folgendermaßen. Zu jedem $v \in V$ gibt es eindeutig bestimmte $\lambda_1, \lambda_2, \ldots, \lambda_n \in K$ mit $v = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n$ (I, §3, Satz 14) und setze

$$f(v) := \lambda_1 w_1 + \lambda_2 w_2 + \ldots + \lambda_n w_n \in W.$$

Wir haben zu zeigen, daß f linear ist und $f(v_i) = w_i$ gilt.

f ist linear, denn: Seien $x, y \in V$. Seien $\lambda_1, \lambda_2, \ldots, \lambda_n$ und $\mu, \mu_2, \ldots, \mu_n$ die Elemente von K mit

$$x = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n$$

$$y = \mu_1 v_1 + \mu_2 v_2 + \ldots + \mu_n v_n$$

Sei $\lambda \in K$. Wir erhalten

$$x + y = (\lambda_1 + \mu_1)v_1 + (\lambda_2 + \mu_2)v_2 + \dots + (\lambda_n + \mu_n)v_n$$
$$\lambda x = (\lambda \lambda_1)v_1 + (\lambda \lambda_2)v_2 + \dots + (\lambda \lambda_n)v_n$$

Nach Definition von f gilt dann

$$f(x) = \lambda_1 w_1 + \lambda_2 w_2 + \ldots + \lambda_n w_n$$

$$f(y) = \mu_1 w_1 + \mu_2 w_2 + \ldots + \mu_n w_n$$

$$f(x+y) = (\lambda_1 + \mu_1) w_1 + (\lambda_2 + \mu_2) w_2 + \ldots + (\lambda_n + \mu_n) w_n$$

$$f(\lambda x) = (\lambda \lambda_1) w_1 + (\lambda \lambda_2) w_2 + \ldots + (\lambda \lambda_n) w_n$$

Hieraus folgt f(x + y) = f(x) + f(y) und $f(\lambda x) = \lambda f(x)$.

Es gilt $f(v_i) = w_i$, denn: Wir haben $v_i = 0 \cdot v_1 + \ldots + 0 \cdot v_{i-1} + 1 \cdot v_i + 0 \cdot v_{i+1} + \ldots + 0 \cdot v_n$ und nach Definition von f gilt dann

$$f(v_i) = 0 \cdot w_1 + \ldots + 0 \cdot w_{i-1} + 1 \cdot w_i + 0 \cdot w_{i+1} + \ldots + 0 \cdot w_n = w_i.$$

Definition 12. Seien V, W Vektorräume über einem Körper K.

(i) Ein Isomorphismus von V nach W ist ein Homomorphismus $f:V\to W,$ der bijektiv ist.

(ii) V und W heißen isomorph, geshrieben $V \cong W$, wenn es einen Isomorphismus $f: V \to W$ gibt. (Dann gibt es auch einen Isomorphismus $W \to V$, z.B. die Umkehrabbildung $f^{-1}: W \to V$ (beachte Lemma 3 (iv)).

Satz 13. Seien V, W endlich erzeugte Vektorräume über einem Körper K. V und W sind isomorph genau dann, wenn dim $V = \dim W$.

Beweis. Sind V, W isomorph, so gibt es einen Isomorphismus $f: V \to W$, und ist $(v_1, v_2, \ldots, v_n) \in V^n$ eine Basis von V, so ist $(f(v_1), f(v_2), \ldots, f(v_n)) \in W^n$ eine Basis von W (nach Proposition 8 (iv), also dim $V = n = \dim W$. Ist umgekehrt dim $V = \dim W =: n \in \mathbb{N}$ und sind $(v_1, v_2, \ldots, v_n) \in V^n$ und $(w_1, w_2, \ldots, w_n) \in W^n$ Basen von V und W, so gibt es nach Satz 11 eine lineare Abbildung $f: V \to W$ mit $f(v_i) = w_i$ für $i = 1, 2, \ldots, n$ und nach Proposition 8 (iv) ist f ein Isomorphimus, also sind V, W isomorph.

Korollar 14. Jeder endlich erzeugte Vektorraum V über einem Körper K mit $V \neq \{0\}$ ist isomorph zu einem K^n . Dabei ist n eindeutig bestimmt, nämlich $n = \dim V$.

Beweis. Wir wissen dim $K^n = n$. Die Behauptung folgt aus Satz 13.

Satz 15 (Dimensionsformel für lineare Abbildungen). Sei $f: V \to W$ eine lineare Abbildung, wobei V endlich erzeugt ist. Dann sind auch die Vektorräume $\ker(f)$ und $\operatorname{im}(f)$ endlich erzeugt und es gilt

$$\dim V = \dim \ker(f) + \dim \operatorname{im}(f).$$

Beweis. $\ker(f)$ ist als Untervektorraum von V endlich erzeugt. Ist E ein endliches Erzeugendensystem von V, so gilt $\operatorname{im}(f) = f(V) = f(\langle E \rangle) = \langle f(E) \rangle$ (nach Proposition 8 (i)), also hat $\operatorname{im}(f)$ ein endliches Erzeugendensystem.

Wir wählen ein lineares Komplement T von $\ker(f)$ in V, also T ein Untervektorraum von V mit $V = \ker(f) \oplus T$ (I, §4, Proposition 7). Für die Abbildung $g: T \to \operatorname{im}(f), \ x \mapsto f(x)$ gelten

- g ist linear.
- g ist injektiv (denn $\ker(g) = \ker(f) \cap T = \{0\}$, beachte Korollar 7).
- g ist surjektiv (denn im $(f) = f(V) = f(\ker(f) + T) = f(\ker(f)) + f(T) = f(T) = g(T)$).

Also ist g ein Isomorphismus und mit Satz 13 folgt $\dim \operatorname{im}(f) = \dim T$. Wir erhalten $\dim \ker(f) + \dim \operatorname{im}(f) = \dim \ker(f) + \dim T = \dim V$, wobei das letzte Gleichheitszeichen wegen $V = \ker(f) \oplus T$ und I, §4, Korollar 5 gilt.

Seien V, W Vektorräume über einem Körper K. Hom(V, W) bezeichnet die Menge aller linearen Abbildungen von V nach W. Für $f, g \in \text{Hom}(V, W)$ bezeichnet f + g die Abbildung $V \to W$, $v \mapsto f(v) + g(v)$. Für $\lambda \in K$ und $f \in \text{Hom}(V.W)$ bezeichnet λf die Abbildung $V \to W$, $v \mapsto \lambda(f(v))$. Die beiden Abbildungen

$$\begin{aligned} f+g: V \to W, \ v \mapsto f(v) + g(v) \\ \lambda f: V \to W, \ v \mapsto \lambda(f(v)) \end{aligned}$$

sind linear. Also haben wir Verknüpfungen

$$\begin{array}{l} +: \operatorname{Hom}(V,W) \times \operatorname{Hom}(V,W) \longrightarrow \operatorname{Hom}(V,W), \ (f,g) \longmapsto f + g \\ \cdot: K \times \operatorname{Hom}(V,W) \longrightarrow \operatorname{Hom}(V,W), \ (\lambda,f) \longmapsto \lambda f \end{array}$$

Satz 16. Für Vektorräume V,W über einem Körper K ist das Tripel $(\text{Hom}(V,W),+,\cdot)$ ein K-Vektorraum.

Beweis. Einfaches Verifizieren. Der Nullvektor ist die konstante Abbildung $V \to W, v \mapsto 0$. Das Inverse zu $f \in \text{Hom}(V, W)$ ist die lineare Abbildung $V \to W, v \mapsto -(f(v))$.

Sei V ein Vektorraum. Unter einem Endomorphismus von V versteht man eine lineare Abbildung $V \to V$. End(V) bezeichnet die Menge aller Endomorphismen von V. Also

$$\operatorname{End}(V) = \operatorname{Hom}(V, V)$$

Nach obigem haben wir den Vektorraum ($\operatorname{End}(V), +, \cdot$). Weiterhin haben wir die Verknüpfung

$$\circ : \operatorname{End}(V) \times \operatorname{End}(V) \longrightarrow \operatorname{End}(V), \ (f,g) \longmapsto f \circ g$$

mit $f \circ g$ das Kompositum der Abbildungen f und g (beachte Lemma 3 (v)).

Satz 17. Für einen Vektorraum V ist das Tripel $(\operatorname{End}(V), +, \circ)$ ein Ring mit Einselement. Er heißt der $\operatorname{Endomorphismenring}$ von V. Das Einselement ist die Identität $\operatorname{id}_V \in \operatorname{End}(V)$. Man schreibt auch \cdot statt \circ , also $(\operatorname{End}(V), +, \cdot)$.

Beweis. Nachrechnen.

Sei V ein Vektorraum. Unter einem Automorphismus von V versteht man eine lineare Abbildung $V \to V$, die bijektiv ist. Aut(V) bezeichnet die Menge aller Automorphismen von V. Wir haben die Verknüpfung

$$\circ : \operatorname{Aut}(V) \times \operatorname{Aut}(V) \longrightarrow \operatorname{Aut}(V), \ (f,g) \longmapsto f \circ g$$

mit $f \circ g$ das Kompositum der Abbildungen f und g.

Satz 18. Für einen Vektorraum V ist das Paar $(\operatorname{Aut}(V), \circ)$ eine Gruppe. Sie heißt die $\operatorname{Automorphismengruppe}$ von V. Sie stimmt überein mit der Einheitengruppe des Rings $(\operatorname{End}(V), +, \circ)$.

Beweis.

- $(Aut(V), \circ)$ ist eine Gruppe, denn:
 - \circ ist assoziativ, da die Komposition von Abbildungen assozativ ist. $(\operatorname{Aut}(V), \circ)$ hat ein neutrales Element, nämlich $\operatorname{id}_V \in \operatorname{Aut}(V)$ (für jedes $f \in \operatorname{Aut}(V)$ gilt $f \circ \operatorname{id}_V = f = \operatorname{id}_V \circ f$). Jedes $f \in \operatorname{Aut}(V)$ hat ein Inverses, denn die Umkehrabbildung f^{-1} von f ist ein Element von $\operatorname{Aut}(V)$ (nach Lemma 3 (iv)) und es gilt $f \circ f^{-1} = \operatorname{id}_V = f^{-1} \circ f$.
- $\operatorname{Aut}(V) = \operatorname{End}(V)^*$, denn:

 id_V ist das neutrale Element der Gruppe $(\mathrm{Aut}(V), \circ)$ und das Einselement des Rings $(\mathrm{End}(V), +, \circ)$.

 \supseteq : Ist $f \in \text{End}(V)$ eine Einheit des Rings (End(V), +, \circ), so gibt es ein $g \in \text{End}(V)$ mit $f \circ g = \text{id}_V = g \circ f$, woraus folgt, daß f bijektiv ist.

 \subseteq : Ist $f \in \operatorname{Aut}(V)$ und ist $g \in \operatorname{Aut}(V)$ das Inverse von f in $(\operatorname{Aut}(V), \circ)$, so gilt $f \circ g = \operatorname{id}_V = g \circ f$, und somit ist f eine Einheit des Rings $(\operatorname{End}(V), +, \circ)$.

§2 Matrizen

Seien $m, n \in \mathbb{N}$ und K ein Körper.

Eine $(m \times n)$ -Matrix über K ist eine Abbildung $A: \{1, 2, \ldots, m\} \times \{1, 2, \ldots, n\} \to K$. Ist $a_{ij} \in K$ das Bild von $(i, j) \in \{1, 2, \ldots, m\} \times \{1, 2, \ldots, n\}$ unter A (also $a_{ij} = A((i, j))$), so schreibt man statt A auch $(a_{ij})_{\substack{i=1,2,\ldots,m \ j=1,2,\ldots,n}}$ oder $(a_{ij})_{i,j}$ oder (a_{ij}) oder

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

(Eine $(m \times n)$ -Matrix hat m Zeilen und n Spalten). Die Elemente $a_{ij} \in K$ heißen die Koeffizienten von A. Für jedes $i \in \{1, 2, ..., m\}$ heißt $(a_{i1}, a_{i2}, ..., a_{in}) \in K^n$ der

i-te Zeilenvektor von A und für jedes $j \in \{1, 2, ..., n\}$ heißt $(a_{1j}, a_{2j}, ..., a_{mj}) \in K^m$ der j-Spaltenvektor von A. A heißt quadratisch, wenn m = n.

Beispiel. $A = \begin{pmatrix} \frac{1}{2} & 0 \\ 1 & -1 \\ 3 & 4 \end{pmatrix}$ ist eine (3×2) -Matrix über dem Körper \mathbb{Q} . Sie ist die

Abbildung $A: \{1,2,3\} \times \{1,2\} \to \mathbb{Q} \text{ mit } (1,1) \mapsto \frac{1}{2}, (1,2) \mapsto 0, (2,1) \mapsto 1, (2,2) \mapsto -1, (3,1) \mapsto 3, (3,2) \mapsto 4.$ Die Zeilenvektoren von $A \text{ sind } (\frac{1}{2},0), (1,-1), (3,4) \in \mathbb{Q}^2$ und die Spaltenvektoren von $A \text{ sind } (\frac{1}{2},1,3), (0,-1,4) \in \mathbb{Q}^3.$

Die Menge aller $(m \times n)$ -Matrizen über K wird mit $M(m \times n, K)$ bezeichnet. Mit unserer Definition von M(X, K) als der Menge aller Abbildungen von einer Menge X nach K haben wir also

$$M(m \times n, K) = M(X, K) \text{ mit } X = \{1, 2, \dots, m\} \times \{1, 2, \dots, n\}.$$

Auf der Menge M(X,K) haben wir eine Addition und eine Skalarenmultiplikation definiert. Übertragen auf die Schreibweise von Matrizen erhalten wir

Addition von Matrizen:

$$+: M(m \times n, K) \times M(m \times n, K) \longrightarrow M(m \times n, K)$$

$$((a_{ij})_{i,j}, (b_{ij})_{i,j}) \longmapsto (a_{ij})_{i,j} + (b_{ij})_{i,j} := (a_{ij} + b_{ij})_{i,j}$$

Skalarenmultiplikation von Matrizen:

$$\begin{array}{cccc} \cdot : K \times M(m \times n, K) & \longrightarrow & M(m \times n, K) \\ (\lambda \; , \; (a_{ij})_{i,j}) & \longmapsto & \lambda \cdot (a_{ij})_{i,j} := (\lambda a_{ij})_{i,j} \end{array}$$

Neben der Addition und Skalarenmultiplikation von Matrizen gibt es eine Multiplikation von Matrizen, definiert durch

Multiplikation von Matrizen:

Proposition 1.

- (i) Das Tripel $(M(m \times n, K), +, \cdot)$ (mit \cdot die Skalarenmultiplikation) ist ein K-Vektorraum. Der Nullvektor ist die Matrix (a_{ij}) mit $a_{ij} = 0$ für alle (i, j), das Inverse zu der Matrix (a_{ij}) ist die Matrix $(-a_{ij})$.
- (ii) dim $M(m \times n, K) = mn$.

Beweis. i) Wir wissen die Aussagen von (i) allgemein für das Tripel $(M(X,K),+,\cdot)$.

ii) Für jedes $(i,j) \in \{1,2,\ldots,m\} \times \{1,2,\ldots,n\}$ sei $E(i,j) \in M(m \times n,K)$ die Matrix, so daß der (i,j)-Koeffizient gleich 1 und die anderen Koeffizienten gleich Null sind. Für alle $(a_{ij}) \in M(m \times n,K)$ gilt dann $(a_{ij}) = \sum_{(i,j) \in \{1,\ldots,m\} \times \{1,\ldots,n\}} a_{ij} E(i,j)$. Also ist $(E(1,1),E(1,2),\ldots,E(1,n),\ldots,E(m,1),\ldots,E(m,n))$ eine Basis des K-Vektorraums $M(m \times n,K)$. Deshalb gilt dim $M(m \times n,K) = mn$.

Lemma 2.

- (i) Für alle $A \in M(m \times n, K)$, $B \in M(n \times \ell, K)$, $C \in M(\ell \times p, K)$ gilt $(A \cdot B) \cdot C =$ $A \cdot (B \cdot C)$.
- (ii) Für alle $A, B \in M(m \times n, K), C \in M(n \times \ell, K)$ gilt $(A+B) \cdot C = (A \cdot C) + (B \cdot C)$.
- (iii) Für alle $C \in M(m \times n, K)$, $A, B \in M(n \times \ell, K)$ gilt $C \cdot (A+B) = (C \cdot A) + (C \cdot B)$.
- (iv) Für alle $\lambda \in K$, $A \in M(m \times n, K)$, $B \in M(n \times \ell, K \text{ gilt } (\lambda A) \cdot B = A \cdot (\lambda B) = (\lambda B)$ $\lambda(A\cdot B)$.
- (v) Für jedes $n \in \mathbb{N}$ setzt man

$$E_n := \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & 0 \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & 0 & 1 \end{pmatrix} \in M(n \times n, K)$$

 E_n heißt die $(n \times n)$ -Einheitsmatrix. Für jedes $A \in M(m \times n, K)$ gilt

$$E_m \cdot A = A = A \cdot E_n.$$

Beweis. Nachrechnen

Korollar 3. Für jedes $n \in \mathbb{N}$ ist das Tripel $(M(n \times n, K), +, \cdot)$ (mit · die Multiplikation) ein Ring mit Einselement. Das Einselement ist E_n .

Beweis. Proposition 1 und Lemma 2.

Definition 4. Eine Matrix $A \in M(n \times n, K)$ heißt invertierbar, wenn A eine Einheit des Rings $(M(n \times n, K), +, \cdot)$ ist, d.h. wenn es ein $B \in M(n \times n, K)$ mit $A \cdot B = E_n = B \cdot A$ gibt. B ist eindeutig durch A bestimmt. B heißt die inverse Matrix zu A und man setzt $A^{-1} := B$.

Die Menge aller invertierbaren Matrizen in $M(n \times n, K)$ wird mit GL(n, K) bezeichnet. Das Paar $(GL(n, K), \cdot)$ ist eine Gruppe (das neutrale Element ist E_n). Für alle $A, B \in GL(n, K)$ gilt $(A^{-1})^{-1} = A$ und $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$. (Siehe I, §1, Abschnitt 4).

Definition 5. Zu jeder Matrix $A = (a_{ij}) \in M(m \times n, K)$ haben wir die Matrix

$${}^{t}A = (b_{ij}) \in M(n \times m, K) \text{ mit } b_{ij} := a_{ji}.$$

^tA heißt die zu A transponierte Matrix.

(ii) Für
$$A=\begin{pmatrix}\frac{1}{2}&0\\1&-1\end{pmatrix}\in M(2\times 2,\mathbb{Q})$$
 gilt ${}^tA=\begin{pmatrix}\frac{1}{2}&1\\0&-1\end{pmatrix}\in M(2\times 2,\mathbb{Q}).$

Es gelten

- i-ter Zeilenvektor von ${}^tA = i$ -ter Spaltenvektor von A
- j-ter Spaltenvektor von ${}^tA = j$ -ter Zeilenvektor von A
- Ist A quadratisch, so entsteht tA aus A durch Spiegelung an der Diagonalen.

Lemma 6.

- (i) Für $A, B \in M(m \times n, K)$ gilt ${}^{t}(A + B) = {}^{t}A + {}^{t}B$.
- (ii) Für $\lambda \in K$ und $A \in M(m \times n, K)$ gilt ${}^{t}(\lambda \cdot A) = \lambda \cdot {}^{t}A$.
- (iii) Für $A \in M(m \times n, K)$ gilt t(tA) = A.
- (iv) Für $A \in M(m \times n, K)$ und $B \in M(n \times \ell, K)$ gilt ${}^t(A \cdot B) = {}^tB \cdot {}^tA$.
- (v) Ist $A \in M(n \times n, K)$ invertierbar, so ist auch tA invertierbar und es gilt $({}^tA)^{-1} = {}^t(A^{-1})$.

