Lineare Algebra II

10.Übungsblatt

Aufgabe 1:

Seien $n \in \mathbb{N}$, (W, \langle , \rangle) ein unitärer Vektorraum und $w_1, \ldots, w_n \in W$. Betrachtet wird die lineare Abbildung $f : \mathbb{C}^n \to W, (x_1, \ldots, x_n) \mapsto x_1 w_1 + \ldots + x_n w_n$. Der \mathbb{C} -Vektorraum \mathbb{C}^n sei mit dem Standardskalarprodukt versehen. Zeigen Sie, daß die Abbildung

$$g: W \to \mathbb{C}^n, \quad w \mapsto (\langle w_1, w \rangle, \dots, \langle w_n, w \rangle)$$

linear ist und die zu f adjungierte lineare Abbildung ist.

Aufgabe 2:

Seien (V, \langle , \rangle) ein endlich erzeugter unitärer Vektorraum und $g \in \text{End}(V)$. Betrachtet wird $g^{\text{ad}} \in \text{End}(V)$. Zeigen Sie

- (i) Ist $f \in \mathbb{C}[X]$ das charakteristische Polynom von g, so ist $\overline{f} \in \mathbb{C}[X]$ das charakteristische Polynom von g^{ad} . (Dabei ist \overline{f} wie in Übungsblatt 2, Aufgabe 3 definiert).
- (ii) Ist $L \subseteq \mathbb{C}$ die Menge der Eigenwerte von g, so ist $\{\overline{\lambda} \mid \lambda \in L\}$ die Menge der Eigenwerte von g^{ad} .

Aufgabe 3:

Sei (V, \langle , \rangle) ein euklidischer Vektorraum mit dim V = 3. Sei $f : (V \langle , \rangle) \to (V, \langle , \rangle)$ eine orthogonale lineare Abbildung mit det f = 1 und $f \neq \mathrm{id}_V$. Zeigen Sie

- (i) Der Untervektorraum U := Eig(f; 1) von V ist 1-dimensional.
- (ii) Der Untervektorraum $W := U^{\perp}$ von V ist 2-dimensional und f-invariant und der Endomorphismus $g := f|W:W \to W$ ist orthogonal mit det g = 1.
- (iii) Es gibt eine Orthonormalbasis \mathcal{A} von (V, \langle , \rangle) und ein $\alpha \in [0, 2\pi[$, so daß

$$M_{f,\mathcal{A},\mathcal{A}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}.$$

Man nennt f eine $Drehung\ von\ (V, \langle\ ,\ \rangle)$ $mit\ Drehachse\ U\ und\ Winkel\ \alpha.$ Können Sie diese Bezeichnung geometrisch nachvollziehen?

Aufgabe 4:

Setze

$$A:=\frac{1}{2}\cdot\left(\begin{array}{ccc}1&-1&-\sqrt{2}\\-1&1&-\sqrt{2}\\\sqrt{2}&\sqrt{2}&0\end{array}\right)\in M(3\times3,\mathbb{R})\subseteq M(3\times3,\mathbb{C})$$

(i) Der \mathbb{R} -Vektorraum \mathbb{R}^3 sei mit dem Standardskalarprodukt $\langle \ , \ \rangle$ versehen. Sei \mathcal{A} die Standardbasis von \mathbb{R}^3 . Zeigen Sie, daß die lineare Abbildung $f := L_{A,\mathcal{A},\mathcal{A}} : \mathbb{R}^3 \to \mathbb{R}^3$ orthogonal ist und det f = 1. Bestimmen Sie eine Orthonormalbasis \mathcal{B} von $(\mathbb{R}^3, \langle \ , \ \rangle)$ und ein $\alpha \in [0, 2\pi[$, so daß

$$M_{f,\mathcal{B},\mathcal{B}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}.$$

(ii) Der \mathbb{C} -Vektorraum \mathbb{C}^3 sei mit dem Standardskalarprodukt $\langle \ , \ \rangle$ versehen. Sei \mathcal{C} die Standardbasis von \mathbb{C}^3 . Zeigen Sie, daß die lineare Abbildung $g:=L_{A,\mathcal{C},\mathcal{C}}:\mathbb{C}^3\to\mathbb{C}^3$ unitär ist. Begründen Sie, daß es eine Orthonormalbasis \mathcal{D} von $(\mathbb{C}^3,\langle \ ,\ \rangle)$ gibt, so daß $M_{g,\mathcal{D},\mathcal{D}}$ eine Diagonalmatrix ist. Bestimmen Sie solch eine Basis \mathcal{D} .