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0 Introduction

0.1 Deutsche Einleitung
In den letzten fünfzig Jahren etablierten sich eine Vielzahl verschiedener K-
Theorien. Zum ersten Mal wurde der Begriff K-Theorie von Grothendieck einge-
führt, um sein Grothendieck-Riemann-Roch-Theorem zu formulieren, welches in
einer Arbeit von Borel und Serre veröffentlicht wurde [BS58]. Für jede pro-
jektive Varietät X konstruierte er eine Gruppe K(X) aus der Kategorie der
kohärenten Garben über X und wies viele schöne Eigenschaften nach.
Die frühen Arbeiten zu topologischer K-Theorie gehen auf Atiyah und Hirze-
bruch zurück. Sie wendeten Grothendiecks Konstruktion auf die Kategorien
komplexer, reeller und quaternionischer Vektorbündel über einem beliebigen
parakompakten Hausdorffraum an [AH59]. In dieser und der darauf folgen-
den Arbeit [AH61] untersuchten sie wichtige Eigenschaften der resultierenden
K-Theorien (KU für komplexe, KO für reelle und KSp für quaternionische Vek-
torbündel). Mit Hilfe der Bott-Periodizität erweiterten sie die K-Gruppen zu
Kohomologietheorien.
In seiner Arbeit K-theory and Reality [Ati66] führte Atiyah die Reelle K-Theorie
KR ein. Er begründete die Kategorie Reeller Vektorbündel, welche komplexe
Vektorbündel über einem äquivarianten Z/2-Raum und mit zusätzlichen Eigen-
schaften sind. Die resultierende Reelle K-Theorie kann als gemeinsame Verall-
gemeinerung von reeller und komplexer K-Theorie verstanden werden.
Neben diesen wohlbekannten Theorien gibt es vielfältige Möglichkeiten, Vektor-
bündel mit verschiedenen Arten von Formen auszustatten, was in verschiedenen
K-Theorien resultiert. Teil I der vorliegenden Arbeit gibt einen Überblick über
diese verschiedenen (topologischen) K-Theorien. In Abschnitt 1 werden wir
die grundlegenden Definitionen bereitstellen und eine konsistente Notation ein-
führen. Anschließend werden wir die Theorien, vor allem auf der Ebene der
Vektorbündel, vergleichen (Abschnitt 2).
Wir fahren fort, die klassifizierenden Räume für Vektorbündel (Abschnitt 3)
und für K-Theorien (Abschnitt 4) zu berechnen. Da Reelle Vektorbündel über
Reellen Räumen, d.h. Räumen mit einer Aktion von Z/2, definiert sind, ist
Reelle K-Theorie eine Z/2-äquivariante Kohomologietheorie. Darum ist auch
der klassifizierende Raum ein Z/2-Raum. Tatsächlich handelt es sich bei Reeller
K-Theorie um ein Beispiel einer RO(G)-graduierten K-Theorie.
Äquivariante Kohomologietheorien wurden zum ersten Mal von Bredon einge-
führt [Bre67]. Eine der ersten Arbeiten, die sich ausschließlich mit dem Begriff
der äquivarianten Kohomologietheorie beschäftigten, stammt von Lewis, May
und McClure [LMM81]. Allerdings waren schon einige Beispiele für äquivari-
anten Kohomologietheorien vorher bekannt, und manchmal fällt es schwer, die
grundlegende Arbeit zu benennen. In der vorliegenden Arbeit werden wir immer
auf das Buch von May et al. [M+96] verweisen, das eine hervorragende Referenz
für alle Fragen bezüglich äquivarianter Homotopie- und Kohomologietheorie ist.
Es sei darauf hingewiesen, dass dieses Buch viele Artikel verschiedener Autoren
beeinhaltet und dass jeder Bezug auf dieses Buch als Bezug auf das jeweilige
Originalwerk verstanden werden kann.
Nachdem wir die benötigte Notation für äquivariante Homotopietheorie in Teil
II eingeführt haben, geben wir eine Einführung in äquivariante Kohomologie-
theorien (Teil III). Wir beginnen mit einer axiomatischen Charakterisierung
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äquivarianter Kohomologietheorien (Abschnitt 10) und fahren in Abschnitt 11
mit der Beschreibung einer wichtigen Klasse solcher Kohomologietheorien, na-
mentlich gewöhnlicher äquivarianter Kohomologietheorien, fort.

Eines der wichtigsten Werkzeuge zur Berechnung von K-Theorien ist die Atiyah-
Hirzebruch Spektralsequenz, die zum ersten Mal in der Arbeit Vector bundles
and homogeneous spaces [AH61] auftrat und seitdem vielfältig genutzt wird. Ob-
wohl sie dazu entwickelt wurde, komplexe K-Theorie auszurechnen, beschränkt
sich die Atiyah-Hirzebruch Spektralsequenz nicht auf K-Theorie, sondern kann
vielmehr für beliebige Kohomologietheorien verwendet werden.
Es gibt zwei verschiedene Konstruktionen für die nicht-äquivariante Atiyah-
Hirzebruch Spektralsequenz, deren Äquivalenz von Maunder bewiesen wurde
[Mau63]. Diese Spektralsequenz hat die Form

Hp(X,hq(∗))⇒ hp+q(X), (1)

wobei h∗ eine verallgemeinerte Kohomologietheorie bezeichnet und es sich bei
H∗ um singuläre Kohomologie handelt.
Im ersten Zugang filtrieren wir den CW-Komplex X durch Unterkomplexe,
während wir im zweiten Zugang das Spektrum filtrieren, das die Kohomologie-
theorie h∗ repräsentiert. Für die Filtrierung des Spektrums werden Postnikov-
Schnittfunktoren verwendet.
In Teil IV übertragen wir diese Konstruktionen in die äquivariante Welt. Wir
benutzen Duggers Notation [Dug05], um in Abschnitt 9 äquivariante Postnikov-
Schnittfunktoren zu beschreiben. Nach diesem vorwiegend technischen Ab-
schnitt geben wir zwei explizite Konstruktionen für die klassische äquivariante
Atiyah-Hirzebruch Spektralsequenz an und zeigen deren Äquivalenz (Abschnitte
12-14).
Um die Eigenschaften dieser Spektralsequenz zu untersuchen, erweist sich eine
formalere Betrachtungsweise als hilfreich. Viele der bekannten Spektralsequen-
zen lassen sich als Homotopiespektralsequenz eines Turms von Homotopie(ko-
)faserungen konstruieren. Eine großartige einführende Arbeit stammt von Dug-
ger [Dug03]. Die Hauptresultate sind allerdings schon seit über vierzig Jahren
wohlbekannt. Eine Aufstellung von Referenzen findet sich in der Einleitung
dieser Arbeit. Es ist zu beachten, dass [Dug03] aus zwei Teilen besteht, die
als einer zitiert werden. Wir werden nur spezifisch auf einen der beiden Teile
verweisen, wenn wir explizite Seitenangaben machen.
In Abschnitt 15 erinnern wir an die Konstruktion der Homotopiespektralsequenz
und zeigen anschließend, dass wir die Spektralsequenz, die wir in Teil IV kon-
struiert haben, in dieser Sprache ausdrücken können.
In den letzten Jahren erregte eine gewisse Spektralsequenz großes Aufsehen,
die motivische Kohomologie mit algebraischer K-Theorie in Beziehung setzt. In
seiner Dissertation [Dug05] führte Dugger eine weitere Atiyah-Hirzebruch Spek-
tralsequenz für KR-Theorie ein, die sich von den anderen, die wir konstruiert
haben, unterscheidet, aber sich analog zu dieser neuen verhält. Wir stellen diese
so genannte Slice-Spektralsequenz in Abschnitt 16 vor, welche die Form

Ep,q2
∼= Hp,− q2 (X,Z)⇒ KRp+q(X) (2)

hat. Hierbei bezeichnet H∗,∗(X,Z) gewöhnliche äquvariante Kohomologie mit
Koeffizienten im konstanten Mackeyfunktor Z.
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Für Reelle Räume X = XZ/2 mit trivialer Wirkung von Z/2 idenifizieren wir
die äquivarianten Kohomologiegruppen Hp,− q2 (X,Z) mit Summen von nicht-
äquivarianten Kohomologiegruppen. Dazu analyiseren wir die Fixpunktmengen
des darstellenden Eilenberg-MacLane-Spektrums HZ (Section 18).
Im letzten Teil (VI) dieser Arbeit berechnen wir die Spektralsequenz für die pro-
jektiven Räume, also RPn und CPn. Diese werden als Reelle Räume verstanden,
wobei die Aktion auf den RPn trivial ist und die Aktion auf den CPn von der
komplexen Konjugation induziert wird. Wir berechnen die Reelle K-Theorie
für diese Räume indem wir den E∞-Term der Spektralsequenz benutzen. Die
Ergebnisse waren schon vorher dank Fujii [Fuj67] für reelle projektive Räume
und dank Atiyah [Ati66] für komplexe projektive Räume bekannt. Unsere Tech-
niken sind jedoch verschieden, und wir sind zuversichtlich, dass diese für spätere
Betrachtungen hilfreich sein werden.
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0.2 English introduction
In the last fifty years a multiplicity of different topological K-theories has been
established. The first notion of K-theory has been introduced by Grothendieck
to formulate his Grothendieck-Riemann-Roch-therorem, which was published in
a paper by Borel and Serre [BS58]. For each projective varietyX, he constructed
a group K(X) from the category of coherent sheaves on X and showed that it
has many nice properties.
In topology, the early work on K-Theory is due to Atiyah and Hirzebruch. For
each paracompact Hausdorff space, they applied Grothendieck’s construction to
the categories of complex, real and quaternionic vector bundles over this space
[AH59]. In this and the subsequent paper [AH61], they investigated important
properties of the resulting K-theories (KU for complex, KO for real, and KSp
for quaternionic vector bundles). Using the Bott periodicity, they extended the
K-groups to cohomology theories.
In his paper K-theory and Reality [Ati66], Atiyah introduced Real K-theory
KR. He established the category of Real vector bundles, which are complex
vector bundles over an equivariant Z/2-space, with additional properties. The
resulting Real K-theory may be understood as a common generalization of the
real and the complex theory.
Beside these well-known theories, there are various possibilities to equip the
vector bundles with different kinds of forms, resulting in different K-theories.
Part I of this paper gives an overview of all these different (topological) theories.
In Section 1 we will recall the basic definitions and establish a consistent nota-
tion. Afterwards we will compare these theories, merely on the level of vector
bundles (Section 2).
We proceed to compute the classifying spaces for vector bundles (Section 3) and
K-theory (Section 4). Since Real vector bundles are defined over Real spaces,
i.e. spaces with an action of Z/2, Real K-theory is a Z/2-equivariant cohomol-
ogy theory. Hence, its classifying space is a Z/2-space. In fact Real K-Theory
is an example of an RO(G)-graded cohomology theory.
Equivariant cohomology theories have first been introduced by Bredon [Bre67].
One of the first papers working exclusively with the notion of a RO(G)-graded
cohomology theory is due to Lewis, May and McClure [LMM81]. However some
examples of RO(G)-graded cohomology theories have been known earlier, and
it is sometimes hard to name the foundational paper. During the present pa-
per, we will always refer to the conference book by May et al. [M+96] which
is an excellent reference for all questions concerning equivariant homotopy and
cohomology theory. Note that this book comprises articles by many different
authors and any reference to this book may be understood as a reference to the
respective original papers.
After setting up the required notation for equivariant homotopy theory in Part
II, we give an introduction to equivariant cohomology theories (Part III). We
start with an axiomatic characterization of equivariant cohomology theories
(Section10) and proceed in Section 11 with a description of an important class
of such cohomology theories namely ordinary equivariant cohomology theories.

One of the most important tools to compute K-theories is the Atiyah-Hirzebruch
spectral sequence, which first appeared in the paper Vector bundles and homoge-
neous spaces [AH61] and has since been used in many different forms. Although
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it was invented to compute complex K-theory, the Atiyah-Hirzebruch spectral
sequence does not restrict to K-theory, but can be used for arbitrary cohomol-
ogy theories.
Non-equivariantly there are two different constructions, which are equivalent as
it was proven by Maunder [Mau63]. The spectral sequence takes on the form

Ep,q2
∼= Hp(X,hq(∗))⇒ hp+q(X), (3)

where h∗ denotes a generalized cohomology theory and H∗ denotes singular
cohomology.
In the first approach, we filter the CW-complex X by subcomplexes, while we
"filter" the spectrum representing h∗ in the second approach. Filtering the
spectrum E is done by applying Postnikov section functors.
In Part IV we transfer these constructions to the equivariant world. In Section
9 we use Dugger’s notation [Dug05] to describe equivariant Postnikov section
functors. After this rather techniqual section, we give two explicit constructions
for the classical equivariant Atiyah-Hirzebruch spectral sequence and show their
equivalence (Sections 12-14 ).
To deal with properties of these spectral sequences, a more formal point of view
comes in handy. Many of the familiar spectral sequences can be constructed as
the homotopy spectral sequence of a tower of homotopy (co-)fiber sequences. A
great expository paper is due to Dugger [Dug03]. However the main results have
been well-known for about fourty years. A list of references can be found in the
introduction of that paper. Note that [Dug03] consists of two parts, which we
will cite as one. We only specify to one of them, if we explicitly give a reference
on certain pages.
We recall the construction of the homotopy spectral sequence in Section 15 and
show that we can express the sequence constructed in Part IV in this language.
In recent years much attention has been given to a certain spectral sequence
relating motivic cohomology to algebraic K-theory. In his dissertation Dugger
[Dug05] established another Atiyah-Hirzebruch spectral sequence for KR-theory,
which is different to the others constructed in the present paper, but behaves
analogously to this new one. We compute this so-called slice spectral sequence
in Section 16, which takes on the form

Ep,q2
∼= Hp,− q2 (X,Z)⇒ KRp+q(X), (4)

where H∗,∗(X,Z) denotes ordinary equivariant cohomology with coefficients in
the constant Mackey functor Z.
For Real spaces X = XZ/2 with a trivial action of Z/2, we identify the equivari-
ant cohomology groups Hp,− q2 (X,Z) with sums of non-equivarant cohomology
groups. To this end we analyse the fixed point set of the representing Eilenberg-
MacLane spectrum HZ (Section 18).
In the last part (VI) of this paper we will calculate this spectral sequence for
the projective spaces, namely RPn and CPn. They are considered as Real
spaces, where the action on RPn is trivial and the action on CPn is induced
by complex conjugation. We calculate the Real K-theory for these spaces using
the E∞-terms of the spectral sequences. The results have been known due to
Fujii [Fuj67] for the real projective space and to Atiyah [Ati66] for the complex
projective space with conjugation. However our techniques are different, and
we are confident that they become useful for further considerations.
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Part I

Comparison of topological
K-theories
Each kind of topological K-theory is constructed similarly. Starting with vector
bundles over a paracompact Hausdorff space X, we apply the Grothendieck con-
struction to obtain an abelian group. Afterwards we use multiple suspensions
of X to extend it to a cohomology theory. The vector bundles come in various
different shapes. The base field can be R, C or H 1. Moreover they can be
equipped with different kind of forms. Somehow an extra role is played by Real
K-theory, since we can deduce many of the others from it, and the space X has
to come with an action of Z/2 2. The first chapter will present a number of these
theories and compare them on a categorical level. Finally we will characterize
the spectra by which they are represented.

1 Definitions and notations
Most of the notation is taken from [Kar78] I.8. We recall some standard results,
which we use frequently.

Definition 1.1. Let λ 7→ λ̄ denote a continuous involution of K = R, C or H.
We require further that 1̄ = 1. Hence the only involution on the real numbers
is the identity, on the complex numbers we can have either the identity or com-
plex conjugation, while there are more possible involutions on the quaternions.
In fact we are only interested in the identity and conjugation of quaternionic
numbers.

Definition 1.2. Let E be a K-vector bundle over a topological space X. A
sesquilinear form on E is a continuous map φ : E ×X E → K which has the
property that the form φx induced on each fiber Ex, x ∈ X is sesquilinear. In
other words we have λφx(e, e′) = φx(λe, e′) = φx(e, λ̄e′) for e, e′ ∈ Ex.

If E is an arbitrary vector bundle, let Et denote either its dual bundle E∗ if
the involution is trivial, or its antidual Ē∗ if K = C or H and the involution
is conjugation. Each sesquilinear form induces a linear map ψ : E → Et and
an anti-linear map ψ̃ : E → E∗ in the following way. On each fiber we set
ψx(e)(e′) = φx(e, e′) and ψ̃x(e)(e′) = φx(e′, e). Standard results show that
these specifications define continuous maps on vector bundles. The sesquilinear
form is called non-degenerate, if the morphisms are (antilinear) isomorphisms.

Remark 1.3. Antilinear morphisms differ from linear morphisms only if we
take K to be C or H with conjugation. However in this case φ̃ can be considered
as an R-linear morphism of the underlying real vector bundles ER → E∗R.

1Even though the quaternions are no field we will use the terms vector bundle and base
field. Moreover we call Hn a vector space rather then a module. We hope the reader will
forgive this inaccuracy.

2An action of Z/2 is often called involution.
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Definition 1.4. Let ε = ±1. A sesquilinear form is calles ε-symmetric if
φx(e′, e) = εφx(e′, e). If ε = 1 or ε = −1 and the involution is trivial, such
forms will be called symmetric or skew-symmetric, respectively. If ε = 1 and
the involution is conjugation, the form will be called (quaternionic) Hermitian.

Definition 1.5. Let E be a real, complex or quaternionic vector bundle. A
symmetric resp. (quaternionic) Hermitian form is called metric, if it has the
additional property φx(e, e) > 0 for all e 6= 0. Two metrics φ0 and φ1 are called
isomorphic, if there exists an automorphism f of the vector bundle E such that
φ1(f(e), f(e′)) = φ0(e, e′).

Let φ be a metric on a complex bundle. If we put

φ(e, e′) = h(e, e′) + iω(e, e′), (5)

then h is a real metric and ω a bilinear skew-symmetric form on the underlying
real bundle. Similarly, if φ is a quaternionic metric and we put

φ(e, e′) = h(e, e′) + jω(e, e′), (6)

then h is a complex metric and ω a complex bilinear skew-symmetric form on
the underlying complex bundle.

Remark 1.6. We will always write a quaternionic number in the form λ =
λ1 + λ2j, where λi ∈ C and j ∈ H is an element with j2 = −1 and ij = −ji.

Proposition 1.7. Let E be a real, complex or quaternionic vector bundle over
a paracompact space X. Then there exists a metric on E, and it is unique up
to ismorphism.

Proof. [Kar78] I.8.7 and I.8.8. Karoubi proves this result only for K = R or C.
For K = H the proof goes through unchanged.

Remark 1.8. The importance of the uniqueness is that we now may pick a met-
ric on isomorphism classes of vector bundles. If E and F are isomorphic vector
bundles with the isomorphism f : E → F , we pick metrics φE and φF , respec-
tively. We obtain a second metric on E defined by φ′E(e, e′) := φF (f(e), f(e′)).
But now, following Proposition 1.7, φ′E and φE are isomorphic via an automor-
phism g : E → E. Combining these two results we see that (E, φE) and (F, φF )
are isometric via f ◦ g. In the following we will frequently use metrics for vari-
ous contructions. It is crucial that the choice of a metric doesn’t influence the
outcome.

Theorem 1.9. Let X be a compact space, I = [0, 1], and E be a vector bundle
on X × I, then E|X×{0} and E|X×{1} are isomorphic.

Proof. [Kar78] I.7.1

Definition 1.10. Let K be either R,C or H, X a compact space and n ∈ N0.
Denote by

• ΦK
n(X) the set of isomorphism classes of n-dimensional K-vector bundles

over the X,
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• SymK
+,n(X) the set of isomorphism classes of n-dimensional K-vector bun-

dles over X provided with a non-degenerate bilinear symmetric form,

• SymK
−,n(X) denote the set of isomorphism classes of 2n-dimensional K-

vector bundles over X provided with a non-degenerate bilinear skew-
symmetric form, and

• HermC(X)
n the set of isomorphism classes of n-dimensional complex vector

bundles provided with a non-degenerate hermitian form.

Remark 1.11. Any vector bundle with a non-degenerate bilinear skew-symmetric
form is even dimensional, so it makes sense to denote by SymK

−,n(X) the set of
classes of 2n-dimensional bundles.

Definition 1.12. Let K be either R,C or H and X a compact space. Denote
by

• ΦK(X) the set of isomorphism classes of K-vector bundles over X,

• SymK
+(X) the set of isomorphism classes of K-vector bundles over X pro-

vided with a non-degenerate bilinear symmetric form,

• SymK
−(X) the set of isomorphism classes of K-vector bundles over X pro-

vided with a non-degenerate bilinear skew-symmetric form, and

• HermC(X) the set of isomorphism classes of complex vector bundles pro-
vided with a non-degenerate hermitian form.

To be precise: We do not take isomorphism classes and then assign forms.
Instead we begin with vector bundles equipped with forms and then take iso-
morphism classes. But now the isomorphisms are required to respect the forms.
All these sets turn out to be monoids, where the bifunctor is given by the Whit-
ney sum, which is just the pointwise sum of vector spaces.
As indicated above, there is another important class of topological vector bun-
dles, namely Real vector bundles:

Definition 1.13. A Real space X is a space together with an involution, i.e. a
self-inverse automorphism. Sometimes Real spaces are called Z/2-spaces.

Definition 1.14. By a Real vector bundle over the Real space X we mean a
complex vector bundle E over X which is also a Real space such that

• the projection E → X is Real, i.e. it commutes with the involutions on E
and X, and

• the map Ex → Ex̄ is anti-linear.

Remark 1.15. Real vector bundles are defined to be complex vector bundles with
additional structure. So a priori a Real bundle is locally trivial in the category of
complex vector bundles. In fact, it is also trivial in the category of Real vector
bundles (cf. [Ati66] p. 374). To find a trivializing neighbourhood around a
point x, we have to consider the two cases x = x̄ and x 6= x̄. Either we have
a Real isomorphism Ex ∼= {x} × Cn at once or we pick a complex isomorphism
Ex ∼= {x} × Cn and let it induce a Real isomorphism E|{x,x̄} ∼= {x, x̄} × Cn.
Afterwards we can extend the isomorphism to an open neighbourhood of either
x or {x, x̄}: If s is an extension in the category of complex bundles, 1

2 (s+ s̄) is
an extension in the category of Real bundles.
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Definition 1.16. Let Φ̄R(X) denote the set of isomorphism classes of Real
vector bundles over the compact Real space X.

Remark 1.17. The theory of Real vector bundles is an equivariant theory, i.e.
all objects are equipped with an action of the group Z/2 and all maps are required
to respect this structure. Hence we have to carry out all important constructions
equivariantly and give a meaning to Z/2-equivariant homotopies, weak equiva-
lences, (co-)fibrations et cetera. We use some parts of these definitions, when
we deal with Real bundles in the following sections, but we would like to postpone
any further discussion to the first section of part II. There we will fully engage
in the equivariant theory and give an introduction, which is more comprehensive
than it would be useful at this point. The reader who is unfamiliar with the used
notations is referred to the Sections 5 and 6.

2 Comparison of vector bundles
Theorem 2.1. There is an isomorphism

SymC
+(X)→ ΦR(X), (7)

which is natural in X.

Proof. Let E be a C-vector bundle with a non-degenerate symmetric bilinear
form θ. Choose a metric φ on E. The form θ induces a linear isomorphism
χ : E → E∗ with χ(e)(e′) = θ(e′, e), while the metric induces an anti-linear iso-
morphism ψ̃ : E → E∗ with ψ̃(e)(e′) = φ̃(e′, e). Set ω := ψ̃−1χ : E → E which
is anti-linear. As indicated above, we can consider it as a linear isomorphism
ω : ER → ER with the additional property that ωi = −iω.
In other words, ω is the unique isomorphism fulfilling

θ(e, e′) = φ(e, ωe′). (8)

Moreover ω2 is positive and self-adjoint with respect to φ, since

φ(e, ωe′) = θ(e, e′) = θ(e′, e) = φ(e′, ωe) = φ(ωe, e′), (9)

and consequently
φ(e, ω2e′) = φ(ω2e, e′). (10)

Hence ω may be written as h·u where h =
√
ω2 (which is positive) and u = h−1ω.

