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Abstract. We compute the total Chow-Witt rings of the classifying space B, of the
roots of unity, as well as the products BG,,, X By, and B, X Bu, for all m,n > 1 based
on the strategy by di Lorenzo and Mantovani (2023) for By, with n even. Moreover we
compute the total I7-cohomology and Chow-Witt rings of P4 x P" for all ¢, > 1 and of
BG,,, x BG,,.



Introduction

Chow-Witt groups have gained increasing attention in intersection theory and enumerative
geometry over the past 20 years. Classically, a central concept of intersection theory
are Chow groups of a scheme containing information about the subschemes in a given
dimension. Another invariant of schemes is the Witt ring of quadratic forms over a scheme
introduced by [Kne77, Chapter I §5]. Chow-Witt groups were then conceived by [BMO0O]
via a fiber product of Chow and Witt theory, and implemented in technical detail by
[Fas05)].

One object of interest in this area are characteristic classes of vector bundles like Chern
classes, Euler classes and Stiefel-Whitney classes living in the different theories mentioned
above. In topology the Euler class assigns to a real vector bundle an element in the
singular cohomology of the base space with a local coefficient system (integral coefficients
if the vector bundle is orientable). One of its properties is being an obstruction for the
vector bundle to split off a trivial summand, meaning if such a splitting exists then the
Euler class vanishes. Now for vector bundles over a scheme, one can of course consider
characteristic classes with values in Chow groups, but it turns out that these satisfy
the classical obstruction property only for C-schemes. For schemes over general fields
and in particular over R a characteristic class with this obstruction property lives in the
Chow-Witt groups (compare Thm. [L.1)).

Motivic classifying spaces of algebraic groups were introduced by [MV99], imitating the
long-familiar concept of classifying spaces in topology. The étale and geometric classifying
space classify G-bundles in the sense that according to [MV99, §4 Proposition 1.15] in the
Nisnevich local motivic homotopy category of schemes, the set of maps from some X into
the classifying space of GG is in bijection to the set of isomorphism classes of G-torsors over
X. Around the same time Totaro independently defined the Chow ring of a classifying
space by means of scheme approximations [Tot99|, without defining the classifying space
itself which usually does not exist in the category of schemes. This turned out to agree
with the definition of Morel-Voevodsky and provides an important tool for computing
Chow rings which was later extended to Chow-Witt groups by [AF16, Theorem 3.3].

Some examples for computations of Chow-Witt rings include projective space P* by
[Fas13], which also provides a powerful tool for I/-cohomology of projective bundles.
The ring structure for P* and BG,, was computed by [Wen24] as a special case of a
Grassmannian. Later [LM23] computed the Chow-Witt ring of By, for even n. We will
heavily build on these two articles in this work. Further examples can be found in [HW19]
and [HXZ20].

In this work we aim to compute several new examples for Chow-Witt rings of classifying
spaces of groups and products thereof. We will extend the argument of [LM23|, considering
B, as a Gp,-bundle over BG,, and then applying a localization sequence to deduce the
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Chow-Witt groups of the former from those of the latter, to n odd (Thm. :

Theorem A. Let n be an odd natural number and k a perfect field of characteristic
coprime to 2 and n. Denote by CH (X) the total Chow-Witt ring of a smooth scheme X .
Then there is an isomorphism of graded GW (k)-algebras

CH (Byin) = GW(k)[e] /(I(k) - e,n - €)

where e € aﬁl(Bun, O(1)) denotes the Euler class of Oy, (—1).

Then we compute the I/-cohomology of P x P" (Thm. [3.5)) using the projective bundle
formula of [Fas13], then combine this with the Chow groups of the same space ([Tot14}
Theorem 2.10, 2.12]) via a fiber product statement of [HW19, Lemma 2.11], see Cor.
and Cor. [£.3