Beweis. (i)-(iv) Nachrechnen.

(v) Mit (iv) erhalten wir ${}^t(A^{-1}) \cdot {}^tA = {}^t(A \cdot A^{-1}) = {}^tE_n = E_n$ und ${}^tA \cdot {}^t(A^{-1}) = {}^t(A^{-1} \cdot A) = {}^tE_n = E_n$. Die beiden Gleichungen

$${}^{t}(A^{-1}) \cdot {}^{t}A = E_{n} \text{ und } {}^{t}A \cdot {}^{t}(A^{-1}) = E_{n}$$

besagen, daß ${}^{t}A$ invertierbar ist und $({}^{t}A)^{-1} = {}^{t}(A^{-1})$.

§3 Beziehung zwischen linearen Abbildungen und Matrizen

Wichtig für diesen Abschnitt ist die folgende Aussage aus I, §3, Satz 14: Ist (v_1, v_2, \ldots, v_n) eine Basis eines K-Vektorraums V, so gibt es zu jedem $v \in V$ ein eindeutig bestimmtes $(\lambda_1, \lambda_2, \ldots, \lambda_n) \in K^n$ mit $v = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n$.

Definition 1. Seien V, W Vektorräume über einem Körper K. Sei $n := \dim V \in \mathbb{N}$ und sei $m := \dim W \in \mathbb{N}$.

Für jede Basis $\mathcal{A} = (v_1, v_2, \dots, v_n) \in V^n$ von V und jede Basis $\mathcal{B} = (w_1, w_2, \dots, w_m) \in W^m$ von W und jede Matrix $S = (s_{ij}) \in M(m \times n, K)$ definieren wir eine Abbildung $L_{S,\mathcal{A},\mathcal{B}}: V \to W$ folgendermaßen:

Ist $v \in V$ und ist (x_1, x_2, \dots, x_n) das eindeutig bestimmte Element von K^n mit $v = x_1v_1 + x_2v_2 + \dots + x_nv_n$ und ist (y_1, y_2, \dots, y_m) das Element von K^m mit

$$\left(\begin{array}{c} y_1 \\ \vdots \\ y_m \end{array}\right) = S \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right), \text{ so setze}$$

$$L_{S,\mathcal{A},\mathcal{B}}(v) := y_1 w_1 + y_2 w_2 + \ldots + y_m w_m \in W.$$

Da $y_i = \sum_{k=1}^n s_{ik} x_k \in K$, gilt

$$L_{S,\mathcal{A},\mathcal{B}}(x_1v_1 + \ldots + x_nv_n) = (\sum_{k=1}^n s_{1k}x_k)w_1 + \ldots + (\sum_{k=1}^n s_{mk}x_k)w_m.$$

Die Abbildung $L_{S,\mathcal{A},\mathcal{B}}:V\to W$ ist linear (cf. Beweis der Linearität im Beweis von §1, Satz 11). $L_{S,\mathcal{A},\mathcal{B}}$ heißt die *lineare Abbildung zu* $S,\mathcal{A},\mathcal{B}$.

Beispiel 2.

(i) In der Situation von Definition 1 gilt für jedes $j \in \{1, 2, ..., n\}$:

$$L_{S,A,B}(v_i) = s_{1i}w_1 + s_{2i}w_2 + \ldots + s_{mi}w_m$$

mit $(s_{1j}, s_{2j}, \dots, s_{mj}) \in K^m$ der j-te Spaltenvektor von S. (Denn es ist $v_j = x_1v_1 + x_2v_2 + \dots + x_nv_n$ mit $x_k = 0$ für jedes $k \in$ $\{1, 2, \dots, n\} - \{j\}$ und $x_j = 1$, und dann

$$S\left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right) = \left(\begin{array}{c} s_{1j} \\ \vdots \\ s_{mj} \end{array}\right) \quad).$$

(ii) Wir betrachten die K-Vektorräume K^n und K^m . Sei $\mathcal{A} = (e_1, e_2, \ldots, e_n)$ die Standardbasis von K^n und sei $\mathcal{B} = (e_1, e_2, \ldots, e_m)$ die Standardbasis von K^m . Sei $S = (s_{ij}) \in M(m \times n, K)$. Für die Abbildung $L_{S,\mathcal{A},\mathcal{B}} : K^n \longrightarrow K^m$ gilt

$$(x_1, \dots, x_n) \longmapsto (y_1, \dots, y_m) \text{ mit } \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = S \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

(denn es ist $(x_1, \ldots, x_n) = x_1e_1 + \ldots + x_ne_n$ und $y_1e_1 + \ldots + y_me_m = (y_1, \ldots, y_m)$). Wir können dies auch schreiben als

$$L_{S,\mathcal{A},\mathcal{B}}: K^n \to K^m, \ (x_1,\ldots,x_n) \mapsto (\sum_{k=1}^n s_{1k}x_k,\ldots,\sum_{k=1}^n s_{mk}x_k).$$

(iii) Sei V ein K-Vektorraum und sei $n := \dim V \in \mathbb{N}$. Für jede Basis \mathcal{A} von V gilt

$$(L_{E_n,\mathcal{A},\mathcal{A}}:V\to V)=(\mathrm{id}_V:V\to V)$$

(denn

$$E_n \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right) = \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right) \quad).$$

Definition 3. Seien V, W Vektorräume über einem Körper K. Sei $n := \dim V \in \mathbb{N}$ und sei $m := \dim W \in \mathbb{N}$.

Für jede Basis $\mathcal{A} = (v_1, v_2, \dots, v_n) \in V^n$ von V und jede Basis $\mathcal{B} = (w_1, w_2, \dots, w_m) \in W^m$ von W und jede lineare Abbildung $f: V \to W$ definieren wir eine Matrix $M_{f,\mathcal{A},\mathcal{B}} \in M(m \times n,K)$ folgendermaßen:

Für jedes $j \in \{1, 2, \dots, n\}$ sei $(a_{1j}, a_{2j}, \dots, a_{mj})$ das Element von K^m mit $f(v_j) = a_{1j}w_1 + a_{2j}w_2 + \dots + a_{mj}w_m$. Dann

$$M_{f,\mathcal{A},\mathcal{B}} := (a_{ij})_{\substack{i=1,2,\dots,m\\j=1,2,\dots,n}} \in M(m \times n,K)$$

 $((a_{1j}, a_{2j}, \ldots, a_{mj})$ ist der j-te Spaltenvektor von $(a_{ij})_{\substack{i=1,2,\ldots,m\\j=1,2,\ldots,n}}$. $M_{f,\mathcal{A},\mathcal{B}}$ heißt die $Matrix\ zu\ f,\mathcal{A},\mathcal{B}$.

Beispiel 4.

(i) Für die lineare Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^3, (x_1, x_2) \mapsto (x_1, x_1 - x_2, 2x_1 + 3x_2)$ und die Standardbasen $\mathcal{A} = (e_1, e_2)$ und $\mathcal{B} = (e_1, e_2, e_3)$ von \mathbb{R}^2 und \mathbb{R}^3 gilt

$$f(e_1) = f((1,0)) = (1,1,2) = 1e_1 + 1e_2 + 2e_3$$

$$f(e_2) = f((0,1)) = (0,-1,3) = 0e_1 + (-1)e_2 + 3e_2$$

und somit

$$M_{f,\mathcal{A},\mathcal{B}} = \left(\begin{array}{cc} 1 & 0\\ 1 & -1\\ 2 & 3 \end{array}\right)$$

Die drei Zeilenvektoren dieser Matrix ergeben sich aus den Koeffizienten der drei Koordinaten $1x_1 + 0x_2$, $1x_1 + (-1)x_2$, $2x_1 + 3x_2$ von $f((x_1, x_2))$.

(ii) Ist V ein Vektorraum mit $n := \dim V \in \mathbb{N}$, so gilt für jede Basis \mathcal{A} von V

$$M_{\mathrm{id}_V,\mathcal{A},\mathcal{A}} = E_n$$

Satz 5. Seien V, W Vektorräume über einem Körper K mit $n := \dim V \in \mathbb{N}$ und $m := \dim W \in \mathbb{N}$. Seien $\mathcal{A} = (v_1, v_2, \dots, v_n) \in V^n$ eine Basis von V und $\mathcal{B} = (w_1, w_2, \dots, w_m) \in W^m$ eine Basis von W.

(i) Ist $f: V \to W$ eine lineare Abbildung und $S:=M_{f,\mathcal{A},\mathcal{B}} \in M(m \times n,K)$, so gilt

$$f = L_{S,A,B}$$

(ii) Ist $S \in M(m \times n, K)$ und $f := L_{S,A,B} : V \to W$, so gilt

$$M_{f,\mathcal{A},\mathcal{B}} = S$$

Beweis. (i) Sei $j \in \{1, 2, ..., n\}$. Sei $(\lambda_1, \lambda_2, ..., \lambda_m)$ das Element von K^m mit

$$f(v_j) = \lambda_1 w_1 + \lambda_2 w_2 + \ldots + \lambda_m w_m.$$

Dann ist $(\lambda_1, \lambda_2, \dots, \lambda_m)$ der j-te Spaltenvektor von $M_{f,\mathcal{A},\mathcal{B}} = S$ und somit gilt nach Beispiel 2 (i)

$$L_{S,\mathcal{A},\mathcal{B}}(v_i) = \lambda_1 w_1 + \lambda_2 w_2 + \ldots + \lambda_m w_m.$$

Also gilt $f(v_j) = L_{S,\mathcal{A},\mathcal{B}}(v_j)$ für jedes $j \in \{1,2,\ldots,n\}$. Hieraus folgt $f = L_{S,\mathcal{A},\mathcal{B}}$ (nach §1, Lemma 10).

(ii) Sei $j \in \{1, 2, ..., n\}$. Sei $(\lambda_1, \lambda_2, ..., \lambda_m) \in K^m$ der j-te Spaltenvektor von S. Dann gilt nach Beispiel 2 (i)

$$f(v_i) = \lambda_1 w_1 + \lambda_2 w_2 + \ldots + \lambda_m w_m.$$

Deshalb ist $(\lambda_1, \lambda_2, \dots, \lambda_m)$ der j-te Spaltenvektor von $M_{f,\mathcal{A},\mathcal{B}}$. Also stimmt der j-te Spaltenvektor von S mit dem j-ten Spaltenvektor von $M_{f,\mathcal{A},\mathcal{B}}$ überein (für jedes $j \in \{1,2,\dots n\}$), d.h. $S = M_{f,\mathcal{A},\mathcal{B}}$.

Korollar 6. Seien V, W Vektorräume über einem Körper K mit $n := \dim V \in \mathbb{N}$ und $m := \dim W \in \mathbb{N}$. Seien \mathcal{A} und \mathcal{B} Basen von V und W. Die beiden Abbildungen

$$L: M(m \times n, K) \longrightarrow \text{Hom}(V, W), S \longmapsto L_{S,A,B}$$

$$M: \operatorname{Hom}(V, W) \longrightarrow M(m \times n, K), f \longmapsto M_{f,A,B}$$

sind bijektiv und zueinander Umkehrabbildungen (d.h. $L^{-1} = M$ und $M^{-1} = L$).

Beweis. Satz 5 (i) besagt $L \circ M = \mathrm{id}_{\mathrm{Hom}(V,W)}$, und Satz 5 (ii) besagt $M \circ L = \mathrm{id}_{M(m \times n,K)}$. Die Gültigkeit dieser beiden Gleichungen ist äquivalent dazu, daß L und M bijektiv und zueinander Umkehrabbildungen sind.

Beispiel 7. Zu jeder linearen Abbildung $f: K^n \to K^m$ gibt es eine eindeutig bestimmte Matrix $S = (s_{ij}) \in M(m \times n, K)$, so daß $f = L_{S,A,B}$ mit A und B die Standardbasen von K^n und K^m , also

$$f: K^n \to K^m, \ (x_1, \dots, x_n) \mapsto (y_1, \dots, y_m) \text{ mit } \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = S \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

oder

$$f: K^n \to K^m, (x_1, \dots, x_n) \mapsto (\sum_{k=1}^n s_{1k} x_k, \dots, \sum_{k=1}^n s_{mk} x_k)$$

Es ist $S = M_{f,\mathcal{A},\mathcal{B}} \in M(m \times n, K)$.

Beweis. Korollar 6, beachte Beispiel 2 (ii).

Proposition 8. Seien V, W Vektorräume über einem Körper K mit $n := \dim V \in \mathbb{N}$ und $m := \dim W \in \mathbb{N}$. Seien $\mathcal{A} = (v_1, v_2, \dots, v_n) \in V^n$ eine Basis von V und $\mathcal{B} = (w_1, w_2, \dots, w_m) \in W^m$ eine Basis von W.

(i) Für alle $S, S' \in M(m \times n, K)$ und $\lambda \in K$ gelten

$$L_{S+S',\mathcal{A},\mathcal{B}} = L_{S,\mathcal{A},\mathcal{B}} + L_{S',\mathcal{A},\mathcal{B}}$$

$$L_{\lambda S, \mathcal{A}, \mathcal{B}} = \lambda \cdot L_{S, \mathcal{A}, \mathcal{B}}$$
,

d.h. die Abbildung

$$M(m \times n, K) \longrightarrow \text{Hom}(V, W), S \longmapsto L_{S, A, B}$$

ist linear.

(ii) Für alle $f, f' \in \text{Hom}(V, W)$ und $\lambda \in K$ gelten

$$M_{f+f',\mathcal{A},\mathcal{B}} = M_{f,\mathcal{A},\mathcal{B}} + M_{f',\mathcal{A},\mathcal{B}}$$

$$M_{\lambda f, \mathcal{A}, \mathcal{B}} = \lambda \cdot M_{f, \mathcal{A}, \mathcal{B}}$$
,

d.h. die Abbildung

$$\operatorname{Hom}(V,W) \longrightarrow M(m \times n,K), f \longmapsto M_{f,A,B}$$

ist linear.

Beweis. (i) Wir zeigen $L_{S+S',\mathcal{A},\mathcal{B}} = L_{S,\mathcal{A},\mathcal{B}} + L_{S',\mathcal{A},\mathcal{B}}$. Dazu haben wir zu zeigen, daß für jedes $v \in V$ gilt $L_{S+S',\mathcal{A},\mathcal{B}}(v) = (L_{S,\mathcal{A},\mathcal{B}} + L_{S',\mathcal{A},\mathcal{B}})(v)$. Gemäß der Definition der Addition linearer Abbildungen haben wir also zu zeigen

(*)
$$L_{S+S',\mathcal{A},\mathcal{B}}(v) = L_{S,\mathcal{A},\mathcal{B}}(v) + L_{S',\mathcal{A},\mathcal{B}}(v)$$

Dazu schreiben wir $v = x_1v_1 + x_2v_2 + \ldots + x_nv_n$ mit $x_1, x_2, \ldots, x_n \in K$. Seien (y_1, y_2, \ldots, y_m) und $(y_1', y_2', \ldots, y_m')$ die Elemente von K^m mit

$$(1) \left(\begin{array}{c} y_1 \\ \vdots \\ y_m \end{array}\right) = S \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right) \text{ und } \left(\begin{array}{c} y_1' \\ \vdots \\ y_m' \end{array}\right) = S' \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right)$$

Unter Ausnutzung der Distributivität der Matrizenmultiplikation erhalten wir aus (1) die Gleichung

$$(2) \begin{pmatrix} y_1 + y_1' \\ \vdots \\ y_m + y_m' \end{pmatrix} = (S + S') \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Aus (1) folgt

(3) $L_{S,\mathcal{A},\mathcal{B}}(v) = y_1w_1 + \ldots + y_mw_m$ und $L_{S',\mathcal{A},\mathcal{B}}(v) = y_1'w_1 + \ldots + y_m'w_m$ und aus (2) folgt

(4)
$$L_{S+S',\mathcal{A},\mathcal{B}}(v) = (y_1 + y_1')w_1 + \ldots + (y_m + y_m')w_m$$

Aus (3) und (4) folgt (*).

(ii) Nach Korollar 6 ist die Abbildung $L: M(m \times n, K) \to \text{Hom}(V, W), S \mapsto L_{S, A, \mathcal{B}}$ aus (i) bijektiv. Nach (i) ist L linear, und somit ist nach §1, Lemma 3 (iv) auch die Umkehrabbildung L^{-1} linear. Aber L^{-1} ist die Abbildung in (ii) (nach Korollar 6).

Proposition 9. Seien V, W, U Vektorräume über einem Körper K mit $n := \dim V \in \mathbb{N}$, $m := \dim W \in \mathbb{N}$ und $\ell := \dim U \in \mathbb{N}$. Seien $\mathcal{A} = (v_1, v_2, \dots, v_n) \in V^n$, $\mathcal{B} = (w_1, w_2, \dots, w_m) \in W^m$ und $\mathcal{C} = (u_1, u_2, \dots, u_\ell) \in U^\ell$ Basen von V, W und U

(i) Seien $S \in M(m \times n, K)$ und $T \in M(\ell \times m, K)$. Für die Abbildungen

$$L_{S,\mathcal{A},\mathcal{B}}: V \longrightarrow W$$

$$L_{T,\mathcal{B},\mathcal{C}}: W \longrightarrow U$$

$$L_{TS,\mathcal{A},\mathcal{C}}: V \longrightarrow U$$

gilt

$$L_{TS,\mathcal{A},\mathcal{C}} = L_{T,\mathcal{B},\mathcal{C}} \circ L_{S,\mathcal{A},\mathcal{B}}$$

(ii) Seien $f: V \to W$ und $g: W \to U$ lineare Abbildungen. Also haben wir

Es gilt

$$M_{g \circ f, \mathcal{A}, \mathcal{C}} = M_{g, \mathcal{B}, \mathcal{C}} \cdot M_{f, \mathcal{A}, \mathcal{B}}$$

Beweis. (i) Sei $v \in V$. Wir schreiben $v = x_1v_1 + x_2v_2 + \ldots + x_nv_n$ mit $x_1, x_2, \ldots, x_n \in K$. Seien (y_1, y_2, \ldots, y_m) und $(z_1, z_2, \ldots, z_\ell)$ die Elemente von K^m und K^ℓ mit

$$(1) \left(\begin{array}{c} y_1 \\ \vdots \\ y_m \end{array}\right) = S \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right) \text{ und } \left(\begin{array}{c} z_1 \\ \vdots \\ z_\ell \end{array}\right) = T \left(\begin{array}{c} y_1 \\ \vdots \\ y_m \end{array}\right)$$

Dann gelten

$$L_{S,\mathcal{A},\mathcal{B}}(v) = y_1w_1 + y_2w_2 + \ldots + y_mw_m$$

$$L_{T,\mathcal{B},\mathcal{C}}(y_1w_1 + y_2w_2 + \ldots + y_mw_m) = z_1u_1 + z_2u_2 + \ldots + z_\ell u_\ell$$

woraus folgt

(2) $L_{T,\mathcal{B},\mathcal{C}}(L_{S,\mathcal{A},\mathcal{B}}(v)) = z_1 u_1 + z_2 u_2 + \ldots + z_{\ell} u_{\ell}$

Unter Ausnutzung der Assoziativität der Matrizenmultiplikation erhalten wir aus (1)

$$\begin{pmatrix} z_1 \\ \vdots \\ z_\ell \end{pmatrix} = (TS) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

woraus sich ergibt

(3)
$$L_{TS,A,C}(v) = z_1u_1 + z_2u_2 + \ldots + z_\ell u_\ell$$

Aus (2) und (3) folgt $L_{TS,\mathcal{A},\mathcal{C}} = L_{T,\mathcal{B},\mathcal{C}} \circ L_{S,\mathcal{A},\mathcal{B}}$.