We have u2 = h−1ωh−1ω = 1. Since p := 1−u
2 is a projection operator, we may

write ER ∼= E+
R ⊕E

−
R , where E+

R = Ker(p) and E−R = Ker(1− p). Furthermore
E+

R is the 1-eigenspace of u and hence E ∼= E+
R ⊗C. For e, e′ ∈ E+

R the following
equation holds:

θ(e, e′) = φ(e, he′) = φ(he′, e) = φ(e′, he) = θ(e′, e) = θ(e, e′) (11)

Furthermore,

θ(e, e) = φ(e, he) ≥ 0. (12)

Hence θ is a real metric, when restricted to E+
R .
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This assignment does not depend on the choice of φ. Let φ0 and φ1 be two
different metrics on E. There exists a vector bundle F on X × I with the met-
ric φ defined by φt = tφ1 + (1 − t)φ0. As above we can use φ to decompose
FR ∼= F+

R ⊕ F
−
R . Now F+

R is a bundle on X × I, with F+
R |X×{0} ∼= E+

R,0 and
F+

R |X×{1} ∼= E+
R,1. By Theorem 1.9, E+

R,0
∼= E+

R,1.

Let f : (E, θ) → (F, σ) be an isomorphism of vector bundles with symmetric
bilinear forms. For any e ∈ E+

R we have

σ(f(e), f(e)) = θ(e, e) ≥ 0.

Hence f |E+
R

: E+
R → F+

R is an isomorphism of real vector bundles. This means
we obtained a well defined map SymC

+(X)→ ΦR(X).
To obtain an inverse map SymC

+(X)← ΦR(X), we proceed as follows:
Let F be a real vector bundle. Choose a metric σ on F . Define E = F ⊗C and
a form θ on E by

θ(a+ bi, c+ di) = σ(a, c)− σ(b, d) + i(σ(a, d) + σ(b, c)). (13)

If σ′ is another metric on F , then σ and σ′ are isomorphic, and so are the induced
forms. Now let g : E → F be an isomorphism of real vector bundles. It induces
a map g : E⊗C→ F ⊗C via g(e⊗ z) = g(e)⊗ z, which respects the symmetric
forms by definition. It is immediate that the maps SymC

+(X) → ΦR(X) and
SymC

+(X)← ΦR(X) are inverse to each other.

Theorem 2.2. There is an isomorphism

F : SymC
−(X)→ ΦH(X), (14)

which is natural in X.

The main ingredient for the proof will be

Lemma 2.3. Let E be a complex vector bundle with compact base, provided
with a non-degenerate skew-symmetric form θ. There exists a pair (J, φ), which
is unique up to isomorphism, where

(1) J is an automorphism on ER, such that J2 = −1 and iJ = −Ji, and

(2) φ is a metric on E with φ(e, Je′) = θ(e, e′).

Proof. We begin just as in the proof of Theorem 2.1.
We choose a metric φ̃ on E. The form θ induces a linear isomorphism χ : E →
E∗ with χ(e)(e′) = θ(e′, e), while the metric induces an anti-linear isomorphism
ψ̃ : E → E∗ with ψ̃(e)(e′) = φ̃(e′, e). Set ω := ψ̃−1χ : E → E which is anti-
linear. Consider it as a linear isomorphism ω : ER → ER with the additional
property that ωi = −iω.
ω is the unique isomorphism fulfilling

θ(e, e′) = φ(e, ωe′). (15)

But now ω2 is negative and self-adjoint with respect to φ, since

φ(e, ωe′) = θ(e, e′) = −θ(e′, e) = −φ(e′, ωe) = −φ(ωe, e′), (16)
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and consequently
φ(e, ω2e′) = φ(ω2e, e′). (17)

Thus we may define h =
√
−ω2 which is itself self-adjoint, but now positive,

and commutes with ω. We further set J := h−1ω and ψ = ψ̃h. The form φ
induced by ψ is a metric on E.
By definition we get

φ(e, Je′) = φ̃(e, hh−1ωe′) = φ̃(e, ωe′) = θ(e, e′) (18)

and finally J2 = −1 as well as iJ = −Ji. We call J a quaternionic structure on
E, which will be justified later. To what extent is the pair (φ, J) unique? The
procedure to assign this pair to the chosen metric φ̃ is canonical and obviously
unique. Let (φ0, J0) and (φ1, J1) be two pairs fulfilling the conditions of the
lemma. Then the Ji are given by Ji = ψ−1

i χ. The metrics are isomorphic via
a self-adjoint automorphism f with f2 = ψ−1

1 ψ0 (cf. [Kar78] I.8.8). Hence we
obtain J1 = f2J0.

Proof of Theorem 2.2. Let E be a complex vector bundle provided with a non-
degenerate bilinear skew-symmetric form θ. Pick a pair (φ, J) as in Lemma 2.3.
Consider E as an H-vector bundle via λe := λ1e + λ2Je for all λ = (λ1, λ2) =
λ1 + λ2j ∈ H.
If we replace (φ, J) by say (φ′, J ′), the quaternionic vector bundles are clearly
isomorphic. If we set h(e, e′) = φ(e, e′) + ω(Je, e′), we obtain a quaternionic
metric.
If E is a quaternionic bundle, we may pick a quaternionic metric h. We can
decompose h = φ + jω where ω is a bilinear skew-symmetric form on the un-
derlying complex bundle. If we choose another metric h′, then it is isomorphic
to h and so is ω′. Moreover we observe

φ(e, e′) + jω(e, e′) = h(e, e′) = jh(e, je′) = jφ(e, je′)− ω(e, je′). (19)

Hence φ(e, je′) = ω(e, e′). Consequently the map which maps E to (EC, ω) is
an inverse to the map above.

Theorem 2.4. There are natural isomorphisms

SymR
+(X) ∼= ΦR(X)× ΦR(X), (20)

SymR
−(X) ∼= ΦC(X), (21)

and
HermC(X) ∼= ΦC(X)× ΦC(X). (22)

Proof. The isomorphisms are constructed analogously to the isomorphisms of
Theorem 2.1 and Theorem 2.2, respectively.

We can now ask ourselves, to what extent we can generalize the results of this
sections to categories of vector bundles. The most natural choice for morphisms
of vector bundles endowed with forms are maps, which respect these forms.
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Definition 2.5. Denote by S ymK
+(X), S ymK

−(X) and H ermC(X) the cate-
gories of isomorphism classes of vector bundles equipped with their respective
forms (cf. Definition 1.12) and maps compatible with the forms.

Note that this compatibility implies that the maps are necessarily injective. In
order to take the Theorems 2.1, 2.2 and 2.4 over to equivalences of categories
we hence have to define suitable morphisms for a category which has the set of
objects ΦK(X). Recall that the set of isomorphism classes of vector bundles is
isomorphic to the set of isomorphism classes of vector bundles, equipped with
a metric. Indeed, there exists a metric on any vector bundle and this metric
is unique up to isomorphism (cf. Proposition 1.7). Conversely, if a vector
bundle E carries a metric and F is an isomorphic vector bundle, we can use the
isomorphism to pull back the metric to F .

Definition 2.6. Denote by ΨK(X) the category of K-vector bundles equipped
with a metric and morphisms, which respect this metric.

Theorem 2.7. The isomorphisms in Theorems 2.1, 2.2 and 2.4 induce equiv-
alences of categories

S ymC
+(X) ∼= ΨR(X), (23)

S ymC
−(X) ∼= ΨH(X), (24)

S ymR
+(X) ∼= ΨR(X)×ΨR(X), (25)

S ymR
−(X) ∼= ΨC(X), (26)

and
H ermC(X) ∼= ΨC(X)×ΨC(X). (27)

Proof. In view of what we have done so far, it remains to define a functorial
correspondence of morphisms. We will do this exemplarily for (23) and (24).
The other cases work analogously.

• (23)
We will give an explicit construction of functors

Γ : S ymC
+(X) � ΨR(X) : ∆, (28)

inducing the equivalence.
The underlying real bundles of an object (E, θ) ∈ S ymC

+(X) can be
decomposed as ER ∼= E+

R ⊕ E−R , where the form θ on E restricts to a
real metric on E+

R . Hence, Γ((E, θ)) = (E+
R , θ|E+

R
). Let now (E′, θ′) be

another object and f : (E, θ)→ (E′, θ′) a morphism in S ymC
+(X). Since

we have 0 ≤ θ(e, e) = θ′(f(e), f(e)) for e ∈ E+
R , f restricts obviously to a

morphism in ΨR(X). Thus we set Γ(f) = f |E+
R
.

Conversely, let (F, φ) and (F ′, φ′) be objects in ΨR(X) and g : (F, φ) →
(F ′, φ′) a morphism between them. We know that ∆((F, φ)) = (F ⊗C, σ),
where

σ(a+ bi, c+ di) = φ(a, c)− φ(b, d) + i(φ(a, d) + φ(b, c)). (29)

Further, we set ∆(g)(a+ bi) = g(a) + ig(b), which is clearly functorial. It
is immediate that Γ ◦∆ and ∆ ◦ Γ are the identity.
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• (24)
As above, we will give an explicit construction of functors

Γ : S ymC
−(X) � ΨH(X) : ∆, (30)

inducing the equivalence.
Recall that, given an object (E, θ) ∈ SymC

−(X), there exists a pair (J, φ),
such that we may consider E as a quaternionic bundle equipped with a
metric h, which is given by

h(e, e′) = φ(e, e′) + θ(Je, e′). (31)

Alternatively, we can define h by

h(e, Je′) = θ(e, e′) + θ(e, e′), (32)

which shows that any map respecting the forms, also respects metrics.
Thus, we define Γ((E, θ)) = (E, h) and Γ(f)(a+ Jb) = f(a) + J ′f(b).
Conversely, given an object (F, h) ∈ ΨH(X), we have ∆(F, h) = (FC, θ),
where h decomposes as h = φ + jθ, for a complex metric φ and a non-
degenerate bilinear skew-symmetric form θ. Clearly, any map compatible
with quaternionic metrics, will be compatible with forms alone.

3 Classifying spaces
Classifying spaces have been used frequently over the years. We will just give a
survey over the general theory and pay a bit more attention to the classifying
space for Real K-theory. It is a matter of personal taste how to present this
topic. Hence the results can be found with different notations at many different
places. We will mainly follow [Ste51], [Hus93] and [Ros94].

3.1 Fibre bundles and structure groups
Definition 3.1. A fiber bundle E over X with fiber F and structure group G
consists of a continuous map p : E → X of topological spaces and a space F
where G is a topological group acting as a group of homeomorphisms on F such
that

• The map p is locally trivial, i.e. each point x ∈ X has an open neigh-
bourhood U and a homeomorphism φU : U × F → p−1(U) such that the
following diagram commutes:

p−1(U)

p

��

U × F

π1

yytttttttttttφU

oo

U

(33)

• If Ui and Uj are two open neighbourhoods of x, then there exists a unique
map gi,j : Ui∩Uj → G such that φUj (x, y) = φUi(x, gi,j(x)y) for all y ∈ F .

15



If F is homeomorphic to G and G acts on itself by left translation, the bundle
is called a principal bundle.

Remark 3.2. We obtain the same definition if we only require the existence of
an open covering of trivializing neighbourhoods. This covering together with the
trivializing homeomorphisms is called an atlas. If we have two atlases for the
same given (E,B, p, F ), then the bundles are isomorphic if the union of these
atlases is again an atlas.

Proposition 3.3. Let E be a fiber bundle over X with structure group G. Let
Ui, Uj and Uk be trivializing neighbourhoods of x ∈ X. Then the gi,j stated in
Definition 3.1 above have the following properties

(1) gi,j(x)gj,k(x) = gi,k(x) on Ui ∩ Uj ∩ Uk,

(2) gi,j(x) = (gj,i)(x)−1 and

(3) gi,i(x) = 1.

Proof. This is an immediate consequence of the property

φUj (x, y) = φUi(x, gi,j(x)y). (34)

Definition 3.4. Let X be a topological space and {Ui} an open covering of X.
A set of maps gi,j : Ui ∩ Uj → G fulfilling the properties given in Proposition
3.3 is called a system of transition functions associated with {Ui}.

The main reason why we are interested in fiber bundles is

Theorem 3.5. Let {Ui} be an open covering of a space X, let G be a topological
group acting as a group of homeomorphisms on a space F , and let {gi,j} be a set
of transformation functions associated with the covering {Ui}. Then there exist
a fibre bundle η, unique up to isomorphism, and an atlas {(Ui, φUi)} for η such
that the set of transition functions for this atlas is {gi,j}. Moreover, if F = Kn,
for n ∈ N and K = R,C or H, and if G is a closed subgroup of GL(n,K), then
η admits the structure of a vector bundle.

Proof. [Hus93] Theorem 5.3.2

The crucial point is that the structure group GL(n,K) forces the trivializations
to be linear on fibers. We have already seen, that each vector bundle gives rise
to a set of transformation functions associated to a covering of the base space.
Hence we may identify the set of isomorphism classes of vector bundles with
isomorphism classes of fibre bundles with structure group GL(n,K). If we pick
different subgroups of GL(n,K), we obtain vector bundles which admit extra
structure.

Theorem 3.6. Let E be a vector bundle over X with a metric h (real, complex,
or quaternionic). Then E has an atlas {(Ui, φUi)} such that

(e, e′) = h(φUi(b, e), φUi(x, e
′)), (35)

where (−,−) denotes the standard metric on Kn, n ∈ N. The transition func-
tions of this atlas have their values in O(n), U(n) or Sp(n), respectively.

16



Proof. [Hus93] Theorem 5.7.4

Hence vector bundles with metrics (that is all vector bundles, cf. Proposition
1.7) may be identified with fibre bundles with fibre Kn and structure group
O(n), U(n) or Sp(n) respectively.

Definition 3.7.

• Let On,p(K) denote the subgroup of GLn+p(K) (K = R,C), which consists
of isometries of Kn+p provided with the form

∑n
i=1 xiȳi −

∑n+p
i=n+1 xiȳi.

• Let Sp2n(K) denote the subgroup of GLn2n(K) (K = R,C), which consists
of isometries of K2n provided with the form

∑n
i=1 xiyi+n −

∑n
i=1 xi+nyi.

• Let On(C) denote the subgroup of GL(n,C), which consists of isometries
of Cn provided with the quadratic from

∑n
i=1(xi)2.

As we have already seen, a vector bundle E carrying a bilinear non-degenerate
symmetric form ω (in the real case) or a hermitian form ω (in the complex case)
can be written as an orthogonal sum E+ ⊕ E−, where ω is positive definite on
E+ and negative definite on E− (cf. Theorem 2.4). We can apply Theorem 3.6
on both summands seperately and obtain

Theorem 3.8. Let E be a vector bundle over X with a bilinear non-degenerate
symmetric resp. hermitian form ω. Then E has an atlas {(Ui, φUi)} such that
(e, e′) = ω(φUi(x, e), φUi(x, e

′)), where (−,−) denotes the form on Kn+p defined
by (e′, e) =

∑n
i=1 e

′
iēi−

∑n+p
i=n+1 e

′
iēi. The transition functions of this atlas have

their values in On,p(K).

In fact we lose some information in the second statement. From (e, e′) =
ω(φUj (x, e), φUj (x, e

′)) = ω(φUi(x, gi,j(x)e), φUi(x, gi,j(x)e′)) = (gi,j(x)e, gi,j(x)e′)
we see that the gi,j respect the form (−,−). Since we used the splitting
E = E+ ⊕ E− in the proof, we could have obtained that the transition func-
tions have their values in O(n)×O(p) or U(n)×U(p), respectively. This is not
surprising as it is nothing more than the isomorphism in Theorem 2.4.
We can do an analogous construction for vector bundles with bilinear non-
degenerate skew-symmetric forms. We use the isomorphisms of Theorem 2.2
and Theorem 2.4 and the induced metrics to obtain the desired atlases.

Theorem 3.9. Let E be a vector bundle over X with a a bilinear non-degenerate
skew-symmetric form ω. Then E has an atlas {(Ui, φUi)} such that (e, e′) =
ω(φUi(x, e), φUi(x, e

′)), where (−,−) denotes the form on K2n defined by (e, e′) =∑n
i=1 eie

′
i+n−

∑n
i=1 ei+ne

′
i. The transition functions of this atlas have their val-

ues in Sp2n(K).

Finally we deduce the result for complex vector bundles with bilinear symmetric
forms, or equivalently with quadratic forms. (By standard linear algebra each
quadratic form q induces a bilinear symmetric form by ω(e, e′) := 1

2 (q(e+ e′)−
q(e)− q(e′)), and vice versa any bilinear symmetric form ω induces a quadratic
form by q(e) := ω(e, e)).
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Theorem 3.10. Let E be a complex vector bundle over X provided with a
non-degenerate quadratic form q. Then E has an atlas {(Ui, φUi)} such that
q̃(e) = q(φUi(x, e)), where q̃ denotes the quadratic from on Cn defined by q̃(e) =∑n
i=1(ei)2. The transition functions of this atlas have their values in On(C).

We now have computed the structure groups of all types of vector bundles we
defined in Definition 1.12 (that is all types we have considered, except Real
bundles). In view of the isomorphisms given in the Theorems 2.1, 2.2 and 2.4
it looks like as if there were different choices:

• On,p(K) and O(n)×O(p) or U(n)×U(p) for bundles with non-degenerate
symmetric bilinear resp. hermitian forms,

• Sp2n(K) and U(n) resp. Sp(n) for bundles with non-degenerate bilinear
skew-symmetric forms, and

• On(C) and O(n) for complex bundles with quadratic resp. non-degenerate
bilinear symmetric forms.

However, the following theorem solves this ambiguity:

Theorem 3.11. There exist deformation retractions of

• On,p(K) onto O(n)×O(p) if K = R and onto U(n)× U(p) if K = C,

• Sp2n(K) onto U(n) if K = R and onto Sp(n) if K = C, and of

• On(C) onto O(n).

For the proof we need some general statements on Lie-groups [HN91]:

Remark 3.12. (Notation) If G is a Lie-group, we use the letter g to denote
the Lie-algebra Lie(G).

Theorem 3.13. Let G be a connected Lie-group, k ⊆ g a maximal compactly
embedded subalgebra, K := 〈exp(k)〉 and T ⊆ K a maximal compact subgroup.
Then T is maximal compact in G, and there exists a closed submanifold M ∼=
Rn ⊆ G, such that the mapping

M × T → G, (m, t) 7→ mt (36)

is a diffeomorphism.

Proof. [HN91] p.286

Theorem 3.14. Let G ⊆ GLn(C) be a subgroup, which is the zero set of a set
of polynomials in the 2n2 entries of the matrix and which is invariant under the
transposition g 7→ g∗ = ḡT . Set

k := {X ∈ g : X∗ = −X} p := {X ∈ g : X∗ = X} (37)

and K := G∩U(n). Then Lie(K) = k, K is a maximal compact subgroup of G
and the mapping

Φ : K × p→ G, (k, P ) 7→ k exp(P ) (38)

is a diffeomorphism.
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Proof. [HN91] p. 321

Proof of Theorem 3.11. We apply the Theorems 3.13 and 3.14 to our setting.
We deal with all different situations analogously. To prove that X is a deforma-
tion retract of A we consider X as a subgroup of A with inclusions we specify
below.

• Via the inclusion
(A,B) 7→

(
A 0
0 B

)
(39)

we regard O(n) × O(p) and U(n) × U(p) as subgroups of O(n, p)(R) and
O(n, p)(C), respectively.

• U(n) is a subgroup of Sp2n(R) via the inclusion

Z = X + iY 7→
(
X −Y
Y X

)
, (40)

and Sp(n) is a subgroup of Sp2n(C) via the inclusion

Z = X + jY 7→
(
X −Y
Y X

)
. (41)

• O(n) is clearly a subgroup of On(C), since the elements of O(n) respect
the quadratic form

∑n
i=1(xi)2 by definition.

All groups in place of A fulfill the conditions of G in Theorem 3.14. We only
have to show that A∩U(n) = B which is basic linear algebra. This proves that
X is a maximal compact subgroup of A. Afterwards we apply Theorem 3.14 to
each component, seperately. Hence A is diffeomorphic to B ×M , where M is
contractible. This finishes the proof.

3.2 Classifying spaces for classical vector bundles
Once we have identified the structure groups, we finally can deduce classifying
spaces for vector bundles.

Theorem 3.15. Let G be a group. There exists a contractible CW-complex X
with a free and cellular action of G, such that X/G is a CW-complex. We write
X = EG and X/G = BG. EG → BG is a G principal bundle. BG is called a
classifying space for fiber bundles with structure group G.

Proof. [Ros94] Theorem 5.1.15.

Proposition 3.16. The classifying space construction yields a functor X from
the category of groups with group homomorphisms to the category of topological
spaces with homotopy classes of maps.

Proof. [Ros94] Proposition 5.1.18.

Theorem 3.17. Let G be a group and X a CW-complex. Then the pullback
induces a 1-1 correspondence between homotopy classes of maps X → BG on
the one hand, and G principal bundles over X on the other hand.
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Proof. [Ste51] Theorem 19.3.

We are looking for a correspondence of homotopy classes of maps X → BG
and vector bundles over X, which have the structure group G. Luckily we can
construct it easily:
As we recall from Theorem 3.5, we can think of vector bundles as atlases to-
gether with transition functions associated to this atlases. From this point of
view the fiber becomes an independent extra datum. Hence, if we start with
a vector bundle and forget the fibre, we can replace it by G and use the tran-
sition functions and Theorem 3.5 to obtain a G principal bundle carrying all
the information except the datum of the fibre. This new bundle is called the
associated G principal bundle. Conversely, if we start with a G principal bundle
and a space F with a suitable action of G, we can use this data to construct a
fibre bundle with structure group G.

Theorem 3.18. Two bundles having the same fibre, base space, and structure
group are equivalent, if and only if their associated principal bundles are equiv-
alent.

Proof. [Ste51] Theorem 8.2.

Corollary 3.19. There are functor isomorphisms

• ΦR
n(X) ∼= [X,BO(n)],

• ΦC
n(X) ∼= SymR

−,n(X) ∼= [X,BU(n)],

• ΦH
n(X) ∼= SymC

−,n(X) ∼= [X,BSp(n)],

• SymK
+,n,p(X) ∼= [X,BO(n, p)], and

• HermC
n,p(X) ∼= [X,BU(n, p)],

where the SymK
+,n,p(X) and HermC

n,p(X) denote the sets of vector bundles,
which decompose into sums of two real resp. complex vector bundles of dimen-
sions n and p.

3.3 The classifying space for Real vector bundles
Recall from Definition 1.14 that a Real vector bundle over a Real space X is a
complex bundle, which is also a Real space, such that the projection is equiv-
ariant, i.e. compatible with the action of Z/2. Consequently a classifying space
for Real vector bundles has to carry a Z/2-action as well. Instead of developing
the construction described in the last section in an equivariant setting, we use
this opportunity, to compute a classifying space directly. In fact, this explicit
construction works also non-equivariantly, so can be seen as an important ex-
ample for the computation of classifying spaces. As soon as we are dealing with
G-spaces, all maps are required to be equivariant.
It is well known that a model for BU(n) is given by Grassmannians (cf. for
instance [Hat03] Theorem 1.6). The classifying space for Real vector bundles is
also denoted by BU, but now carries a Real structure. We will repeat the proof
of [Hat03] carefully and add all equivariant details.
First we define the Grassmann manifold Gn(Ck) for nonnegative integers n ≤ k.
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Here, Ck is the Real space, where the involution is given by complex conjuga-
tion. As a set, Gn(Ck) is the collection of all n-dimensional subspaces of Ck,
and this set is topologized as a quotient of a subspace of the n-fold product of
spheres in Ck.
The canonical vector bundle on Gn(Ck) is defined to be En(Ck) = {(l, v) ∈
Gn(Ck) × Ck|v ∈ l} with the projection p : En(Ck) → Gn(Ck), (l, v) 7→ v.
We already know that this is a complex vector bundle and it is straighforward
to check, that it is a Real bundle. As usual, we set Gn = ∪kGn(Ck) and
En = ∪kEn(Ck).