Theorem B. For k a perfect field of characteristic coprime to 2, there is an isomorphism
of graded GW (k)-algebras

a\ﬁ.(BGm X BGm) = GW(k)[el,62,63,H1,H2,H3]/(I(k}) . (Hl,HQ,Hg,el,eg,eg),
e% + e% + Hszejeq — e%, J)

where e1, ea and e3 correspond to the Euler classes of O(1,0), O(0,1), O(1, 1), respectively,
the Hy, Ho, H3 are a kind of analogue of the hyperbolic form h living in the twisted degree
0 groups, and J is a relation ideal. These are described in more detail in Cor. [{.2

Later we will use a very similar strategy like for a single copy of Bu, to deduce the
Chow-Witt rings of BG,, x By, (Thm. and By, X By, (Thm. from that of
BG,, x BG,,. For some values of m and n this argument is inconclusive for degree 0
which is why in these cases we employ a comparison with Witt cohomology, which in turn
can be computed via a Kiinneth formula developed by [HMW24, Theorem 4.7]. Most of
the ring structure can be derived from that of BG,, x BG,, by precisely understanding
the isomorphisms identifying those Chow-Witt groups whose twists become isomorphic
over BG,, X Bu, respectively B, X Bu,. These rings depend on the parity of m and n.
Their algebra presentations are so lengthy in total that we decided against including them
in the introduction and the reader should refer to the respective theorems for details.

It will turn out that some but not all of the products considered - namely P™ x P,
BG,, x BG,,,, BG, X By, Bum X By, - satisfy a Kiinneth isomorphism for Chow-Witt
rings, see Remark This provides examples to the already known fact that such an
isomorphism cannot be true for Chow-Witt rings of general products. It remains an open
question to establish a nice set of conditions under which this holds. Such conditions
are known for both Chow rings [Tot14, Theorem 2.12] and Witt cohomology [HMW24,
Proposition 4.7], but not for I7-cohomology or Chow-Witt rings.
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Notation and Conventions

Throughout all of this paper, let k be a perfect field of characteristic not 2. Perfectness
is relevant for some motivic homotopy arguments, for example avoiding smoothness issues
since every regular finite type scheme over a perfect field is already smooth. There
are methods to circumvent this condition in many applications developed by [EK20],
and it might be possible that it can be entirely removed, see also [HMW24, Section
2.3]. Characteristic different from 2 is a common assumption in the theory of quadratic
forms, because quadratic forms agreeing with symmetric bilinear forms simplifies matters.
Recent works, e.g. [Fel20], accomplish at least the construction of Chow-Witt groups
as well as functoriality and long exact localization sequences in arbitrary characteristic.
However there remain arguments, such as the decomposition of Chow-Witt groups into
Chow groups and I’/-cohomology (Section and the projective bundle theorem for
I’-cohomology (Prop. , that are only known to be true in characteristic unequal 2.

All rings are associative and unital. All schemes are considered to be separated
of finite type over k. This implies that the image of a closed subscheme under a proper
morphism of schemes is again closed, which is necessary to construct a pushforward map
on Chow-Witt groups. When working with cohomological Chow-Witt groups or any other
kind of cohomology, that is, from Section onward, all schemes are required to be
smooth. For a scheme X and an integer ¢ denote by X(;) the set of points of dimension
1 in X, i.e. points whose closure has dimension 4. If X is smooth and thus has a fixed
dimension, denote by X @ the set of points of codimension i.

For a commutative ring A and symbols x1,x2,..., we denote by A(xi,xs,...) the
free A-module generated by x1,z9,..., not to be confused with the polynomial ring
A[l’l,l‘g, .. ]

We use the following standard notation.

GW (k) Grothendieck-Witt ring of quadratic forms over k
W(k) Witt ring of quadratic forms modulo hyperbolic spaces
I(k) the fundamental ideal of GW (k) or W(k)
CH;(X), CHY(X) i-th (co)homological Chow group of a scheme X
Ch;(X), Ch'(X) i-th (co)homological Chow group modulo 2
Gﬁi(x L), aﬁZ(X , L) i-th (co)homological Chow-Witt group twisted by a line

bundle £ over X
KMW(E)  the graded Milnor-Witt K-theory ring
KM(k) the graded Milnor K-theory ring
(k) the graded ring consisting of powers of I(k), where
I0(k) .= W(k)

All of these will be introduced in detail in Chapter
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1 Chow-Witt Rings

This chapter introduces Chow-Witt groups and rings and some of their fundamental
properties. In some places we will only sketch ideas but do not include proofs, and the
reader should be aware that some results cited from the literature are highly non-trivial.