(ii) Auf die Matrizen

$$S := M_{f,\mathcal{A},\mathcal{B}} \in M(m \times n, K)$$
 und $T := M_{g,\mathcal{B},\mathcal{C}} \in M(\ell \times m, K)$

wenden wir (i) an und erhalten

$$L_{TS,\mathcal{A},\mathcal{C}} = L_{T,\mathcal{B},\mathcal{C}} \circ L_{S,\mathcal{A},\mathcal{B}}$$

Nach Satz 5 (i) gilt $L_{S,A,B} = f$ und $L_{T,B,C} = g$. Also folgt

$$L_{TS,\mathcal{A},\mathcal{C}} = g \circ f$$

woraus sich ergibt

$$M_{(L_{TS,A,C}),\mathcal{A},\mathcal{C}} = M_{g \circ f,\mathcal{A},\mathcal{C}}$$
.

Nach Satz 5 (ii) gilt

$$M_{(L_{TS,\mathcal{A},\mathcal{C}}),\mathcal{A},\mathcal{C}} = TS = M_{g,\mathcal{B},\mathcal{C}} \cdot M_{f,\mathcal{A},\mathcal{B}}.$$

Also folgt $M_{g,\mathcal{B},\mathcal{C}} \cdot M_{f,\mathcal{A},\mathcal{B}} = M_{g \circ f,\mathcal{A},\mathcal{C}}$.

Proposition 10. Seien V, W Vektorräume über einem Körper K mit $n := \dim V \in \mathbb{N}$ und $m := \dim W \in \mathbb{N}$. Seien A und B Basen von V und W.

- (i) Sei $S \in M(m \times n, K)$. Die lineare Abbildung $L_{S,\mathcal{A},\mathcal{B}}: V \to W$ ist ein Isomorphismus genau dann, wenn m = n und die Matrix $S \in M(n \times n, K)$ invertierbar ist. Gelten diese äquivalenten Bedingungen, so ist $(L_{S,\mathcal{A},\mathcal{B}})^{-1} = L_{S^{-1},\mathcal{B},\mathcal{A}}$.
- (ii) Sei $f: V \to W$ eine lineare Abbildung. f ist ein Isomorphismus genau dann, wenn m = n und die Matrix $M_{f,\mathcal{A},\mathcal{B}} \in M(n \times n,K)$ invertierbar ist. Gelten diese äquivalenten Bedingungen, so ist $M_{f^{-1},\mathcal{B},\mathcal{A}} = (M_{f,\mathcal{A},\mathcal{B}})^{-1}$.

Beweis. (i) Wir beweisen die beiden Implikationen getrennt. Zunächst nehmen wir an, daß $L_{S,\mathcal{A},\mathcal{B}}:V\to W$ ein Isomorphismus ist und zeigen, daß dann m=n und die Matrix $S\in M(n\times n,K)$ invertierbar ist.

Da $L_{S,\mathcal{A},\mathcal{B}}$ ein Isomorphismus ist, folgt m=n nach §1, Satz 13. Zu dem Isomorphismus $f:=L_{S,\mathcal{A},\mathcal{B}}:V\to W$ haben wir die Umkehrabbildung $f^{-1}:W\to V$, die ebenfalls linear ist. Da die Abbildung L in Korollar 6 surjektiv ist, gibt es eine Matrix $T\in M(n\times n,K)$ mit $f^{-1}=L_{T,\mathcal{B},\mathcal{A}}$. Wir erhalten $L_{E_n,\mathcal{A},\mathcal{A}}=\mathrm{id}_V=f^{-1}\circ f=L_{T,\mathcal{B},\mathcal{A}}\circ L_{S,\mathcal{A},\mathcal{B}}=L_{TS,\mathcal{A},\mathcal{A}}$, wobei die erste Gleichung nach Beispiel 2 (iii) und die letzte Gleichung nach Proposition 9 (i) gilt. Aus $L_{E_n,\mathcal{A},\mathcal{A}}=L_{TS,\mathcal{A},\mathcal{A}}$ folgt $E_n=TS$, da die Abbildung L in Korollar 6 injektiv ist. Ebenso haben wir $L_{E_n,\mathcal{B},\mathcal{B}}=\mathrm{id}_W=f\circ f^{-1}=L_{S,\mathcal{A},\mathcal{B}}\circ L_{T,\mathcal{B},\mathcal{A}}=L_{ST,\mathcal{B},\mathcal{B}}$, woraus sich ergibt $E_n=ST$. Aus den beiden Gleichungen $E_n=TS$ und $E_n=ST$ folgt, daß S invertierbar ist.

Nun nehmen wir an, daß m=n und die Matrix $S \in M(n \times n, K)$ invertierbar ist und zeigen, daß dann $L_{S,\mathcal{A},\mathcal{B}}: V \to W$ ein Isomorphismus ist und $(L_{S,\mathcal{A},\mathcal{B}})^{-1} = L_{S^{-1},\mathcal{B},\mathcal{A}}$.

Wir betrachten die lineare Abbildung $L_{S^{-1},\mathcal{B},\mathcal{A}}:W\to V$. Wir haben

$$L_{S^{-1},\mathcal{B},\mathcal{A}} \circ L_{S,\mathcal{A},\mathcal{B}} = L_{S^{-1}S,\mathcal{A},\mathcal{A}} = L_{E_n,\mathcal{A},\mathcal{A}} = \mathrm{id}_V$$

$$L_{S,\mathcal{A},\mathcal{B}} \circ L_{S^{-1},\mathcal{B},\mathcal{A}} = L_{SS^{-1},\mathcal{B},\mathcal{B}} = L_{E_n,\mathcal{B},\mathcal{B}} = \mathrm{id}_W$$

wobei jeweils die erste Gleichung nach Proposition 9 (i) und die letzte Gleichung nach Beispiel 2 (iii) gilt. Aus den beiden Gleichungen

$$L_{S^{-1},\mathcal{B},\mathcal{A}} \circ L_{S,\mathcal{A},\mathcal{B}} = \mathrm{id}_V$$

$$L_{S,A,B} \circ L_{S^{-1},B,A} = \mathrm{id}_W$$

folgt, daß die Abbildung $L_{S,\mathcal{A},\mathcal{B}}$ bijektiv ist und $(L_{S,\mathcal{A},\mathcal{B}})^{-1} = L_{S^{-1},\mathcal{B},\mathcal{A}}$.

(ii) Wir wenden (i) mit $S := M_{f,\mathcal{A},\mathcal{B}} \in M(m \times n, K)$ an. Nach Satz 5 (i) gilt $L_{S,\mathcal{A},\mathcal{B}} = f$. Also erhalten wir:

f ist ein Isomorphismus genau dann, wenn m=n und die Matrix $M_{f,\mathcal{A},\mathcal{B}}\in M(n\times n,K)$ invertierbar ist. Gelten diese äquivalenten Bedingungen, so ist $f^{-1}=L_{S^{-1},\mathcal{B},\mathcal{A}}$, und somit $M_{f^{-1},\mathcal{B},\mathcal{A}}=M_{(L_{S^{-1},\mathcal{B},\mathcal{A}}),\mathcal{B},\mathcal{A}}$, aber nach Satz 5 (ii) ist $M_{(L_{S^{-1},\mathcal{B},\mathcal{A}}),\mathcal{B},\mathcal{A}}=S^{-1}$, also gilt $M_{f^{-1},\mathcal{B},\mathcal{A}}=(M_{f,\mathcal{A},\mathcal{B}})^{-1}$.

Lemma 11. Sei V ein Vektorraum über einem Körper K mit $n := \dim V \in \mathbb{N}$. Wir betrachten die lineare Abbildung id: $V \to V$.

- (i) Für alle Basen \mathcal{A}, \mathcal{B} von V ist die Matrix $M_{\mathrm{id},\mathcal{A},\mathcal{B}} \in M(n \times n, K)$ invertierbar (d.h. $M_{\mathrm{id},\mathcal{A},\mathcal{B}} \in \mathrm{GL}(n,K)$).
- (ii) Für alle Basen \mathcal{A}, \mathcal{B} von V gilt $(M_{\mathrm{id},\mathcal{A},\mathcal{B}})^{-1} = M_{\mathrm{id},\mathcal{B},\mathcal{A}}$.
- (iii) Sei \mathcal{A} eine Basis von V. Die Abbildung

$$\{\mathcal{B} \mid \mathcal{B} \text{ Basis von } V\} \longrightarrow \mathrm{GL}(n,K), \ \mathcal{B} \longmapsto M_{\mathrm{id},\mathcal{B},\mathcal{A}}$$

ist bijektiv.

Beweis. (i),(ii) Die Abbildung id: $V \to V$ ist bijektiv. Nach Proposition 10 (ii) ist dann die Matrix $M_{\mathrm{id},\mathcal{A},\mathcal{B}}$ invertierbar und $(M_{\mathrm{id},\mathcal{A},\mathcal{B}})^{-1} = M_{\mathrm{id}^{-1},\mathcal{B},\mathcal{A}}$. Da id = id⁻¹, folgt $(M_{\mathrm{id},\mathcal{A},\mathcal{B}})^{-1} = M_{\mathrm{id},\mathcal{B},\mathcal{A}}$.

(iii) Sei $\mathcal{A} = (v_1, v_2, \dots, v_n) \in V^n$. Für jedes $S \in GL(n, K)$ ist $L_{S, \mathcal{A}, \mathcal{A}} : V \to V$ ein Isomorphismus (nach Proposition 10 (i)) und somit $L_{S, \mathcal{A}, \mathcal{A}}(\mathcal{A}) := (L_{S, \mathcal{A}, \mathcal{A}}(v_1), L_{S, \mathcal{A}, \mathcal{A}}(v_2), \dots, L_{S, \mathcal{A}, \mathcal{A}}(v_n)) \in V^n$ eine Basis von V (nach §1, Proposition 8 (iv)). Wir erhalten die Abbildung

$$\psi: \mathrm{GL}(n,K) \to \{\mathcal{B} \mid \mathcal{B} \text{ Basis von } V\}, \ S \mapsto L_{S,\mathcal{A},\mathcal{A}}(\mathcal{A})$$

Die Abbildung in Lemma 11 (iii) sei mit φ bezeichnet. Mit Beispiel 2 (i) überprüft man

$$\varphi \circ \psi = id \text{ und } \psi \circ \varphi = id.$$

Aus diesen Gleichungen folgt, daß φ bijektiv ist.

Satz 12. (Transformationsformel)

- (i) Seien V und W Vektorräume über einem Körper K mit $n:=\dim V\in\mathbb{N}$ und $m:=\dim W\in\mathbb{N}$ und sei $f:V\to W$ eine lineare Abbildung. Seien \mathcal{A} und \mathcal{B} Basen von V und W.
 - (a) Für Basen \mathcal{A}' und \mathcal{B}' von V und W gilt

$$M_{f,\mathcal{A}',\mathcal{B}'} = (M_{\mathrm{id}_W,\mathcal{B}',\mathcal{B}})^{-1} \cdot M_{f,\mathcal{A},\mathcal{B}} \cdot M_{\mathrm{id}_V,\mathcal{A}',\mathcal{A}}$$

(b) Es gilt

$$\{M_{f,\mathcal{A}',\mathcal{B}'} \mid \mathcal{A}', \mathcal{B}' \text{ Basen von } V, W\} =$$
$$\{S^{-1} \cdot M_{f,\mathcal{A},\mathcal{B}} \cdot T \mid S \in \operatorname{GL}(m,K) \text{ und } T \in \operatorname{GL}(n,K)\}$$

- (ii) Sei V ein Vektorraum über einem Körper K mit $n:=\dim V\in\mathbb{N}$ und sei $f:V\to V$ eine lineare Abbildung. Sei \mathcal{A} eine Basis von V.
 - (a) Für jede Basis \mathcal{A}' von V gilt

$$M_{f,\mathcal{A}',\mathcal{A}'} = (M_{\mathrm{id}_V,\mathcal{A}',\mathcal{A}})^{-1} \cdot M_{f,\mathcal{A},\mathcal{A}} \cdot M_{\mathrm{id}_V,\mathcal{A}',\mathcal{A}}$$

(b) Es gilt

$$\{M_{f,\mathcal{A}',\mathcal{A}'} \mid \mathcal{A}' \text{ Basis von } V\} = \{T^{-1} \cdot M_{f,\mathcal{A},\mathcal{A}} \cdot T \mid T \in GL(n,K)\}$$

Beweis. (i) (a) Es gilt $f = \mathrm{id}_W \circ f \circ \mathrm{id}_V$. Auf das Diagramm

wenden wir Proposition 9 (ii) und erhalten

$$M_{f,\mathcal{A}',\mathcal{B}'} = M_{\mathrm{id}_W \circ f \circ \mathrm{id}_V,\mathcal{A}',\mathcal{B}'} = M_{\mathrm{id}_W,\mathcal{B},\mathcal{B}'} \cdot M_{f,\mathcal{A},\mathcal{B}} \cdot M_{\mathrm{id}_V,\mathcal{A}',\mathcal{A}}$$

Mit Lemma 11 (i), (ii) folgt

$$M_{f,\mathcal{A}',\mathcal{B}'} = (M_{\mathrm{id}_W,\mathcal{B}',\mathcal{B}})^{-1} \cdot M_{f,\mathcal{A},\mathcal{B}} \cdot M_{\mathrm{id}_V,\mathcal{A}',\mathcal{A}}$$

- (i) (b) Die beiden Mengen, deren Gleichheit zu zeigen ist, sind Teilmengen von $M(m \times n, K)$. Wir zeigen die Gleichheit, indem wir die Inklusionen \subseteq und \supseteq zeigen. \subseteq folgt aus (i) (a) (und Lemma 11 (i))
- ⊇ folgt aus (i) (a) und der Surjektivität in Lemma 11 (iii).
- (ii) (a) folgt aus (i) (a) mit W = V, $\mathcal{B} = \mathcal{A}$ und $\mathcal{B}' = \mathcal{A}'$.
- (ii) (b) folgt aus (ii) (a) und der Surjektivität in Lemma 11 (iii).

Bemerkung.

- (i) Seien V, W Vektorräume über einem Körper K mit $n := \dim V \in \mathbb{N}$ und m := $\dim W \in \mathbb{N}$ und sei $f: V \to W$ eine lineare Abbildung. Dann gibt es Basen \mathcal{A} und \mathcal{B} von V und W, so daß die Matrix $M_{f,\mathcal{A},\mathcal{B}}$ sehr einfache Gestalt hat, nämlich es gibt Basen \mathcal{A} und \mathcal{B} von V und W, so daß für die Koeffizienten a_{ij} der Matrix $M_{f,\mathcal{A},\mathcal{B}} \in M(m \times n, K)$ gilt: Es gibt ein $r \in \{0, 1, \dots, \min(m, n)\},$ so daß $a_{ii} = 1$ für alle i mit $1 \le i \le r$ und $a_{ij} = 0$ sonst. Beweis. Übungsaufgabe
- (ii) Sei V ein Vektorraum mit dim $V \in \mathbb{N}$ und sei $f: V \to V$ ein Endomorphismus von V. In der Vorlesung Lineare Algebra II wird das Problem behandelt, eine Basis \mathcal{A} von V zu konstruieren, so daß die Matrix $M_{f,\mathcal{A},\mathcal{A}}$ von einfacher Gestalt ist (Normalformenproblem).

§4 Rang einer linearen Abbildung und Rang einer Matrix

Definition 1. Sei $f: V \to W$ eine lineare Abbildung. Man setzt

$$\operatorname{rk}(f) := \dim \operatorname{im}(f) \in \mathbb{N}_0 \cup \{\infty\}$$

rk(f) heißt der Rang von f.

Definition 2. Seien K ein Körper, $m, n \in \mathbb{N}$ und $A = (a_{ij}) \in M(m \times n, K)$. R(A) bezeichnet den von den Zeilenvektoren von A erzeugten Untervektorraum von K^n , also

$$R(A) = \langle \{(a_{i1}, a_{i2}, \dots, a_{in}) \mid i = 1, 2, \dots, m\} \rangle \subseteq K^n$$

- R(A) heißt der Zeilenraum von A. dim R(A) heißt der Zeilenrang von A.
- C(A) bezeichnet den von den Spaltenvektoren von A erzeugten Untervektorraum von K^m , also

$$C(A) = \langle \{(a_{1j}, a_{2j}, \dots, a_{mj}) \mid j = 1, 2, \dots, n\} \rangle \subseteq K^m$$

C(A) heißt der Spaltenraum von A. dim C(A) heißt der Spaltenrang von A. Wir werden in dem nachfolgenden Lemma 3 zeigen

$$(Zeilenrang von A) = (Spaltenrang von A)$$

Man setzt

$$\operatorname{rk}(A) := (\operatorname{Zeilenrang} \operatorname{von} A) = (\operatorname{Spaltenrang} \operatorname{von} A) \in \mathbb{N}_0$$

rk(A) heißt der Rang von A.