Theorem 3.20. For paracompact spaces X, the map [X,Gn]G → Φ̄R(X), [f ] 7→
f∗(En) is a bijection.

Proof. The main ingredient is the following: For an n-dimensional Real vector
bundle p : E → X, an isomorphism E ∼= f∗(En) is equivalent to an equivariant
map g : E → C∞, which is a linear injection on each fiber.
Indeed, if we start with an equivariant map f : X → Gn and an isomorphism
E ∼= f∗(En), we have a commutative diagram

E
∼= //

p

""FFFFFFFFF f∗(En)

��

f̃ // En
π //

��

C∞

X
f // Gn

(42)

where π(l, v) = v. The composition across the top row is a map g : E → C∞
with the desired properties. Conversely a linear equivariant fiberwise injective
map g : E → C∞ allows us to define f : X → Gn, x 7→ g(p−1(x)). This yields
a diagram as above.
To show surjectivity of the map [X,Gn]→ Φ̄R(X), we suppose p : E → X is an
n-dimensional Real vector bundle. Let {Uα} be an open cover of X such that
E is trivial over each Uα. Note that the bundle is indeed locally trivial as a
Real bundle. Since X is paracompact, {Uα} can be assumed to be countable
and admit an equivariant partition of unity {φα}3, where φα is supported in
Uα. Now, let gα : p−1(Uα) → Cn be the composition of the trivialization
p−1(Uα) → Uα × Cn with the projection onto Cn. The maps (φαp)gα extend
to maps E → Cn, which are zero outside p−1(Uα), and near each point of X,
finitely many φα are nonzero. Hence, the (φαp)gα are the coordinates of a map
g : E → (Cn)∞ = C∞, which is an injection on each fiber.
For injectivity we have to show the following:
If E ∼= f∗0 (En) and E ∼= f∗1 (En) are two isomorphisms for maps f0, f1 : X → Gn,
then they induce maps g0, g1 : E → C∞ as in the first paragraph of this proof.
These maps are Z/2-homotopic and thus f0 and f1 are Z/2-homotopic as well
via ft(x) = gt(p−1(x)).
We define Lt : C∞ → C∞ by Lt(x1, x2, ...) = (1 − t)(x1, x2) + t(x1, 0, x2, 0, ...).
If we compose g0 with Lt, we obtain a Z/2-homotopy of g0 onto a map which
we also denote by g0. Now the image of g0 is moved into the odd-numbered
coordinates. Similarly we can move the image of g1 into the even-numbered

3If p′ is any partition of unity, p(x) =
p′(x)+p′(x̄)

2
is obviously an equivariant partition of

unity.
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coordinates. Let gt = (1 − t)g0 + tg1. This is a Z/2-homotopy of g0 onto g1,
which is linear and injective on fibers.

4 Stably isomorphic vector bundles and K-theory
Proposition 4.1. LetM be a monoid, i.e. a set with an operation satisfying all
axioms of a group, possibly without existence of inverses. There exists an abelian
group S(M) and a homomorphism of the underlying monoids s : M → S(M)
with the following universal property:
For any abelian group G and any homomorphism of the underlying monoids
f : M → G, there is a unique group homomorphism f̃ : S(M) → G which
makes the following diagram commute:

M
s //

f

��@
@@

@@
@@

@ S(M)

f̃||yy
yy

yy
yy

G

(43)

Proof. Define S(M) = M ×M/ ∼, where (m,n) ∼ (m′, n′) if, and only if there
exists a p ∈M such that m+ n′ + p = n+m′ + p. Further set s(m) = (m, 0).

Remark 4.2.

• We will write the elements of S(M) as (m,n) = m − n. The proce-
dure of assigning the group S(M) to the monoid M is referred to as the
Grothendieck construction, and S(M) is called the Grothendieck group as-
sociated to M .

• The group S(M) depends functorially on M in an obvious way.

If we apply the Grothendieck construction to the monoids given by isomorphism
classes of vector bundles introduced in Definition 1.12, we obtain the different
types of topological K-theories. We will denote the Grothendieck groups S(M)
for these monoids by K(X). Usually K(X) is only used for the Grothendieck
group of the monoid of complex vector bundles. We will find distinguished
names for the different theories later, but right now all situations can be treated
similarly. Likewise, we use Φ(X) as a common name for all different sets of
isomorphism classes of vector bundles. If we want to specify the dimension of
the vector bundles we write Φn(X) or Φn,p(x). Recall that for bundles with non-
degenerate bilinear skew-symmetric forms, the dimension of bundles in Φn(X)
is 2n rather than n, while for real bundles with symmetric bilinear forms and
complex bundles with hermitian forms the index (n, p) indicates bundles with an
n-dimensional subbundle carrying a positiv definite form, and a p-dimensional
subbundle carrying a negative definite form. The trivial bundles over X will
generally be denoted by θn or θn,p where the dimension is again n, 2n or n +

p. The forms are given by
(

0 −En
En 0

)
or
(
En 0
0 −Ep

)
, respectively. The

structure group for Φ(X) is denoted either by G(n) or G(n, p), the classifying
space by BG(n) or BG(n, p).
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Definition 4.3. If X is a pointed space, the inclusion ∗ ↪→ X induces a homo-
morphism K(X)→ K(∗). Denote the kernel of this map by K̃(X), the reduced
K-group.

Definition 4.4. By adding trivial 1-dimensional (resp. 2-dimensional) bun-
dles we obtain inclusions Φn(X) → Φn+1(X), Φn,p(X) → Φn+1,p(X) and
Φn,p(X) → Φn,p+1(X). Let Φ′(X) be the colimit over all these maps. Sim-
ilarly we have inclusions G(n)→ G(n+1), G(n, p)→ G(n+1, p) and G(n, p)→
G(n, p+ 1) which induce maps on the classiyfing spaces. Denote the colimit of
the given diagram by BG. The space BG turns out to be a classifying space in
the sense of Theorem 3.15.

Proposition 4.5. For every compact space X, there are natural isomorphisms
K̃(X) ∼= Φ′(X) ∼= [X,BG].

Proof. For the first part we only need the following observation: Any element
in K(X) can be written as E − θ for some trivial bundle θ. For E − θ to live in
K̃(X), the dimensions of E and θ have to be equal. Hence there are surjective
homomorphisms from Φn resp. Φn,p onto K̃(X). Two elements E−θ and F −σ
are equal in K̃(X) if E ⊕ σ ∼= F ⊕ θ. This is the same as being equal in Φ′(X).
For the second part observe that the diagrams

Φn(X) //

��

[X,BG(n)]

��
Φn+1(X) // [X,BG(n+ 1)]

(44)

and

Φn,p(X) //

��

[X,BG(n, p)]

��

Φn,p(X) //

��

[X,BG(n, p)]

��
Φn+1,p(X) // [X,BG(n+ 1, p)] Φn,p+1(X) // [X,BG(n, p+ 1)]

(45)
commute and hence induce isomorphisms on the colimits. Finally, colim[X,BG(n)] =
[X,BG] and colim[X,BG(n, p)] = [X,BG].
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Part II

Equivariant homotopy theory
5 The category of G-spaces
Throughout the remainder of this paper we work in the category of topological
G-spaces. Even though we encountered Z/2-spaces earlier when we dealt with
Real vector bundles, we now give a more complete introduction to the equivari-
ant world. Since we barely use non-equivariant objects anymore we often just
write space (or the name of any other object), instead of equivariant space et
cetera. If it is important to distinguish between objects, we rather indicate the
non-equivariant counterpart than the equivariant one. Most of the notation is
taken from May [M+96].

Definition 5.1. A G-space is a topological space together with a continuous
action of a topological group G. If we don’t need to specify the group G, we
sometimes use the term equivariant space.

Definition 5.2. A map f : X → Y between two G-spaces is called equivariant
or G-map if f(gx) = gf(x).

Definition 5.3. Denote by U the category of compactly generated and weak
Hausdorff spaces and by GU the category of G-equivariant compactly generated
and weak Hausdorff spaces.

The categories U and GU are our objects of study, i.e. we assume every space
to be in either of these categories.
The usual constructions on spaces apply in the category GU of G-spaces and G-
maps. For example, G acts diagonally on Cartesian products and by conjugation
on mapping spaces.
Moreover, we assume subgroups H ⊂ G to be closed.

Definition 5.4. For a subgroup H ⊂ G, XH denotes the set of points which are
fixed under the action of H, and X/H is the orbit space, obtained by identifying
points in the same orbit.

Definition 5.5. A based G-space is a G-space with a distinguished basepoint,
which is fixed under the action of G. We write X+ for the union of a G-space
X and a disjoint basepoint.

Definition 5.6. A G-CW complex is a G-space with a decomposition X =
colimp≥0X

p, where X0 is a disjoint union of orbits G/H and Xp+1 is obtained
from Xp by attaching G-cells G/H ×Dp+1 along G-maps G/H × Sp → Xn.

Definition 5.7. A based homotopy between two based G-maps X → Y is
given by a based G-map X∧I+ → Y , where G acts trivially on the unit interval
I. We denote the set of homotopy classes of G-maps between two G-spaces
X and Y by [X,Y ]. For a subgroup H ⊂ G, [X,Y ]H denotes the set of H-
equivariant homotopy classes of H-maps. In particular [X,Y ]e denotes the set
of non-equivariant homotopy classes. The set of based homotopy classes of based
G-maps is denoted by [X,Y ]∗. Two G-spaces X and Y are equivariantly weakly
equivalent if there are G-maps f : X → Y and g : Y → X such that fg and gf
are G-homotopic to the identity on X and Y , respectively.
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Remark 5.8. Let X and Y be equivariantly weakly equivalent via maps f and
g. Then the restrictions of f and g to the sets of fixed points XH and Y H for
an arbitrary subgroup H ⊂ G induce maps fH : XH → Y H and gH : Y H →
XH . These maps give an ordinary weak equivalence between XH and Y H .
Conversely, given two maps f and g, which induce ordinary weak equivalences
between XH and Y H , they give an equivariant weak equivalence. This statement
might not be obvious at this point, but will be proven in the next paragraph.This
leads to an equivalent definition of equivariant weak equivalence.

Definition 5.9. Two G-spaces X and Y are equivariantly weakly equivalent if
there is a map X → Y such that the restrictions XH → Y H are ordinary weak
equivalences for every subgroup H ⊂ G.

Definition 5.10. Denote the homotopy category of G-spaces by hGU and let
h̄GU denote the category constructed from hGU by formally inverting the
weak equivalences.

Remark 5.11. In the literature the term homotopy category is sometimes used
differently. Given a model category C , the homotopy category is then what we
here call h̄C . In the present paper the homotopy category hC has the same
objects as C , and homotopy classes of maps as morphisms. This is also the
notation used by May et. al. [M+96].

6 The model structure
There are two ways to look at fibrations and cofibrations. Non-equivariantly
they are either defined explicitly as Serre (co-)fibrations or, more abstractly, as
part of a model structure on the category of topological spaces. If we want to
define equivariant fibrations and cofibrations, both approaches are possible. In
chapter I.2 of [M+96] it reads

In either the based or unbased context, fibrations and cofibrations
are defined exactly as in the non-equivariant setting by the covering
homotopy property and the homotopy extension property, except
that all maps in sight are equivariant. The theory goes through
unchanged.

It is not hard to believe, that most proofs apply unchanged. While this might be
sufficient for many purposes, it would certainly be nice to have a more conceptual
definition.
Thus, we will introduce a model structure on the category of G spaces using a
beautiful approach by Robert Piacenza. In section VI.5 of [M+96] he developed
a closed model structure on the category of diagrams of spaces indexed on a
small indexing category J . The key observation is then that the category of
G-CW-complexes and the category of diagrams of CW-complexes, indexed on
the orbit category of G, are equivalent. Moreover this equivalence will respect
weak equivalences and finally induces an equivalence between the homotopy
categories.

Definition 6.1. Let G be a topological group. Denote by G the orbit category
of G, i.e. the objects are orbits G/H for all subgroups H ⊂ G. For another
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subgroup K ⊂ G the space of morphisms is the space of G-maps G/H → G/K.
Define a G -space to be a functor G op → U . A map of G -spaces is a natural
transformation, and we write G U for the category of G -spaces.

Definition 6.2. Let T be a G -space and K a G-space. Then we are able
to form the product T × K by setting (T × K)(G/H) := T (G/H) × K. In
particular, T × I is defined, where I is the unit interval. Thus, we have a notion
of homotopy between maps of G -spaces. Write [T, T ′]G for the set of homotopy
classes of maps T → T ′.

There are two functors Φ : GU � G U : Ψ relating the categories GU and
G U :

Definition 6.3. Let X ∈ GU . Then Φ(X)(G/H) := XH .

The functor Ψ is not given by the naive assignment which maps a G -space T to
the G-space T (G/e) 4. Instead Ψ is given by Elmendorf’s Theorem.

Theorem 6.4. There are a functor Ψ : G U → GU and a natural transfor-
mation ε : ΦΨ → id such that each ε : ΦΨT (G/H) ∼= (ΨT )H → T (G/H) is a
homotopy equivalence. If X has the homotopy type of a G-CW complex, then
there is a natural bijection

[X,ΨT ]G ∼= [ΦX,T ]G (46)

Proof. [M+96] V.3.2.

We can now define a (closed) model structure on the category of diagrams.

Definition 6.5. Let J be a small topological category over U with discrete
object space. Define U J to be the category of continuous functors Jop → U .
Its objects are called either diagrams or J-spaces, and its morphisms which are
natural transformations, are called J-maps.

Remark 6.6. The category G U is just the category U G . The category U J for
the trivial indexing category J is just U .

Definition 6.7. Let j ∈ J . Then j denotes the element of U J which maps
k ∈ J to the mapping space J(k, j).

Definition 6.8. A J-complex is an object X ∈ U J with a decomposition
X = colimp≥0X

p, where

X0 =
∐
α∈A0

Dnα × j
α

(47)

and, inductively,
Xp = Xp−1

⋃
f

(
∐
α∈Ap

Dnα × j
α

) (48)

for some attaching J-map f :
∐
α∈Ap S

nα−1× j
α
→ Xp−1 and indexing sets Ap.

We call X a J-CW complex, if X is a J-complex such that nα = p for all p ≥ 0
and α ∈ Ap.

4In fact this is a functor G U → GU . It is simply not the one we are looking for.
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As in Definition 6.2 we can form the product of a diagram T and a space X by
setting (T ×X)(j) := T (j) ×X for all j ∈ J . For X = I this gives the notion
of a homotopy of J-maps and hence of a J-weak equivalence.

Definition 6.9. A J-map f : X → Y is a weak equivalence, if there is a J-map
g : Y → X such that fg and gf are J-homotopic to the identity. This is the
same as a levelwise homotopy f(j) : Y (j)→ X(j) for all j ∈ J .

Definition 6.10. A J-map f : X → Y is a J-fibration, if f(j) : Y (j) → X(j)
is a Serre fibration for all j ∈ J . An acyclic J-fibration is a J-fibration, which
is also a J-weak equivalence. A J-map g : A → B is a J-cofibration, if it
has the left lifting property with respect to all acyclic J-fibrations. Explicitly,
if the outer square of the following diagram commutes, where f is an acyclic
J-fibration, then there exists a diagonal map, completing the diagram.

A //

g

��

X

f

��
B //

>>

Y

(49)

Theorem 6.11. With the structure just defined, U J is a model category.

Proof. [M+96] VI.5.2.

Corollary 6.12. A J-map g : A → B is a J-cofibration, if and only if it is a
retract of the inclusion i : A′ → B′ of a relative J-complex. Explicitly, g is a
retract of i, if there exist maps completing the diagram

A //

id

''

g

��

A′

i

��

// A

g

��
B //

id

77B′ // B

(50)

Proof. [M+96] VI.5.3.

Corollary 6.13. A J-map f : X → Y is an acyclic J-fibration, if and only if it
has the right lifting property with respect to each J-cofibration Sn×j → Dn+1×j.

Proof. [M+96] VI.5.4.

Finally we can interpret the model structure on U G as a model structure on
GU thanks to

Theorem 6.14. Each G -(CW-)complex is isomorphic to Φ(X) for some G-
(CW-)complex X. Therefore Φ is an equivalence between the category of G -
(CW-)complexes and the category of G-(CW-)complexes.

Proof. [M+96] VI.6.2.

The Theorems 6.4 and 6.14 now lead to
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Proposition 6.15. The functors Φ and Ψ induce an equivalence of categories
between h̄G U and h̄GU .

Definition 6.16. For a G-map f : X → Y of G-CW-complexes, we call the
sequence

X
f−→ Y

j−→ Y ∪f CX (51)

a special cofibre sequence. A (general) cofiber sequence is any sequence

E → F → G (52)

for which there is a homotopy commutative diagram

E //

'
��

F //

'
��

G

'
��

X
f // Y

j // Y ∪f CX

(53)

for some special cofibre sequence

X
f−→ Y

j−→ Y ∪f CX. (54)

Remark 6.17. A priori the notion of a cofiber sequence is independent of the
notion of a cofibration. But every cofibration is the retract of a G-CW-inclusion
A

i−→ X, with the quotient X/A ' X ∪i A. Hence, every cofibration fits into
a cofiber sequence. Conversely, any map f : X → Y can be turned into a
cofibration X → Mf ' Y , where Mf denotes the mapping cylinder. Then
Mf/X ' Y ∪f CX.

Lemma 6.18. Given a homotopy commutative diagram of the form

A
� � f //

α

��

B

β

��
C

g // D

(55)

of G-CW complexes, there exists a G-map β′ ' β, such that

β′f = gα. (56)

Proof. Consider the diagram

B ∧ {0}+ ∪A ∧ I+ � � //

H

��

B ∧ I+

H̃
vv

D

(57)

where H|A∧I+ is a homotopy from βf to gα and H|B∧{0}+ = β. The map H̃ is
defined by the homotopy extension property of the CW-inclusion

B ∧ {0}+ ∪A ∧ I+ ↪→ B ∧ I+. (58)

The map β is then homotopic via H̃ to a map which we denote by β′. By
definition

β′f = H̃|A∧{1}+ = H|A∧{1}+ = gα. (59)
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Lemma 6.19. Given a homotopy commutative diagram

X
f //

α

��

Y
g //

β

��

Z
h //

γ

��

X ∧ S1

α∧1

��
X ′

f ′ // Y ′
g′ // Z ′

h′ // X ′ ∧ S1

(60)

in which the rows are cofiber sequences, there exists a map γ : Z → Z ′ making
the resulting diagram homotopy commutative.

Proof. (cf. [Swi02], Lemma 8.31.) We may assume that both rows are special
cofiber sequences and that f is an inclusion. Thus, the diagram is of the form

X
� � f //

α

��

Y
g //

β

��

Y ∪f CX h //

γ

��

X ∧ S1

α∧1

��
X ′

f ′ // Y ′
g′// Y ′ ∪f ′ CX ′ h′ // X ′ ∧ S1

(61)

By the previous lemma, we may replace β by a homotopic map β′, such that
the diagram commutes strictly. We define γ by γ|B = β′ and γ|CA = Cα. Then
the resulting diagram commutes strictly for β′, and thus up to homotopy for
β.

7 Representations
Definition 7.1. Let G be a Lie-group. A representation V of G is a finite
dimensional real inner product space, i.e. a finite dimensional real vector space,
with a given smooth action of G through linear isometries. We may think of a
Lie- group homomorphism ρ : G → O(V ). If V is a representation of G, SV
denotes the one-point compactification of V . For a G-space X, we define the
suspension ΣVX := SV ∧X and the loop space ΩVX := MapsG(SV , X) with
respect to V . If V ⊂W , then W − V denotes the orthogonal complement of V
in W .

Definition 7.2. A G-universe U is a countable direct sum of representations,
such that U contains a trivial representation and contains each of its subrepre-
sentations infinitely often. Thus U can be written as a direct sum of subspaces
(Vi)∞, where {Vi} runs over a set of distinct irreducible representations of G.
We call a universe complete if it, up to isomorphism, contains every irreducible
representation of G. If G is finite, one example is V∞, where V is the regular
representation of G. A finite dimensional sub G-space of a universe U is said to
be an indexing space in U .

Definition 7.3. Let U be a complete universe. For a finite G-CW complex X
and any based G-space Y , define

{X,Y }G := colimV [ΣVX,ΣV Y ]G∗ . (62)

Here V runs through all indexing spaces in U . The colimit is taken over the
functions

[ΣVX,ΣV Y ]G∗ → [ΣWX,ΣWY ]G∗ , V ⊂W, (63)
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obtained by sending a map ΣVX → ΣV Y to its smash product with the identity
on SW−V .

This definition only works properly for finite G-CW complexes.

Definition 7.4. Let U be a complete G-universe. For a based G-space X define

QX := colimV ΩV ΣVX, (64)

where V runs over the indexing spaces in U and the colimit is taken over the
maps

ΩV ΣVX → ΩWΣWX, V ⊂W, (65)

that are obtained by sending a map SV → X ∧ SV to its smash product with
the identity of SW−V .

Lemma 7.5. If X is a finite G-CW complex, then

{X,Y }G ∼= [X,QY ]G∗ (66)

Proof. This is immediate from the compactness of X, which ensures that

[X,QY ]G ∼= colimV [X,ΩV ΣV Y ]G. (67)

We take {X,Y }G := [X,QY ]G∗ as the definition of stable maps for infinite com-
plexes X.

Definition 7.6. Let U be a universe. Denote by RO(G;U) the category whose
objects are the representations embeddable in U and whose morphisms V →
W are G-linear isometries5. Say that two such maps are homotopic if their
associated basedG-maps SV → SW are stably homotopic and let hRO(G;U) be
the resulting homotopy category. The representation group RO(G;U) relative
to the given universe U is obtained by applying the Grothendieck construction
to the category RO(G;U). Explicitly, the elements are equivalence classes of
formal differences V 	W , where V 	W is equivalent to V ′ 	W ′, if there is a
G-linear isometry α : V ⊕W ′ → V ′⊕W . RO(G;U) is a ring if tensor products
of representations, which are embeddable in U , are embeddable in U themself.

Definition 7.7. let U be a universe. A G-prespectrum E indexed on U is a
family of based spaces EV , one for each indexing space V in U , together with
structure maps σV,W : ΣW−V EV → EW for all V ⊂W . We require σV,V = id,
and we require the following diagram to commute for V ⊂W ⊂ Z:

ΣZ−WΣW−V EV //

∼=
��

ΣZ−WEW

��
ΣZ−V EV // EZ.

(68)

We call E a G-spectrum indexed on U if E is a G-prespectrum such that the
adjoints σ̃ : EV → ΩW−V EW are weak equivalences.
A map f : E → F of G-spectra is a weak equivalence if its component maps
f : EV → FV are weak equivalences.

5In our notation isometries are already required to be isomorphisms. Other authors ex-
plicitly call them isometric isomorphisms.
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For many purposes it is sufficient to index a G-spectrum not on all indexing
spaces in a given universe U , but only on a subset of representations in U ,
such that any representation in U is contained in one of these distinguished
representations. We will illustrate this by an example.
Let G = Z/2. Any representation of Z/2 may uniquely be written as Rp⊕(R−)q

for some p and q, where R and R− denote the one-dimensional real vector spaces
with trivial and sign involution, respectively. If V is as above, we will use the
notation

SV = Sp+q,q. (69)

The sphere associated with the regular representation of Z/2 is S2,1. We will
sometimes write (p+ q, q) for the representation V = Rp ⊕ (R−)q itself.

Definition 7.8. A (naive) Z/2-prespectrum is a sequence of Z/2-spaces E0, E1,
E2, ... together with maps Σ2,1En → En+1. An Z/2-spectrum is one for which
the adjoints En → Ω2,1En+1 are weak equivalences.

Remark 7.9. This is how Dugger [Dug05] defines naive Z/2-spectra. In the
notation of May [M+96], a naive spectrum is a G-spectrum indexed on the trivial
universe U , containing only the trivial representation.