1.1 Motivation and Relation to Chow Groups

The Chow-Witt ring is a quadratic refinement of the Chow ring, so to provide some
context we will start with a quick recollection on the latter. A more detailed account can
be found e.g. in [Ful98, Chapter 1].

Let X be a scheme over k. The group of algebraic i-cycles of X is the free abelian
group on closed subschemes of X of dimension i, and the i-th Chow group CH;(X) is
then obtained by dividing out rational equivalence. This can be expressed by the exact
sequence

D W) P Z(V) — CHi(X) — 0.
WeX (i41) Vexg

The idea of Chow-Witt groups Gﬁl(x ) is to consider algebraic cycles Y ny[V] not
with integral coefficients ny, but instead coefficients in the Grothendieck-Witt ring
GW (k), the group completion of quadratic forms over k up to isometry, equipped with
direct sum and tensor product. This is motivated by the fact that the Grothendieck-Witt
ring captures the arithmetic of the base field in more detail. Through this one hopes to
generalize certain results that hold only over the base field C in classical intersection
theory (using Chow groups), considering that GW(C) = Z. For example, the zeroth
motivic stable stem is isomorphic to GW (k) by [Mor03, 6.4.1] whereas its topological
analogue is 7§ (S) = Z. A further example is the following splitting theorem of Morel,
matching the obstruction property of topological Euler classes.

Theorem 1.1 ([Morl2, Thm 8.14]). Assume r > 4. Let X be a smooth affine k-scheme
of dimension < r, and let £ be an oriented algebraic vector bundle of rank r. Then:

& splits off a trivial line bundle < e(§) =0 € é‘ﬁ’"(X)

The analogous statement for Chern classes under the assumption that k is algebraically
closed was proved by [Mur94, Theorem 3.8]. This obstruction property for vector bundles
to split off a trivial summand is also true for Euler classes of topological spaces which
take values in singular cohomology with integral coefficients. In fact, there is also a
direct connection between I7-cohomology, which is a quotient of Chow-Witt groups, and
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singular cohomology: For a smooth scheme X over a field £ © R and a line bundle £ over
X, Jacobson [Jacl7] defines a real cycle class map
Hl(X7 Ij? E) — Hsllng(X(R)7 Z(ﬁ))

where X (R) denotes the set of real points of X with the analytic topology. This is an
isomorphism if j > dim X [Jac17, Corollary 8.3], or if 7 > ¢ and X is cellular [HWXZ21|
Theorem 5.7].

In order to do construct such a quadratic refinement it will be helpful to rephrase the
above definition of Chow groups in terms of Milnor K-theory.

Definition 1.2. Let F' be a finitely generated field extension over k. Its Milnor K-theory
KM(F) is the graded-commutative ring generated by the symbols [a] for all a € F*
in degree 1, modulo the relations [a][1 — a] for all a # 0, 1 and [a] + [b] = [ab] for all
a,b € F*. The i-th degree of this ring is the i-th Milnor K-theory group of F', denoted
KM(F).

Observing that we have F* = KM(F), Z = K}(F) and 0 = KM (F), the exact
sequence defining the i-th Chow group above can be expressed using the chain complex

o P EMk) T P Kk) S P EM(k) — ..

IEX(Z-+1) yEX(i) ZEX(i_l)

known as the Gersten complex C,(X, KM, i) and the i-th Chow group is the homology
at the middle term. Naively we want to replace KM in the above chain complex by its
“quadratic refinement”, Milnor-Witt K-theory KMW.:

Definition 1.3. Let F' be a finitely generated field extension over k. Its Milnor-Witt
K-theory KMW(F) is the graded (non-commutative) ring generated by the symbols

1. [a] for all @ € F* in degree 1,

2. n in degree —1

modulo the relations

1. [a] - [1 —a] for a #0, 1,

2. [a] +[b] + n - [a] - [b] — [ab] for a, b € F*,

3. n-la] —[a] - n for a € F*,

4. n? - [-1] + 2n.