Lemma 3. In der Situation von Definition 2 gilt

$$(Zeilenrang von A) = (Spaltenrang von A)$$

Beweis. Ist A = 0, so ist dim $R(A) = 0 = \dim C(A)$. Sei nun $A \neq 0$. Dann ist $R(A) \neq \{0\}$ und wir haben eine Basis $(u_1, u_2, \dots, u_t) \in R(A)^t$ von R(A) mit $t \in \mathbb{N}$. Jedes Element von R(A) läßt sich als Linearkombination von u_1, u_2, \dots, u_t schreiben, insbesonder gilt dies für die Zeilenvektoren von A, also

$$(*) \begin{cases} (a_{11}, a_{12}, \dots, a_{1n}) &= \lambda_{11}u_1 + \lambda_{12}u_2 + \dots + \lambda_{1t}u_t \\ (a_{21}, a_{22}, \dots, a_{2n}) &= \lambda_{21}u_1 + \lambda_{22}u_2 + \dots + \lambda_{2t}u_t \\ \vdots &\vdots &\vdots \\ (a_{m1}, a_{m2}, \dots, a_{mn}) &= \lambda_{m1}u_1 + \lambda_{m2}u_2 + \dots + \lambda_{mt}u_t \end{cases}$$

mit $\lambda_{ij} \in K$. Für jedes $\ell \in \{1, 2, \dots, t\}$ setze

$$v_{\ell} = (\lambda_{1\ell}, \lambda_{2\ell}, \dots, \lambda_{m\ell}) \in K^m$$

Jeder Spaltenvektor von A ist eine Linearkombination der Vektoren v_1, v_2, \ldots, v_t , nämlich ist $u_i = (u_{i1}, u_{i2}, \ldots, u_{in}) \in K^n$ (für $i = 1, 2, \ldots, t$), so gilt nach (*) für jedes $j \in \{1, 2, \ldots, n\}$

$$(a_{1j}, a_{2j}, \dots, a_{mj}) = u_{1j}v_1 + u_{2j}v_2 + \dots + u_{tj}v_t.$$

Also folgt

$$C(A) \subseteq \langle v_1, v_2, \dots, v_t \rangle$$

Dann dim $C(A) \leq t$. Damit ist gezeigt, daß für jede Matrix A gilt

$$\dim C(A) \leq \dim R(A)$$

Dann folgt sofort, daß für jede Matrix A auch gilt

$$\dim R(A) < \dim C(A)$$

$$\operatorname{denn} \operatorname{dim} R(A) = \operatorname{dim} C({}^{t}A) \le \operatorname{dim} R({}^{t}A) = \operatorname{dim} C(A).$$

Proposition 4. Seien V, W Vektorräume über einem Körper K mit dim $V \in \mathbb{N}$ und dim $W \in \mathbb{N}$ und sei $f: V \to W$ eine lineare Abbildung. Seien \mathcal{A}, \mathcal{B} Basen von V, W. Es gilt

$$\operatorname{rk}(f) = \operatorname{rk}(M_{f,\mathcal{A},\mathcal{B}})$$

Beweis. Sei $\mathcal{A}=(v_1,v_2,\ldots,v_n)\in V^n$ und $\mathcal{B}=(w_1,w_2,\ldots,w_m)\in W^m$. Sei $\varphi:W\to K^m$ die lineare Abbildung mit $\varphi(w_i)=e_i$ (für $i=1,2,\ldots,m$), φ ist ein Isomorphismus (§1, Proposition 8 (iv) und Satz 11). Wir erhalten den Isomorphismus

(1)
$$\operatorname{im}(f) \xrightarrow{\sim} \varphi(\operatorname{im}(f)), x \longmapsto \varphi(x)$$

Es ist $V = \langle v_1, v_2, \dots, v_n \rangle$ und mit §1, Proposition 8 (i) folgt dann $\operatorname{im}(f) = \langle f(v_1), f(v_2), \dots, f(v_n) \rangle$ und

(2)
$$\varphi(\operatorname{im}(f)) = \langle \varphi(f(v_1)), \varphi(f(v_2)), \dots, \varphi(f(v_n)) \rangle$$

Sei $M_{f,\mathcal{A},\mathcal{B}} = (a_{ij}) \in M(m \times n, K)$. Dann $f(v_j) = a_{1j}w_1 + a_{2j}w_2 + \ldots + a_{mj}w_m$ und somit $\varphi(f(v_j)) = a_{1j}\varphi(w_1) + a_{2j}\varphi(w_2) + \ldots + a_{mj}\varphi(w_m) = a_{1j}e_1 + a_{2j}e_2 + \ldots + a_{mj}e_m = (a_{1j}, a_{2j}, \ldots, a_{mj}) \in K^m$. Also folgt

$$\langle \varphi(f(v_1)), \varphi(f(v_2)), \dots, \varphi(f(v_n)) \rangle = C(M_{f, \mathcal{A}, \mathcal{B}})$$

Wir erhalten dann mit (1) und (2)

$$\operatorname{im}(f) \xrightarrow{\sim} C(M_{f,\mathcal{A},\mathcal{B}})$$

Nach §1, Satz 13 folgt $\dim \operatorname{im}(f) = \dim C(M_{f,\mathcal{A},\mathcal{B}}), \operatorname{d.h.} \operatorname{rk}(f) = \operatorname{rk}(M_{f,\mathcal{A},\mathcal{B}}).$

Proposition 5.

- (i) Für jedes $A \in M(m \times n, K)$ gilt $\operatorname{rk}(A) \leq \min(m, n)$.
- (ii) Sei $A \in M(n \times n, K)$. Nach (i) gilt $\operatorname{rk}(A) \leq n$. Es ist $\operatorname{rk}(A) = n$ genau dann, wenn A invertierbar ist.

Beweis. (i) R(A) wird von m Vektoren erzeugt und somit gilt dim $R(A) \leq m$. C(A) wird von n Vektoren erzeugt und somit gilt dim $C(A) \leq n$.

(ii) Zunächst nehmen wir an, daß $\operatorname{rk}(A) = n$ und zeigen, daß A invertierbar ist. Seien $a_1, a_2, \ldots, a_n \in K^n$ die Spaltenvektoren von A. Da $n = \dim C(A)$ und $C(A) = \langle a_1, a_2, \ldots, a_n \rangle$, folgt, daß (a_1, a_2, \ldots, a_n) linear unabhängig ist (nach I, §3, Proposition 13), woraus sich ergibt, daß $\mathcal{B} := (a_1, a_2, \ldots, a_n)$ eine Basis von K^n ist (I, §3, Proposition 13). Sei \mathcal{A} die Standardbasis von K^n . Die Spaltenvektoren der Matrix $M_{\operatorname{id}_{K^n},\mathcal{B},\mathcal{A}}$ sind a_1, a_2, \ldots, a_n . Also gilt $A = M_{\operatorname{id}_{K^n},\mathcal{B},\mathcal{A}}$. Nach §3, Lemma 11 (i) ist die Matrix $M_{\operatorname{id}_{K^n},\mathcal{B},\mathcal{A}}$ invertierbar. Damit ist gezeigt, daß A invertierbar ist. Nun nehmen wir an, daß A invertierbar ist und zeigen, daß $\operatorname{rk}(A) = n$. Sei A wieder die Standardbasis von K^n . Aufgrund der Surjektivität der Abbildung in §3, Lemma 11 (iii) gibt es eine Basis $\mathcal{B} = (b_1, b_2, \ldots, b_n)$ von K^n mit $A = M_{\operatorname{id}_{K^n},\mathcal{B},\mathcal{A}}$. Die Spaltenvektoren von $M_{\operatorname{id}_{K^n},\mathcal{B},\mathcal{A}}$ sind b_1, b_2, \ldots, b_n . Also folgt $\operatorname{rk}(A) = n$.

III Gauß-Algorithmus und Anwendungen

§1 Gauß-Algorithmus

Definition 1. Sei $A \in M(m \times n, K)$. Seien $a_1, a_2, \dots, a_m \in K^n$ die Zeilenvektoren von A. Also

$$A = \left(\begin{array}{c} a_1 \\ \vdots \\ a_m \end{array}\right)$$

Die elementaren Zeilenumformungen von A sind die folgenden Operationen

(I) Vertauschen der i-ten und j-ten Zeile von A $(i, j \in \{1, 2, ..., m\}$ mit $i \neq j)$,

aus
$$A = \begin{pmatrix} \vdots \\ a_i \\ \vdots \\ a_j \\ \vdots \end{pmatrix}$$
 entsteht die Matrix $\begin{pmatrix} \vdots \\ a_j \\ \vdots \\ a_i \\ \vdots \end{pmatrix} \in M(m \times n, K).$

(II) Multiplikation der *i*-ten Zeile von A mit $\lambda \in K - \{0\}$ $(i \in \{1, 2, ..., m\})$, also

aus
$$A = \begin{pmatrix} \vdots \\ a_i \\ \vdots \end{pmatrix}$$
 entsteht die Matrix $\begin{pmatrix} \vdots \\ \lambda a_i \\ \vdots \end{pmatrix} \in M(m \times n, K)$.

(III) Addition des λ -fachen ($\lambda \in K$) der i-ten Zeile von A zu der j-ten Zeile von A $(i, j \in \{1, 2, \dots, m\} \text{ mit } i \neq j)$, also

aus
$$A = \begin{pmatrix} \vdots \\ a_i \\ \vdots \\ a_j \\ \vdots \end{pmatrix}$$
 entsteht die Matrix $\begin{pmatrix} \vdots \\ a_i \\ \vdots \\ a_j + \lambda a_i \\ \vdots \end{pmatrix} \in M(m \times n, K).$

Analog zu Definition 1 definiert man die elementaren Spaltenumformungen einer Matrix $A \in M(m \times n, K)$.

Definition 2. Eine Matrix $A = (a_{ij}) \in M(m \times n, K)$ heißt von Zeilenstufenform, wenn gilt:

- (I) A = 0 (d.h. alle $a_{ij} = 0 \in K$) oder
 - (II) Es gibt $r \in \{1, 2, \dots, m\}$ und $j_1, j_2, \dots, j_r \in \{1, 2, \dots, n\}$, so daß $j_1 < j_2 < n$ $\ldots < j_r$ und für jedes $i \in \{1, 2, \ldots, m\}$ der i-te Zeilenvektor $(a_{i1}, a_{i2}, \ldots, a_{in})$ von A die Eigenschaft hat
 - ist $i \leq r$, so ist $a_{ij} = 0$ für alle $j < j_i$ und $a_{ij_i} \neq 0$
 - ist i > r, so $a_{ij} = 0$ für alle $j \in \{1, 2, ..., n\}$.

 j_1, j_2, \dots, j_r heißen die Stufenindizes von A.

Im Fall (II) ist A von der Form

Satz 3. Zu jeder Matrix $A = (a_{ij}) \in M(m \times n, K)$ gibt es eine Matrix $A' \in M(m \times n, K)$ in Zeilenstufenform, die aus A durch endlich viele elementare Zeilenumformungen vom Typ I und III hervorgeht.

Beweis. Die Matrix A' läßt sich mit Hilfe des $Gau\beta$ -Algorithmus konstruieren, der folgendermaßen verläüft:

Schritt 1:

Ist A=0 oder A 1-zeilig, so sind wir fertig. Sei $A\neq 0$ und A nicht 1-zeilig. Sei dann j_1 das kleinste Element von $\{1,2,\ldots,n\}$, so daß der j_1 -te Spaltenvektor von A ungleich Null ist. Nach eventuellem Vertauschen der ersten Zeile von A mit einer weiteren Zeile von A, können wir annehmen, daß $a_{1j_1}\neq 0$. Nach Addition des λ -fachen ($\lambda\in K$, λ passend) der ersten Zeile von A zu den weiteren Zeilen von A, können wir annehmen, daß $a_{2j_1}=a_{3j_1}=\ldots=a_{mj_1}=0$. Schritt 2:

Sei $A_1 \in M((m-1) \times n, K)$ die Matrix mit

(Die Zeilen von A_1 werden mit $2, 3, \ldots, m$ nummeriert).

Man verfährt mit A_1 wie in Schritt 1 mit A verfahren wurde. Also: Ist $A_1=0$ oder A_1 1-zeilig, so sind wir fertig. Sei $A_1\neq 0$ und A_1 nicht 1-zeilig. Sei dann j_2 das kleinste Element von $\{1,2\ldots,n\}$, so daß der j_2 -te Spaltenvektor von A_1 ungleich Null ist. Nach eventuellem Vertauschen der ersten Zeile von A_1 mit einer weiteren Zeile von A_1 , können wir annehmen, daß $a_{2j_2}\neq 0$. Nach Addition des λ -fachen $(\lambda\in K,\lambda)$ passend) der ersten Zeile von A_1 zu den weiteren Zeilen von A_1 , können wir annehmen, daß $a_{3j_2}=a_{4j_2}=\ldots=a_{mj_2}=0$.

Schritt 3:

Sei $A_2 \in M((m-2) \times n, K)$ die Matrix mit

(Die Zeilen von A_2 werden mit $3, 4, \ldots, m$ nummeriert).

Man verfährt mit A_2 wie in Schritt 1 mit A verfahren wurde. Also: Ist $A_2 = 0$ oder A_2 1-zeilig, so sind wir fertig. Sei $A_2 \neq 0$ und A_2 nicht 1-zeilig. Sei dann j_3 das kleinste Element von $\{1, 2, \ldots, n\}$, so daß der j_3 -te Spaltenvektor von A_2 ungleich Null ist. . . .

:

Nach endlich vielen Schritten bricht der Algorithmus ab. Die entstehende Matrix hat Zeilenstufenform. $\hfill\Box$

Beispiel. Auf die Matrix

$$\begin{pmatrix} 0 & 2 & 1 & -5 \\ 3 & 1 & 0 & 2 \\ 3 & 1 & 0 & 1 \\ 6 & 6 & 2 & -4 \end{pmatrix} \in M(4 \times 4, \mathbb{Q})$$

wenden wir den Gauß-Algorithmus an:

$$\left(\begin{array}{cccc}
0 & 2 & 1 & -5 \\
3 & 1 & 0 & 2 \\
3 & 1 & 0 & 1 \\
6 & 6 & 2 & -4
\end{array}\right)$$

Vertauschung von Zeile 1 und 2 ergibt

$$\left(\begin{array}{ccccc}
3 & 1 & 0 & 2 \\
0 & 2 & 1 & -5 \\
3 & 1 & 0 & 1 \\
6 & 6 & 2 & -4
\end{array}\right)$$

Addition des (-1)-fachen und (-2)-fachen von Zeile 1 zu Zeile 3 und 4 ergibt

$$\left(\begin{array}{ccccc}
3 & 1 & 0 & 2 \\
0 & 2 & 1 & -5 \\
0 & 0 & 0 & -1 \\
0 & 4 & 2 & -8
\end{array}\right)$$

Addition des (-2)-fachen von Zeile 2 zu Zeile 4 ergibt

$$\left(\begin{array}{ccccc}
3 & 1 & 0 & 2 \\
0 & 2 & 1 & -5 \\
\hline
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 2
\end{array}\right)$$

Addition des 2-fachen von Zeile 3 zu Zeile 4 ergibt

$$\left(\begin{array}{cccc}
3 & 1 & 0 & 2 \\
0 & 2 & 1 & -5 \\
0 & 0 & 0 & -1 \\
\hline
0 & 0 & 0 & 0
\end{array}\right) = A'$$

A' ist eine Matrix in Zeilenstufenform mit den Stufenindizes $j_1 = 1, j_2 = 2, j_3 = 4$

$$A' = \begin{pmatrix} 3 & 1 & 0 & 2 \\ \hline 0 & 2 & 1 & -5 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

§2 Basen von Untervektorräumen $\langle v_1, v_2, \dots, v_m \rangle \subseteq K^n$

Lemma 1. Seien $A, A' \in M(m \times n, K)$, wobei A' aus A durch endlich viele elementare Zeilenumformungen hervorgeht. Dann

- (i) R(A) = R(A')
- (ii) $\operatorname{rk}(A) = \operatorname{rk}(A')$

Beweis. (i) Seien $a_1, a_2, \ldots, a_m \in K^n$ die Zeilenvektoren von A. Wir dürfen annehmen, daß A' aus A durch 1 elementare Zeilenumformung hervorgeht. Wir betrachten die drei elementaren Zeilenumformungen aus §1, Definition 1. Die Aussage R(A) = R(A') sind dann die drei folgenden einfach zu verifizierenden Aussagen

- (I) $\langle a_1, \dots, a_i, \dots, a_j, \dots, a_m \rangle = \langle a_1, \dots, a_j, \dots, a_i, \dots, a_m \rangle$ (II) $\langle a_1, \dots, a_i, \dots, a_m \rangle = \langle a_1, \dots, \lambda a_i, \dots, a_m \rangle$ (mit $\lambda \in K \{0\}$)
- (III) $\langle a_1, \ldots, a_i, \ldots, a_j, \ldots, a_m \rangle = \langle a_1, \ldots, a_i, \ldots, a_j + \lambda a_i, \ldots, a_m \rangle$ (mit $i \neq j, \lambda \in$

(ii)
$$\operatorname{rk}(A) = \dim R(A) = \dim R(A') = \operatorname{rk}(A').$$

Lemma 2. Sei $A \in M(m \times n, K)$ eine Matrix in Zeilenstufenform mit $A \neq 0$. Dann

- (i) Die von Null verschiedenen Zeilenvektoren von A bilden eine Basis von R(A).
- (ii) rk(A) stimmt überein mit der Anzahl der von Null verschiedenen Zeilenvektoren von A.
- (iii) Sei r die Anzahl der von Null verschiedenen Zeilenvektoren von A, seien $j_1, j_2, \ldots, j_r \in \{1, 2, \ldots, n\}$ die Stufenindizes von A und setze T := $\{1,2,\ldots,n\}-\{j_1,j_2,\ldots,j_r\}$. Sei (e_1,e_2,\ldots,e_n) die Standardbasis von K^n . Dann ist $\langle \{e_t \mid t \in T\} \rangle$ ein lineares Komplement von R(A) in K^n .

Beweis. (i) Sei

mit $a_{ij_i} \neq 0$ für i = 1, 2, ..., r. Seien $a_1, a_2, ..., a_m \in K^n$ die Zeilenvektoren von A. Dann $R(A) = \langle a_1, a_2, ..., a_r \rangle$. Wir haben zu zeigen, daß $(a_1, a_2, ..., a_r)$ linear unabhängig ist. Dazu seien $\lambda_1, \lambda_2, ..., \lambda_r \in K$ und setze

$$v := \lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_r a_r \in K^n$$

Wir haben zu zeigen, daß aus $v=0=(0,0,\dots,0)\in K^n$ folgt $\lambda_1=\lambda_2=\dots=\lambda_r=0\in K.$ Dazu

- $\lambda_1 a_{1j_1}$ ist die j_1 -te Koordinate von v, also $\lambda_1 a_{1j_1} = 0$. Da $a_{1j_1} \neq 0$, folgt $\lambda_1 = 0$.
- Da $\lambda_1=0$, ist $\lambda_2a_{2j_2}$ die j_2 -te Koordinate von v, also $\lambda_2a_{2j_2}=0$. Da $a_{2j_2}\neq 0$, folgt $\lambda_2=0$.
- Da $\lambda_1 = \lambda_2 = \ldots = \lambda_{r-1} = 0$, ist $\lambda_r a_{rj_r}$ die j_r -te Koordinate von v, also $\lambda_r a_{rj_r} = 0$. Da $a_{rj_r} \neq 0$, folgt $\lambda_r = 0$.
- (ii) folgt aus (i).

(iii) Wir benutzen die Notationen des Beweises von (i). Für jedes $k \in \{1, 2, ..., n\}$ definieren wir ein $b_k \in K^n$ durch

- Ist $k \in T = \{1, 2, \dots, n\} \{j_1, j_2, \dots, j_r\}$, so $b_k := e_k$
- $b_{j_1} := a_1, b_{j_2} := a_2, \dots, b_{j_r} := a_r$

Dann ist die Matrix $B = (b_{ij}) \in M(n \times n, K)$, deren Zeilenvektoren gerade b_1, b_2, \dots, b_n sind, eine Matrix in Zeilenstufenform

$$B = \begin{pmatrix} b_{11} & & & \\ & b_{22} & & \\ & & \ddots & \\ & & & | b_{nn} \end{pmatrix}$$

mit $b_{ii} \neq 0$ für i = 1, 2, ..., n. Nach (i) ist dann $(b_1, b_2, ..., b_n)$ linear unabhängig und somit eine Basis von K^n (I, §3, Proposition 13). Setze $T' := \{j_1, j_2, ..., j_r\}$. Nach I, §4, Lemma 4 gilt

$$K^n = \langle \{b_k \mid k \in T'\} \rangle \oplus \langle \{b_k \mid k \in T\} \rangle$$

Es ist $\langle \{b_k \mid k \in T'\} \rangle = R(A)$ und $\langle \{b_k \mid k \in T\} \rangle = \langle \{e_k \mid k \in T\} \rangle$.

Korollar 3. Sei $A \in M(m \times n, K)$ mit $A \neq 0$. Sei $A' \in M(m \times n, K)$ eine Matrix in Zeilenstufenform, die aus A' durch endlich viele elementare Zeilenumformungen hervorgeht (§1, Satz 3). Dann ist $A' \neq 0$ und es gilt

- (i) Die von Null verschiedenen Zeilenvektoren von A' bilden eine Basis von R(A).
- (ii) $\operatorname{rk}(A)$ stimmt überein mit der Anzahl der von Null verschiedenen Zeilenvektoren von A'.
- (iii) Sei r die Anzahl der von Null verschiedenen Zeilenvektoren von A', seien $j_1, j_2, \ldots, j_r \in \{1, 2, \ldots, n\}$ die Stufenindizes von A' und setze $T := \{1, 2, \ldots, n\} \{j_1, j_2, \ldots, j_r\}$. Sei (e_1, e_2, \ldots, e_n) die Standardbasis von K^n . Dann ist $\langle \{e_t \mid t \in T\} \rangle$ ein lineares Komplement von R(A) in K^n .