So we have indexed the Z/2-spectrum on the representations V = Cn (regarded
as a real vector space with the conjugation action). Let E be a Z/2-spectrum
in the original sense (sometimes called genuine spectrum). Then, we obtain a
naive Z/2-spectrum by setting En = ECn. Conversely, let F be a naive Z/2-
spectrum. Any Z/2 representation V is contained in a Cn for a big enough value
of n. Thus, we gain, up to weak equivalence, a genuine Z/2-spectrum if we set
EV = ΩCn−V En for a suitable n. This is well defined, since the adjoints σ̃ were
required to be weak equivalences. Hence we have a one-to-one correspondence
between equivalence classes of naive and genuine Z/2-spectra.

Example 7.10. Recall from Section 3.2, that Z×BU is a classiyfing space for
Real K-theory. The reduced canonical line bundle over CP 1 is classified by an
equivariant map S2,1 = CP 1 → Z × BU , and so one gets a map S2,1 ∧ (Z ×
BU) → Z × BU by using the multiplication in Z × BU . So we have a Z/2-
prespectrum, called the KR-(pre-)spectrum, in which every term is Z × BU .
Equivariant Bott-periodicity [Ati66] shows that Z × BU → Ω2,1(Z × BU) is a
weak equivalence. Hence, KR is a Z/2-spectrum.

Let V be a fixed given representation of G and write dimV = |V |. For H ⊆ G,
V (H) denotes the orthogonal complement of V H in V . If W is a representation
of H, we let D(W ) and S(W ) denote the unit disc and sphere in W .
Using these notations we can generalize the notion of connectivity. The key
observation is that we can make sense of [SV+k ∧ G/H+, X]∗ for k ≥ −|V H |.
Consider the chain of isomorphisms

[SV+k ∧G/H+, X]∗ ∼= [SVH+k, X]H∗ ∼= [SV (H)+|V H |+k, X]H∗ (70)

Since the right-hand side makes sense for k ≥ −|V H | we can define
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Definition 7.11. A pointed G-space X is called V -connected if

[SV+k ∧G/H+, X]∗ = 0 (71)

for all subgroups H and all 0 ≥ k ≥ −|V H |.

Waner showed that this is equivalent to requiring that XH is |V H |-connected
for all subgroups H ⊂ G. This result eventually appeared, in expanded form,
in [Lew92b] Lemma 1.2.

Lemma 7.12. Suppose V ⊇ 1, and let X and Y be pointed G-spaces, which
are both (V − 1)-connected. Then a map X → Y is a weak equivalence, iff it
induces an isomorphism [SV+k ∧ G/H+, X]∗ ∼= [SV+k ∧ G/H+, Y ]∗ for every
k ≥ 0 and every subgroup H .

Proof. [Lew92a] Lemma 3.7

Definition 7.13. A G-CW(V ) complex X is a G-space with a decomposition
X = colimn∈N0X

n such that X0 is a disjoint union of orbits G/H, where H acts
trivially on V and Xn+1 is obtained from Xn by attaching cells G×HD(V (H)⊕
Rt), where |V (H)|+ t = n, along G-maps G×H S(V (H) + Rt)→ Xn−1.

Remark 7.14. Note that for V = 0 we obtain the classical case of a G-CW
complex.

Proposition 7.15. For any G-space X, there is a G-CW(V ) complex ΓX and
a weak equivalence γ : ΓX → X.

Proof. [M+96] X.3.5.

Proposition 7.16. Every G-map f : X → Y of G-CW(V ) complexes is G-
homotopic to a cellular map.

Proof. [M+96] X.3.4.

8 Mackey functors
Mackey functors will play the role of coefficient systems for equivariant coho-
mology theories. There is one short definition, which will be sufficient for basic
constructions. Moreover, there is a more subtle definition which is equivalent
for finite groups. This definition will become useful, when we construct multi-
plicative structures on equivariant cohomology theories.

Definition 8.1. Define the Burnside category BG to have orbit spaces G/H
as objects and to have morphisms

BG(G/H,G/K) = {G/H+, G/K+}G = colimV [ΣVG/H+,ΣVG/K+]G∗ (72)

Definition 8.2. A Mackey functor is an additive functor Bop
G → A b. A co-

Mackey functor is an additiv functor BG → A b.

Definition 8.3. The Burnside Mackey functor A is defined on objects by
A(G/H) = {G/H+, S

0}G ∼= {S0, S0}H . Its contravariant functoriality is clear
from the description. It is a fundamental insight by Segal ([Seg70], p.60), that
A(G/H) is isomorphic to the Burnside ring A(H). Here A(H) is defined to be
the Grothendieck ring of isomorphism classes of finite G-sets with addition and
multiplication given by disjoint union and Cartesian product, respectively.
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Definition 8.4. Let X and Y be based G-spaces. Denote by {X,Y }G the
Mackey functor defined by {X,Y }G(G/H) = {G/H+ ∧X,Y }G. The functori-
ality is clear. If X = SV , denote this Mackey functor by πV (Y ). In particular
π0(S0) is the Burnside Mackey functor.

For finite G there is an equivalent description of Mackey functors.The key ob-
servation is the following:

Proposition 8.5. Let G be a finite group and H1, H2 subgroups. Then the free
abelian group generated by equivalence classes of diagrams

G/H1
φ←− G/K χ−→ G/H2 (73)

for K ⊆ H1, H2 is isomorphic to the group

{(G/H1)+, (G/H2)+}G. (74)

Here, two diagrams are considered to be equivalent, if there is a G-homoemorphism
ξ : G/K → G/K ′ such that the following combined diagram is commutative:

G/K

ξ

��

φ

{{vvv
vv

vv
vv χ

##HH
HH

HH
HH

H

G/H1 G/H2

G/K ′
φ′

;;vvvvvvvvvχ′

ccHHHHHHHHH

(75)

May ([M+96] XIX.3.) proves this in a way more general setting. We will con-
centrate on the special case considered here and outline the main ideas of the
approach.
Any diagram of the form G/H1

φ←− G/K
χ−→ G/H2 can be used to determine

a stable map in {(G/H1)+, (G/H2)+}G. Obviously χ induces a stable map in
{(G/K)+, (G/H2)+}G. The hard part is to construct the so called transfer map
in {(G/H1)+, (G/K)+}G induced by φ.
This is done in two steps. First we construct an element in {S0, (G/K)+}G
for any group K ⊆ G. We start with a G-representation V , in which we may
embed G/H. Afterwards we choose a tubular neighbourhood of G/H in V . If
we now identify everything outside this neighbourhood to one point, we obtain
a projection

SV → G+ ∧H SV ∼= (G/H)+ ∧ SV . (76)

This is a special case of the Pontrjagin-Thom map. Since we made a choice when
we picked V , it is natural to consider this map as a stable map. We denote the
transfer map by τ(G/H).
More generally for subgroups H ⊂ Kof G there is a stable transfer G-map
τ(π) ∈ {(G/K)+, (G/H)+}G, associated with the projection π : G/H → G/K.
It is the composition

(G/K)+ ∧ SV ∼= G+ ∧K SV → G+ ∧K ((K/H)+ ∧ SV ) ∼= (G/H)+ ∧ SV (77)
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where the arrow denotes the extension of τ(K/H) to a G-map. Note that we
considered V as a K-representation by restriction.
But everey map f : G/H+ → G/K+ is the composition of a conjugation iso-
morphism cg : G/H → G/g−1Hg and the projection induced by the inclusion
g−1Hg ⊆ K. So the map associated with f is just τ(f) = c−1

g ◦ τ(π).

Putting all steps together, we have constructed a map, associating a stable G-
map with every diagram of the form G/H1

φ←− G/K χ−→ G/H2. This map turns
out to induce the desired isomorphism. The reader is referred to [M+96] for a
full proof.

The main advantage of this new view on stable maps is that we can express

the composition of stable maps in a purely algebraic way. Given G/H1
φ′←−

G/K ′
χ′−→ G/H2 and G/H2

φ′′←−− G/K ′′ χ
′′

−−→ G/H3, the composition is

G/K

{{vvv
vv

vv
vv

$$HH
HH

HH
HH

H

G/K ′

φ′

{{vvv
vv

vv
vv χ′

##HH
HH

HH
HH

H
G/K ′′

φ′′

zzvvv
vv

vv
vv χ′′

$$HH
HH

HH
HH

H

G/H1 G/H2 G/H3

(78)

where the upper square is a pullback.
This finally leads to a new perspective on Mackey functors.

Definition 8.6. A Mackey functor M consists of two additive functors M∗ :
Bop
G → A b and M∗ : BG → A b which have the same object function and the

property that M∗(α) ◦M∗(β) = M∗(δ) ◦M∗(γ) for pullback squares of orbits

G/H1
δ //

γ

��

G/H2

α

��
G/H3

β // G/H4

. (79)

This definition is indeed equivalent to the notion of Mackey functors in the old
sense: LetM denote such a Mackey functor. We easily obtain a Mackey functor
in the new sense,which we will now denote by [M∗,M∗].
Set M∗ = M∗ = M on objects and let M∗(f) = M(φ, 1) and M∗(f) = M(1, χ)

for a morphism f : G/H1
φ←− G/K

χ−→ G/H2, which we abbreviate with
f = [φ, χ] . Since we can write [φ, χ] = [φ, 1] ◦ [1, χ], this works conversely
if we set M(f) = M∗(f) ◦M∗(f).

We can now formulate the definition of a pairing of Mackey functors:

Definition 8.7. Let L,M , and N be Mackey functors. A pairing of Mackey
functors µ : L×M → N consists of functorially (co- and contravariantly) maps
L(X) ×M(X) → N(X), one for each finite G-set X, such that the following
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diagram commutes for a G-map f : X → Y :

L(X)⊗M(Y )
L∗(f)⊗id //

id⊗M∗(f)

��

L(Y )⊗M(Y )

µ

��
L(X)⊗M(X)

µ // N(X)
N∗(f) // N(Y )

(80)

Definition 8.8. A Mackey functor is a Green functor, if it is equipped with a
pairing µ : M×M →M , that makes eachM(X) a commutative and associative
unital ring.

Definition 8.9. Let τ(G/H) : SV → G/H+ ∧ SV be the transfer map and
ξ : SV ∧ G/H+ → SV the projection. The Euler characteristic of G/H is the
map χ(G/H) ∈ {S0, S0}G, obtained by stabilizing the composition ξ ◦ τ(G/H).

Proposition 8.10. Let G be any compact Lie group. There is a unique Mackey
functor Z : Bop

G → A b such that

• the underlying coefficient system is constant at Z,

• if G/K+ → G/H+ is the stable transfer map associated to an inclusion
H ⊂ K, then the induced homomorphism Z→ Z, is multiplication by the
Euler characteristic χ(K/H).

Proof. [M+96] IX.4.3.

9 Equivariant Postnikov-section functors
Definition 9.1. Let A be a set of well-pointed spaces (i.e ∗ → A ∈ A are
cofibrations), all of which are compact Hausdorff. A space Z is called A-null,
if it has the property that the maps [∗, Z] → [ΣnA,Z] are isomorphisms for
n ∈ N0 and all A ∈ A.
Proposition 9.2. For a given space X there exists a new space PA(X) with
the properties

• There is a natural map X → PA(X);

• PA(X) is A-null;

• If Z is an A-null space, then for any map X → Z there is a lifting

X //

��

Z

PA(X)

<< (81)

Proof.
We construct the space PA(X) as follows:
For any space Y , let FA(Y ) be defined by the pushout square∐

σ ΣnA //
� _

��

Y � _

��∐
σ C(ΣnA) // FA(Y )

(82)

35



where C(ΣnA) is the cone over ΣnA, and σ runs over all maps ΣnA→ Y . Now
we consider the sequence of closed inclusions

X ↪→ FAX ↪→ FAFAX ↪→ FAFAFAX ↪→ ... (83)

and define PA(X) as the colimit.

Remark 9.3. For a non-equivariant space X we can take An = {Sn+1, Sn+2, ...}.
Then PA is the classical Postnikov-section functor.

Definition 9.4. Let X be an equivariant space and V a representation of G.
We define the functors PV := PÃV and PV := PAV with

ÃV = {SW ∧G/H+ : W ⊇ V + 1, H ≤ G} (84)

AV = {SW ∧G/H+ : W ⊃ V, H ≤ G} (85)

Let us gather some of the most important properties of these two functors:

Proposition 9.5. Let X be a pointed G-space and V a G-representation. Then
P satisfies the following properties:

(1) The map X → PVX induces an isomorphism of the sets [Sk ∧G/H+,−]∗
for 0 ≤ k ≤ dimV H , and an epimorphism for k = dimV H + 1.

(2) If W is a G-representation, for which dimWH ≤ dimV H for all subgroups
H ⊆ G, then [SW , X]∗ → [SW ,PVX]∗ is an isomorphism.

(3) The homotopy fiber of PV+1X → PVX is an Eilenberg- MacLane space
of type K(πV+1(X), V + 1) 6. This is an anticipation of Definition 11.6,
where we define equivariant Eilenberg-MacLane spaces. For completeness
this property is stated here.

(4) The homotopy limit of the sequence

...→ PV+2X → PV+1X → PVX (86)

is weakly equivalent to X.

(5) If V contains the regular representation of G, then PV (SV ) is an Eilenberg-
MacLane space of type K(A, V ), where A is the Burnside-ring Mackey
functor.

Proof. [Dug05] Proposition 3.6. Dugger’s proof uses standard techniques, which
he sketches briefly in his paper.

The properties of P are weaker than those of P.

Proposition 9.6. Let X be a pointed G-space and V a G-representation. Then
P satisfies the following properties:

(1) The map X → PVX induces an isomorphism of the sets [Sk ∧G/H+,−]∗
for 0 ≤ k < dimV H , and an epimorphism for k = dimV H .

6Note that there is a typing error in the original paper [Dug05].
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(2) If W is a G-representation, for which dimWH < dimV H for all subgroups
H ⊆ G, then [SW , X]∗ → [SW , PVX]∗ is an isomorphism.

Proof. [Dug05] Proposition 3.7.

Remark 9.7. The two preceding propositions show that PV is better behaved
than PV . This is caused by the following consideration.
From the non-equivariant situation we are used to the fact, that there are now
non-trivial maps Sn → Sm when n < m. In the equivariant situation this is
not true and there can be non-trivial maps SV → SW , even though V ⊂ W .
However, if we require V +1 ⊆W , everything is well behaved and all equivariant
maps SV → SW are null-homotopic. This leads to the definition of PV , which
is therefore denoted as the equivariant Postnikov section functor (cf. [M+96]
II.1). Despite that, we have reason to care about the functor PV . We will return
to this matter in section 16.
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Part III

RO(G)-graded cohomology theories
10 Axioms for RO(G)-graded cohomology theo-

ries
Definition 10.1. A RO(G)-graded cohomology theory is a functor

E∗G :hRO(G;U)× (h̄GT )op→A b (87)

(V,X) 7→EVG (X) (88)

together with natural isomorphisms (contravariantly in X and covariantly in V )

σW : EVG (X)→ EV⊕WG (ΣWX), (89)

such that the following axioms are satisfied:

(1) For each representation V , the functor EVG is exact on cofiber sequences
and sends wedges to products.

(2) If α : W → W ′ is a map in hRO(G), then the following diagram com-
mutes:

EVG (X) σW //

σW
′

��

EV⊕WG (ΣWX)

Eid⊕αG (id)

��
EV⊕W

′

G (ΣW
′
X)

(Σαid)∗// EV⊕W
′

G (ΣWX)

(90)

(3) σ0 = id and the isomorphisms σ are transitive in the sense that the fol-
lowing diagram commutes for each pair of representations (W,Z):

EVG (X) σW //

σW⊕Z

""EEEEEEEEEEEEEEEEEE
EV⊕WG (ΣWX)

σZ

zzuuuuuuuuuuuuuuuuuuuu

EV⊕W⊕ZG (ΣW⊕ZX)

(91)

We extend a theory so defined to formal differences V 	 W for any pair of
representations by setting

EV	WG (X) = EVG (ΣWX). (92)

Remark 10.2. Of course there is an axiomatic description of RO(G)-graded
homology theory. The only point that needs to be mentioned is that homol-
ogy theories must be given by contravariant functors on hRO(G) in order to
make sense of the homological counterpart of Axiom (2). Since we will usually
encounter cohomology theories in this paper, we decided to stick to the corre-
sponding axioms.
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Definition 10.3. Let IO(G;U) and hIO(G;U) be the full subcategories of
RO(G;U) and hRO(G;U) whose objects are the indexing spaces in U . Let
Ψ : IO(G;U)→ RO(G;U) be the inclusion, and also write Ψ for the inclusion
of the homotopy categories.
For each representation V which is embeddable in U , choose an indexing space
ΦV in U and a G-linear isomorphism φV : V → ΦV . If V is itself an indexing
space in U , choose ΦV = V and φV = id. Extend Φ to a functor by sending a
map α : V →W to the composite

ΦV
φ−1
V−−→ V

α−→W
φW−−→ ΦW. (93)

Then the following lemma is immediate.

Lemma 10.4. The isomorphisms φV define a natural transformation Id →
Ψ ◦Φ, and the composition Φ ◦Ψ is equal to the identity. Thus, the functors Φ
and Ψ give an equivalence between the categories IO(G;U) and RO(G;U), and
they induce an equivalence of categories between hIO(G;U) and hRO(G;U).

Proposition 10.5. A G-spectrum indexed on a universe U represents a RO(G;U)-
graded cohomology theory E∗G on based G-spaces by

EVG (X) = [X,EΦV ]Gand (94)

EαG(X) = [X,EΦα]G (95)

for each α : V →W .

Proof. [M+96] XIII.2.2.

The converse is also true.

Proposition 10.6. A RO(G;U)-graded cohomology theory E∗G on based G-
spaces is represented by a spectrum indexed on U .

Proof. [M+96] XIII.3.2.

11 Ordinary RO(G)-graded cohomology
Definition 11.1. Let X be a G-CW(V )-complex. Define a chain complex
CV∗ (X) in the category of Mackey functors as follows:

CVn (X) = {SV−|V |+n, Xn/Xn−1}
G

(96)

where for any G-spaces X and Y we have a Mackey functor {X,Y }
G

(G/H) :=
{G/H+ ∧X,Y }G.
Let

dn : CVn (X)→ CVn−1(X) (97)

be the stable connecting homomorphism of the triple (Xn, Xn−1, Xn−2).

Remark 11.2. Since Xn/Xn−1 is the wedge over cells of the form G/H+ ∧
SV−|V |+n we have

CV∗ (X)(G/H) = {G/H+ ∧ SV−|V |+n,
∨
σ

G/Hσ+ ∧ SV−|V |+n}G (98)

=
∑
σ

{G/H+, G/Hσ+}G. (99)
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Definition 11.3. Let X be a G-CW(V ) complex. For a Mackey functor M ,
define the ordinary cohomology of X with coefficients in M to be

HV+n
G (X;M) = H |V |+n(HomBG

(CV∗ (X),M)). (100)

For a coMackey functor N , define the ordinary homology of X with coefficients
in N to be

HG
V+n(X;N) = H|V |+n(CV∗ (X)⊗BG

N). (101)

The categorical tensor product of functors −⊗BG
− is defined to be

M ⊗BG
N =

∑
M(G/H)⊗N(G/H)/(≈), (102)

where the sum runs over all subgroups H ⊆ G and (f∗m,n) ≈ (m, f∗(n)) for a
map f : G/H → G/K and elements m ∈M(G/K) and n ∈M(G/H).
Similar definitions apply to give relative (co-)homology groups. For the special
case when A is a subcomplex of X, we have CV∗ (X,A) ∼= CV∗ (X)/CV∗ (A) and
we obtain the expected long exact sequence. For a fixed basepoint ∗ ∈ X and
(X, ∗) being a relativ G-CW(V ) complex, we define the reduced (co-)homology
of X by

H̃V+n
G (X;M) = HV+n

G (X, ∗;M) and H̃G
V+n(X;N) = HG

V+n(X, ∗;N).
(103)

We can extend the definition to arbitrary G-spaces, approximating them by
weakly equivalent G-CW(V ) complexes.
Last but not least we have to check that we have the desired suspension isomor-
phisms.

Proposition 11.4. Let X be a G-space, V and W representations. Then there
are isomorphisms

H̃W−V+n
G (X;M) ∼= H̃W+n

G (ΣVX;M). (104)

Proof. For a relative G-CW(W ) complex (X, ∗) and any representation V ,
(ΣVX, ∗) inherits a structure of a relative G-CW(V ⊕W ) complex, such that
the W -cellular chain complex of (X, ∗) is isomorphic to the (V ⊕W )-cellular
chain complex of (ΣVX, ∗).

Remark 11.5. For V = 0 we obtain the usual Bredon (co-)homology. [Bre67]
and [M+96] p. 16-17.

Definition 11.6. The V -th space in the representing spectrum of the ordinary
RO(G)-graded cohomology theory with coefficients in M is called an Eilenberg-
MacLane space of type K(M,V ). The spectrum as a whole is called HM .

Proposition 11.7. Let M be a Mackey functor. An Eilenberg-MacLane space
of type K(M,V ) is a V-1-connected space such that

[SV+k ∧G/H+,K(M,V )]G∗ =

{
0 k 6= 0
M(G/H) k = 0.

(105)

Proof. [M+96] XIII.4
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Part IV

The classical equivariant Atiyah-
Hirzebruch spectral sequence
12 The spectral sequence
Definition 12.1. A RO(G)-graded spectral sequence is a family of spectral
sequences, one for each α = V 	 W , such that V and W contain no trivial
summands. The values in gradings α+ n form a Z-graded theory. The spectral
sequences are related by suspension isomorphisms.

For this whole section, V denotes a G-representation containing no trivial sum-
mands.

The non-equivariant Atiyah-Hirzebruch spectral sequence for an extraordinary
cohomology theory is well known. This sequence is an important tool to calcu-
late the cohomology groups of a given space X. There are essentially two ways
to construct this spectral sequence. In the first approach we filter the space
X, usually by its CW-skeletons (Section 13). The alternative is then to use
Postnikov functors to obtain a filtration of the spectrum representing the coho-
mology theory (Section 14). Maunder [Mau63] compares these two approaches
and shows their equivalence.
This section will give the equivariant analogues.

Definition 12.2. Let h∗G be a RO(G)-graded cohomology theory. Define a
Mackey functor hVG(∗) by hVG(∗)(G/H) = hVG(G/H+).

Theorem 12.3. Let X be a G-CW-complex . Moreover let h∗G be a RO(G)-
graded cohomology theory. There is a RO(G)-graded spectral sequence

Ep,q2 (V ) = HV+p
G (X,hqG(∗))⇒ hV+p+q

G (X). (106)

In this section we choose the direct construction via exact couples. Later (Sec-
tion 15) we will see that the sequence is the homotopy spectral sequence of a
certain Postnikov tower. This will lead to an easy desciption of the convergence
(Section 15.1).

Definition 12.4. An exact couple is a pair of bigraded abelian groups (C,A)
together with three maps f, g and h, such that the following diagram is com-
mutative and exact.

A
f // A

g
��~~

~~
~~

~

C

h

__@@@@@@@

(107)

Let (C,A) be an exact couple. Define d = g ◦ h : C → C. The composition
d2 = g ◦h ◦ g ◦h is trivial, since the couple is defined to be exact. We can hence
form the quotient

C ′ = Ker(d)/Im(d). (108)
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The map h : C → A induces a map h′ : C ′ → Im(f) := A′ by [x] 7→ h(x). Two
representatives x and x′ of the class [x] differ by an element d(y) for some y ∈ C.
Since we have Im(d) = Im(gh) ⊆ Im(g) = Ker(h), h′ is well defined. Moreover,
any representative x is in the kernel of d. In particular, h(x) ∈ Ker(g) = Im(f).
Analogously, the map g : A → C induces a map g′ : A′ → C ′. This is a bit
more complicated. Let x ∈ A′, then we may pick a preimage y with f(y) = x.
g′(x) is then defined to be [g(y)] ∈ C ′. If y′ is another preimage of x, then
y − y′ ∈ Ker(f) = Im(h) and thus g(y − y′) ∈ Im(gh) = Im(d). Hence, the
definition of g′ is independent of the choice of y. Finally f : A → A induces a
map f ′ : A′ → A′. Here, we simply define f ′ = f |A′ .
It is straightforward to check that the diagram

A′
f ′ // A′

g′~~}}
}}

}}
}}

C ′
h′

``AAAAAAAA

(109)

is again exact and commutative.