The i-th degree of this ring is the ¢-th Milnor-Witt K-theory group of F', which is denoted
by KM(F).

In this setup, however, it is more difficult to define the map div. This will be the task
of the next section.

This construction of Milnow-Witt K-theory as a quadratic refinement of Milnor K-
theory is partly justified by the following result of Morel.

Proposition 1.4 ([Morl2, 3.10]). Let F be a finitely generated field extension over k. For
a € F*, denote by (a) the 1-dimensional quadratic form over k defined by (z,y) — a-x-y.
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Then the assignment

GW(k) — KMW(F)
(@) — 1+ n-[q]

extends to a well defined ring isomorphism.

Example 1.5. 1. The Grothendieck-Witt ring of any quadratically closed field is iso-
morphic to Z |Lam05| I1.3.1].
2. GW(R) = Z[Z/2] |[Lam05, 11.3.2].

In view of this isomorphism we will denote the elements 1 +n[a] in K}V (F) by (a). In
particular, the hyperbolic form h = (1) + (—1) =1+ (—1) € GW(F) maps to 2 + n[—1]
and we will denote this element by h as well. Note that under this identification the last
relation from Def. becomes nh, and the second relation guarantees (ab) = (a)(b).

There are two obvious maps comparing Milnor and Milnor-Witt K-theory:

Definition 1.6. Multiplication with the hyperbolic form h defines a map of graded
KM(F)-modules
h: KM(F) — KMW(F)

called the hyperbolic map. Dividing out the ideal generated by the element 7 defines a
graded ring epimorphism
p: KW(F) — KY(F)

which we will call the reduction map.

The composition p o h equals multiplication with p(h) = p(2 4+ n[—1]) = 2. Both h and
p will extend to maps comparing Chow and Chow-Witt rings.

Example 1.7. 1. For a quadratically closed field, both K(IJVI and K(I]VIW are isomorphic
to Z. The hyperbolic map is given by multiplication with 2, and the reduction map is
the identity.

2. The Grothendieck-Witt group of R is isomorphic to the group ring Z[Z/2] with the
elements of Z/2 corresponding to the quadratic forms (1) and (—1). The hyperbolic
map is given by multiplication with the hyperbolic form (1) 4+ (—1), and the reduction
map is the Z-linear extension of the map sending both (1) and (—1) to 1 € K)(R) = Z

1.2 The Gersten-Witt Complex

In this section we follow the exposition of [Fas20] (the original construction is due to
[Fas08]) to define a family of chain complexes where the i-th degree of the j-th complex is

Co(X, KXV, j) = @@ K}V (k)
mGX(i)
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and the differentials mimic the divisor map div. Due to its technical complexity the
explicit description of this chain complex is rarely used in computations, as opposed to
the tools introduced in Sections [L.3] and [L.5

First let F' be a finitely generated field extension over the base field k and v: F' — Z a dis-
crete valuation. Denote by O, the valuation ring, m, its maximal ideal and k(v) = O, /m,
its residue field, and choose a uniformizing parameter, i.e. a generator w of m,. For u € O,,
denote the image of u in x(v) by w.

Theorem 1.8 (Morel). Under the above conditions, there exists a unique morphism of

graded abelian groups
oy KXW(F) — K1Y (k(v))

satisfying
1. 05([w] - [ug] - ... - [un]) = [w2] - ... - [un],
2. 05 ([ur] - ... [un]) =0,

3. 05(n- o) =ndj(a)
for any uy,...u, € OX and « € KMV (F).

Proof. See [Mor12, 3.15]. The idea is to define an auxilary map into the polynomial ring

07 L x O = F* — KW (k(v))[z]/(2%)/(2* — x - [-1])

n—1
(" - u) — [u] + <Z<(—1)"><U>> x
=0
nn

where the symbol z lives in degree 1. Then check that this is compatible with the relations
of Milnor-Witt K-theory and thus can be extended to a graded ring homomorphism on
KMW(F). Now set

sy(a) + 9] (a)x = O7(a)

and 0] is the desired map.
Uniqueness follows because the group KMW (F) is generated by all symbols of the form

™ ur] - [ug) and ™) - [ug] - .. [ug]. O

For Milnor-Witt K-theory, unlike Milnor K-theory, this residue homomorphism depends
not only on v but also on the choice of 7. To remove this dependency we will introduce
twisted Milnor-Witt K-theory.