Beweis. Nach Lemma 1 gilt R(A) = R(A') und $\operatorname{rk}(A) = \operatorname{rk}(A')$. Insbesondere ist $A' \neq 0$. Wende Lemma 2 auf A' an.

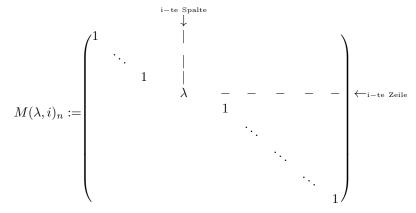
§3 Invertieren einer Matrix

Definition 1. Seien $n \in \mathbb{N}$ und K ein Körper. Wir definieren einige $(n \times n)$ -Matrizen über K (die Koeffizienten, die nicht aufgeführt und nicht durch Pünktchen angedeutet sind, sind gleich Null)

(I) Für
$$i, j \in \{1, 2, \dots, n\}$$
 mit $i \neq j$ setze

(N.B. Es gilt
$$P(i,j)_n = P(j,i)_n$$
).

(II) Für $i \in \{1, 2, ..., n\}$ und $\lambda \in K - \{0\}$ setze



(III) Für $i, j \in \{1, 2, \dots, n\}$ mit $i \neq j$ und $\lambda \in K$ setze

$$A(\lambda,i,j)_n := egin{pmatrix} 1 & & & \downarrow & & & \downarrow & & \downarrow & & \downarrow &$$

Die Matrizen $P(i,j)_n$, $M(\lambda,i)_n$, $A(\lambda,i,j)_n$ heißen Elementarmatrizen.

Lemma 2. Sei $A \in M(m \times n, K)$. Wir führen an A die elementaren Zeilen und Spaltenumformungen aus

- (I) Sei A_I die Matrix, die aus A durch Vertauschen der i-ten und j-ten Zeile entsteht $(i, j \in \{1, 2, ..., m\} \text{ mit } i \neq j)$.
- (II) Sei A_{II} die Matrix, die aus A durch Multiplikation der i-ten Zeile mit $\lambda \in K \{0\}$ ensteht $(i \in \{1, 2, ..., m\})$.
- (III) Sei A_{III} die Matrix, die aus A durch Addition des λ -fachen der i-ten Zeile zur j-ten Zeile ensteht $(i, j \in \{1, 2, ..., m\} \text{ mit } i \neq j \text{ und } \lambda \in K)$.
- (I') Sei $A_{I'}$ die Matrix, die aus A durch Vertauschen der i-ten und j-ten Spalte entsteht $(i, j \in \{1, 2, ..., n\} \text{ mit } i \neq j)$.
- (II') Sei $A_{II'}$ die Matrix, die aus A durch Multiplikation der i-ten Spalte mit $\lambda \in K \{0\}$ ensteht $(i \in \{1, 2, ..., n\})$.
- (III') Sei $A_{III'}$ die Matrix, die aus A durch Addition des λ -fachen der i-ten Spalte zur j-ten Spalte ensteht $(i, j \in \{1, 2, \dots, n\} \text{ mit } i \neq j \text{ und } \lambda \in K)$.

Es gilt

$$A_I = P(i,j)_m \cdot A \text{ und } A_{I'} = A \cdot P(i,j)_n$$

$$A_{II} = M(\lambda,i)_m \cdot A \text{ und } A_{II'} = A \cdot M(\lambda,i)_n$$

$$A_{III} = A(\lambda,j,i)_m \cdot A \text{ und } A_{III'} = A \cdot A(\lambda,i,j)_n$$

Beweis. Nachrechnen

Proposition 3. (Test auf Invertierbarkeit und Invertieren einer Matrix)

Sei $A \in M(n \times n, K)$. Sei $A' \in M(n \times n, K)$ eine Matrix in Zeilenstufenform, die aus A durch elementare Zeilenumformungen hervorgeht (§1, Satz 3). An A' können wir rk(A) ablesen (§2, Korollar 3). A ist invertierbar genau dann, wenn rk(A) = n (II, §4, Proposition 5).

Wir nehmen nun an, daß $\operatorname{rk}(A) = n$. Dann kann A' durch elementare Zeilenumformungen in die Einheitsmatrix E_n transformiert werden. Seien u_1, u_2, \ldots, u_ℓ die elementaren Zeilenumformungen, die durchgeführt wurden, um von A über A' zu E_n zu gelangen. Wir wenden u_1, u_2, \ldots, u_ℓ auf E_n an. Die dabei entstehende Matrix ist A^{-1} .

Beweis. Sei r die Anzahl der von Null verschiedenen Zeilen von A' und seien $1 \le j_1 < j_2 < \ldots < j_r \le n$ die Stufenindizes von A'. Wir nehmen an, daß $\mathrm{rk}(A) = n$. Dann ist r = n und somit $j_1 = 1, j_2 = 2, \ldots, j_n = n$. Also haben wir

$$A' = \begin{pmatrix} a'_{11} & & & \\ & a'_{22} & & \\ & & \ddots & \\ & & & a'_{nn} \end{pmatrix}$$

mit $a'_{ii} \neq 0$ für i = 1, 2, ..., n. Dann kann A' durch elementare Zeilenumformungen in E_n überführt werden.

Gemäß Lemma 2 ist eine elementare Zeilenumformung eine Multiplikation mit einer Elementarmatrix von links. Also gibt es Elementarmatrizen $B_1, B_2, \ldots, B_\ell \in M(n \times n, K)$ mit

$$E_n = B_{\ell} \cdot (\ldots \cdot (B_2 \cdot (B_1 \cdot A)) \ldots)$$

Mit der Assoziativität der Matrizenmultiplikation erhalten wir

$$E_n = (B_\ell \cdot \ldots \cdot B_2 \cdot B_1) \cdot A$$

Multiplikation dieser Gleichung mit A^{-1} ergibt

$$A^{-1} = (B_{\ell} \cdot \ldots \cdot B_2 \cdot B_1) \cdot E_n$$

also

$$A^{-1} = B_{\ell} \cdot (\dots \cdot (B_2 \cdot (B_1 \cdot E_n)) \dots)$$

Wieder mit Lemma 2 erhalten wir, daß A^{-1} durch Anwenden der elementaren Zeilenumformungen u_1, u_2, \ldots, u_ℓ auf E_n entsteht.

Beispiel. Wir wenden Proposition 3 auf die Matrix $A = \begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix}$ an.

$$A = \begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 4 & -1 \\ -3 & 1 \end{pmatrix} = A^{-1}$$

§4 Lineare Gleichungssysteme

Ein lineares Gleichungssystem über einem Körper K in den Unbestimmten x_1, x_2, \ldots, x_n bestehend aus m Gleichungen ist ein System von Gleichungen

$$(*) \begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n &= b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n &= b_m \end{cases}$$

mit $a_{ij},b_k\in K$. Gesucht ist die Menge aller $(x_1,x_2,\ldots,x_n)\in K^n$, die die Gleichungen in (*) erfüllen. Die Matrix $(a_{ij})_{i=1,2,\ldots,m\atop j=1,2,\ldots,n}\in M(m\times n,K)$ heißt die Koeffizientenmatrix von (*). Für das Gleichungssystem (*) schreiben wir $E((a_{ij})_{i=1,2,\ldots,m\atop j=1,2,\ldots,n},(b_1,\ldots,b_m))$. Die Lösungsmenge von (*), d.h. die Menge

$$\{(x_1,\ldots,x_n)\in K^n\mid (x_1,\ldots,x_n) \text{ genügt den Gleichungen von } (*)\}$$

wird mit $S((a_{ij})_{\substack{i=1,2,\ldots,m\\j=1,2,\ldots,n}},(b_1,\ldots,b_m))$ bezeichnet. Das Gleichungssystem (*) heißt homogen, wenn $b_1=b_2=\ldots=b_m=0$. Das homogene lineare Gleichungssystem

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= 0 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= 0 \end{cases}$$

heißt das zu (*) assoziierte homogene lineare Gleichungssystem.

Proposition 1. Sei $E(A, (b_1, \ldots, b_m))$ mit $A = (a_{ij})_{\substack{i=1,2,\ldots,m \ j=1,2,\ldots,n}}^{i=1,2,\ldots,m} \in M(m \times n, K)$ ein lineares Gleichungssystem über einem Körper K in n Unbestimmten bestehend aus m Gleichungen. Sei $E(A, (0, \ldots, 0))$ das dazu assoziierte homogene lineare Gleichungssystem. Für die Lösungsmengen gelten

- (i) S(A, (0, ..., 0)) ist ein Untervektorraum von K^n . Es gilt $\dim S(A, (0, ..., 0)) = n \operatorname{rk}(A)$.
- (ii) $S(A, (b_1, ..., b_m))$ ist entweder die leere Menge oder eine Nebenklasse des Untervektorraums S(A, (0, ..., 0)) von K^n . Ist also $S(A, (b_1, ..., b_m)) \neq \emptyset$ und $z \in S(A, (b_1, ..., b_m))$, so gilt $S(A, (b_1, ..., b_m)) = z + S(A, (0, ..., 0))$.

Beweis. Wir betrachten die lineare Abbildung

$$f: K^n \to K^m, (x_1, x_2, \dots, x_n) \mapsto (\sum_{j=1}^n a_{1j} x_j, \sum_{j=1}^n a_{2j} x_j, \dots, \sum_{j=1}^n a_{mj} x_j)$$

Also f ist die lineare Abbildung $L_{A,\mathcal{A},\mathcal{B}}:K^n\to K^m$ zu der Matrix A und den Standardbasen \mathcal{A} und \mathcal{B} von K^n und K^m . Es gilt

$$S(A, (0, \dots, 0)) = \ker(f)$$

$$S(A, (b_1, \ldots, b_m)) = f^{-1}((b_1, \ldots, b_m))$$

(i) Es gilt dim S(A, (0, ..., 0)) = n - rk(f) = n - rk(A), wobei die erste Gleichung nach II, §1, Satz 15 (Dimensionsformel für die lineare Abbildungen) und die zweite Gleichung nach II, §4, Proposition 4 gilt.

(ii) folgt aus II,
$$\S1$$
, Lemma 6.

Zur Bestimmung der Lösungsmenge eines linearen Gleichungssystems: Wir gehen aus von einem linearen Gleichungssystem $E(A, (b_1, ..., b_m))$ mit $A = (a_{ij})_{\substack{i=1,2,...,m\\j=1,2,...,n}} \in M(m \times n, K)$, also ein lineares Gleichungssystem über einem Körper K in n Unbestimmten bestehend aus m Gleichungen Wir nehmen an $A \neq 0$ Wir

K in n Unbestimmten bestehend aus m Gleichungen.Wir nehmen an $A \neq 0$. Wir wollen die Lösungsmenge $S(A, (b_1, \ldots, b_m)) \subseteq K^n$ untersuchen.

(I) Sind u_1, u_2, \ldots, u_ℓ elementare Zeilenumformungen und ergeben u_1, u_2, \ldots, u_ℓ angewandt auf A die Matrix $A' = (a'_{ij})_{\substack{i=1,2,\ldots,m\\j=1,2,\ldots,n}} \in M(m \times n, K)$

und angewandt auf die Matrix $\begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$ die Matrix $\begin{pmatrix} b'_1 \\ \vdots \\ b'_m \end{pmatrix}$, so erhalten

wir das lineare Gleichungssystem $E(A', (b'_1, \ldots, b'_m))$ und es gilt

$$S(A, (b_1, \dots, b_m)) = S(A', (b'_1, \dots, b'_m))$$

Beweis. Wir dürfen annehmen, daß $\ell=1$. Die Zeilenumformung u_1 ist vom Typ I, II oder III aus §1, Definition 1. Für jeden dieser drei Fälle läßt sich die Behauptung leicht verifizieren.

(II) Seien nun u_1, u_2, \ldots, u_ℓ so gewählt, daß A' von Zeilenstufenform ist (§1, Satz 3). Wir haben die linearen Gleichungssysteme $E(A, (b_1, \ldots, b_m))$, $E(A', (b'_1, \ldots, b'_m))$ und die assoziierten homogenen linearen Gleichungssysteme $E(A, (0, \ldots, 0)), E(A', (0, \ldots, 0))$. Nach (I) gilt

$$S(A, (b_1, \dots, b_m)) = S(A', (b'_1, \dots, b'_m))$$

$$S(A, (0, \dots, 0)) = S(A', (0, \dots, 0))$$

Deshalb werden wir im folgenden mit den Gleichungssystemen $E(A', (b'_1, \ldots, b'_m))$ und $E(A', (0, \ldots, 0))$ arbeiten.

Sei $r \in \{1,2,\ldots,m\}$ die Anzahl der von Null verschiedenen Zeilen von A' (N.B. r ist der Rang von A und A' (nach §2, Korollar 3)). Seien $j_1,j_2,\ldots,j_r \in \{1,2,\ldots,n\}$

die Stufenindizes von A'. Also

Wir setzen $T := \{1, 2, \dots, n\} - \{j_1, j_2, \dots, j_r\}.$

Der Rechenaufwand in den nachfolgenden Punkten minimiert sich (genauer: = Null), wenn A' so gewählt ist, daß für jedes $k \in \{1,2,\ldots,r\}$ gilt $a'_{k,j_k}=1$ und $a'_{i,j_k}=0$ für alle i < k ("Matrix von spezieller Zeilenstufenform"). Dies wird hier aber nicht vorausgesetzt.

(III) Es ist $S(A', (b'_1, \dots, b'_m)) \neq \emptyset$ genau dann, wenn für jedes i mit $r+1 \leq i \leq m$ gilt $b'_i = 0$.

Beweis. Für jedes i mit $r+1 \leq i \leq m$ lautet die i-te Gleichung des Gleichungssystems $E(A', (b'_1, \ldots, b'_m))$

$$0x_1 + 0x_2 + \ldots + 0x_n = b_i'$$

und somit ist $0 = b_i'$, wenn $S(A', (b_1', \dots, b_m')) \neq \emptyset$. Im nachfolgenden Punkt (IV) werden wir zeigen, daß $S(A', (b_1', \dots, b_m')) \neq \emptyset$, wenn für jedes i mit $r+1 \leq i \leq m$ gilt $b_i' = 0$.

Ab jetzt nehmen wir an, daß $b'_i = 0$ für alle i mit $r + 1 \le i \le m$.

(IV) Ist für jedes $i \in T$ ein $x_i \in K$ gegeben, so gibt es eindeutig bestimmte $x_{j_1}, x_{j_2}, \ldots, x_{j_r} \in K$, so daß $(x_1, x_2, \ldots, x_n) \in S(A', (b'_1, \ldots, b'_m))$.

Beweis. Die Definition von $x_{j_1}, x_{j_2}, \dots, x_{j_r}$ erfolgt in der Reihenfolge $x_{j_r}, x_{j_{r-1}}, \dots, x_{j_1}$.

- Da $a'_{rj_r} \neq 0$, gibt es ein eindeutig bestimmtes $x_{j_r} \in K$, so daß $x_{j_r}, x_{j_{r+1}}, \ldots, x_n$ die r-te Gleichung von $E(A', (b'_1, \ldots, b'_m))$ erfüllen.
- Da $a'_{r-1,j_{r-1}} \neq 0$, gibt es ein eindeutig bestimmtes $x_{j_{r-1}} \in K$, so daß $x_{j_{r-1}}, x_{j_{r-1}+1}, \ldots, x_n$ die (r-1)-te Gleichung von $E(A', (b'_1, \ldots, b'_m))$ erfüllen.

:

• Da $a'_{1j_1} \neq 0$, gibt es ein eindeutig bestimmtes $x_{j_1} \in K$, so daß $x_{j_1}, x_{j_1+1}, \ldots, x_n$ die 1-te Gleichung von $E(A', (b'_1, \ldots, b'_m))$ erfüllen.

Die *i*-te Gleichung von $E(A', (b'_1, \dots, b'_m))$ für $r+1 \le i \le m$ ist erfüllt, da $b'_i = 0$.

- (V) Für jedes $i \in T$ setze $x_i := 0 \in K$. Nach (IV) gibt es eindeutig bestimmte $x_{j_1}, x_{j_2}, \ldots, x_{j_r} \in K$, so daß $z := (x_1, x_2, \ldots, x_n) \in S(A', (b'_1, \ldots, b'_m))$. Dadurch ist ein Element von $S(A', (b'_1, \ldots, b'_m)) = S(A, (b_1, \ldots, b_m))$ bestimmt
- (VI) Es ist $r \leq n$. Es ist r = n genau dann, wenn $|S(A', (b'_1, \ldots, b'_m))| = 1$ (und das Element von $S(A', (b'_1, \ldots, b'_m))$ wurde in (V) bestimmt).

1. Beweis. Da $1 \le j_1 < j_2 < \ldots < j_r \le n$, folgt $r \le n$. Es ist r = n genau dann, wenn $T = \emptyset$ (und es ist dann $j_1 = 1, j_2 = 2, \ldots, j_n = n$). Nach (IV) ist das letztere genau dann erfüllt, wenn $|S(A', (b'_1, \ldots, b'_m))| = 1$.

2. Beweis. Proposition 1. Beachte, daß r der Rang von A' ist. \square

Ab jetzt nehmen wir an, daß r < n. Beachte, daß |T| = n - r.

(VII) Nach der Aussage von (IV) (angewandt auf das lineare Gleichungssystem $E(A',(0,\ldots,0))$) gibt es zu jedem $(a_i|i\in T)\in K^{n-r}$ eindeutig bestimmte $a_{j_1},a_{j_2},\ldots,a_{j_r}\in K$, so daß $(a_1,a_2,\ldots,a_n)\in S(A',(0,\ldots,0))$. Damit erhalten wir die Abbildung

$$f: K^{n-r} \to S(A', (0, \dots, 0)), (a_i | i \in T) \mapsto (a_1, a_2, \dots, a_n)$$

Nach Proposition 1 (i) ist S(A', (0, ..., 0)) ein Untervektorraum von K^n . Es gilt: f ist ein Isomorphismus.

Beweis. Für die Abbildung

$$g: S(A', (0, ..., 0)) \to K^{n-r}, (x_1, x_2, ..., x_n) \mapsto (x_i | i \in T)$$

gilt $f \circ g = \text{id}$ (aufgrund der Eindeutigkeit von $a_{j_1}, a_{j_2}, \ldots, a_{j_r}$) und $g \circ f = \text{id}$. Also sind f und g bijektiv und $f = g^{-1}$. Da g linear ist, folgt, daß f linear ist (II, §1, Lemma 3 (iv)).

- (VIII) Aus (VII) (und II, §1, Proposition 8 (iv)) folgt, daß für jede Basis (v_1,v_2,\ldots,v_{n-r}) von K^{n-r} das Tupel $(f(v_1),f(v_2),\ldots,f(v_{n-r}))$ eine Basis von $S(A',(0,\ldots,0))$ ist. Wenden wir dies insbesondere auf die Standardbasis von K^{n-r} an, so erhalten wir eine Basis (z_1,z_2,\ldots,z_{n-r}) von $S(A',(0,\ldots,0))=S(A,(0,\ldots,0))$.
 - (IX) Mit dem Element z von $S(A, (b_1, \ldots, b_m))$ aus (V) und der Basis $(z_1, z_2, \ldots, z_{n-r})$ von $S(A, (0, \ldots, 0))$ aus (VIII) erhalten wir nach Proposition 1 (ii) die folgende Beschreibung von $S(A, (b_1, \ldots, b_m))$

$$S(A, (b_1, \dots, b_m)) = z + \langle z_1, \dots, z_{n-r} \rangle$$

= $\{z + \lambda_1 z_1 + \dots + \lambda_{n-r} z_{n-r} \mid \lambda_1, \dots, \lambda_{n-r} \in K\}$

Beispiel. Wir wollen die Lösungsmenge des linearen Gleichungssystems über dem Körper $\mathbb Q$

$$\begin{cases}
 x_1 + 2x_2 + x_3 + x_4 &= 0 \\
 -2x_3 + 4x_4 &= 2 \\
 -x_1 - 2x_2 + x_3 - 5x_4 &= -2
\end{cases}$$

bestimmen. Dies geschieht in 5 Schritten.