Definition 12.5. Let (C,A) be an exact couple. The exact couple (C ′, A′) =:
(C(1), A(1)) is called the derived couple of (C,A). Inductively, we define the r-th
derived couple by (C(r), A(r)) := ((C(r−1))′, (A(r−1))′) for r ∈ N.

13 Construction via filtering of the space
Theorem 13.1. Let X be a G-CW(V )-complex and Xn its n-sceleton. Further,
let h∗G be a RO(G)-graded cohomology theory. There exists a spectral sequence
Ep,qr (X,V )⇒ hV+p+q

G (X), r ∈ N, p, q ∈ Z with

Ep,q1 (V ) = hV+p+q
G (X |V |+p, X |V |+p−1) and

Ep,q2 (V ) = HV+p
G (X,hqG(∗)). (110)

Lemma 13.2. Let M be a Mackey functor and K ⊆ G a subgroup. There exists
an isomorphism

HomBG
({∗, G/K+}G,M) ∼= M(G/K)

φ 7→ φ(1G/K) (111)

Proof. For another subgroup H ⊆ G, we have

{∗, G/K+}G(G/H) = {G/H+, G/K+}G. (112)

Every element f ∈ {G/H+, G/K+}G can be expressed as f = f∗(idG/K+),
where

f∗ : {G/K+, G/K+}G → {G/H+, G/K+}G (113)

is induced by f . Thus, φ ∈ HomBG
({∗, G/K+}G,M) is determined by φ(idG/K)

via φ(f) = f∗φ(idG/K).
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Proof of Theorem 13.1. Define bigraded abelian groups C and A by

Cp,q := hV+p+q
G (X |V |+p, X |V |+p−1) and

Ap,q := hV+p+q
G (X |V |+p). (114)

The groups Cp,q and Ap,q fit into a long exact sequence, namely the long exact
cohomology sequence for the pair (X |V |+p, X |V |+p−1):

· · · → hV+p+q−1
G (X |V |+p−1) δ−→ hV+p+q

G (X |V |+p, X |V |+p−1) (115)
j∗−→ hV+p+q

G (X |V |+p) i∗−→ hV+p+q
G (X |V |+p−1)→ · · ·

Here, i and j are the maps in the short exact sequence

X |V |+p−1 i−→ X |V |+p
j−→ X |V |+p/X |V |+p−1; (116)

δ is the boundary homomorphism.
We obtain an exact couple

A
f // A

g
��~~

~~
~~

~

C

h

__@@@@@@@

(117)

where fp,q : Ap,q → Ap−1,q+1, gp,q : Ap,q → Cp+1,q, and hp,q : Cp,q → Ap,q are
defined by (115).
Finally we set Ep,qr (V ) = C

(r−1)
p,q and dr(V ) = g(r−1)h(r−1) to define the spectral

sequence.
It remains to identify the E2-term with HV+p

G (X,hqG(∗)). Recall that CV∗ (X) is
the direct sum of coefficient systems of the form {∗, G/K+}G. For these functors
we have by Lemma 13.2

HomBG
({∗, G/K+}G, hqG(∗)) ∼= hqG(∗)(G/K) = hqG(G/K+). (118)

The final expression, on the other hand, is isomorphic to hV−|V |+n+q
G (SV−|V |+n∧

G/K+) by a suspension isomorphism. Hence,

HV+p
G (X,hqG(∗)) = H |V |+p(hV−|V |+q+∗G (X∗, X∗−1)), (119)

which is precisely the derived group C ′. Indeed, the differentials for the ordinary
cohomology theory and the differentials in the spectral sequence are defined by
the same long exact sequences. This concludes the identification of E2 with
HV+p
G (X,hqG(∗)).

Remark 13.3. In his dissertation, Kronholm [Kro10] constructed a RO(G)-
graded Serre-spectral sequence for a fibration of G-spaces. Specializing his results
to the case of the trivial fibration we obtain Ep,q2 (V ) = Hp

G(X,hV+q
G (∗)). In fact

this is just a different indexing. We would have got the same spectral sequence,
if we chose Ep,q1 (V ) = hV+p+q

G (Xp, Xp−1).
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14 Construction via filtering of the representing
spectrum

Theorem 14.1. Let X be a G-CW(V )-complex. Further, let h∗G be a RO(G)-
graded cohomology theory represented by the G-spectrum hV . There is a spectral
sequence Ep,qr (V )⇒ hV+p+q

G (X) with

Ep,q2 (V ) = HV+p
G (X,πV+p(hV+p+q)). (120)

Proof. Define

C̄p,q = [X,K(πV+p(hV+p+q), V + p)] and

Āp,q = [X,PV+p(hV+p+q)]. (121)

Moreover, let h̄p,q : C̄p,q → Āp,q and f̄p,q : Āp,q → Āp−1,q+1 be the maps induced
by the long exact sequence

· · · → K(πV+p(hV+p+q), V + p)→ PV+p(hV+p+q)→ PV+p−1(hV+p+q)→ · · ·
(122)

The definition of the map ḡp,q : Āp,q → C̄p+2,q−1 is a bit more subtle. The space
K(πV+p+2(hV+p+q+1), V + p+ 2) fits into the long exact sequence

· · · → ΩPV+p+1(hV+p+q+1)→ K(πV+p+2(hV+p+q+1), V + p+ 2) (123)

→ PV+p+2(hV+p+q+1)→ PV+p+1(hV+p+q+1)→ · · ·

The diagram

hV+p+q ' ΩhV+p+q+1
//

��

ΩPV+p+1(hV+p+q+1)

PV+p(hV+p+q)

44
(124)

shows that there exists a map PV+p(hV+p+q) → ΩPV+p+1(hV+p+q+1). Com-
bining this map with the long exact sequence (123) induces a map ḡp,q : Āp,q →
C̄p+2,q−1.
We take C̄ to be the E2-term of our spectral sequence and get

Ēp,q2 (V ) = C̄p,q =[X,K(πV+p(hV+p+q), V + p)]

=HV+p
G (X,πV+p(hV+p+q)). (125)

We can identify C̄p,q with C ′p,q, since

hqG(∗)(G/H) = hqG(G/H+) (126)
= [G/H+, h(q)] (127)
= π∗(hq)(G/H) (128)
= πV+p(hV+q+p)(G/H) (129)

44



Hence hqG(∗) = πV+p(hV+p+q).

Theorem 14.2. There exist isomorphisms φp,qr : Ep,qr → Ēp,qr for r ≥ 2 com-
muting with the differentials.

So we can identify the two spectral sequences from the E2-term on. We prove
it on the level of exact couples. The Theorem is immediate from the following
Lemma.

Lemma 14.3. There exists a couple map (i.e a map compatible with the maps
of the respective couples) ψ : (C ′, A′) → (C̄, Ā) from the first derived exact
couple of (C,A) to the couple (C̄, Ā), which preserves both gradings and is an
isomorphism from C ′ to C̄.

Proof. We mimic the idea of Maunders non-equivariant proof [Mau63].
By definition A′p,q = Im[i∗ : hV+p+q

G (X |V |+p+1) → hV+p+q
G (X |V |+p)]. Consider

the commutative diagram

[X |V |+p+1, hV+p+q]
i∗ //

θ

��

[X |V |+p, hV+p+q]

θ̃
��

[X |V |+p+1,PV+p(hV+p+q)]
ĩ∗ // [X |V |+p,PV+p(hV+p+q)]

(130)

where i∗ and ĩ∗ are induced by the inclusion i : X |V |+p → X |V |+p+1 and θ as
well as θ̃ are induced by the natural map hV+p+q → PV+p(hV+p+q).
So Im(θ̃i∗) ⊂ Im(ĩ∗), but ĩ∗ is a monomorphism, since its kernel Ker(ĩ∗) is
given by

Im[[X |V |+p+1/X |V |+p,PV+p(hV+p+q)]∗ → [X |V |+p+1,PV+p(hV+p+q)]] (131)

and

[X |V |+p+1/X |V |+p,PV+p(hV+p+q)]∗ ∼= [
∨
G/H+∧SV+p+1,PV+p(hV+p+q)] = 0.

(132)
Thus θ induces a map

ψA : A′p,q → [X |V |+p+1,PV+p(hV+p+q)] ∼= [X,PV+p(hV+p+q)] = Āp,q. (133)

We define ψC : C ′p,q → C̄p,q to be the identity.
It remains to check that the map Ψ : (C ′, A′)→ (C̄, Ā) is indeed a couple map.
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• To prove ψAf ′p,q = f̄p,qψA we consider the diagram

[X
|V
|+
p
+

1
,h
V

+
p
+
q
]

i∗ 1
//

��

[X
|V
|+
p
,h
V

+
p
+
q
]

i∗ 2
//

��
''OOOOOOOOOOOOOOOOOOOOOOOO

[X
|V
|+
p
−

1
,h
V

+
p
+
q
]

''PPPPPPPPPPPPPPPPPPPPPPPPPP

[X
|V
|+
p
+

1
,P
V

+
p
(h
V

+
p
+
q
)]

ι∗ 1
// [X
|V
|+
p
,P
V

+
p
(h
V

+
p
+
q
)]

// [X
|V
|+
p
,P
V

+
p
−

1
(h
V

+
p
+
q
)]

ι∗ 2
// [X
|V
|+
p
−

1
,P
V

+
p
−

1
(h
V

+
p
+
q
)]

[X
,P
V

+
p
(h
V

+
p
+
q
)]

f̄
p
,q

//

∼ =

OO
77 o o o o o o o o o o o o o o o o o o o o o o o o

[X
,P
V

+
p
−

1
(h
V

+
p
+
q
)]

∼ =

77 o o o o o o o o o o o o o o o o o o o o o o o o

(134)

Here, A′p,q = Im(i∗1), A′p−1,q+1 = Im(i∗2) and f ′p,q = i∗2|Im(i∗1). Further, ι∗1
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and ι∗2 are monomorphic. Therefore, f ′p,qψA = ψAf̄p,q is obvious.

• The compatibility ψCg′p,q = ḡp,qψA is rather technical and complicated.
Consider the diagram

[X
|V
|+
p
+

1
,h
V

+
p
+
q
]

g
p
+

1
,q
−

1
//

��

[X
|V
|+
p
+

2
/X
|V
|+
p
+

1
,K

(π
V

+
p
+

2
(h
V

+
p
+
q
+

1
),
V

+
p

+
2)

] ∗

��
I
m

([
X
|V
|+
p
+

1
,h
V

+
p
+
q
]→

[X
|V
|+
p
,h
V

+
p
+
q
])

g
′ p
,q

//

��

[X
|V
|+
p
+

2
,K

(π
V

+
p
+

2
(h
V

+
p
+
q
+

1
),
V

+
p

+
2)

]

= ��
[X
|V
|+
p
+

1
,P
V

+
p
(h
V

+
p
+
q
)]

ḡ
p
,q

// [X
|V
|+
p
+

2
,K

(π
V

+
p
+

2
(h
V

+
p
+
q
+

1
),
V

+
p

+
2)

].

(135)

We want to prove commutativity of the lower square. The upper square
shows, how g′p,q is induced by gp+1,q−1, and it commutes by definition
of g′p,q. Hence, it suffices to show commutativity of the outer square.
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Since [X |V |+p+1, hV+p+q] ∼= [X |V |+p+1,PV+p+1(hV+p+q)] by Proposition
9.5, this can be reduced to the diagram:

[X
|V
|+
p
+

1
,P
V

+
p
+

1
(h
V

+
p
+
q
)]g

p
+

1
,q
−

1 //

��

[X
|V
|+
p
+

2
/X
|V
|+
p
+

1
,K

(π
V

+
p
+

2
(h
V

+
p
+
q
+

1
),
V

+
p

+
2)

] ∗

��
[X
|V
|+
p
+

1
,P
V

+
p
(h
V

+
p
+
q
)]

ḡ
p
,q

// [X
|V
|+
p
+

2
,K

(π
V

+
p
+

2
(h
V

+
p
+
q
+

1
),
V

+
p

+
2)

].

(136)

Note that we supressed an ismorphism

[X |V |+p+1,PV+p(hV+p+q)] ∼= [X |V |+p+2,PV+p(hV+p+q)] (137)

in the lower left corner of both diagrams.

An element x ∈ [X |V |+p+1,PV+p+1(hV+p+q)] may either be represented
by a map µ : X |V |+p+1 → PV+p+1(hV+p+q) or a map µ′ : ΣX |V |+p+1 →
PV+p+2(hV+p+q+1):
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X |V |+p+1
µ //

��

PV+p+1(hV+p+q)

��
X |V |+p+2

ρ //

��

PV+p(hV+p+q)

��
X |V |+p+2/X |V |+p+1 ν //

��

K(πV+p+2(hV+p+q+1), V + p+ 2)

��
ΣX |V |+p+1

µ′ // PV+p+2(hV+p+q+1)

(138)

The map

X |V |+p+1 → PV+p+1(hV+p+q)→ PV+p(hV+p+q) (139)

extends uniquely to a map

ρ : X |V |+p+2 → PV+p(hV+p+q), (140)

since PV+p(hV+p+q) is ÃV+p+1-null.
By Lemma 6.19 there now exists a unique lift

ν : X |V |+p+2/X |V |+p+1 → K(πV+p+2(hV+p+q+1), V + p+ 2). (141)

Then the inner square defines two homotopic maps

X |V |+p+2 → K(πV+p+2(hV+p+q+1), V + p+ 2). (142)

On the other hand these two maps also represent the images of x ∈
[X |V |+p+1,PV+p+1(hV+p+q)] under the maps of Diagram (136). Thus,
we have just shown the commutativity of this diagram.
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• For ψAh′p,q = h̄p,qψC we finally consider the diagram

[X
|V
|+
p
+

1
,h
V

+
p
+
q
]

i∗
//

θ ��

[X
|V
|+
p
,h
V

+
p
+
q
]

δ
∗

//

θ

&&

[X
|V
|+
p
+

1
/
X
|V
|+
p
,h
V

+
p
+
q
+

1
] ∗

θ ��

[X
|V
|+
p
/X
|V
|+
p
−

1
,h
V

+
p
+
q
] ∗

h
p
,q

OO ∼ = ��

d

66 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

[X
|V
|+
p
/X
|V
|+
p
−

1
,P
V

+
p
(h
V

+
p
+
q
)]
∗

j̄ ��

d

((RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

[X
|V
|+
p
+

1
,P
V

+
p
(h
V

+
p
+
q
)]

ῑ
// [X
|V
|+
p
,P
V

+
p
(h
V

+
p
+
q
)]

δ̄
// [X
|V
|+
p
+

1
/
X
|V
|+
p
,P
V

+
p
+

1
(h
V

+
p
+
q
+

1
)]
∗.

(143)

The top and bottom row are exact and the maps denoted by d are the
ordinary boundary maps. The map ψAh′p,q is induced by (ῑ)−1θhp,q. This
map on the other hand induces the standard map

h̄p,q : [X,K(πV+p(hV+p+q), V + p)]→ [X,PV+p(hV+p+q)]. (144)
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Part V

The slice spectral sequence
15 The homotopy spectral sequence
A more conceptual way to construct spectral sequences is the construction via
the homotopy spectral sequence. We will follow the notation of [Dug03].

Definition 15.1. Let f : A→ B be a map between pointed spaces. For p ≥ 1
define πp(B,A) to be the set of equivalence classes of diagrams ∆ of the form

Sp−1 //
� _

��

A

��
Dp // B

(145)

where two diagrams ∆ and ∆′ are regarded as equivalent if there is a diagram

Sp−1 × I //
� _

��

A

��
Dp × I // B

(146)

which restricts to ∆ and ∆′ under the inclusions {0} ↪→ I and {1} ↪→ I, respec-
tively.

Proposition 15.2. Let f : A → B be a map between pointed spaces, and let
hofib(f) denote its homotopy fiber. Then there exists an isomorphism

πp(B,A) ∼= πp−1(hofib(f)). (147)

Proof. Consider the diagram

hofib(f)

��
Sp−1 × {0}
gG

uujjjjjjjjjjjjjjjj
//

� _

��

Ef ' A

��
Sp−1 × I //

22

Dp ∼= (Sp−1 × I)/(Sp−1 × {1}) // B

(148)

where Ef := {(a, γ) ∈ A × BI |γ(0) = f(a)}. The dashed map is defined by
the homotopy lifting property and induces a map from Sp−1 → hofib(f), since
the composition of the lower horizontal maps is a null-homotopy. Conversely,
any map g : Sp−1 → hofib(f) induces a map Sp−1 → A, which becomes null-
homotopic when it is composed with f . Hence, there is an element in πp(B,A)
corresponding to g. The maps πp(B,A) � πp−1hofib(f) are easily seen to be
inverse to each other.
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Definition 15.3. A tower is a sequence of pointed spaces Wq, q ∈ Z with
(basepoint preserving) maps

...→W3 →W2 →W1 →W0 →W−1 → ... (149)

Given such a tower we set

Ap,q = πp(Wq, ∗) and Cp,q = πp(Wq,Wq+1) for p ≥ 1, q ∈ Z (150)

To get an exact couple we need to define the maps fitting into the diagram

A
f // A

g
��~~

~~
~~

~

C

h

__@@@@@@@

(151)

For any element in the source of the following maps we write a representing
diagram on the left hand side and its image on the right hand side. We set

• fp,q : Ap,q = πp(Wq, ∗)→ πp(Wq−1, ∗) = Ap,q−1

Sp // Wq Sp // Wq // Wq−1 (152)

• gp,q : Ap,q = πp(Wq, ∗)→ πp(Wq,Wq+1) = Cp,q

Sp−1 //

��

∗

��

Sp−1

��

∗ // Wq+1

��
Dp // Wq Dp // Wq

(153)

• hp,q : Cp,q = πp(Wq,Wq+1)→ πp−1(Wq+1, ∗) = Ap−1,q+1

Sp−1

��

// Wq+1

��

Sp−1 // Wq+1

Dp // Wq

(154)

Definition 15.4. The spectral sequence obtained from the tower above is called
the homotopy spectral sequence of this tower. For later purposes we set Ep,q2 =
Cp,q and more generally Ep,qr = C

(r−2)
p,q for r ≥ 2 . In other words, the homotopy

spectral sequence starts on the E2-term.

Remark 15.5. The differential dr has the form dr : Ep,qr → Ep−1,q+r
r , r ∈

N, p, q ∈ Z. This is called the Adams indexing.

Remark 15.6. In general we don’t really have an exact couple or an exact
sequence. The problem is that π0 and π1 need not to be abelian groups. We will
assume that we are in a setting where these problems do not arise. For example,
the Wi could be connected with abelian fundamental groups.
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Remark 15.7. There are many ways to index a spectral sequence. We will
change the indices whenever it fits in better with our respective situation.

Remark 15.8. One can generalize this construction to towers of spectra.We
will not dwell on any details, but refer again to [Dug03].

In this paper the tower will always be a tower of homotopy fibrations arising
from Postnikov-filtrations.

Example 15.9. Consider a spectrum of pointed G-spaces Y and a G-representation
V . From Proposition 9.5 we deduce that there exists the Postnikov-tower

... // PV+2(Y ) // PV+1(Y ) // PV (Y )

K(πV+2(Y ), V + 2)

OO

K(πV+1(Y ), V + 1)

OO
(155)

Taking mapping spaces from another G-space X into each of these spaces gives
us another tower of homotopy fibrations.

... // PV+2(Y )X // PV+1(Y )X // PV (Y )X

K(πV+2(Y ), V + 2)X

OO

K(πV+1(Y ), V + 1)X

OO

(156)
Now take the homotopy spectral sequence of this tower, i.e. the spectral sequence
arising from the exact couple with

Cp,q = πp(K(πV+q+1(YV ), V + q + 1)X , ∗) (157)
∼= [Sp,K(πV+q+1(YV ), V + q + 1)X ] (158)
∼= [Sp ∧X,K(πV+q+1(YV ), V + q + 1)] (159)
∼= [X,K(πV+q+1(YV ), V + q + 1− p)] (160)
∼= HV−p+q+1(X,πV+q+1(YV ))

According to Remark 15.7 we can change the indices. If we shift p to −p − q
and q to −q − 1 we obtain the sequence of Theorem 14.1.

Example 15.10. We specialize further and consider the spectrum Z×BU and
X = ∗. We write down the sequence for V = 0

Ep,q2 = Hp
G(∗,KRq(∗)) =

{
KRq(∗) if p = 0
0 else

(161)

For the definition of KRq(∗) see Definition 12.2. This sequence collapses right
after the E2-term. We will define another spectral sequence for KR later. It
will turn out, that this sequence is highly non-trivial even for the point-space.
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15.1 Convergence
Definition 15.11. Let As be a sequence of (possibly graded, or bigraded)
abelian groups, together with homomorphisms i : As+1 → As. Let A∞ denote
the limit of this sequence. The derived limit RA∞ is defined by the exact
sequence

0→ A∞ → ΠsA
s 1−i−−→ ΠsA

s → RA∞ → 0 (162)
(cf. [Mil62] p.338).

The homotopy spectral sequence for a bounded below tower is automatically
conditionally convergent ([Boa99] Definition 5.10). So if RE∞ = 0, it converges
strongly by [Boa99] Theorem 7.4.
The most common situation in which the condition RE∞ = 0 is satisfied, is
when for each p, q there exists an N such that Ep,qr = Ep,qr+1 for all r ≥ N .

15.2 Multiplicative structure
Finding a multiplicative structure on the spectral sequence will simplify the
computation. However, establishing a multiplicative structure is not easy.
We will first recall how products arise in homotopy spectral sequences. The
crucial task is to construct a pairing of towers, i.e. a family of mapsWm∧Xn →
Ym+n for three towers W∗, X∗ and Y∗. Again we follow [Dug03].
Let F : A→ B and g : C → D be two maps of pointed G-spaces. Let P be the
pushout of A ∧ D ← A ∧ C → B ∧ C and note that there is a canonical map
P → B ∧D.
We can construct a natural pairing πp(B,A) ⊗ πq(D,C) → πp+q(B ∧D,P ) in
the following way. Given two diagrams

Sp−1 //

��

A

��

Sq−1 //

��

C

��
Dp // B Dq // D

(163)

we can form the new diagram

Sp+q−1
∼= //

��

(Sp−1 ×Dq)qSp−1×Sq−1 (Dp × Sq−1) // (A ∧D)qA∧C (B ∧ C)

��
Dp+q

∼= // Dp ×Dq // B ∧D
(164)

which defines an element in πp+q(B ∧D,P ). This is well-defined and bilinear.
We apply this construction to a pairing of towers. Let W∗, X∗ and Y∗ be
three towers with the resulting homotopy spectral sequences E∗(W ), E∗(X)
and E∗(Y ), respectively. Assume that there are pairings Wm ∧ Xn → Ym+n

such that the following diagram commutes (on the nose!):

Wm+1 ∧Xn
//

��

Ym+n+1

��

Wm ∧Xn+1
oo

��
Wm ∧Xn

// Ym+n Wm ∧Xn
oo

(165)
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From the construction above and by naturality of π∗ it follows that there is an
induced pairing

πk(Wm,Wm+1)⊗ πl(Xn, Xn+1)→ πk+l(Ym+n, Ym+n+1). (166)

In other words, we have produced a multiplication on spectral sequences

Ep,q2 (W )⊗ Es,t2 (X)→ Ep+s,q+t2 (Y ). (167)

The following proposition concludes this discussion.

Proposition 15.12. The product E2(W )⊗ E2(X)→ E2(Y ) descends to pair-
ings of the Er-terms, satisfying the Leibniz rule dr(a·b) = dr(a)·b+(−1)pa·dr(b)
for a ∈ Ep,qr (W ) and b ∈ Es,tr (W ).

Sketch of proof. For details see [D1]. The basic idea is to check the Leibniz rule
for each r and conclude that the pairing descends to r + 1. For r = 1 this
is a geometric consideration, for bigger r we use the fact that each element in
Ep,qr (W ) (and Ep,qr (X)) can be represented by a square

Sp−1

h

{{vvv
vv

vv
vv

��

// Dp

��
Wq+r // Wq+1 // Wq

(168)

and then apply the same argument as for r = 1 to the outer square.

16 The slice spectral sequence
In this section we will consider the objects PCn(Z×BU), where C is the regular
representation of Z/2. Adopting Dugger’s notation, we will write the functor
PCn as P2n. Be aware that P2n could also denote the Postnikov functor for the
2n-dimensional trivial representation.