Definition 1.9. Let F' be a finitely generated field extension over k and £ a line bundle
over F. Denote by £° the complement of the zero section of £. Define

KMW(F, L) = K}Y'"W(F) @gppx) ZIL"].

The analogous definition can be made for Milnor K-theory and this allows to define
twisted versions of the hyperbolic and reduction map:

he: KM(F, L) — KMY(E L), pp: KMWYV(F, L) — KM(F, L)
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Recall that a line bundle over F' is just a 1-dimensional vector space, and its zero
section is the zero element. For any [ € £° there is an isomorphism £ = F descending to
£ = X and ultimately

EMY(F) 5 KMY(F, L)
a—a®l

but there is no canonical choice for this. Twisted Milnor-Witt K-theory is a priori not a
ring, but only a graded KMW (F)-module.

Now for a valuation v: F — Z and a uniformizing parameter 7w define a twisted residue
homomorphism:

oy KYW(F, L) — KXY (k(v), (m,/m3)Y @ L)
a@l— I (a) @7 @1

Here L, ,) denotes the restriction of £ to r(v), T denotes the class of 7 in m,/mZ,
and 7 its k(v)-dual. The appearance of (m,/m,)" will be explained in a moment.
This homomorphism is independent of the choice of 7: For any 7’ := u - m, we have
(@)Y = ()7 and further 07 (a) = (u~')d7(a) by |Fas20, Remark 1.9], therefore we
compute

O (a) @ (7)Y = (u 1 (a) @ (wyT” = 87 (a) @ 7.

Thus one can drop « from the notation. Note that this is still dependent on the choice of
v.

For the construction of Chow-Witt groups we will twist by a line bundle of the following
form.

Definition 1.10. Let f: X — Y be a morphism of schemes, with ff: f~1Oy — Ox the

associated map of sheaves.

1. Let £ be an Ox-module. A Y-derivation of Ox into £ is a map D: Ox — &£ of
Ox-modules such that D o ff =0 and D satisfies the Leibniz rule

D(ab) = aD(b) + D(a)b.

2. The sheaf (or module) of relative differentials {2x/y is the Ox-module representing
the functor Der fu((') x,—), equipped with the universal derivation d: Ox — Qx /Y-

3. The determinant det £ of a rank r Ox-module is defined as the highest exterior power
A"E. The determinant of {2x/y is sometimes denoted wx /y-

The existence of 2,y is shown for example in [Har77, I1.8]. If f is smooth, Qx/y is
locally free and is also referred to as the cotangent bundle of f.

Example 1.11. 1. The sheaf of differentials {2x,x along the identity on X is the zero
sheaf.

2. For a projective space P}, the sheaf wpr/;, = det Qpr/;, is isomorphic to the twisting
sheaf Opr(—r — 1) [Har77, I1.8.20.1].
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We will consider the Milnor-Witt K-theory of «(W) twisted by the line bundle
det(QH(W) /k:)~ If i: X — Y is a regular embedding of smooth schemes, there is an
isomorphism

of line bundles over X, where NxY is the normal bundle of X in Y (see after [Fas20, Eq.
1.4]). For a discrete valuation v: F' — Z with ring of integers O,, maximal ideal m, and
residue field k(v), the quotient map O, — k(v) induces a map F' = Frac(O,) — k(v)

with kernel m,,, exhibiting (m, /m2)V as the normal bundle of the morphism of schemes
Spec(k(v)) — Spec(F). Therefore the above isomorphism reads

det(QK(y)/k) =ZFQ® det(QF/k) & (ml,/m,%)v (1.1)

in this case. This also explains the appearance of (m,/m2)¥ in the construction of the

twisted residue homomorphism - this homomorphism can also be interpreted as
851 K}}/IW(F, det QF/k ® ,C) — Ki\/IVY(Ii(V),det Qn(u)/k X ['n(u)) .