(1) Transformation der Koeffizientenmatrix von (*) durch elementare Zeilenumformungen in eine Matrix in (spezieller) Zeilenstufenform (cf. (I), (II)):

$$\begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & 0 & -2 & 4 \\ -1 & -2 & 1 & -5 \end{pmatrix} \quad \text{und} \quad \begin{pmatrix} 0 \\ 2 \\ -2 \end{pmatrix}$$

Addition von Zeile 1 zu Zeile 3 und Addition von Zeile 2 zu Zeile 3 ergeben

$$\begin{pmatrix}
1 & 2 & 1 & 1 \\
0 & 0 & -2 & 4 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
 und
$$\begin{pmatrix}
0 \\
2 \\
0
\end{pmatrix}$$

Multiplikation von Zeile 2 mit $-\frac{1}{2}$ und anschließende Subtraktion von Zeile 2 von Zeile 1 ergeben

$$A' := \begin{pmatrix} \boxed{1 & 2 & 0 & 3} \\ \boxed{0 & 0} & \boxed{1 & -2} \\ 0 & 0 & \boxed{0 & 0} \end{pmatrix} \quad \text{und} \quad \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} =: b'$$

Wir betrachten das lineare Gleichungssystem zu A' und b'

$$(*)' \begin{cases} x_1 + 2x_2 + 3x_4 = 1 \\ x_3 - 2x_4 = -1 \end{cases}$$

Die beiden Gleichungssysteme (*) und (*)' haben dieselbe Lösungsmenge.

- (2) Das lineare Gleichungsystem (*)' hat eine Lösung, da für jedes $i \in \{1, 2, 3\}$ gilt: Ist die *i*-te Zeile von A' gleich Null, so ist auch die *i*-te Zeile von b' gleich Null. (cf. (III)).
- (3) Bestimmung einer Lösung von (*)' (cf. (V)): Da $j_1 = 1$ und $j_2 = 3$ die Stufenindizes von A' sind, sind x_2 und x_4 frei wählbar (cf. (IV)). Wir wählen $x_2 = 0$ und $x_4 = 0$, und berechnen $x_3 = -1$ und $x_1 = 1$. Also ist (1, 0, -1, 0) eine Lösung von (*)' und damit auch von (*).
- (4) Bestimmung einer Basis der Lösungsmenge des homogenen linearen Gleichungssystems $(*)'_h$ assoziiert zu (*)' (cf. (VIII)):

$$(*)'_h$$
 $\begin{cases} x_1 + 2x_2 + 3x_4 = 0 \\ x_3 - 2x_4 = 0 \end{cases}$

 x_2 und x_4 sind frei wählbar (cf. (VII)). Wir wählen $x_2 = 1$ und $x_4 = 0$, und berechnen $x_3 = 0$ und $x_1 = -2$ und erhalten (-2, 1, 0, 0). Wir wählen $x_2 = 0$ und $x_4 = 1$, und berechnen $x_3 = 2$ und $x_1 = -3$ und erhalten (-3, 0, 2, 1). Also ist ((-2, 1, 0, 0), (-3, 0, 2, 1)) eine Basis der Lösungsmenge von $(*)'_h$, die mit der Lösungsmenge des zu (*) assoziierten homogenen linearen Gleichungssystems übereinstimmt.

(5) Die Lösungsmenge S((*)) von (*) ist (cf. (IX))

$$\begin{array}{lcl} S((*)) & = & (1,0,-1,0) + \langle (-2,1,0,0), (-3,0,2,1) \rangle \\ & = & \{ (1,0,-1,0) + \lambda_1(-2,1,0,0) + \lambda_2(-3,0,2,1) \mid \lambda_1,\lambda_2 \in \mathbb{Q} \} \end{array}$$

IV Determinante

§1 Permutationen

Definition 1. Sei $n \in \mathbb{N}$. Die Menge aller bijektiven Abbildungen $\{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ wird mit S_n bezeichnet. Für $\sigma, \tau \in S_n$ setze

$$\sigma \cdot \tau := \sigma \circ \tau \in S_n$$

mit $\sigma \circ \tau$ die Komposition der beiden Abbildungen σ und τ . Das Paar (S_n, \cdot) ist eine Gruppe. Sie heißt die *symmetrische Gruppe* der Menge $\{1, 2, \ldots, n\}$, die Elemente von S_n heißen die *Permutationen* der Menge $\{1, 2, \ldots, n\}$. Das neutrale Element der Gruppe (S_n, \cdot) ist die Identität id der Menge $\{1, 2, \ldots, n\}$ und das Inverse zu einem $\sigma \in S_n$ in der Gruppe (S_n, \cdot) ist die Umkehrabbildung σ^{-1} . (Die Gruppe (S_n, \cdot) wurde schon in I, §1 betrachtet).

Definition 2. Ein $\sigma \in S_n$ heißt *Transposition*, wenn es $a, b \in \{1, 2, ..., n\}$ mit $a \neq b$ gibt, so daß σ die Elemente a, b vertauscht und alle anderen Elemente von $\{1, 2, ..., n\}$ fest läßt, d.h. $\sigma(a) = b$ und $\sigma(b) = a$ und $\sigma(k) = k$ für jedes $k \in \{1, 2, ..., n\} - \{a, b\}$. Schreibe dafür $\sigma = (a \ b)$. Eine Transposition $(a \ b)$ heißt speziell, wenn die natürlichen Zahlen a, b benachbart sind, d.h. |a - b| = 1.

Für jede Transposition $\sigma \in S_n$ gilt $\sigma \cdot \sigma = \mathrm{id}$, also $\sigma^{-1} = \sigma$.

Proposition 3. Sei $n \in \mathbb{N}$ mit $n \geq 2$.

- (i) Jede Transposition $(a \ b) \in S_n$ ist ein Produkt von 2r-1 speziellen Transpositionen mit $r := |a b| \in \mathbb{N}$.
- (ii) Jedes Element von S_n ist ein Produkt spezieller Transpositionen.

Beweis. (i) Wir führen Induktion nach $r \in \mathbb{N}$.

r=1: Dann ist $(a\ b)$ eine spezielle Transposition und wir sind fertig.

 $r \to r+1$: Sei $(a\ b) \in S_n$ mit $|a-b|=r+1 (\geq 2)$. Wir dürfen annehmen, daß a < b und damit $a \leq b-2$. Betrachte a < c := a+1 < b. Es gilt $(a\ b) = (a\ c)(c\ b)(a\ c)$. Nach Induktionsvoraussetzung ist $(c\ b)$ ein Produkt von 2r-1 speziellen Transpositionen. Dann ist $(a\ b)$ ein Produkt von (2r-1)+2=2(r+1)-1 speziellen Transpositionen.

(ii) Nach (i) genügt es zu zeigen, daß jedes Element von S_n ein Produkt von Transpositionen ist. Dies zeigen wir durch Induktion nach n.

n=2: Es ist $S_2=\{\mathrm{id},\sigma\}$ mit σ eine Transposition und $\mathrm{id}=\sigma\cdot\sigma$. $n\to n+1$: Setze

$$S'_{n+1} := \{ \sigma \in S_{n+1} \mid \sigma(n+1) = n+1 \} \subseteq S_{n+1}$$

Wir haben die Abbildungen

$$S'_{n+1} \to S_n, \sigma \mapsto \overline{\sigma}$$

 $S_n \to S'_{n+1}, \tau \mapsto \tilde{\tau}$

wobei $\overline{\sigma} := \sigma | \{1, 2, \dots, n\}$ und $\tilde{\tau} : \{1, 2, \dots, n+1\} \rightarrow \{1, 2, \dots, n+1\}$ die Abbildung ist mit $\tilde{\tau}(x) = \tau(x)$ für jedes $x \in \{1, 2, \dots, n\}$ und $\tilde{\tau}(n+1) = n+1$.

Ist $\sigma \in S'_{n+1}$, so gibt es nach Induktionsvoraussetzung Transpositionen $\tau_1, \tau_2, \dots, \tau_m \in S_n$ mit $\overline{\sigma} = \tau_1 \cdot \tau_2 \cdot \dots \cdot \tau_m$, woraus sich ergibt $\sigma = (\overline{\sigma})^{\sim} = (\tau_1)^{\sim} \cdot (\tau_2)^{\sim} \cdot \dots \cdot (\tau_m)^{\sim}$

und $(\tau_1)^{\sim}, (\tau_2)^{\sim}, \dots, (\tau_m)^{\sim} \in S_{n+1}$ sind Transpositionen. Also ist jedes $\sigma \in S'_{n+1}$ ein Produkt von Transpositionen.

Sei nun $\sigma \in S_{n+1} - S'_{n+1}$. Dann ist $\sigma(n+1) \neq n+1$. Sei $\tau \in S_{n+1}$ die Transposition, die n+1 und $\sigma(n+1)$ vertauscht. Dann ist $\tau \cdot \sigma \in S'_{n+1}$ und wie eben gezeigt, gibt es Transpositionen $\sigma_1, \sigma_2, \ldots, \sigma_m \in S_{n+1}$ mit

$$\tau \cdot \sigma = \sigma_1 \cdot \sigma_2 \cdot \ldots \cdot \sigma_m,$$

woraus sich ergibt $\sigma = \tau \cdot \sigma_1 \cdot \sigma_2 \cdot \ldots \cdot \sigma_m$. Damit ist gezeigt, daß σ ein Produkt von Transpositionen ist.

Definition 4. Für jedes $\sigma \in S_n$ definiert man das Signum von σ , bezeichnet mit $sign(\sigma)$, durch

$$sign(\sigma) := (-1)^{t_{\sigma}} \in \{1, -1\}$$

wobei

$$t_{\sigma} := |\{(i,j) \in \{1,\ldots,n\} \times \{1,\ldots,n\} \mid i < j \text{ und } \sigma(i) > \sigma(j)\}| \in \mathbb{N}_0$$

Ein Paar (i, j) mit i < j und $\sigma(i) > \sigma(j)$ heißt Fehlstand von σ .

Proposition 5.

- (i) Für alle $\sigma, \tau \in S_n$ gilt $sign(\tau \sigma) = sign(\tau) \cdot sign(\sigma)$.
- (ii) Es ist sign(id) = 1.
- (iii) Für jedes $\sigma \in S_n$ gilt $sign(\sigma^{-1}) = sign(\sigma)$.
- (iv) Für jede Transposition $\sigma \in S_n$ gilt $sign(\sigma) = -1$.

Beweis. (i) Setze

$$M_1: = \{(i,j)|i < j \text{ und } \sigma(i) < \sigma(j) \text{ und } \tau(\sigma(i)) > \tau(\sigma(j))\}$$

$$M_2: = \{(i,j)|i < j \text{ und } \sigma(i) > \sigma(j) \text{ und } \tau(\sigma(i)) > \tau(\sigma(j))\}$$

$$M_3: = \{(i,j)|i < j \text{ und } \sigma(i) > \sigma(j) \text{ und } \tau(\sigma(i)) < \tau(\sigma(j))\}$$

Dann gelten

- (1) $M_1 \cap M_2 = \emptyset$ und $M_1 \cup M_2 = \{(i, j) | i < j \text{ und } \tau(\sigma(i)) > \tau(\sigma(j)) \}$
- (2) $M_2 \cap M_3 = \emptyset$ und $M_2 \cup M_3 := \{(i, j) | i < j \text{ und } \sigma(i) > \sigma(j) \}$
- (3) Setzen wir

$$\begin{array}{lcl} M_1': & = & \{(i,j)|i < j \text{ und } \sigma^{-1}(i) < \sigma^{-1}(j) \text{ und } \tau(i) > \tau(j)\} \\ M_3': & = & \{(i,j)|i < j \text{ und } \sigma^{-1}(i) > \sigma^{-1}(j) \text{ und } \tau(i) > \tau(j)\} \end{array}$$

so ist $M_1' \cap M_3' = \emptyset$ und $M_1' \cup M_3' = \{(i,j)|i < j \text{ und } \tau(i) > \tau(j)\}$ und gibt es bijektive Abbildungen $M_1 \overset{\sim}{\to} M_1'$ und $M_3 \overset{\sim}{\to} M_3'$.

(Zur Existenz der bijektiven Abbildungen: Wir haben die Abbildungen

$$\begin{array}{cccc} f_1: M_1 \longrightarrow M_1' & , & (i,j) \longmapsto (\sigma(i),\sigma(j)) \\ f_3: M_3 \longrightarrow M_3' & , & (i,j) \longmapsto (\sigma(j),\sigma(i)) \end{array}$$

und die Abbildungen

$$\begin{array}{lll} g_1: M_1' \longrightarrow M_1 &, & (i,j) \longmapsto (\sigma^{-1}(i),\sigma^{-1}(j)) \\ g_3: M_3' \longrightarrow M_3 &, & (i,j) \longmapsto (\sigma^{-1}(j),\sigma^{-1}(i)) \end{array}$$

Es ist $f_1 \circ g_1 = \mathrm{id}$, $g_1 \circ f_1 = \mathrm{id}$ und $f_3 \circ g_3 = \mathrm{id}$, $g_3 \circ f_3 = \mathrm{id}$. Also sind f_1 und f_3 bijektiv).

Aus (1),(2),(3) folgt

$$(1')$$
 $t_{\tau\sigma} = |M_1| + |M_2|$

$$(2')$$
 $t_{\sigma} = |M_2| + |M_3|$

(3')
$$t_{\tau} = |M_1'| + |M_3'| = |M_1| + |M_3|$$

Also

$$t_{\tau\sigma} = t_{\tau} + t_{\sigma} - 2 \cdot |M_3|$$

und somit $\operatorname{sign}(\tau\sigma) = (-1)^{t_{\tau\sigma}} = (-1)^{t_{\tau}}(-1)^{t_{\sigma}} = \operatorname{sign}(\tau)\operatorname{sign}(\sigma).$

- (ii) Es ist $t_{id} = 0$ und somit sign(id) = $(-1)^{t_{id}} = (-1)^0 = 1$.
- (iii) Nach (i) und (ii) gilt $1 = \text{sign}(\text{id}) = \text{sign}(\sigma^{-1}\sigma) = \text{sign}(\sigma^{-1})\text{sign}(\sigma)$, woraus folgt $\text{sign}(\sigma^{-1}) = \text{sign}(\sigma)$.
- (iv) Ist σ eine spezielle Transposition $\sigma = (a \ b)$ (mit a < b), so hat σ genau einen Fehlstand, nämlich (a,b), und somit ist $sign(\sigma) = (-1)^{t_{\sigma}} = (-1)^{1} = -1$.

Ist σ eine Transposition, so gilt $\sigma = \sigma_1 \sigma_2 \cdot \ldots \cdot \sigma_n$ mit $\sigma_1, \sigma_2, \ldots, \sigma_n$ spezielle Transpositionen und n von der Form 2r-1 (Proposition 3 (i)) und somit gilt nach (i) $\operatorname{sign}(\sigma) = \operatorname{sign}(\sigma_1) \cdot \operatorname{sign}(\sigma_2) \cdot \ldots \cdot \operatorname{sign}(\sigma_n) = (-1)^n = -1$.

§2 Matrizen über Ringen

Seien R ein kommutativer Ring mit Einselement und $m, n \in \mathbb{N}$. Eine $m \times n$ -Matrix über R ist eine Abbildung $A: \{1, 2, \ldots, m\} \times \{1, 2, \ldots, n\} \to R$. Ist $a_{ij} \in R$ das Bild von $(i, j) \in \{1, 2, \ldots, m\} \times \{1, 2, \ldots, n\}$ unter A, so schreibt man statt A auch $(a_{ij})_{\substack{i=1,2,\ldots,m\\j=1,2,\ldots,m}}$. $M(m \times n, R)$ bezeichnet die Menge aller $m \times n$ -Matrizen über R.

Verknüpfungen (analog zu II, §2)

- Für $A, B \in M(m \times n, R)$ hat man $A + B \in M(m \times n, R)$.
- Für $\lambda \in R$ und $A \in M(m \times n, R)$ hat man $\lambda \cdot A \in M(m \times n, R)$.
- Für $A \in M(m \times n, R)$ und $B \in M(n \times \ell, R)$ hat man $A \cdot B \in M(m \times \ell, R)$.

Alle Aussagen und Definitionen in II, §2 nach Proposition 1 gelten analog für $M(m \times n, R)$ statt $M(m \times n, K)$.

Insbesondere haben wir: Für jedes $n \in \mathbb{N}$ ist das Tripel $(M(n \times n, R), +, \cdot)$ (mit die Multiplikation) ein Ring mit Einselement. Das Einselement ist die Matrix E_n mit

$$E_n := \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & 0 \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & 0 & 1 \end{pmatrix} \in M(n \times n, R)$$

Die Einheiten dieses Rings heißen die invertierbaren $n \times n$ -Matrizen über R. Also eine Matrix $A \in M(n \times n, R)$ ist invertierbar genau dann, wenn es ein $B \in M(n \times n, R)$ mit $A \cdot B = E_n = B \cdot A$ gibt. B ist eindeutig durch A bestimmt. Man setzt $A^{-1} := B$. Die Menge aller invertierbaren Matrizen von $M(n \times n, R)$ wird mit GL(n, R) bezeichnet.

§3 Existenz und Eindeutigkeit der Determinante und einige Eigenschaften der Determinante

Für den gesamten Paragraph seien ein kommutativer Ring R mit Einselement und ein $n \in \mathbb{N}$ gegeben.

Für $a_1, a_2, \ldots, a_n \in \mathbb{R}^n$ bezeichnet

$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

die $n \times n$ -Matrix über R, deren i-ter Zeilenvektor gerade a_i ist (für i = 1, 2, ..., n).

Definition 1. Eine *Determinante* auf $M(n \times n, R)$ ist eine Abbildung

$$\det: M(n \times n, R) \to R, \ A \mapsto \det A$$

für die gilt

(I) det ist multilinear in den Zeilen, d.h. für jedes $i \in \{1, 2, ..., n\}$ und alle $a_1, ..., a_{i-1}, a_{i+1}, ..., a_n \in \mathbb{R}^n$ ist die Abbildung

$$R^n \to R, \ x \mapsto \det \begin{pmatrix} a_1 \\ \vdots \\ a_{i-1} \\ x \\ a_{i+1} \\ \vdots \\ a_n \end{pmatrix}$$

linear, d.h. für alle $x, y \in \mathbb{R}^n$ und $\lambda \in \mathbb{R}$ gilt

$$\det \begin{pmatrix} a_1 \\ \vdots \\ a_{i-1} \\ x+y \\ a_{i+1} \\ \vdots \\ a_n \end{pmatrix} = \det \begin{pmatrix} a_1 \\ \vdots \\ a_{i-1} \\ x \\ a_{i+1} \\ \vdots \\ a_n \end{pmatrix} + \det \begin{pmatrix} a_1 \\ \vdots \\ a_{i-1} \\ y \\ a_{i+1} \\ \vdots \\ a_n \end{pmatrix}$$

und

$$\det \begin{pmatrix} a_1 \\ \vdots \\ a_{i-1} \\ \lambda x \\ a_{i+1} \\ \vdots \\ a_n \end{pmatrix} = \lambda \cdot \det \begin{pmatrix} a_1 \\ \vdots \\ a_{i-1} \\ x \\ a_{i+1} \\ \vdots \\ a_n \end{pmatrix}$$

(II) det ist alternierend in den Zeilen, d.h. ist $A \in M(n \times n, R)$ eine Matrix, so daß zwei benachbarte Zeilen von A übereinstimmen, so gilt det A = 0. Genauer: Sind $a_1, a_2, \ldots, a_n \in R^n$ und gibt es ein i mit $1 \le i \le n-1$ und $a_i = a_{i+1}$, so ist

$$\det \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = 0$$

(III) $\det E_n = 1$.