The central result [Dug05] is the following.

Theorem 16.1. Let β : S2,1 → Z × BU be the map representing the Bott
element in K̃R

0,0
(S2,1), and let βn : S2n,n → Z × BU denote its n-th power.

Then
P2n(S2n,n)

βn−−→ P2n(Z×BU)→ P2n−2(Z×BU) (169)

is a homotopy fiber sequence.

Proof. [Dug05] Theorem 4.1.

Lemma 16.2. Let V be a representation of G = Z/2 containing the trivial one-
dimensional representation. Then the space PV (SV ) has the equivariant weak
homotopy type of the Eilenberg-MacLane space K(Z, V ).

Proof. [Dug05] Theorem 3.8.
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Corollary 16.3. There is a tower of homotopy fiber sequences

... // P4(Z×BU) // P2(Z×BU) // P0(Z×BU) // ∗

K(Z(2), 4)

OO

K(Z(1), 2)

OO

Z

OO
(170)

and the homotopy limit of this tower is Z×BU .

Proof. [Dug05] Corollary 4.2.

It is possible to prove Corollary 16.3 without the knowledge of Theorem 16.1.
The main steps are the following two results.

Proposition 16.4. The homotopy fiber of P2n(Z× BU)→ P2n−2(Z× BU) is
an Eilenberg-MacLane space of type K(Z(n), 2n).

Proof. [Dug05] Proposition 4.3.

Proposition 16.5. The natural map P2n,n(Z × BU) → P2n,n(Z × BU) is a
weak equivalence.

Proof. [Dug05] Lemma 4.5.

Let us calculate the homotopy spectral sequence for the tower given in Corollary
16.3 (after taking mapping spaces). We choose an indexing which will turn out
to be suitable later.

Theorem 16.6. Let X be a G-space. The homotopy spectral sequence for the
Postnikov tower

... // P4(Z×BU)X // P2(Z×BU)X // P0(Z×BU)X // ∗

K(Z(2), 4)X

OO

K(Z(1), 2)X

OO

ZX

OO

(171)
is called the slice spectral sequence for X and takes on the form

Ep,q2
∼= Hp,− q2 (X,Z)⇒ KRp+q(X) (172)

with the differentials

dp,qr : Ep,qr → Ep+2r−1,q−2r+2
r (173)

of bidegree (2r − 1,−2r + 2) for r ≥ 2.

Proof. The E2-term takes on the form:

Ep,q2 (X) = π−p−q(K(Z(−q
2

),−q)X)

∼= [X ∧ S−(p+q),K(Z(−q
2

),−q)]

∼= [X,K(Z(−q
2

), p)]

∼= Hp,− q2 (X,Z) (174)
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Note that the entries of the spectral sequence are interpreted as 0 for odd q.
The differentials on the E2-term have the form:

Hp,− q2 (X) ∼=[S0,K(Z(−q
2

), p)X ]

∼=[S−p−q,K(Z(−q
2

),−q)X ]

∼=π−p−q+1(P−q−2(Z×BU)X , P−q(Z×BU)X)
h−→π−p−q(P−q(Z×BU)X)
g−→π−p−q(P−q(Z×BU)X , P−q+2(Z×BU)X)

∼=π−p−q−1(K(Z(
−q + 2

2
),−q + 2)X)

∼=[S0,K(Z(
−q + 2

2
), p+ 3)X ] ∼= Hp+3,− q2 +1(X). (175)

Recall from the construction on page 41f. that dr : Er → Er is given by the
composition dr = g(r−2) ◦ h(r−2), where g(r−2) and h(r−2) are induced by g and
h, respectively. To obtain h(r−2) from h, we just inductively take the induced
map on the successive quotient spaces, and thus the bidegree of h(r−2) coincides
with the bidegree of h. To compute g(r−2)([x]) for any class [x] ∈ Er, on the
other hand, we first take a preimage of a representative x under the map fr−2

and then apply g to it. Hence, the bidegree of g(r−2) differs from the bidegree
of g.
All in all, the differential dr is induced by

Ep,q2
∼= π−p−q+1(P−q−2(Z×BU)X , P−q(Z×BU)X)
h−→ π−p−q(P−q(Z×BU)X)

fr−2

−→ π−p−q(P−q+2r−4(Z×BU)X)
g−→ π−p−q(P−q+2r−4(Z×BU)X , P−q+2r−2(Z×BU)X)
∼= Ep+2r−1,q−2r+2

2 (X). (176)

Hence, we have
dp,qr : Ep,qr → Ep+2r−1,q−2r+2

r (177)

The spectral sequence converges conditionally to

[S−p−q,0 ∧X+,Z×BU ]∗ ∼= KRp+q(X), (178)

since Z×BUX is the homotopy limit of the Postnikov tower.

Remark 16.7. We want to emphasize the importance of the notation used in
this equation. We will frequently express the equivariant cohomology groups
Hp,− q2 (X) by the equivariant homotopy groups

π−p−q+1(P−q−2(Z×BU)X , P−q(Z×BU)X), (179)

especially when we compute the differentials in special cases of the slice spectral
sequence.
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16.1 Multiplicative structure on the slice spectral sequence
Unfortunately the Postnikov tower is not the right one to produce a pairing
P∗(X) ∧ P∗(Y ) → P∗(X ∧ Y ). There is no suitable pairing even for ordinary,
non-equivariant Postnikov towers. There is a way to avoid this obstacle. First
we have to define a second tower with an isomorphic spectral sequence.

Let Wn be the homotopy fiber of Z × BU → P2n−2(Z × BU). Consider the
diagram

K(Z(n), 2n) // P2n(Z×BU) // P2n−2(Z×BU)

Wn
//

OO

Z×BU //

OO

P2n−2(Z×BU)

id

OO

Wn+1
//

OO

Z×BU //

id

OO

P2n(Z×BU)

OO

(180)

where all horizontal maps are homotopy fibrations. We deduce that P2n(Z ×
BU)→ P2n−2(Z×BU) induces a natural mapWn+1 →Wn and that Z×BU →
P2n−2(Z × BU) induces a natural map Wn → K(Z(n), 2n). Chasing through
the diagram yields that Wn+1 → Wn → K(Z(n), 2n) is a homotopy fibration.
Hence we can identify the homotopy fiber of Wn+1 →Wn with ΩK(Z(n), 2n) ∼=
K(Z(n), 2n− 1). To abbreviate the notation we will denote K(Z(n), 2n) by Fn.
Since there are maps ΩP2n−2(Z × BU) → Wn (well defined up to homotopy),
we obtain a map of towers

ΩF2

��

ΩF1

��

ΩF0

��
// W3

// W2
// W1

// Z×BU

// ΩP4(Z×BU) //

OO

ΩP2(Z×BU) //

OO

ΩP0(Z×BU)

OO

// ∗

OO

ΩF2

OO

ΩF1

OO

ΩF0

OO

(181)
inducing isomorphisms on the fibers and hence on the resulting spectral se-
quences. Finally we have to produce pairings Wm ∧Wn → Wn+m. This is no
easy task and not particularly revealing for our purpose. In fact, we have to
use a complicated mixture of general arguments and special ones due to our
situation. We will only give an idea how it works. For details see [Dug03] part
II, pages 8-12.
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Consider the diagram

Wm ∧Wn
//

λ

��

Z×BU ∧ Z×BU

��
Wm+n

// Z×BU // P2(m+n)−2(Z×BU)

(182)

The dashed map λ exists, since the composition of the three maps (upper hori-
zontal, vertical, right horizontal) is null-homotopic. λ is unique up to homotopy.
This pairing doesn’t neccesarily commute with the structure maps in the towers.
It does, however, commute with the structure maps up to homotopy. Then we
have to use obstruction theory to alter these maps, so that the relevant diagrams
do indeed commute.

Now we have constructed a multiplicative structure on the spectral sequence.
Earlier we have identified the E2-term with the cohomology theory H∗,∗(−; Z),
which carries an own multiplication. It is natural to ask, whether both multi-
plicative structures coincide.

16.2 Ring G-spectra and products
The following is taken from May [M+96].
Let E and E′ be G-spectra, and let X and X ′ be G-spaces (or rather their
suspension spectra). The natural map in h̄GS

F (X,E) ∧ F (X ′, E′) ∧−→ F (X ∧X ′, E ∧ E′) (183)

gives rise to a product in RO(G)-graded cohomology, when we pass to homotopy
groups

E∗G(X)⊗ E′∗G (X ′)→ (E ∧ E′)∗G(X ∧X ′). (184)

To obtain an internal product, E = E′ needs to be a ring G-spectrum.

Definition 16.8. A ring G-spectrum E is a G-spectrum equipped with a prod-
uct φ : E ∧E → E and a unit map η : S → E, such that the following diagrams
commute in h̄GS :

S ∧ E
η∧1 //

'
%%JJJJJJJJJJ E ∧ E
φ

��

E ∧ S
1∧ηoo

'
yytttttttttt

and E ∧ E ∧ E
1∧φ //

φ∧1

��

E ∧ E
φ

��
E E ∧ E

φ // E
(185)

E is commutative if
E ∧ E τ //

φ ##FF
FF

FF
FF

F E ∧ E

φ{{xx
xx

xx
xx

x

E

(186)

commutes, where τ interchanges the entries of the product.
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If E is a G-ring spectrum and X = X ′ a based G-space (again rather its sus-
pension spectrum) we obtain the cup product

∪ : E∗G(X)⊗ E∗G(X)→ E∗G(X) (187)

by composing the pairing with the reduced diagonal ∆ : X → X ∧X.

When is HM a ring G-spectrum? The answer is quite easy: HM is a ring
G-spectrum, iff M is a Green-functor. This observation is due to May and
Greenlees ([GM95] Paragraph 8).

Remark 16.9. We are mostly interested in the constant Mackey functor Z for
G = Z/2. It is straightforward to check that Z is a Green functor. Hence we
get a multiplicative structure on H∗,∗(−; Z).

For the spaces K(M,V ) we can make this more explicit. The map K(M,V ) ∧
K(M,W )→ K(M,V +W ) is given by coning of the higher homotopy groups.
Hence the products on E2 given by

π−p−q(WX
−q,W

X
−q+2)

∼=Ep,q2 (X)

× π−s−t(WX
−t,W

X
−t+2)

∼=Es,t2 (X)

−→ π−q−p−s−t(WX
−s+t,W

X
−s−t+2)

∼=Ep+q,s+t2 (X)

(188)

and on H∗,∗ given by

π−p−q(K(Z(−q2 ),−q)X)
∼=Hp,−

q
2 (X)

× π−s−t(K(Z(−t2 ),−t)X)
∼=Hs,−

t
2 (X)

−→ π−q−p−s−t(K(Z(−s−t2 ),−s− t)X)
∼=H−p−q,−

s−t
2 (X)

(189)

can readily be identified.

Proposition 16.10. The mulitiplicative structures on E∗,∗2 (X) and H∗,∗(X,Z)
defined above are globally isomorphic, possibly up to a sign, i.e. the diagram

Ep,q2 (X) ∧ Es,t2 (X) //

∼=
��

Ep+s,q+t2 (X)

∼=
��

Hp,− q2 (X) ∧Hs,− t2 (x) // Hp+s,− q+t2 (X)

(190)

commutes up to a sign.

Remark 16.11. There are some reasons to take other sign conventions for the
product on H∗,∗ (cf. [Dug03]). Moreover, we have to switch spheres, when we
compute the pairings above. This introduces another sign, depending on our
conventions of orientation. We didn’t discuss sign issues for the cohomology
theory, hence we can not be too precise about signs in the spectral sequence. In
our sitation this should not bother us, since in the spectral sequences to be dealt
with, the products will interest us only when the occuring groups are Z/2. Here,
signs don’t matter.
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17 Connective KR-theory
Stabilizing the slice spectral sequence for KR-theory is not hard. Recall from
Section 16.1 that we defined Wn to be the homotopy fiber of Z × BU →
P2n−2(Z×BU). The main step is the following proposition (cf. [Dug05], Propo-
sition 6.1.).

Proposition 17.1. There are weak equivalences Wn → Ω2,1Wn+1, unique up
to homotopy, which commute with the Bott map in the following diagram:

Wn
//

��

Ω2,1Wn+1

��
Z×BU // Ω2,1(Z×BU)

(191)

Proof. Recall that a space Z is called A-null, if it has the property that the maps
[∗, Z] → [ΣnA,Z] are isomorphisms for n ≥ 0 and all A ∈ A. By construction,
P2n(Z× BU) is A2n,n-null for AV = {SW ∧G/H+ : W ⊃ V, H ≤ G}. Hence,
using the adjunction of Ω2,1 and Σ2,1 we conclude that Ω2,1P2n is A2n−2,n−1-
null. Thus there is a lift (unique up to homotopy) of the form

Ω2,1(Z×BU) //

��

Ω2,1P2n(Z×BU)

P2n−2(Ω2,1(Z×BU))

j
55

(192)

We obtain the horizontal map by applying Ω2,1 to the natural map Z×BU →
P2n(Z×BU). For the vertical map we apply Ω2,1 to Z×BU first and then take
the natural map induced by the Postnikov section functor.

Let β : Z × BU → Ω2,1(Z × BU) be the Bott map. We consider the bigger
diagram

Wn
//

��

Z×BU //

β

��

P2n−2(Z×BU)

P2n−2(β)

��
Ω2,1(Z×BU) //

id

��

P2n−2(Ω2,1(Z×BU))

j

��
Ω2,1Wn+1

// Ω2,1(Z×BU) // Ω2,1P2n(Z×BU)

(193)

In order to show that the induced map is a weak equivalence, we use Lemma
7.12. For the special case that G = Z/2 and V = (2n, n) the lemma may be
reformulated as follows (cf. [Dug05], Proof of Proposition 6.1.)

Lemma 17.2. Let X and Y be pointed Z/2-spaces with the properties that

(1) [Sk,0, X]∗ = [Sk,0, Y ]∗ = 0 for 0 ≤ k < n and

(2) [Z/2+ ∧ Sk,0, X]∗ = [Z/2+ ∧ Sk,0, Y ]∗ = 0 for 0 ≤ k < 2n
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Then a map X → Y is a weak equivalence iff it induces isomorphisms

(1) [S2n+k,n, X]∗
∼=−→ [S2n+k,n, Y ]∗ and

(2) [Z/2+ ∧ S2n+k,n, X]∗
∼=−→ [Z/2+S

2n+k,n, Y ]∗

for every k ≥ 0.

We take the long exact sequences on homotopy groups and use the Propositions
9.5 and 16.5 to obtain

• [Sk,0,Wn]∗ = 0 for 0 ≤ k < n,

• [Z/2+ ∧ Sk,0,Wn]∗ = 0 for 0 ≤ k < 2n and

• the same identities hold if Wn is replaced by Ω2,1Wn.

By the same argument and the fact that the higher homotopy groups of P2n−2(Z×
BU) are trivial, we obtain the isomorphisms

• [S2n+k,n,Wn]∗ → [S2n+k,n,Z×BU ]∗ and

• [Z/2+ ∧ S2n+k,n,Wn]∗ = [Z/2+ ∧ S2n+k,n,Z×BU ]∗ for 0 ≤ k.

Finally, the square
Wn

//

��

Ω2,1Wn+1

��
Z×BU

β

∼=
// Ω2,1(Z×BU)

(194)

implies that Wn → Ω2,1Wn+1 induces an isomorphism on [S2n+k,n,−]∗ and
[Z/2+ ∧ S2n+k,n,−]∗ for k ≥ 0. By Lemma 17.2, Wn → Ω2,1Wn+1 is a weak
equivalence. This finishes the proof.

Definition 17.3. Let kr be the equivariant spectrum consisting of the spaces
{Wn} and the maps Wn → Ω2,1Wn+1. It is called the connective KR-spectrum.

We may form the tower of homotopy cofiber sequences

· · · // Σ2,1kr
β //

��

kr

��

Σ−2,−1β// Σ−2,−1kr //

��

· · ·

Σ2,1HZ HZ Σ−2,−1HZ

(195)

This gives the stable version we were looking for. For a G-space X we have
Hp,− q2 (X)⇒ KRp+q,0(X).
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18 Connection to KO
Since we know that KRp,0(X) ∼= KOp(X) holds for a Z/2-space X with trivial
action, we can use the slice spectral sequence to compute real K-theory.

Proposition 18.1. (cf. [Dug05], Corollary 2.12.) The set of fixed points
K(Z(n), 2n)Z/2 has the homotopy type of

K(Z, 2n)×K(Z/2, 2n− 2)×K(Z/2, 2n− 4)× · · · ×K(Z/2, n)
(
n ≥ 0
n even

)
,

K(Z/2, 2n− 1)×K(Z/2, 2n− 3)× · · · ×K(Z/2, n)
(
n ≥ 0
n odd

)
,

K(Z, 2n)×K(Z/2, 2n+ 1)×K(Z/2, 2n+ 3)× · · · ×K(Z/2, n− 3)
(
n < 0
n even

)
,

K(Z/2, 2n)×K(Z/2, 2n+ 2)× · · · ×K(Z/2, n− 3)
(
n < 0
n odd

)
.

This Proposition is a consequence of the Dold-Thom theorem:

Theorem 18.2. Let X be a (non-equivariant) pointed CW-complex. Then the
functor X → πiSP

∞(X) coincides with the functor X → Hi(X; Z) for i ≥ 1.

Proof. [Hat03] Theorem 4K.6.

Corollary 18.3. A path-connected, commutative, associative H-space with a
strict identity element has the weak homotopy type of a product of Eilenberg-
MacLane spaces.

Proof. For a full proof see [Hat03] Corollary 4K.7. LetM(G,n) denote a Moore
space. There exist based maps M(πn(X), n) → X which induce isomorphisms
on πn for n > 1 and on H1. Now the idea is to use the H-space structure to ex-
tend the map

∨
nM(πn(X), n)→ X to an isomorphism SP∞(

∨
nM(Gn, n))→

X. SP∞(
∨
nM(πn(X), n)) can be identified with ΠnSP

∞(M(πn(X), n)) and,
from the Dold-Thom Theorem, it follows that SP∞(M(Gn, n)) is aK(πn(X), n).

Proof of Proposition 18.1. K(Z(n), 2n) and thusK(Z(n), 2n)Z/2 are abelian groups.
Since

πi(K(Z(n), 2n)Z/2) ∼= [Si,K(Z(n), 2n)Z/2]e ∼= [Si,K(Z(n), 2n)] (196)

we can read off the homotopy groups from H∗,∗(∗; Z) (cf. Appendix A).

Corollary 18.4. If Z/2 acts trivially on X, i.e. X = XZ/2, we can express the
E2-term of the slice spectral sequence by
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Ep,q2
∼=



0 q odd

Hp(X,Z)⊕
⊕− q4

i=1H
p−2i(X,Z/2)

q ≡ 0 mod 4
q < 0⊕− q4− 1

2
i=0 Hp−(2i+1)(X,Z/2)

q ≡ 2 mod 4
q < 0

Hp(X,Z)⊕
⊕ q

4−2
i=0 Hp+2i+1(X,Z/2)

q ≡ 0 mod 4
q ≥ 0⊕ q

4−
3
2

i=0 Hp+(2i)(X,Z/2)
q ≡ 2 mod 4

q ≥ 0

(197)

Proof. Recall from Section 16, equation (174), that we identified

Ep,q2
∼= Hp,− q2 (X,Z) ∼= [X ∧ S−(p+q),K(Z(−q

2
),−q)]. (198)

Since X ∧ S−(p+q) has a trivial action of Z/2, we obtain

[X ∧ S−(p+q), Y ] ∼= [X ∧ S−(p+q), Y Z/2]e (199)

for any space Y . Proposition 18.1 then yields:
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Ep,q2
∼= [X ∧ S−(p+q),K(Z(−q

2
),−q)]

∼= [X ∧ S−(p+q),K(Z(−q
2

),−q)Z/2]

∼=



0 q odd

[X ∧ S−(p+q),K(Z,−q)×K(Z/2,−q − 2)
×K(Z/2,−q − 4)× · · · ×K(Z/2,− q2 )]e

q ≡ 0 mod 4
q < 0

[X ∧ S−(p+q),K(Z/2,−q − 1)
×K(Z/2,−q − 3)× · · · ×K(Z/2,− q2 )]e

q ≡ 2 mod 4
q < 0

[X ∧ S−(p+q),K(Z,−q)×K(Z/2,−q + 1)
×K(Z/2,−q + 3)× · · · ×K(Z/2,− q2 − 3)]e

q ≡ 0 mod 4
q ≥ 0

[X ∧ S−(p+q),K(Z/2,−q)
K(Z/2,−q + 2)× · · · ×K(Z/2,− q2 − 3)]e

q ≡ 2 mod 4
q ≥ 0

(200)

∼=



0 q odd

Hp(X,Z)⊕
⊕− q4

i=1H
p−2i(X,Z/2)

q ≡ 0 mod 4
q < 0⊕− q4− 1

2
i=0 Hp−(2i+1)(X,Z/2)

q ≡ 2 mod 4
q < 0

Hp(X,Z)⊕
⊕ q

4−2
i=0 Hp+2i+1(X,Z/2)

q ≡ 0 mod 4
q ≥ 0⊕ q

4−
3
2

i=0 Hp+(2i)(X,Z/2)
q ≡ 2 mod 4

q ≥ 0

.

The following picture shows the spectral sequence for the special case X = ∗.

Remark 18.5. Note that we don’t actually use Corollary 18.4 to compute the
spectral sequence for X = ∗, but it is the other way round. We used the know-
ledge of Hp,q(∗) obtained in Appendix A to compute the homotopy type of the
set of fixed points K(Z(n), 2n)Z/2 and thus to prove Proposition 18.1.
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a

b

0 2 4 6

0

2

4

6

The hollow circles denote Z, while the solid dots represent Z/2. The indexing
is designed such that the a-axis measures −p− q, while the b-axis measures p.
Observe that we didn’t draw all possible differentials, but only the non trivial
ones.
Recall the definition of the differentials on the E2-term:

Hp,− q2 (∗) ∼=[S0,K(Z(−q
2

), p)]

∼=[S−p−q,K(Z(−q
2

),−q)]
∼=π−p−q+1(P−q−2(Z×BU), P−q(Z×BU))
→π−p−q(P−q(Z×BU))
→π−p−q(P−q(Z×BU), P−q+2(Z×BU))

∼=π−p−q−1(K(Z(
−q + 2

2
),−q + 2))

∼=[S0,K(Z(
−q + 2

2
), p+ 3)] ∼= Hp+3,− q2 +1(∗) (201)

Thanks to the rich multiplicative structure (and by degree reasons) we only
need to compute the differentials for x ∈ H0,2(∗) and θy−3 ∈ H−3,−6(∗) (cf.
Appendix A for notation).
In order to determine the image of x, consider the following diagram, where we
use the abbreviation Pn = Pn(Z × BU). The rows and columns are given by
the long exact homotopy sequences, and we are interested in the dashed map

Z ∼= H0,2(∗) ∼= π5(P2, P4) d−→ π4(P4, P6) ∼= H3,3(∗) ∼= Z/2. (202)

For the isomorphisms H0,2(∗) ∼= π5(P2, P4) and π4(P4, P6) ∼= H3,3(∗), see equa-
tion (175).
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...

��

...

��
π6(P0, P2)

��

...

��

π5(P0, P2)

��
· · · // π5(P2)

��

// π5(P2, P4)
d

&&

// π4(P4) //

��

π4(P2) //

��

· · ·

π5(P0)

��

π4(P4, P6)

��

π4(P0)

��
...

π3(P6)

��

...

...
(203)

Several groups are zero:

• π6(P0, P2) ∼= H−3,1(∗) = 0 and π5(P0, P2) ∼= H−2,1(∗) = 0 (cf. equation
(175)),

• π5(P0) = π4(P0) = 0, since P0 = Z, and hence

• π5(P2) = π4(P2) = 0, since the sequences are exact.

• Finally, since dim(3, 0)H = 3 ≤ dim(6, 3)H , part (2) of Proposition 9.5
implies that π3(P6) ∼= π3(Z×BU) = 0.