Next we will construct the so-called transfer morphism which will form the foundation
for both the Gersten-Witt differential and pushforwards. Consider the polynomial ring
F[t] and a monic irreducible polynomial p € F[t] and denote F'(p) = F[t]/(p). Then the
p-adic valuation v,: F(t) — Z determines a residue homomorphism

Op: KXW (F(t), det(Qpy /1)) — KM (F(p), (my/m2)Y @ iy det(Qppg x)
=~ IO (F(p), det(Qpg k) -
Fasel |Fas20, 1.20] proves the following, based on [Morl2, 3.24].

Proposition 1.12. The sequence
0 — KMV(F, det(Qpyp)) — KWV (F (L), det(Qpy k)

T 9
=22 @D KM (F(p), det(Qpgp)) — 0
p

where the sum in the third term goes over all monic irreducible polynomials in Ft], is
split exact.

Denote by 0 the residue homomorphism determined by the discrete valuation
Voo: F(t) — Z
f/g9 — deg(g) — deg(f).

Definition 1.13. 1. For a finite field extension F'/k and a monic irreducible polynomial
p € F[t] define the transfer morphism as the composition

Trpgp) r: K0y (F(p), det(Qpgp) k) S EBKM\{V(F(P)vdet(QF(p)/k))
p

s 9o
= KV (E(t), det (Qpey ) = KLY (F, det(Qryp))

where s is a section of Zp 0p as described in the previous proposition.
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2. If L/F is another finite field extension, choose a filtration
F=FC...CF,=1L

such that for all ¢ the field extension F; is of the form F;_i(p;) for some monic
irreducible polynomial p; € F;_1[t], and set

Trpp=Trp po...oTrg, F, : KZMW(L,det(QL/k)) — KZMW(F, det(QF/k)) .

The first part of the definition is independent of the choice of section s because the
composite

Oco
KMV(F,det Qp ) — KMV (F(p), det Qg n) —= KXY (F, det Qpy)

is trivial as explained in [Fas20, Remark 1.14]. The second part is proved by |[Morl2,
4.27] to be independent of the chosen filtration.

Now let X be a (finite type, separated) scheme over k. We want to construct a residue
homomorphism KNV (k(z), det(Qy k) = KMV (k(y), det(Qyyx)) for fixed z € X )

Y€ X foég {y} set the residue homomorphism to be zero. Otherwise denote by Z

the normalization of {y} with all points of codimension > 2 removed. Normal implies
regular and therefore, since k is perfect, Z is smooth. The morphism i: Z — X is finite.
Under these conditions, for any point z € Z of codimension 1 lying over y the composition

vai: K(2) 2 2} | 2 € ZW,i(2) = y) — Z(2)

is a discrete valuation with residue field k(z) (see [Har77, before Lemma 6.1]) and we
consider the associated boundary morphism

Oaiv : K (w(2), £) — K1Y (k(2), (maiv/myy )" ® L)
Set £ = det €, (,)/x and insert the isomorphism Eq. to obtain
Odiv : Ki\ﬂw(ﬁ(x), det Q2 /) — K}}{Vlv(ﬁ(z), det Q2 /1) -

Further if i(z) = y the field extension k(y)/k(z) is finite and thus there is a canonical
transfer

Ty () Ko (5(2), det(Qoiyn)) — K (K(y), det(Qy) n) -

K(y

Summing over the composition of these two maps for all z € Z() with i(z) = y finally
yields a boundary morphism

850711: Kivlw(’i(x)’det(gn(x)/k)) — Ki\/ivlv(ﬂ(y)vdet(gn(y)/k))

for the Gersten-Witt complex. Morel [Mor12, 5.31] proves that this is in fact a chain
differential under the assumption that the characteristic of k is coprime to 2, and [Fel20]
removes this assumption. With this we can finally make the following definition.
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Definition 1.14. Let X be a scheme over k and £ a line bundle over X. For every
integer j define the homological Gersten-Witt complex by

Ci (X K}i}/IW?]?‘C) @ Kjl\ill—\z]v(’{(l'%ﬁ ®det(9m(m)/k))
r€X(i)

with differential 9: C;(X, KMW 4, £) — Ci_1(X, KMW,j, L) given by summing over the
residue homomorphisms defined above. If further X is smooth of dimension d, define the
cohomological Gersten-Witt complex

CH X, KMV, 4, L) = Cai(X, KMWJ —d, L ®det Q%)) =

P KTV (k(x), £ ® det(Qpey 1) @ det Q1)
zeX (@)

with differential 9: C*(X, KMW j. £) — CHYC, KMWV j, L).