Beispiel 2. Wir betrachten den Fall n=1. Es gibt genau eine Determinante auf $M(1\times 1,R)$, und diese ist die Abbildung det : $M(1\times 1,R)\to R$, $(a)\mapsto a$.

Beweis. Die angegebene Abbildung hat die Eigenschaften (I),(II),(III) aus Definition 1 und ist somit eine Determinante auf $M(1 \times 1, R)$.

Ist $f: M(1 \times 1, R) \to R$ eine Determinante auf $M(1 \times 1, R)$, so gilt $f((a)) = f((a \cdot 1)) = a \cdot f((1))$ (nach (I)) und f((1)) = 1 (nach (III)) und somit f((a)) = a, also $f = \det$.

Satz 3. Sei det : $M(n \times n, R) \to R$ eine Abbildung, die multilinear und alternierend in den Zeilen ist, d.h. die (I) und (II) in Definition 1 erfüllt. Dann gelten

(i) Ist $A \in M(n \times n, R)$ und ensteht $A' \in M(n \times n, R)$ aus A durch Anwenden einer Permutation $\sigma \in S_n$ auf die Zeilen von A, so gilt det $A' = \operatorname{sign}(\sigma) \cdot \det A$. Genauer: Sind $a_1, a_2, \ldots, a_n \in R^n$ und $\sigma \in S_n$, so gilt

$$\det \begin{pmatrix} a_{\sigma(1)} \\ a_{\sigma(2)} \\ \vdots \\ a_{\sigma(n)} \end{pmatrix} = \operatorname{sign}(\sigma) \cdot \det \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

(ii) Ist $A \in M(n \times n, R)$, so daß zwei Zeilen von A übereinstimmen, so gilt det A = 0. Genauer: Sind $a_1, a_2, \ldots, a_n \in R^n$ und gibt es $i, j \in \{1, 2, \ldots, n\}$ mit $i \neq j$ und $a_i = a_j$, so gilt

$$\det \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = 0$$

- (iii) Sei $A \in M(n \times n, R)$. Wir wenden auf A die elementaren Zeilenumformungen an:
 - (I) Entsteht $A' \in M(n \times n, R)$ aus A durch Vertauschen zweier Zeilen von A, so ist $\det A' = -\det A$.
 - (II) Entsteht $A' \in M(n \times n, R)$ aus A durch Multiplikation einer Zeile von A mit $\lambda \in R$, so ist $\det A' = \lambda \cdot \det A$.
 - (III) Entsteht $A' \in M(n \times n, R)$ aus A durch Addition des λ -fachen (mit $\lambda \in R$) einer Zeilen von A zu einer anderen Zeile von A, so ist det $A' = \det A$.

Beweis. (i) Zunächst zeigen wir

(*) Ist $A \in M(n \times n, R)$ und entsteht $A' \in M(n \times n, R)$ durch Vertauschen zweier benachbarter Zeilen von A, so gilt det $A' = -\det A$.

Denn: Seien ein i mit $1 \le i \le n-1$ und $a_1, \ldots, a_{i-1}, a_{i+2}, \ldots, a_n \in \mathbb{R}^n$ gegeben. Für $x, y \in \mathbb{R}^n$ setze

$$f(x,y) := \det \begin{pmatrix} a_1 \\ \vdots \\ a_{i-1} \\ x \\ y \\ a_{i+2} \\ \vdots \\ a_n \end{pmatrix}$$

Wir haben zu zeigen f(x,y) = -f(y,x). Dazu: Nach Definition 1 (I) gilt f(x+y,x+y) = f(x,x+y) + f(y,x+y) = f(x,x) + f(x,y) + f(y,x) + f(y,y). Nach Definition 1 (II) gilt f(x+y,x+y) = f(x,x) = f(y,y) = 0. Dann folgt f(x,y) = -f(y,x). Damit ist (*) bewiesen.

Nach §1, Proposition 3 können wir für das σ in (i) schreiben $\sigma = \sigma_1 \sigma_2 \cdot \ldots \cdot \sigma_m$ mit $\sigma_1, \sigma_2 \ldots, \sigma_m \in S_n$ spezielle Transpositionen. Nach (*) erhalten wir

$$\det \begin{pmatrix} a_{\sigma(1)} \\ a_{\sigma(2)} \\ \vdots \\ a_{\sigma(n)} \end{pmatrix} = (-1)^m \cdot \det \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

Nach §1, Proposition 5 gilt $\operatorname{sign}(\sigma) = \operatorname{sign}(\sigma_1) \cdot \operatorname{sign}(\sigma_2) \cdot \ldots \cdot \operatorname{sign}(\sigma_m)$ und $\operatorname{sign}(\sigma_1) = \operatorname{sign}(\sigma_2) = \ldots = \operatorname{sign}(\sigma_m) = -1$, also $\operatorname{sign}(\sigma) = (-1)^m$. Mit (**) folgt die Behauptung von (i).

(iii)(I) Für jede Transposition $\sigma \in S_n$ gilt $sign(\sigma) = -1$ (§1, Proposition 5). Deshalb erhalten wir (iii)(I), indem wir (i) anwenden mit σ eine Transposition.

(ii) Sei $A \in M(n \times n, R)$ und es gebe $i, j \in \{1, 2, \dots, n\}$, so daß $i \neq j$ und die i-te und j-te Zeile von A übereinstimmen. Sind i, j benachbart (d.h. |i-j|=1), so gilt det A=0 nach Definition 1 (II). Seien nun i, j nicht benachbart. Wir dürfen annehmen, daß i < j. Sei $A' \in M(n \times n, R)$ die Matrix, die aus A durch Vertauschung der i-ten und (j-1)-ten Zeile von A entsteht. Nach der schon bewiesenen Aussage (iii)(I) gilt det A'=- det A. Die (j-1)-te und j-te Zeile von A' stimmen überein. Deshalb det A'=0. Dann folgt det A=0.

(iii)(II) gilt nach Definition 1 (I).

(iii)(III) Seien $a_1, a_2, \ldots, a_n \in \mathbb{R}^n, \lambda \in \mathbb{R}$ und $i, j \in \{1, 2, \ldots, n\}$ mit $i \neq j$. Dann

$$\det \begin{pmatrix} \vdots \\ a_i \\ \vdots \\ a_j + \lambda a_i \\ \vdots \end{pmatrix} = \det \begin{pmatrix} \vdots \\ a_i \\ \vdots \\ a_j \\ \vdots \end{pmatrix} + \det \begin{pmatrix} \vdots \\ a_i \\ \vdots \\ \lambda a_i \\ \vdots \end{pmatrix} =$$

$$= \det \begin{pmatrix} \vdots \\ a_i \\ \vdots \\ a_j \\ \vdots \end{pmatrix} + \lambda \cdot \det \begin{pmatrix} \vdots \\ a_i \\ \vdots \\ a_i \\ \vdots \end{pmatrix} = \det \begin{pmatrix} \vdots \\ a_i \\ \vdots \\ a_j \\ \vdots \end{pmatrix}$$

wobei die erste und zweite Gleichung nach Definition 1 (I) und die letzte Gleichung nach (ii) gelten. $\hfill\Box$

Satz 4. (Eindeutigkeit der Determinante und Leibnizformel)

Ist det : $M(n \times n, R) \to R$ eine Determinante auf $M(n \times n, R)$, so gilt für jede Matrix $A = (a_{ij}) \in M(n \times n, R)$

$$\det A = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdot \ldots \cdot a_{n\sigma(n)}$$

Diese Formel heißt Leibnizformel.

Als Folgerung erhalten wir, daß es höchstens eine Determinante auf $M(n \times n, R)$ gibt.

Beweis. Zunächst zeigen wir

(*) Sei det : $M(n \times n, R) \to R$ eine Abbildung, die multilinear und alternierend in den Zeilen ist, d.h. die (I) und (II) in Definition 1 erfüllt. Sei $(a_{ij}) \in M(n \times n, R)$ und seien $b_1, b_2, \ldots, b_n \in R^n$. Für jedes $i \in \{1, 2, \ldots, n\}$ haben wir das Element $\sum_{j=1}^n a_{ij}b_j \in R^n$. Es gilt

$$\det \begin{pmatrix} \sum_{j=1}^{n} a_{1j} b_{j} \\ \vdots \\ \sum_{j=1}^{n} a_{nj} b_{j} \end{pmatrix} = \left(\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdot \ldots \cdot a_{n\sigma(n)} \right) \cdot \det \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix}$$

Beweis von (*).

Wir setzen $L:=\{1,2,\ldots,n\}$. Aufgrund der Multilinearität von det (Definition 1 (I)) haben wir

$$(1) \qquad \det \begin{pmatrix} \sum_{j=1}^{n} a_{1j}b_{j} \\ \vdots \\ \sum_{j=1}^{n} a_{nj}b_{j} \end{pmatrix} = \sum_{(j_{1},\dots,j_{n})\in L^{n}} \left(a_{1j_{1}}\cdot\dots\cdot a_{nj_{n}}\cdot\det \begin{pmatrix} b_{j_{1}} \\ \vdots \\ b_{j_{n}} \end{pmatrix}\right)$$

Nach Satz 3 (ii) gilt

(2)
$$\sum_{\substack{(j_1,\dots,j_n)\in L^n\\ j_k\neq j_\ell \text{ fur } k\neq \ell}} \left(a_{1j_1}\cdot\dots\cdot a_{nj_n}\cdot\det\begin{pmatrix}b_{j_1}\\ \vdots\\ b_{j_n}\end{pmatrix}\right) = \sum_{\substack{(j_1,\dots,j_n)\in L^n\\ j_k\neq j_\ell \text{ fur } k\neq \ell}} \left(a_{1j_1}\cdot\dots\cdot a_{nj_n}\cdot\det\begin{pmatrix}b_{j_1}\\ \vdots\\ b_{j_n}\end{pmatrix}\right) = \sum_{\sigma\in S_n} \left(a_{1\sigma(1)}\cdot\dots\cdot a_{n\sigma(n)}\cdot\det\begin{pmatrix}b_{\sigma(1)}\\ \vdots\\ b_{\sigma(n)}\end{pmatrix}\right)$$

Nach Satz 3 (i) gilt

(3)
$$\sum_{\sigma \in S_n} \left(a_{1\sigma(1)} \cdot \ldots \cdot a_{n\sigma(n)} \cdot \det \begin{pmatrix} b_{\sigma(1)} \\ \vdots \\ b_{\sigma(n)} \end{pmatrix} \right) =$$

$$\sum_{\sigma \in S_n} \left(a_{1\sigma(1)} \cdot \ldots \cdot a_{n\sigma(n)} \cdot \operatorname{sign}(\sigma) \cdot \det \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \right) =$$

$$\left(\sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1\sigma(1)} \cdot \ldots \cdot a_{n\sigma(n)} \right) \cdot \det \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

Aus (1),(2),(3) folgt (*).

Wie im Fall eines Körpers definieren wir auch für unseren Ring R die Elemente $e_i := (0, \ldots, 0, 1, 0, \ldots, 0) \in R^n$. Sei $A = (a_{ij}) \in M(n \times n, R)$. Der i-te Zeilenvektor von A ist $(a_{i1}, a_{i2}, \ldots, a_{in}) = \sum_{j=1}^{n} a_{ij}e_j \in R^n$. Sei det $: M(n \times n, R) \to R$ weiterhin wie in (*). Nach (*) gilt

$$\det A = \det \begin{pmatrix} \sum_{j=1}^{n} a_{1j} e_{j} \\ \vdots \\ \sum_{j=1}^{n} a_{nj} e_{j} \end{pmatrix} = \begin{pmatrix} \sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdot \dots \cdot a_{n\sigma(n)} \end{pmatrix} \cdot \det \begin{pmatrix} e_{1} \\ \vdots \\ e_{n} \end{pmatrix} = \begin{pmatrix} \sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdot \dots \cdot a_{n\sigma(n)} \end{pmatrix} \cdot \det E_{n}$$

Ist nun det : $M(n \times n, R) \to R$ eine Determinante, so ist det $E_n = 1$ nach Forderung (III) in Definition 1, und somit folgt det $A = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdot \ldots \cdot a_{n\sigma(n)}$.

Satz 5. (Existenz der Determinante und Laplace-Entwicklung nach Spalten)

(i) Es gibt eine Determinante auf $M(n \times n, R)$,

$$\det_n: M(n \times n, R) \to R$$

(N.B. Nach Satz 4 ist \det_n eindeutig).

(ii) Sei $n \geq 2$ und sei $A = (a_{ij}) \in M(n \times n, R)$. Für jedes $(i, j) \in \{1, ..., n\} \times \{1, ..., n\}$ sei $A_{ij} \in M((n-1) \times (n-1), R)$ die Matrix, die durch Streichen der i-ten Zeile und j-ten Spalte von A entsteht. Dann gilt für jedes $j \in \{1, 2, ..., n\}$

$$\det_{n} A = \sum_{i=1}^{n} (-1)^{i+j} \cdot a_{ij} \cdot \det_{n-1} A_{ij}$$

Diese Formel nennt man die Entwicklung von $\det_n A$ nach der j-ten Spalte.

Beweis. (i) Wir zeigen die Behauptung durch Induktion nach n.

Für n = 1 gilt die Behauptung nach Beispiel 2.

 $(n-1) \to n \ (n \geq 2)$: Wir nehmen an, daß eine Determinante $\det_{n-1}: M((n-1)\times (n-1)) \to R$ existiert und zeigen, daß es eine Determinante auf $M(n\times n,R)$ gibt. Wir wählen ein $k\in\{1,2,\ldots,n\}$ und definieren eine Abbildung $\det_n: M(n\times n,R) \to R$, indem wir für jedes $A=(a_{ij})\in M(n\times n,R)$ setzen

(*)
$$\det_n A := \sum_{i=1}^n (-1)^{i+k} \cdot a_{ik} \cdot \det_{n-1} A_{ik}$$

wobei $A_{ik} \in M((n-1) \times (n-1), R)$ die Matrix ist, die durch Streichen der iten Zeile und der k-ten Spalte von A entsteht. Um einzusehen, daß detn eine Determinante auf $M(n \times n, R)$ ist, haben wir zu überprüfen, daß detn die Eigenschaften (I),(II),(III) aus Definition 1 hat. Die Eigenschaft (I) bzw. (III) kann man leicht aus der entsprechenden Eigenschaft (I) bzw. (III) von detn-1 ableiten. Um (II) zu verifizieren, geben wir uns ein $\ell \in \{1, 2, \dots, n-1\}$ und eine Matrix $A = (a_{ij}) \in M(n \times n, R)$ vor, so daß die ℓ -te und $(\ell + 1)$ -te Zeile von A übereinstimmen und zeigen, daß detn A = 0. Für jedes $i \in \{1, 2, \dots, n\} - \{\ell, \ell+1\}$ stimmen zwei benachbarte Zeilen von A_{ik} überein und somit ist detn-1 $A_{ik} = 0$. Wir erhalten

$$\det_n A = (-1)^{\ell+k} \cdot a_{\ell k} \cdot \det_{n-1} A_{\ell k} + (-1)^{\ell+1+k} \cdot a_{\ell+1,k} \cdot \det_{n-1} A_{\ell+1,k}$$

Da die ℓ -te und $(\ell+1)$ -te Zeile von A übereinstimmen, gilt $a_{\ell k}=a_{\ell+1,k}$ und $A_{\ell k}=A_{\ell+1,k}$. Damit erhalten wir $\det_n A=0$.

(ii) Für jedes $n \geq 2$, jedes $A = (a_{ij}) \in M(n \times n, R)$ und jedes $k \in \{1, 2, ..., n\}$ gilt die Gleichung (*) im Beweis von (i), d.h. (ii) gilt.

Gemäß Satz 4 und Satz 5 gibt es genau eine Determinante auf $M(n \times n, R)$, die wir im folgenden mit det bezeichnen,

$$\det: M(n \times n, R) \to R$$

Satz 6. Für alle $A, B \in M(n \times n, R)$ gilt

$$det(AB) = det A \cdot det B$$

Beweis. Sei $A=(a_{ij})$ und seien $b_1,b_2,\ldots,b_n\in R^n$ die Zeilenvektoren von B. Der i-te Zeilenvektor von AB ist $\sum_{j=1}^n a_{ij}b_j$. Nach (*) im Beweis von Satz 4 gilt

$$\det(AB) = \det \left(\begin{array}{c} \sum_{j=1}^{n} a_{1j}b_{j} \\ \vdots \\ \sum_{j=1}^{n} a_{nj}b_{j} \end{array} \right) =$$

$$\left(\sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdot \ldots \cdot a_{n\sigma(n)}\right) \cdot \det \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \det A \cdot \det B$$

wobei für die letzte Gleichheit die Leibnizformel benutzt wird.

Satz 7. Für jedes $A \in M(n \times n, R)$ gilt

$$\det({}^tA) = \det A$$

Beweis. Seien $A = (a_{ij})$ und ${}^tA = (b_{ij})$, also $b_{ij} = a_{ji}$. Wir benutzen die Leibnizformel für A und tA

$$\det A = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdot \dots \cdot a_{n\sigma(n)} \stackrel{(1)}{=}$$

$$= \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{\sigma^{-1}(1)1} a_{\sigma^{-1}(2)2} \cdot \dots \cdot a_{\sigma^{-1}(n)n} \stackrel{(2)}{=}$$

$$= \sum_{\sigma \in S_n} \operatorname{sign}(\sigma^{-1}) a_{\sigma^{-1}(1)1} a_{\sigma^{-1}(2)2} \cdot \dots \cdot a_{\sigma^{-1}(n)n} \stackrel{(3)}{=}$$

$$= \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{\sigma(1)1} a_{\sigma(2)2} \cdot \dots \cdot a_{\sigma(n)n} =$$

$$= \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) b_{1\sigma(1)} b_{2\sigma(2)} \cdot \dots \cdot b_{n\sigma(n)} =$$

$$= \det({}^t A)$$

Dabei gelten die Gleichungen (1),(2),(3) aufgrund von

- (1) Da die Abbildung $\sigma^{-1}:\{1,2,\ldots,n\}\to\{1,2,\ldots,n\}$ bijektiv ist und $\sigma(\sigma^{-1}(i))=i$, entsteht das Produkt $a_{\sigma^{-1}(1)1}a_{\sigma^{-1}(2)2}\cdot\ldots\cdot a_{\sigma^{-1}(n)n}$ aus dem Produkt $a_{1\sigma(1)}a_{2\sigma(2)}\cdot\ldots\cdot a_{n\sigma(n)}$ durch Vertauschen der Faktoren.
- (2) $\operatorname{sign}(\sigma^{-1}) = \operatorname{sign}(\sigma)$ (nach §1, Proposition 5)
- (3) Die Abbildung $S_n \to S_n$, $\sigma \mapsto \sigma^{-1}$ ist bijektiv.

Korollar 8.