It follows that d is the composition of an isomorphism and a surjective map,
and hence d is surjective itself.
To compute the differential d : H−3,−6(∗)→ H0,−5(∗) we have to use a suitable
suspension ismorphism to get a valid expression.

Remark 18.6. Note that we can make sense of the notion of relative homotopy
groups for spheres of the form SV . For f : A → B, an element of πV (B,A) is
represented by a diagram

S(V ) //

��

A

��
D(V ) // B

(204)

If V ⊇ 1, the isomorphism πV (B,A) ∼= πV−1(hofib(f)) still holds. The differ-
ential is then given by
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H−3,−6(∗) ∼= H̃8,4(S11,10) ∼= π11,10(K(Z(4), 8))
∼= π12,10(P6, P8) → π11,10(P8)
→ π11,10(P8, P10) ∼= π10,10(K(Z(5), 10))
∼= H̃10,5(S10,10) ∼= H0,−5(∗) (205)

(cf. equation (175)).

Consider the diagram, where the dashed map indicates the differential. Again,
all rows and columns are exact.

...

��

...

��
π13,10(P4, P6)

��

· · · // π11,10(P12) // π11,10(P10) //

��

π11,10(P10, P12) // · · ·

π12,10(P6) //

��

π12,10(P6, P8) //

&&

π11,10(P8) //

��

· · ·

π12,10(P4)

��

π11,10(P8, P10)

��
...

π10,10(P10)

��
...

(206)
The following groups are zero:

• π11,10(P10, P12) ∼= H2,−4(∗) = 0 and π13,10(P4, P6) ∼= H−6,−7(∗) = 0 (cf.
equation (175)),

• Part (2) of Proposition 9.5 implies

π11,10(P12) = π11,10(Z×BU) ∼= KR−11,−10(∗) ∼= KR9,0(∗) = 0, and

π10,10(P10) = π10,10(Z×BU) ∼= KR−10,−10(∗) ∼= KR10,0(∗) = 0, (207)

since dim(11, 10)H ≤ dim(12, 6)H and dim(10, 10)H ≤ dim(10, 5)H .

• π12,10(P4) = 0 because P4 is A(4,2)-null, and

• π11,10(P10) = π12,10(P6) = 0 by exactness.

Hence d is the composition Z/2 ↪→ Z/2
∼=−→ Z/2, which is an isomorphism.
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Part VI

The slice spectral sequence for
projective spaces
19 Computation of the KO groups of real projec-

tive spaces
We can use the slice spectral sequence to compute the real K-theory of the real
projective spaces. This has been done before, but our techniques are differ-
ent. The notation of the following theorem is taken from Fujii [Fuj67]. But see
also the papers cited there. While the method to obtain the filtrations is new,
we solve the extension problems by methods due to Fujii [Fuj67] and Adams
[Ada61].

Theorem 19.1. The groups K̃O
−i

(RPn) are isomorphic to

i\n 8r 8r + 1 8r + 2 8r + 3
0 (24r) (24r+1) (24r+2) (24r+2)
1 r 6=0(2) (2) (2) (2) + (∞)
2 r 6=0(2) + (2) (2) (2) (2)
3 r 6=0(2) (∞) 0 0
4 (24r) (24r) (24r) (24r)
5 0 0 0 (∞)
6 0 0 (2) (2) + (2)
7 0 (∞) (2) (2) + (2)

i\n 8r + 4 8r + 5 8r + 6 8r + 7
0 (24r+3) (24r+3) (24r+3) (24r+3)
1 (2) (2) (2) (2) + (∞)
2 (2) (2) (2) + (2) (2) + (2) + (2)
3 0 (∞) (2) (2) + (2)
4 (24r+1) (24r+2) (24r+3) (24r+3)
5 0 0 0 (∞)
6 (2) 0 0 0
7 (2) (∞) 0 0

Here, (t) denotes the cyclic group of order t.

The proof will take most of the remainder of this section. In Theorem 16.6 we
computed the slice spectral sequence for a space X, and in Corollary 18.4 we
identified the E2-term of this sequence with sums of non-equivariant singular
cohomology groups, if X carries a trivial action of Z/2. In this case KOi(X) =
KR(X)i and the slice spectral sequence computes real K-theory. As indicated
in Section 15.1, the slice spectral sequence for the (finite) real projective spaces
converges strongly, if RE∞ = 0. This is obvious, since the differentials exiting
or entering the groups Ep,qr for fixed p, q will become trivial eventually when

69



r increases. Indeed, the differential dr has bidegree (2r − 1,−2r + 2). In our
indexing where a measures −p − q and b measures p, this bidegree translates
into (2r − 1,−1). For finite CW-complexes X and sufficiently large values of r
the differentials are thus trivial by degree reasons.
The following pictures shows Ep,q2 (RPn) ∼= Hp,− q2 (RPn,Z) for 2 ≤ n ≤ 4. Note
that we drew only a cutout and the picture extends to both sides and along the
diagonal lines up to the right and down to the left.
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Each dot represents a Z/2-summand, and each hollow circle represents a Z-
summand.
The generators denoted by x and yi play an important role. Each element in
the first quadrant can be represented by a product of them. For example the
group Z/2⊕ Z/2 at (3, 3) has generators y3

1 and xy1y3.
The yi are the generators for the cohomology ringsH∗(RPn,Z) andH∗(RPn,Z/2)
as well. These rings are the truncated polynomial rings

H∗(RP 2k,Z) ∼= Z[α]/(2α, αk+1), where |α| = 2, (208)

H∗(RP 2k+1,Z) ∼= Z[α, β]/(2α, αk+1, β2, αβ), where |α| = 2, |β| = 2k + 1, and
(209)

H∗(RPn,Z/2) ∼= Z/2[α]/(αn+1), where |α| = 1. (210)

For proofs see e.g. [Hat03] pages 212 and 214.

• y1 ∈ H0(RPn,Z/2) is the unit in H∗(RPn,Z/2),

• y2 ∈ H1(RPn,Z/2) is the generator of the cohomology ring with Z/2-
coefficients,

• y3 ∈ H2(RPn,Z) and y4 ∈ H3(RPn,Z) are the two generators of the
cohomology ring with Z-coefficients, and

• x ∈ H0(RPn,Z) is the unit in H∗(RPn,Z).

To obtain the E3-term we therefore only have to compute the value of the
differential d : Ep,q2 → Ep+3,q−2

2 on these generators. The multiplicative struc-
ture then determines the differentials on general elements via d(ab) = d(a)b +
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(−1)pad(b). In the indexing we chose for the pictures, the differentials have the
degree (−1, 3).

An important consideration is the following: The inclusions i : RP 2n ↪→ RP 2n+1

and j : RP 2n ↪→ RP 2n+2 induce maps on cohomology. If we look at the cellular
chain complexes, we see that these maps are ismorphisms on the cohomology
groups up to degree 2n and that the groups of degrees 2n + 1 and 2n + 2 are
sent to zero. Hence the commutative diagrams

Ep,q2 (RP 2n+1) d //

i∗

��

Ep+3,q−2
2 (RP 2n+1)

i∗

��
Ep,q2 (RP 2n) d // Ep+3,q−2

2 (RP 2n)

(211)

and

Ep,q2 (RP 2n+2) d //

j∗

��

Ep+3,q−2
2 (RP 2n+2)

j∗

��
Ep,q2 (RP 2n) d // Ep+3,q−2

2 (RP 2n)

(212)

show that the differentials in the spectral sequences for RP 2n and RP 2n+1 resp.
RP 2n+2 coincide, if i∗ and j∗ are isomorphisms.
Indeed, if we pass from one RP 2n to the projective space of the next higher (odd
or even) degree, the spectral sequence only changes in dimensions p ≥ 2n+ 1 or
p ≥ 2n + 2, respectively. The additional elements are of the form y4x

kyl1 resp.
yn3 x

kyl1 and yn−1
3 y2x

kyl1. For the example n = 1, these are

RP 3
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· · · · · · · · ·

· · ·
· · ·
· · ·
· · ·
· · ·

· · ·

· · · · · · · · · · · · · · ·

· · ·
· · ·
· · ·
· · ·
· · ·

· · ·

(213)

Remark 19.2. Our center of reference is always a RPn with even n. This is
simply due to notational reasons. If we would pass from RPn to RPn+1, where n
is odd we still would add some elements with a structure not very different from
the elements in the case that n is even. However, the entries which are given
by Z in dimension n would vanish. This would complexify our presentations, so
we rather avoid this obstacle completely.

The consideration above implies that we need to understand the d2-differentials
only for X = RPn with small values of n. In particular it suffices to determine
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• d : E0,−4
2 (∗) → E3,−6

2 (∗) to compute d(x),
• d : E1,−2

2 (RP 2) → E4,−4
2 (RP 2) to compute d(y1),

• d : E2,−2
2 (RP 3) → E5,−4

2 (RP 3) to compute d(y2),
• d : E2,0

2 (RP 4) → E5,−2
2 (RP 4) to compute d(y3),

for all n (cf. Equation (175)). Then all other differentials are determined by
the multiplicative structure as mentioned above.

Proposition 19.3. The differential

d : Z/2 ∼= E2,0
2 (RP 4)→ E5,−2

2 (RP 4) ∼= Z/2 (214)

is an isomorphism.

Proof. By Equation (175) and Remark 18.6, the differential is given by the map

E2,0(RP 4) ∼= π5,3(PRP 4

4 , PRP 4

6 )→ π4,3(PRP 4

6 )

→ π4,3(PRP 4

6 , PRP 4

8 ) ∼= E5,−2(RP 4) (215)

Consider the diagram, where the rows and columns are exact and d is given by
the dashed map.

...

��
π5,3(PRP 4

2 , PRP 4

4 )

��
· · · // π5,3(PRP 4

4 , PRP 4

6 ) //

((

π4,3(PRP 4

6 ) //

��

π4,3(PRP 4

4 ) //

��

· · ·

π4,3(PRP 4

6 , PRP 4

8 )

��

π4,3(PRP 4

2 )

��

π3,3(PRP 4

8 )

��

...

...
(216)

Several groups are zero:

• π5,3(PRP 4

2 , PRP 4

4 ) ∼= E0,2(RP 4) = 0 (cf. equation (175)).

• π4,3(PRP 4

2 ) ∼= [S4,3 ∧ RP 4, P2] = 0, since all cells of S4,3 ∧ RP 4 are of the
form S4+i,3 for 0 ≤ i ≤ 4 and P2 is A4,2-null.

• Hence, π4,3(PRP 4

4 ) = 0 by exactness.
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• It is a lucky coincidence, that we already know that π3,3(PRP 4

8 ) = 0: By
part (2) of Proposition 9.5 we obtain

π3,3(PRP 4

8 ) ∼= π3,3((Z×BU)RP 4
) ∼= KR−3,−3(RP 4) ∼= KR3,0(RP 4).

(217)
Although we are just about to compute the K-theory of RP 4, we do know
that KR3,0(RP 4) is trivial in this very special case. All groups contribut-
ing to KR3,0(RP 4) are located in the vertical line at a = −5 of the E∞-
term of the spectral sequence. But Picture 19 indicates, that the groups
in this line of the E2-term are trivial. Inevitably KR3,0(RP 4) = 0.

Consequently, d : Z/2 → Z/2 is the composition of two surjective maps, and
thus surjective itself. Clearly, d is even bijective.

We conclude that d(y4) = 0 (by degree reasons), d(x) = y3
1 (cf. Section 18) and

d(y3) = y2
3y1. The computation of d(y1) and d(y2) is more subtle:

Proposition 19.4. The differentials

d : E1,−2
2 (RP 2)→ E4,−4

2 (RP 2) (218)

and
d : Z/2 ∼= E2,−2(RP 3)→ E5,−4(RP 3) ∼= Z/2 (219)

are trivial.

We postpone the proof of this proposition and first calculate the E3-term, as-
suming the differentials were trivial. However, we can give some idea why this
is true. We know that the spectral sequence converges strongly. The indices are
designed in a way such that all elements contributing toKO−i(RPn) are located
in the vertical line at a = i. Hence, in every sheet of the spectral sequence the
entrances in the line at a = 0 gives an upper bound for the number of elements
in KO0(RPn). From arguments independent of the spectral sequence, we will
see that the number of elements of K̃O

0
(RPn) is bounded below. If d(y1) or

d(y2), on the other hand, were non-trivial they would decrease the upper bound
below the lower bound, which would be a contradiction.

Remark 19.5. The calculation of the differentials has the unexpected conse-
quence that y2

2 = 0. A naive guess might have been that y2
2 = y3y

2
1, since the

non-equivariant cohomology of RPn is a truncated polynomial ring. Obviously
d(y2

2) = 0, but d(y3y
2
1) = y2

3y
3
1 6= 0. So these elements can not be equal.

We now turn to the computation of the E3-term. The results for 2 ≤ n ≤ 9 are
indicated in the following pictures (which extend periodically to both sides):
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We can first rule out a large number of elements in the E2-term, which can’t
survive to the next page. When we pass from RP 2n to RP 2n+1 or RP 2n, re-
spectively, the elements y4x

kyl1 resp. yn3 xkyl1 and yn−1
3 y2x

kyl1 are added to the
E2-term of the spectral sequence (cf. Picture (213) for the case n = 1).
By degree reasons, we have d(y4y

l
1) = d(yn3 y

l
1) = d(yn−1

3 y2y
l
1) = 0. Indeed,

these elements are located in the top two non-trivial diagonals of the spectral
sequences and are sent to zero by the differentials, which go al least three dimen-
sions up. Moreover, since d(x2k) = 0 and d(x2k+1) = x2ky3

1 , only the following
relevant groups can survive to the E3-term:
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6
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0
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4

6

(220)
The pictures for bigger n look just the same, only that they are shifted to the
upper left. Note that we did not say that all of these groups actually survive
to the E3-term. Instead, we said that all others do not. We hence only have
to examine a handful of remaining groups. The argument also implies that the
E3-term is 8-periodic in the first quadrant.
The elements we consider in the following cases are those we have not ruled
out yet. Each case considers the generators of the groups located in the line
at a = i. In the following we repeatedly use the index α, with values in N+

to examine all elements of one type at the same time. If we consider a fixed
RPn, the generators will clearly become zero eventually, when α becomes bigger.

• i = 0
The possibly nontrivial elements in the line at a = 0 of the E3-term are
y4α+1

3 x2αy2
1 , y

4α+1
3 x2αy2

1y2, y4α+4
3 x2α+2 and y4α

3 x2αy2. While the first two
kinds of elements are sent to y4α+2

3 x2αy3
1 and y4α+2

3 x2αy3
1y2, respectively,

the latter two are mapped to zero. None of them is in the image of the
differential.

• i = 1
The interesting elements in the E1-term are y4α

3 x2αy1 and y4α
3 x2αy1y2. All

of them are mapped to zero, but for α ≥ 1 they are hit by y4α−1
3 x2α and

y4α−1
3 x2αy2, respectively. For n ≡ 3 mod 4, there is an extra Z-summand
in the spectral sequence.

• i = 2
Here, we have to consider four types of generators, namely y4α

3 x2αy2
1 ,
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y4α
3 x2αy2

1y2, y4α+3
3 x2α+2 and y4α+3

3 x2α+3y2. The first two are mapped to
zero, but are the images of y4α−1

3 x2αy1 and y4α−1
3 x2αy1y2 if α 6= 0. The

other two are mapped to y4α+4
3 x2α+2y1 and y4α+4

3 x2α+2y1y2, respectively.

• i = 3
The important elements are y4α+3

3 x2α+2y1 and y4α+3
3 x2α+2y1y2, which are

mapped to y4α+4
3 x2α+2y2

1 and y4α+4
3 x2α+2y2

1y2, respectively. So they don’t
contribute to the E3-term, unless the images are zero by degree reasons.
They are not in the image of d, so this criterion suffices. Hence we have
one Z/2-term for n = 8r (r 6= 0) or n = 8r + 6 and two Z/2-terms for
n = 8r + 7. Again, there is an extra Z-term for n = 8r + 1 or n = 8r + 5.

• i = 4
We have to consider the elements y4

3α+ 3x2α+2y2
1 , y4

3α+ 3x2α+2y2
1y2,

y4α+2
3 x2α+2 and y4α+2

3 x2α+2y2. The first two are mapped to y4α+4
3 x2α+2y3

1

and y4α+4
3 x2α+2y3

1y2, respectively. None of these elements are in the image
of d.

• i = 5
The elements to be considered are y4α+2

3 x2α+2y1 and y4α+2
3 x2α+2y1y2. All

of them are mapped to zero, but they are hit by the elements y4α+2
3 x2α+2y1

and y4α+2
3 x2α+2y1y2, respectively. However, there is an extra Z-term for

n = 4r + 3.

• i = 6
Consider y4α+1

3 x2α+2, y4α+1
3 x2α+2y2, y4α+2

3 x2α+2y2
1 and y4α+2

3 x2α+2y2
1y2.

The last two are mapped to zero, but are in the image of y4α+1
3 x2α+2y1

and y4α+1
3 x2α+2y1y2. The first two are mapped to y4α+2

3 x2α+2y1 and
y4α+2

3 x2α+2y1y2, respectively. These images can be zero by degree reasons.
Hence, we have one Z/2-term for n = 8r+ 2 or 8r+ 4 and two Z/2-terms
for n = 8r + 3.

• i = 7
This case is analogous to the case i = 3. Here, the important elements are
y4α+1

3 x2α+2y1 and y4α+1
3 x2α+2y1y2.

This fully determines the E3-page of the spectral sequence. Note that apart
from the lines at a = 0 and a = 4 there are only very few non-trivial entries.
In fact we will see in Propostion 19.9 that the spectral sequence collapses after
the E3-term and we can look at the table of Theorem 19.1 to keep track of the
number of non-trivial groups.
We are now able to prove Proposition 19.4.

Lemma 19.6. The group K̃O0(RPn) has a cyclic summand of order at least[
n
2

]
.

Proof. K̃U0(S2n) ∼= Z is generated by (H−1)n := νn, where H is the canoncial
line bundle over S2. Hence we can use the cofiber sequences RP k → RP k+1 →
Sk+1, to deduce inductively that the νi with i ≤

[
n
2

]
generate K̃U0(RPn).

Indeed, the cofiber sequence induces a long exact sequence of the form

· · · → K̃U0(Sk+1)→ K̃U0(RP k+1)→ K̃U0(RP k)→ · · · . (221)
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The induction basis is trivial, since K̃U0(RP 1) ∼= K̃U0(S1) ∼= 0. For even
values of k, we have K̃U0(Sk+1) = 0 and thus, the generators of K̃U0(RP k) also
generate K̃U0(RP k+1). For odd values of k, on the other hand, K̃U0(RP k+1) is
generated by both, the generators of K̃U0(RP k) and the single generator ν

k+1
2

of K̃U0(Sk+1).
If λ = ξ−1 with ξ denoting the canonical real line bundle, and if ε : K̃O(RPn)→
K̃U(RPn) is complexification, we have ελ = ν. Hence, the λi are non-trivial
generators of K̃O(RPn). The real line bundle ξ is equivalent to a bundle with
structure group O1 = {1,−1}, and it is obvious that ξ ⊗ ξ is trivial. In other
words, λ2 = −2λ. This shows that K̃O(RPn) has a cyclic summand of order at
least

[
n
2

]
.

Lemma 19.7. The group K̃O0(RPn) is as indicated in Theorem 19.1.

Proof. Lemma 19.6 gives a lower bound for the number of elements in the group
K̃O0(RPn). On the other hand, the line at i = 0 of the spectral sequence gives
an upper bound for the number of elements in K̃O0(RPn). For n ≡ 6, 7 or 8
mod 8 this suffices to conclude that the group is as indicated in the theorem.
From the long exact sequences for RP k → RP k+1 → Sk+1 we finally obtain that
each K̃O(RPn) must be cyclic. Indeed, to compute the K̃O(RPn) for arbitrary
n, we just have to choose an m > n with m ≡ 6, 7 or 8 mod 8 and inductively
use the long exact sequence to show that the groups for m,m − 1, . . . , n are
cyclic of the desired order.

Proof of Proposition 19.4. We have seen that the lower boundary and the upper
boundary for the number of elements in K̃O0(RPn) coincide, if d(y1) = d(y2) =
0. If these differentials were non-trivial, the number of entries in the line at
a = 0 of the E3-term would decrease, which would be a contradiction.

Lemma 19.8. The group K̃O−4(RPn) is as indicated in Theorem 19.1.

Proof. This case is analogous to the case i = 0. Instead of the sole complexi-
fication map ε we consider I−2ε : K̃O

−4
(RPn) → K̃U0(RPn), where I is the

Bott-isomorphism. This allows us to deduce that K̃O
−4

(RPn) is cyclic for
n ≡ 2, 3 or 4 mod 8 and has the indicated number of elements. Inductively this
follows for all n.

Proposition 19.9. The slice spectral sequence for RPn collapses after the E3-
term.

Proof. The argument is not very different from the one in the last proofs. The
differentials d : Ep,q3 → Ep+5,q−4

3 are trivial for degree reasons, apart from those
entering or exiting the lines at a = 0 and a = 4. Indeed, as indicated before,
there are very few non-trivial entries left and we can check this directly for each
of them. At the lines a = 0 and a = 4, on the other hand, every non-trivial
differential - both, entering and exiting - would decrease the number of elements
in K̃O0(RPn) or K̃O−4(RPn), respectively, which would be a contradiction.

It remains to solve the residual extension problems.
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• i = 1

We have

K̃O
−1

(RPn) =

{
Z/2 if n 6= 4r + 3
Z/2 + Z or Z/2 if n = 4r + 3

(222)

To determine what happens for n = 4r + 3, we look at the diagram

K̃O
−1

(S4r+3) //

ε

��

K̃O
−1

(RP 4r+3) //

ε

��

K̃O
−1

(RP 4r+2)

ε

��

K̃U
−1

(S4r+3) // K̃U
−1

(RP 4r+3) // K̃U
−1

(RP 4r+2)

(223)

where ε is the complexification. The spectral sequence for Z/2∧RPn con-
verges to KU(RPn). Since Hp,q(Z/2∧RPn) ∼= Hp

sing(RPn), the sequence
collapses immediately. We draw again the pictures for the cases n = 2, 3.

RP 2

a

b

0 2 4 6

0

2

4

6

RP 3

a

b

0 2 4 6

0

2

4

6

We get analogous results for bigger n. Hence K̃U
k
(RP 4r+3) ∼= Z and

K̃U
k
(RP 4r+2) = 0 for odd values of k. For further purpose we also

compute K̃U
k
(RPn) for even values of k: If f is the integral part of n

2 ,

K̃U
k
(RPn) has 2f elements. Since Ikε : K̃O

0
(RPn) → K̃U

2k
(RPn) is

surjective, it has to be cyclic of order 2f . It remains to determine the
vertical maps. Recall from Toda [Tod63], p. 314, that there is an exact
sequence

· · · → K̃O
n
(X) ε−→ K̃U

n
(X)→ K̃O

n+2
(X)→ K̃O

n+1
(X)→ · · · (224)

which shows that the image of ε : K̃O
0
(S2q) → K̃U

0
(S2q) is Z if q ≡ 0

mod 4 and is 2Z if q ≡ 2 mod 4. From the diagram

K̃O
−1

(RP 4r+3) //

ε

��

K̃O
0
(S4r+4) //

ε

��

K̃O
0
(RP 4r+4)

i∗ //

ε

��

K̃O
0
(RP 4r+3)

ε

��

K̃U
−1

(RP 4r+3) // K̃U
0
(S4r+4) // K̃U

0
(RP 4r+4)

i∗ // K̃U
0
(RP 4r+3)

(225)

79



and the fact that Ker(i∗) = Z/2, it follows that the image of

ε : K̃O
−1

(RP 4r+3)→ K̃U
−1

(RP 4r+3) (226)

is Z if r is odd and 2Z if r is even. Using these information, we conclude
from diagram (223) that K̃O

−1
(RP 4r+3) = Z + Z/2.