- (i) Die Eigenschaften (I) und (II) in Definition 1 und die Aussagen von Satz 3 gelten auch, wenn man das Wort "Zeile" durch das Wort "Spalte" ersetzt.
- (ii) Sei $n \geq 2$ und sei $A = (a_{ij}) \in M(n \times n, R)$. Für jedes $i \in \{1, 2, \dots, n\}$ gilt

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} \cdot a_{ij} \cdot \det A_{ij}$$

Diese Formel nennt man die Entwicklung von det A nach der i-ten Zeile.

Beweis. Wir benutzen Satz 7 und beachten, daß die Zeilen (bzw. Spalten) von A mit den Spalten (bzw. Zeilen) von tA übereinstimmen. (ii) folgt dann aus Satz 5 (ii).

§4 Beispiele von Determinanten

Für den gesamten Paragraph sei ein kommutativer Ring R mit Einselement gegeben.

In §3, Beispiel 2 wurde die Determinante einer (1×1) -Matrix angegeben, nämlich $\det(a) = a$.

Beispiel 1. Für jedes
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M(2 \times 2, R)$$
 gilt
$$\det A = a_{11}a_{22} - a_{12}a_{21}$$

Beweis . Wir entwickeln det A nach der ersten Spalte (§3, Satz 5 (ii))

$$\det A = (-1)^{1+1} a_{11} \det(a_{22}) + (-1)^{2+1} a_{21} \det(a_{12}) = a_{11} a_{22} - a_{21} a_{12}$$

Definition 2. Sei $A = (a_{ij}) \in M(n \times n, R)$.

(i) A heißt obere Dreiecksmatrix, wenn $a_{ij} = 0$ für alle (i, j) mit j < i (d.h. alle Koeffizienten unterhalb der Diagonale sind gleich Null).

(ii) A heißt untere Dreiecksmatrix, wenn $a_{ij} = 0$ für alle (i, j) mit j > i (d.h. alle Koeffizienten oberhalb der Diagonale sind gleich Null).

Beispiel 3. Sei $A = (a_{ij}) \in M(n \times n, R)$ eine obere Dreiecksmatrix oder untere Dreiecksmatrix. Dann

$$\det A = a_{11}a_{22} \cdot \ldots \cdot a_{nn}$$

Beweis. Sei A eine obere Dreiecksmatrix. Wir führen Induktion nach n. Der Fall n=1 ist klar, da $\det(a)=a$.

 $n \to n+1$: Wir entwickeln det A nach der letzten Zeile von A (§3, Korollar 8 (ii))

$$\det A = \det \begin{pmatrix} a_{11} & * & * & * \\ & \ddots & & * \\ & a_{nn} & * \\ & & a_{n+1,n+1} \end{pmatrix} =$$

$$= (-1)^{(n+1)+(n+1)} a_{n+1,n+1} \det \begin{pmatrix} a_{11} & * & * \\ & \ddots & * \\ & & a_{nn} \end{pmatrix} =$$

$$= a_{n+1,n+1} a_{11} a_{22} \cdot \dots \cdot a_{nn}$$

wobei für die letzte Gleichung die Induktionsvoraussetzung benutzt wurde.

Beispiel 4. Sei $A \in M(n \times n, K)$, wobei K ein Körper ist. Sei $A' = (a'_{ij}) \in M(n \times n, K)$ eine Matrix in Zeilenstufenform, die aus A durch elementare Zeilenumformungen vom Typ (I) und Typ (III) hervorgeht (III, §1, Satz 3). Sei $m \in \mathbb{N}_0$ die Anzahl der Umformungen vom Typ (I). Dann gilt

$$\det A = (-1)^m \cdot a'_{11} a'_{22} \cdot \ldots \cdot a'_{nn}$$

Beweis. Wir haben

$$\det A = (-1)^m \cdot \det A' = (-1)^m \cdot a'_{11} a'_{22} \cdot \ldots \cdot a'_{nn}$$

wobei die erste Gleichung nach $\S 3$, Satz 3 (iii) gilt und die zweite Gleichung nach Beispiel 3 gilt, da A' eine obere Dreiecksmatrix ist.

Beispiel 5. Für $n \in \mathbb{N}$ mit $n \geq 2$ und $a_1, a_2, \dots, a_n \in R$ heißt die Matrix

$$A = \begin{pmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \dots & a_2^{n-1} \\ & \vdots & & & \\ 1 & a_n & a_n^2 & \dots & a_n^{n-1} \end{pmatrix} \in M(n \times n, R)$$

die Vandermonde-Matrix zu a_1, a_2, \ldots, a_n . Es gilt

$$\det A = \prod_{\substack{(i,j) \in \{1,\dots,n\}^2, \\ i < j}} (a_j - a_i)$$

Beweis. Wir führen Induktion nach n.

n=2: Die Vandermonde-Matrix zu a_1, a_2 ist

$$A = \left(\begin{array}{cc} 1 & a_1 \\ 1 & a_2 \end{array}\right)$$

 $mit det A = a_2 - a_1.$

 $(n-1) \to n$: Ausgehend von der Vandermonde-Matrix A zu a_1, a_2, \dots, a_n führen wir die folgenden elementaren Spaltenumformungen durch (in der angegebenen Reihenfolge)

- Addition des $(-a_1)$ -fachen der (n-1)-ten Spalte zur n-ten Spalte.
- Addition des $(-a_1)$ -fachen der 1-ten Spalte zur 2-ten Spalte.

Die dabei entstehende Matrix A' hat die Gestalt

$$A' = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 1 & & & \\ \vdots & & A'' & \\ 1 & & & \end{pmatrix} \in M(n \times n, R)$$

mit

$$A'' = \begin{pmatrix} a_2 - a_1 & a_2^2 - a_2 a_1 & \dots & a_2^{n-1} - a_2^{n-2} a_1 \\ a_3 - a_1 & a_3^2 - a_3 a_1 & \dots & a_3^{n-1} - a_3^{n-2} a_1 \\ & \vdots & & \\ a_n - a_1 & a_n^2 - a_n a_1 & \dots & a_n^{n-1} - a_n^{n-2} a_1 \end{pmatrix} \in M((n-1) \times (n-1), R)$$

Nach §3, Korollar 8 (i) gilt

$$\det A = \det A'$$

Die Entwicklung von det A' nach der ersten Zeile von A' ergibt

$$\det A' = \det A''$$

Es ist

$$A'' = \begin{pmatrix} (a_2 - a_1) \cdot b_2 \\ (a_3 - a_1) \cdot b_3 \\ \vdots \\ (a_n - a_1) \cdot b_n \end{pmatrix} \text{ mit } b_i = (1 \ a_i \ a_i^2 \dots a_i^{n-2})$$

Da die Determinante multilinear in den Zeilen ist, folgt

(3)
$$\det A'' = (a_2 - a_1)(a_3 - a_1) \cdot \dots \cdot (a_n - a_1) \cdot \det \begin{pmatrix} b_2 \\ b_3 \\ \vdots \\ b_n \end{pmatrix}$$

Die Matrix

$$\begin{pmatrix} b_2 \\ b_3 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} 1 & a_2 & a_2^2 & \dots & a_2^{n-2} \\ 1 & a_3 & a_3^2 & \dots & a_3^{n-2} \\ \vdots & & & & \\ 1 & a_n & a_n^2 & \dots & a_n^{n-2} \end{pmatrix}$$

ist die Vandermonde-Matrix zu a_2, a_3, \ldots, a_n . Nach Induktionsvoraussetzung gilt

(4)
$$\det \begin{pmatrix} b_2 \\ b_3 \\ \vdots \\ b_n \end{pmatrix} = \prod_{\substack{(i,j) \in \{2,\dots,n\}^2, \\ i < j}} (a_j - a_i)$$

Aus (1),(2),(3),(4) folgt

$$\det A = (a_2 - a_1)(a_3 - a_1) \cdot \dots \cdot (a_n - a_1) \cdot \prod_{\substack{(i,j) \in \{2,\dots,n\}^2, \\ i < j}} (a_j - a_i) =$$

$$= \prod_{\substack{(i,j) \in \{1,\dots,n\}^2, \\ i < j}} (a_j - a_i)$$

§5 Determinante und inverse Matrix

Für den gesamten Paragraph seien ein kommutativer Ring R mit Einselement und ein $n \in \mathbb{N}$ mit $n \ge 2$ gegeben.

Definition 1. Für jede Matrix $A \in M(n \times n, R)$ definieren wir eine Matrix $A^{\text{ad}} = \tilde{A} = (\tilde{a}_{ij}) \in M(n \times n, R)$, indem wir für jedes (i, j) setzen

$$\tilde{a}_{ij} := (-1)^{i+j} \det A_{ji} \in R$$

wobei $A_{ji} \in M((n-1) \times (n-1), R)$ die Matrix ist, die aus A durch Streichen der j-ten Zeile und der i-ten Spalte entsteht. \tilde{A} heißt die Adjunkte von A oder die zu A adjungierte Matrix.

Satz 2. Für jedes $A \in M(n \times n, R)$ gilt

$$A \cdot \tilde{A} = (\det A) \cdot E_n = \tilde{A} \cdot A$$

Beweis. I) Wir zeigen $A \cdot \tilde{A} = (\det A) \cdot E_n$. Seien $A = (a_{ij}), \ \tilde{A} = (\tilde{a}_{ij}), \ A \cdot \tilde{A} = (c_{ij})$. Wir haben zu zeigen

$$c_{ij} = \begin{cases} \det A & \text{wenn } i = j \\ 0 & \text{wenn } i \neq j \end{cases}$$

Es ist $c_{ij} = \sum_{k=1}^{n} a_{ik} \tilde{a}_{kj}$ und somit gilt nach Definition von \tilde{a}_{kj}

$$c_{ij} = \sum_{k=1}^{n} (-1)^{k+j} \cdot a_{ik} \cdot \det A_{jk}$$

Zunächst betrachten wir den Fall i=j. Nach (*) und der Entwicklung von det A nach der j-ten Zeile gilt

$$c_{jj} = \sum_{k=1}^{n} (-1)^{k+j} \cdot a_{jk} \cdot \det A_{jk} = \det A.$$

Sei nun $i \neq j$. Sei $A' = (a'_{ij}) \in M(n \times n, R)$ die Matrix, die dadurch entsteht, daß man in A die j-te Zeile durch die i-te Zeile ersetzt. Dann gilt

$$a_{ik} = a'_{jk}$$
 und $A_{jk} = A'_{jk}$

woraus sich mit (*) und der Entwicklung von det A' nach der j-ten Zeile ergibt

$$c_{ij} = \sum_{k=1}^{n} (-1)^{k+j} \cdot a'_{jk} \cdot \det A'_{jk} = \det A'$$

Die *i*-te Zeile und die *j*-te Zeile von A' stimmen überein. Deshalb det A' = 0 (§3, Satz 3 (ii)). Damit ist gezeigt $c_{ij} = 0$.

II) Die Gleichung $\tilde{A} \cdot A = (\det A) \cdot E_n$ kann man mit Überlegungen analog zu denen in I) zeigen, wobei jedoch Spalten statt Zeilen benutzt werden.

Korollar 3. Eine Matrix $A \in M(n \times n, R)$ ist invertierbar genau dann, wenn det A eine Einheit des Rings R ist. Sind diese äquivalenten Bedingungen erfüllt, so gilt $A^{-1} = (\det A)^{-1} \cdot \tilde{A}$ und $\det(A^{-1}) = (\det A)^{-1}$.

Beweis. Sei zunächst Ainvertiebar. Dann haben wir die inverse Matrix A^{-1} und es gilt

$$A \cdot A^{-1} = E_n = A^{-1} \cdot A$$

Hieraus folgt mit der Muliplikationseigenschaft für Determinanten (§3, Satz 6) und det $E_n=1$

$$\det A \cdot \det A^{-1} = 1 = \det A^{-1} \cdot \det A$$

Diese beiden Gleichungen besagen, daß det A eine Einheit des Rings R ist und $(\det A)^{-1} = \det A^{-1}$.

Sei nun umgekehrt det A eine Einheit des Rings R. Dann haben wir die Matrix $(\det A)^{-1} \cdot \tilde{A} \in M(n \times n, R)$ und nach Satz 2 gilt

$$A \cdot [(\det A)^{-1} \cdot \tilde{A}] = E_n = [(\det A)^{-1} \cdot \tilde{A}] \cdot A$$

Diese beiden Gleichungen besagen, daß A invertierbar ist und $A^{-1}=(\det A)^{-1}\cdot \tilde{A}.$

Aus Korollar 3 folgt

Korollar 4. Eine Matrix $A \in M(n \times n, K)$ über einem Körper ist genau dann invertierbar, wenn det $A \neq 0$. Sind diese äquivalenten Bedingungen erfüllt, so gilt $A^{-1} = (\det A)^{-1} \cdot \tilde{A}$ und $\det(A^{-1}) = (\det A)^{-1}$.

§6 Determinante und Spur eines Endomorphismus

Sei K ein Körper.

Definition 1. Für jede Matrix $A = (a_{ij}) \in M(n \times n, K)$ setzt man

$$tr(A) := a_{11} + a_{22} + \ldots + a_{nn} \in K$$

tr(A) heißt die Spur von A.

Lemma 2.

- (i) Für $A, B \in M(n \times n, K)$ und $\lambda \in K$ gilt $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$ und $\operatorname{tr}(\lambda A) = \lambda \cdot \operatorname{tr}(A)$, d.h. die Abbildung $\operatorname{tr}: M(n \times n, K) \to K, \ A \mapsto \operatorname{tr}(A)$ ist linear.
- (ii) Für $A, B \in M(n \times n, K)$ gilt tr(AB) = tr(BA).

Beweis. (ii) Für $C, D \in M(n \times n, K)$ mit $C = (c_{ij}), D = (d_{ij})$ und $CD = (f_{ij})$ gilt

$$\operatorname{tr}(CD) = \sum_{i=1}^{n} f_{ii} = \sum_{i=1}^{n} (\sum_{j=1}^{n} c_{ij} d_{ji}) = \sum_{(i,j) \in \{1,\dots,n\}^2} c_{ij} d_{ji}$$

Hieraus folgt tr(AB) = tr(BA).

Lemma 3. Seien V ein K-Vektorraum, $f \in \text{End}(V)$ und \mathcal{A}, \mathcal{B} Basen von V. Für die Matrizen $M_{f,\mathcal{A},\mathcal{A}}, M_{f,\mathcal{B},\mathcal{B}}$ gilt

- (i) $\operatorname{tr}(M_{f,\mathcal{A},\mathcal{A}}) = \operatorname{tr}(M_{f,\mathcal{B},\mathcal{B}}).$
- (ii) $\det(M_{f,\mathcal{A},\mathcal{A}}) = \det(M_{f,\mathcal{B},\mathcal{B}}).$

Beweis. (i) Nach der Transformationsformel (II, §3, Satz 12) gibt es ein $T \in GL(n,K)$ $(n = \dim V)$ mit $M_{f,\mathcal{A},\mathcal{A}} = T^{-1}M_{f,\mathcal{B},\mathcal{B}}T$. Mit Lemma 2 (ii) ergibt sich dann $\operatorname{tr}(M_{f,\mathcal{A},\mathcal{A}}) = \operatorname{tr}(T^{-1}(M_{f,\mathcal{B},\mathcal{B}}T)) = \operatorname{tr}(M_{f,\mathcal{B},\mathcal{B}}T)T^{-1}) = \operatorname{tr}(M_{f,\mathcal{B},\mathcal{B}}(TT^{-1})) = \operatorname{tr}(M_{f,\mathcal{B},\mathcal{B}})$.

ii) Für alle $A, B \in M(n \times n, K)$ gilt $\det(AB) = \det(BA)$ (denn nach §3, Satz 6 haben wir $\det(AB) = \det(A) \cdot \det(B) = \det(BA)$). Deshalb läßt sich (ii) analog zu (i) beweisen.

Aufgrund von Lemma 3 können wir definieren

Definition 4. Sei V ein endlich erzeugter K-Vektorraum. Für jedes $f \in \text{End}(V)$ definiert man $\det(f), \operatorname{tr}(f) \in K$ durch

- (i) Ist $V = \{0\}$, so setze $\det(f) = 1$, und ist $V \neq \{0\}$, so wähle eine Basis \mathcal{A} von V und setze $\det(f) = \det(M_{f,\mathcal{A},\mathcal{A}})$.
- (ii) Ist $V = \{0\}$, so setze $\operatorname{tr}(f) = 0$, und ist $V \neq \{0\}$, so wähle eine Basis \mathcal{A} von V und setze $\operatorname{tr}(f) = \operatorname{tr}(M_{f,\mathcal{A},\mathcal{A}})$.

det(f) heißt die *Determinante* von f und tr(f) heißt die *Spur* von f.

Proposition 5. Sei V ein endlich erzeugter K-Vektorraum. Es gelten

- (i) Ein $f \in \text{End}(f)$ ist ein Isomorphismus genau dann, wenn $\det(f) \neq 0$. Gelten diese äquivalenten Bedingungen, so ist $\det(f^{-1}) = (\det(f))^{-1}$.
- (ii) Für $f, g \in \text{End}(V)$ gilt $\det(f \circ g) = \det(f) \cdot \det(g)$.
- (iii) Die Abbildung $\operatorname{End}(V) \to K$, $f \mapsto \operatorname{tr}(f)$ ist linear, d.h. für alle $f, g \in \operatorname{End}(V)$ und $\lambda \in K$ gilt $\operatorname{tr}(f+g) = \operatorname{tr}(f) + \operatorname{tr}(g)$ und $\operatorname{tr}(\lambda f) = \lambda \cdot \operatorname{tr}(f)$.

Beweis. Wir können annehmen $V \neq \{0\}$. Sei \mathcal{A} eine Basis von V.

- (i) Nach II, §3, Proposition 10 (ii) ist f ein Isomorphismus genau dann, wenn $M_{f,\mathcal{A},\mathcal{A}}$ invertierbar ist, und nach §5, Korollar 4 gilt das letztere genau dann, wenn $\det(M_{f,\mathcal{A},\mathcal{A}}) \neq 0$, d.h. $\det(f) \neq 0$.
- Ist f ein Isomorphismus und somit $\det(f) \neq 0$, so erhalten wir wieder mit II, §3, Proposition 10 (ii) und §5, Korollar $4 \det(f^{-1}) = \det(M_{f^{-1},\mathcal{A},\mathcal{A}}) = \det((M_{f,\mathcal{A},\mathcal{A}})^{-1}) = (\det(M_{f,\mathcal{A},\mathcal{A}}))^{-1} = (\det(f))^{-1}$.
- (ii) Mit II §3, Proposition 9 (ii) und §3, Satz 6 erhalten wir $\det(f \circ g) = \det(M_{f \circ g, \mathcal{A}, \mathcal{A}})$ = $\det(M_{f, \mathcal{A}, \mathcal{A}} \cdot M_{g, \mathcal{A}, \mathcal{A}}) = \det(M_{f, \mathcal{A}, \mathcal{A}}) \cdot \det(M_{g, \mathcal{A}, \mathcal{A}}) = \det(f) \cdot \det(g)$.
- (iii) Die Abbildung in (iii) ist die Komposition der beiden Abbildungen

$$\begin{array}{ccc} \operatorname{End}(V) \to M(n \times n, K) \;, & f \mapsto M_{f, \mathcal{A}, \mathcal{A}} \\ M(n \times n, K) \to K \;, & A \mapsto \operatorname{tr}(A) \end{array}$$

und diese beiden Abbildungen sind linear nach II §3, Proposition 8 (ii) und Lemma 2 (i). $\hfill\Box$