• i = 5

It is immediate that

K̃O−5(RP 8r+n) =

{
Z if n = 3 or n = 7
0 else

(227)

• i = 3

K̃O
−3

(RPn) is either Z/2 + Z/2 or Z/4 for n = 8r + 7 and as indicated
in the table of Theorem 19.1 for other n.
Since RP 8r+7/RP 8r+5 ≈ S8r+6 ∨ S8r+7 we have

K̃O
−3

(RP 8r+7/RP 8r+5)
∼=Z/2+Z/2

→ K̃O
−3

(RP 8r+7)→ K̃O
−3

(RP 8r+5)
∼=Z

(228)

and hence K̃O
−3

(RP 8r+7) = Z/2 + Z/2.

• i = 7

Analogous to the case i = 3.

• i = 2

We have the following situation

K̃O
−2

(RPn) =



Z/2 + Z/2 + Z/2,
Z/4 + Z/2, or Z/8

if n = 8r + 7,

Z/2 + Z/2 or Z/4 if n = 8r + 6 or 8r + 8,

Z/2 else .

(229)

We will show that 2K̃O
−2

(RPn) = 0. The first step is to verify
4K̃O

−2
(RPn) = 0 or, equivalently, K̃O

−2
(RP 8r+7) 6= Z/8. This follows

from the exact sequence of the pair (RP 8r+7,RP 8r+5):

· · · → K̃O
−3

(RP 8r+7)
∼=Z/2

→ K̃O
−3

(RP 8r+5)
∼=Z

→ K̃O
−2

(RP 8r+7/RP 8r+5)
∼=Z/2+Z

→ K̃O
−2

(RP 8r+7)→ K̃O
−2

(RP 8r+5)
∼=Z/2

→ K̃O
−1

(RP 8r+7/RP 8r+5)
∼=Z

→ · · ·

(230)
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As in the case i = 3 we consider the exact sequence

· · · → K̃O
−2

(RPn) ε−→ K̃U
−2

(RPn)
p∗−→ K̃O

0
(RPn) (231)

∂−→ K̃O
−1

(RPn)→ K̃U
−1

(RPn)→ · · ·

We are only interested in the cases n = 8r+ 6, 8r+ 7 and 8r+ 8. Here we
have K̃O

0
(RPn) ∼= Z/2f , K̃U

−2
(RPn) ∼= Z/2f , where f is the integral

part of n2 , K̃O
−1

(RPn) ∼= Z/2 or Z/2 + Z, and K̃U
−1

(RPn) ∼= Z or 0.
Therefore Im(∂) ∼= Z/2 and hence Im(p∗) = Ker(∂) ∼= Z/2f−1. Finally
we have Im(ε) = Ker(p∗) ∼= Z/2, so that 2Im(ε) = 0 and Im(ε) ⊂
2f−1K̃U

−2
(RPn).

Now we know that the composition

K̃O
−2

(RPn) ε−→ K̃U
−2

(RPn)
ρ−→ K̃O

−2
(RPn) (232)

is multiplication by 2, where ρ is realization. This yields

2K̃O
−2

(RPn) = Im(ρε) ⊂ 2f−1K̃O
−2

(RPn) = 2f−3 · 4K̃O
−2

(RPn) = 0
(233)

and concludes the proof of the case i = 2.

• i = 6

We have one Z/2-term for n = 8r + 2 or 8r + 4 and two Z/2-terms for
n = 8r + 3. From the exact sequence

· · · → K̃O
−6

(RP 8r+5)
=0

→ K̃O
−6

(RP 8r+3)→ K̃O
−5

(S8r+5 ∨ S8r+4)
∼=Z/2+Z/2

→ · · ·

(234)
we obtain K̃O

−6
(RP 8r+5) ∼= Z/2 + Z/2.

This concludes the proof of Theorem 19.1.

19.1 Comparison to the classical Atiyah-Hirzebruch spec-
tral sequence for KO

Beside the Slice spectral sequence specialized to a space with trivial action
there is the classical Atiyah-Hirzebruch spectral sequence converging to KO.
One could ask, whether these sequences are isomorphic (at least for r > r0).
Our calculations show that this is not the case. An easy example to see this is
the space RP 4. We calculated the E3-term (and thus the E∞-term) of the slice
spectral sequence.
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0
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The classical Atiyah-Hirzebruch spectral sequence takes on the form Ep,q2 =
Hp(X,KOq(∗)) with differentials dp,q2 : Ep,q2 → Ep+2,q−1

2 . If we again take the
axes a = −p− q and b = p and X = RP 4, this is

E2

a

b

0 2 4 6

0

2

E3

a

b

0 2

0

2

(cf. e.g [Fuj67]).
If we examine the vertical lines a = 0 in these pictures, we observe that these
sequences induce different filtrations for the group KO0(RP 4). The three dots
in the picture for the slice spectral sequence are distributed equidistantly along
the b-axis. In contrast, there is a "gap" between the dots in the picture for
the classical sequence. Even if we would reindex one of these sequences, we
would not get rid of this gap. Hence, the filtrations are different, and thus the
sequences are not isomorphic.

20 The spectral sequence for CP n as a Real space
with complex conjugation

Consider the Real space CPn where the involution is given by complex conju-
gation. We already know from the work of Atiyah [Ati66] that

KR−i(CPn) ∼= KR−i(∗)[t]/(tn+1 − 1). (235)
To confirm this result, it is not hard to compute the Atiyah-Hirzebruch slice
spectral sequence.
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Proposition 20.1. The cohomology of CPn is given by

Hp,q(CPn) ∼=
n⊕
i=0

Hp−2i,q−i(∗). (236)

Proof. The cofiber sequence CPn → CPn+1 → S2n+2,n+1 induces a long exact
sequence on cohomology:

· · · → H̃p,q(S2n+2,n+1)→ H̃p,q(CPn+1)→ H̃p,q(CPn)→ · · · (237)

We will show that this long exact sequence decomposes into split short exact
sequences

0→ H̃p,q(S2n+2,n+1)→ H̃p,q(CPn+1)→ H̃p,q(CPn)→ 0. (238)

Thus, we obtain

H̃p,q(CPn+1) ∼= H̃p,q(CPn)⊕ H̃p,q(S2n+2,n+1), (239)

which finishes the proof by induction.
We obtain CPn+1 from CPn by attaching a cell S2n+2,n+1 via an attaching
map f : S2n+2,n → CPn. A map g : CPn → K(Z(q), p) representing an element
of H̃p,q(CPn), extends to a map CPn+1 → K(Z(q), p), if the composition g ◦
f is null-homotopic. Hence, we have to show that f induces a trivial map
H̃p,q(S2n+2,n)→ H̃p,q(CPn).
Since both Hp,q(S2n+2,n) and Hp,q(CPn) are modules over Hp,q(∗), it suffices
to realize that

Z ∼= H̃2n+2,n(S2n+2,n)→ H̃2n+2,n(CPn) ∼= 0 (240)

is trivial. This implies that there exists an extension and thus a splitting.

The spectral sequence is given as indicated in the pictures below:

a

b

0 2 4 6

0

2

4

6

CP 1

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
· · ·
· · ·
· · ·

· · ·
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CP 2

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
· · ·
· · ·
· · ·

· · ·

The pictures can easily be extended to general CPn by adding circles at the
places (4k, 2j) and rays of dots going diagonally up and right. These rays
correspond to the cohomology groups of S2n,n, and the differentials are the
same as the differentials for the point shifted to the right place. In other words,
the E∞-term will consist of copies of Z in the places (8k, 2j) and (8k+4, 2j) for
0 ≤ j ≤ 2n and copies of Z/2 in the places (8k+ 1, 2j + 1) and (8k+ 2, 2j + 1).
This and the long exact sequence

· · · → K−1−q(X)→ KR1−q(X)→ KR−q(X)→ K−q(X)→ · · · (241)

suffice to determine the structure of KR−i(CPn).
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Part VII

Appendix
A HZ computations
In the unpublished version of [Dug05] he calculates the coefficient ring of HZ.
We will repeat this including a few more details. We begin with a picture of the
result:

q

p

−2 −1 0 1 2 3

−2

−1

0

1

2

3

α x x2

y

y2 xy2

xy

θ

The hollow circles denote Z, while the solid dots represent Z/2. The multiplica-
tive structure is determined by the properties that

(1) the structure is commutative,

(2) the solid lines represent multiplication by y ∈ H1,1,

(3) the dotted lines represent multiplication by x ∈ H0,2 (only a representative
set has been drawn),

(4) αx = 2.

For any pointed Z/2-spaces X and Y there is an isomorphism

[Z/2+ ∧X,Y ]∗ → [X,Y ]e∗ (242)

where [−,−]e∗ denotes homotopy classes of non-equivariant pointed maps. The
isomorphism is obtained by the inclusion {0} ↪→ Z/2. So for any equivari-
ant spectrum E there are isomorphisms Ep,q(Z/2) → Epe (∗), where Ee is the
nonequivariant spectrum obtained by forgetting the group action. If E has a
product, these isomorphisms give ring maps.
Hence for H∗,∗(Z/2) we get

Hp,q(Z/2) ∼= [Z/2,K(Z(q), p)] ∼= [∗,K(Z, p)] ∼= Hp
sing(∗) (243)

The multiplication is defined by

H0,q(Z/2)⊗H0,t(Z/2)→ H0,p+t(Z/2) (244)
1⊗ 1 7→ 1 (245)
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and hence

H∗,∗(Z/2) ∼= Z[u, u−1] (246)

with deg(u) = (0, 1) and 1 ∈ Hp,q(Z/2) 7→ uq.
The computation of Hp,q(∗) is more involved, and we have to consider different
cases and use different arguments each time.
From the construction of RO(G)-graded cohomology we know that the dimen-
sion axiom holds for representations V = (p, 0). In other words,

Hp,0(∗) =

{
Z p = 0
0 else

(247)

Now we turn our attention to Hp−q,−q(∗) for q > 0.

Hp−q,−q(∗) ∼= H̃p,0(Sq,q) ∼= H̃p
sing(S

q,q/(Z/2); Z) ∼= H̃p
sing(ΣRP q−1) (248)

The first isomorphism is the suspension isomorphism, while the second one is
due to the general fact that we have Hp,0(X) = Hp

sing(X/(Z/2); Z). This is not
hard to see as

Hp,0(X) ∼= [X,K(Z, p)] ∼= [X/(Z/2),K(Z, p)]e ∼= Hp
sing(X/(Z/2); Z) (249)

The last isomorphism holds, since Sq,q is the suspension of the sphere inside
Rq,q, which is a (q − 1)-sphere with antipodal action.
Unfortunately, the analogue for homology is not quite true, which makes the
computation of Hp+q,q(∗) for q > 0 harder. However we have

Proposition A.1. If Z/2 acts freely on X, there is an isomorphism

H̃p,0(X) ∼= H̃sing
p (X/(Z/2)) (250)

Proof. This is immediate from the definition and true for every topological group
instead of Z/2. In Definition 11.3 we defined the homology groups to be

HG
n (X; Z) = Hn(C∗(X)⊗BG

Z), (251)

where C∗(X) is the Mackey functor with C∗(X)(G/H) = Hn((Xn)H , (Xn−1)H).
Since the action of G is free, C∗(X)(G/H) is trivial for H 6= e, and we have |G|
copies of Z for every equivariant n-cell in C∗(X)(G/e) . These copies are iden-
tified by the equivalence relation, since they are permutated by the morphisms
associated with multiplication by elements of G. Hence the chain complex co-
incides with the cellular complex for X/G.

Another tool we need is the Spanier-Whitehead duality.

Proposition A.2. If X is a wedge summand of a finite G-CW spectrum, and
if E is any G-spectrum, then

ν : DX ∧ E → F (X,E) (252)
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is an isomorphism in h̄GS . Therefore, for any representation V ,

EGV (DX) ∼= E−VG (X). (253)

Here DX denotes the mapping space F (X,S) also referred to as the dual spec-
trum. ν is the natural map

ν : F (X,Y ) ∧ Z → F (X,Y ∧ Z) (254)

specialized to

ν : F (X,S) ∧ E → F (X,S ∧ E) ∼= F (X,E) (255)

Proof. [M+96] Corollary XVI.7.5

We can now write (for p > 0)

Hp+q,q(∗) ∼= H̃p+q,q(S0,0) ∼= H̃−p−q,−q(S0,0) ∼= H̃−p,0(Sq,q). (256)

The group action on Sq,q is not free, but it fits into a cofiber sequence S(Rq,q) ↪→
D(Rq,q)→ Sq,q, with one space being contractible and one having a free action.
Hence the induced long exact sequence for H∗,0 should be revealing:

· · · → Hn+1,0(D(Rq,q))→ H̃n+1,0(Sq,q)→ Hn,0(S(Rq,q))→ Hn,0(D(Rq,q))→ · · ·
(257)

This sequence shows that for n 6= 0, 1

H̃n,0(Sq,q) ∼= H̃n−1,0(S(Rq,q)) (258)

and

0→ H̃1,0(Sq,q)→ H0,0(S(Rq,q))→ Z→ H̃0,0(Sq,q)→ 0 (259)

is exact.
Since the zero-skeleton of S(Rq,q) is Z/2, the center map in (259) coincides with
the map H0,0(Z/2)→ H0,0(∗) induced by the projection. This map is the same
as the transfer map i∗ in the Mackey functor Z , which is multiplication by 2.
Thus, Hq−1,q(pt) = 0 and Hq,q(pt) = Z/2.
Knowing the additive structure we proceed to determine the ring structure. The
map i : Z/2 → ∗ induces a map i∗ : H∗,∗(∗) → H∗,∗(Z/2). Since we already
know the target, examining the map will give us information on the source.
Taking the mapping cone of i we get a cofiber sequence Z/2+ → S0,0 → S1,1.
In fact, we first turn i into a map of pointed spaces, by adding a base point on
both sides. In this way we can have a look at the induced long exact sequence
for H∗,2n.

· · · → H−1,2n−1(∗)→ H0,2n(∗) i∗−→ H0,2n(Z/2)→ H0,2n−1(∗)→ · · · (260)

We already applied the suspension isomorphism on the first group in this se-
quence. From our preceding calculations we know that

H0,2n−1(∗) = 0 = H−1,2n−1(∗) for n ≥ 0, (261)
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so that i∗ is an isomorphism. For n < 0 we observe that the sequence reduces
to

0→ H0,2n(∗) i∗−→ H0,2n(Z/2)→ Z/2→ 0. (262)

Hence, i∗ is multiplication by 2.
The class y is represented by a map S0,0 → K(Z(1), 1). Since we explicitly
know the homotopy groups of the target, we can see that K(Z(1), 1) is weakly
equivalent to S1,1. Again taking the mapping cone we get the cofiber sequence
S0,0 → S1,1 → Z/2+ ∧ S1,0. The induced long exact sequence will give the
desired information on multiplication by y.

H̃p,q(Z/2+ ∧ S1,0) //

∼=
��

H̃p,q(S1,1)
y //

∼=
��

H̃p,q(S0,0) //

∼=
��

Hp+1,q(Z/2+ ∧ S1,0)

∼=
��

H̃p
sing(S

1) Hp−1,q−1(∗) Hp,q(∗) H̃p+1
sing(S

1)

(263)
In all cases of interest, the last group is zero and the middle map is surjective.
Since all groups are either Z or Z/2, this determines the multiplication by y.
The last step is to see what happens with θn ∈ H0,−2n−1(∗) ∼= Z/2, when
multiplied by x. It will turn out that x · θn+1 = θn. The argument is somewhat
different to the ones before.
Let E be the spectrum defined by the cofiber sequence Σ0,−2HZ ·x−→ HZ→ E.
If we evaluate this sequence at the space X = ∗ once again, we obtain

· · · → Hn,−2(∗)→ Hn,0(∗)→ En,0(∗)→ Hn+1,−2(∗)→ Hn+1,0(∗)→ · · ·
(264)

We already know four of these groups and the maps between them. Hence, for
n 6= 0, 1, we conclude immediately that En,0(∗) = 0. For n = 0, 1, we have

Z ·2−→ Z→E0,0(∗)→ 0

0→E1,0(∗)→ Z ·2−→ Z (265)

Hence

En,0(∗) =

{
Z/2 n = 0
0 else.

(266)

For X = Z/2, the sequence is simply

Z
∼=−→ Z→ En,0(Z/2)→ Z

∼=−→ Z, (267)

and En,0(Z/2) = 0. By the axiomatic characterisation of cohomology theo-
ries represented by Mackey functors we can conclude that E is the Eilenberg-
MacLane cohomology for the Mackey functor E0,0 and that there is an isomor-
phism

En,0(X) ∼= Hn(XZ/2; Z/2). (268)

So for n > 0 we have

E0,−n(∗) ∼= Ẽn,0(Sn,n) ∼= H̃n
sing(S

0) = 0. (269)
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Hence, from

E−1,−n(∗)→ H0,−n−2(∗)→ H0,−n(∗)→ E0,−n(∗), (270)

we see that multiplication by x induces an isomorphism

H0,−n−2(∗) ∼= H0,−n(∗) for n ≥ 2. (271)
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Glossary

[X,Y ] the set of homotopy classes of G-maps between
two G-spaces X and Y , 24

[X,Y ]∗ the set of based homotopy classes of based G-
maps between two G-spaces X and Y , 24

[X,Y ]H the set of H-equivariant homotopy classes of H-
maps between G-spaces X and Y and for a sub-
group H ⊂ G, 24

{X,Y }G the Mackey functor defined by
{X,Y }G(G/H) = {G/H+ ∧ X,Y }G for
G-spaces X and Y , 32

{X,Y }G stable G-maps between G-spaces X and Y , 29

BG classifying space for fiber bundles with structure
group G, 19

BG the Burnside category, 32

D(V ) the unit disk in a G-representation V , 31
S(V ) the unit sphere in a G-representation V , 31

G the orbit category of G, 25
X/H the orbit space of a G-space X for a subgroup

H ⊂ G, 24
GU the category of G-equivariant compactly gener-

ated, weak Hausdorff spaces, 24
G U the category of G -spaces, 25

HermC(X) the set of isomorphism classes of complex vector
bundles provided with a non-degenerate hermi-
tian form over the compact space X, 10

H ermC(X) the categories of isomorphism classes of complex
vector bundles provided with a non-degenerate
hermitian form and maps compatible with the
forms, 13

HermC
n(X) the set of isomorphism classes of n-dimensional

complex vector bundles provided with a non-
degenerate hermitian form over the compact
space X, 10

hGU the homotopy category of G-spaces, 25
h̄GU the category constructed from hGU by formally

inverting the weak equivalences, 25
HV
G (X;M) ordinary RO(G)-graded cohomology with coef-

ficients in the Mackey functor M , 39
H̃V
G (X;M) ordinary reduced RO(G)-graded cohomology

with coefficients in the Mackey functor M , 39
HM the spectrum representing ordinary RO(G)-

graded cohomology with coefficients in the
Mackey functor M , 40
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hofib(f) the homotopy fiber of the map f : A→ B, 51
hRO(G;U) the homotopy category of RO(G;U), 30
h̄RO(G;U) the category obtained from hRO(G;U) by for-

mally inverting the weak equivalences, 30

K(X) K-group (Grothendieck group) of a monoid of
vextor bundles over the compact space X, 22

K̃(X) the reduced K-group of the compact space X,
22

K(M,V ) Eilenberg-MacLane space for the Mackey func-
tor M and the representation V , 40

ΩVX the loop space of a G-space X with respect to
the G-representation V , 29

On(C) the subgroup of GL(n,C), which consists of
isometries of Cn provided with the quadratic
form

∑n
i=1(xi)2, 17

On,p(K) the subgroup of GLn+p(K) (K = R,C), which
consists of isometries of Kn+p provided with the
form

∑n
i=1 xiȳi −

∑n+p
i=n+1 xiȳi, 17

ΦK(X) the set of isomorphism classes of K-vector bun-
dles over the compact space X, 10

Φ̄R(X) the set of isomorphism classes of Real vector
bundles over the compact Real space X, 10

ΦK
n(X) the set of isomorphism classes of n-dimensional

K-vector bundles over the compact space X, 9
πp(B,A) p-th relative homotopy group of the pair (B,A),

51
ΨK(X) the category of K-vector bundles equipped with

a metric and morphisms, which respect this
metric, 14

PV the Postnikov functor PAV for AV = {SW ∧
G/H+ : W ⊃ V, H ≤ G}, 36

PV the Postnikov functor PÃV for ÃV = {SW ∧
G/H+ : W ⊇ V + 1, H ≤ G}, 36

RA∞ right derived limit of the sequence As, 53
RO(G;U) the category whose objects are the representa-

tions embeddable in U and whose morphisms
V →W are G-linear isometries, 30

ΣVX the suspension of a G-space X with respect to
the G-representation V , 29

S(M) the Grothendieck group associated with the
monoid M , 22

Sp2n(K) the subgroup of GLn2n(K) (K = R,C), which
consists of isometries of K2n provided with the
form

∑n
i=1 xiyi+n −

∑n
i=1 xi+nyi, 17
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SymK
+(X) the set of isomorphism classes of K-vector bun-

dles provided with a non-degenerate bilinear
symmetric form over the compact space X, 10

SymK
−(X) the set of isomorphism classes of K-vector bun-

dles provided with a non-degenerate bilinear
skew-symmetric form over the compact spaceX,
10

S ymK
+(X) the categories of isomorphism classes of K-

vector bundles provided with a non-degenerate
bilinear symmetric form and maps compatible
with the forms, 13

S ymK
−(X) the categories of isomorphism classes of K-

vector bundles provided with a non-degenerate
bilinear skew-symmetric form and maps com-
patible with the forms, 13

SymK
+,n(X) the set of isomorphism classes of n-dimensional

K-vector bundles provided with a non-
degenerate bilinear symmetric form over the
compact space X, 9

SymK
−,n(X) the set of isomorphism classes of 2n-dimensional

K-vector bundles provided with a non-
degenerate bilinear skew-symmetric form over
the compact space X, 9

θn the n-dimensional trivial bundle, or the 2n-
dimensional trivial bundle provided with a non-
degenerate bilinear skew-symmetric form, 22

θn,p the n + p-dimensional trivial bundle provided
with a non-degenerate bilinear or hermitian
form with an n-dimensional subbundle carrying
a positiv definite form, and a p-dimensional sub-
bundle carrying a negative definite form, 22

U the category of compactly generated, weak
Hausdorff spaces, 24

U J the category of continuous functors Jop → U ,
26

V (H) the orthogonal complement of V H in a G-
representation V and for a subgroup H ⊂ G,
31

XH the set of points of a G-space X,which are fixed
under the action of H for a subgroup H ⊂ G,
24

Z the constant Mackey functor with values in Z,
35
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Index
G-CW complex, 24
G-CW(V ) complex, 32
G-map, 24
G-prespectrum, 30
G-representation, 29
G-space, 24

based-, 24
G-spectrum, 30
G-universe, 29

complete, 29
J-cofibration, 27

acyclic-, 27
J-complex, 26
J-fibration, 27

acyclic-, 27
J-maps, 26
J-spaces, 26
RO(G)-graded cohomology theory, 38
V -connected, 32
K-group, 22
Z/2-prespectrum

(naive)-, 31
Z/2-spectrum

(naive)-, 31
A-null, 35
G -space, 25

Adams indexing, 52
atlas, 16

Burnside
category, 32
Mackey functor, 32

classifying space, 19, 23
cofiber sequence, 28

derived limit, 54
diagrams, 26

Eilenberg-MacLane space, 40
equivariant map, 24
equivariant space, 24
Euler characteristic, 35
exact couple, 41

fiber, 15
fiber bundle, 15

Green functor, 35

homotopy between maps of G -spaces,
26

homotopy fiber, 51
homotopy of G-maps, 24
homotopy spectral sequence, 52

indexing space, 29

Mackey functor, 32, 34
pairing of-, 34

metric, 9
monoid, 22

null, 35

orbit category, 25
ordinaryRO(G)-graded cohomology, 40

Postnikov
functors, 36
tower, 53

principal bundle, 15

Real space, 10
Real vector bundle, 10
reduced K-group, 23
relative homotopy groups, 51
representation, 29
ring G-spectrum, 59

slice spectral sequence, 56
spectral sequence

RO(G)-graded, 41
stable G-map, 29, 30
structure group, 15

tower, 52
transfer map, 33
transition functions, 16
trivial bundle, 22

universe, 29
complete, 29

weak equivalence
equivariant-, 24, 25
of J-spaces, 27
of respresentations, 30
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