The additional twist det QX( Ik will later ensure that the pullback along a flat morphism
of schemes induces no change of twist on cohomological Chow-Witt groups. This makes
cohomological Chow-Witt groups with fixed twist a contravariant functor and will further
lead to the ring structure being Pic(X)/2)-graded. In contrast, for homological Chow-Witt
groups the definition is chosen so that pushforward induces no change of twist.

Definition 1.15. Let X be a scheme over k£ and £ a line bundle over X. The homological
respectively (if X is smooth) cohomological Chow-Witt groups twisted by £ are defined
by

CH;(X, L) = Hy(Co(X, KMV —i £),)

CH' (X, L) = H(C*(X, KMV i, [)) .
The Milnor-Witt cohomology groups are defined by

Spelled out, for homological Chow-Witt groups we take homology at the left-hand
term of

L — @ KM r), det(Qy@y /i) — @ KE/I1V\[(’$(3J)7det(ﬂﬁ(y)/k’))—>
z€X () YEX(i—1)

and for cohomological Chow-Witt groups we take cohomology at the left-hand term of
— P KV (k@) det(my/m2)Y) — P EMV(k(y), det(my,/m2)Y). ..
zeX () yeX (i+1)

i.e. we always take (co)homology at the term containing subschemes V' of (co)dimension
i and K%)\AW, and in both complexes the differentials decrease dimension (=increase
codimension) of subschemes and decrease the degree of KMW. Note that Chow-Witt
groups are precisely Milnor-Witt cohomology groups in diagonal bidegrees, i.e. i = j.
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Remark 1.16. This is not the original definition; [Fas05] and |[Fas08] originally introduced
the Gersten-Witt complex as a fiber product of complexes which we will present in the
next section. The construction of the complex as detailed above is due to [Mor12] and
shown by [AF16, 2.8] to be equivalent to the classical definition.

1.3 Fiber Product Decomposition

In this section we will introduce some more cohomology theories and their relation to
Chow-Witt groups respectively Milnor-Witt cohomology. This will not only provide
context for Chow-Witt groups but also some useful tools for later computations.

Definition 1.17. Let F' be a finitely generated field extension over k. The Witt ring
W(F') consists of isometry classes of quadratic forms over F' modulo metabolic forms
(direct sum of several copies of the hyperbolic form). It becomes a commutative ring with
direct sum and tensor product.

It is immediate from this construction that the Witt ring is isomorphic to GW(F')/h.

Example 1.18. 1. The Witt ring of a quadratically closed field is isomorphic to Z/2
[LamO05, 3.1].
2. The Witt ring of R is isomorphic to Z [Lam05, 3.2].

Definition 1.19. Let F' be a finitely generated field extension over k. Consider the rank

map rk: GW(F) — Z. It descends to a map W(F) — Z/rk(h) = Z/2 which is also

called rank.

1. The kernel of the latter is called the fundamental ideal I(F') of the Witt ring.

2. Denote by I*(F) the powers of this ideal and by I'(F) the quotient I*(F)/I**1(F).

3. The Witt K-theory of F denoted I*(F) (or sometimes K\ (F)) is the graded ring
given by KV (F) = I'(F), where for i <0 we set I'(F) = W(F).

4. The quotient groups I'(F) also assemble into a graded ring T (F), sometimes called
reduced Witt K-theory.

All of these have twisted variants W(F, £), I(F, L), I*(F,£), T (F, L) for a line bundle

L over F.

It follows from this definition that
W(F)/I(F) = (GW(F)/h)/1(F) = (GW(F)/I(F))/h = Z rk(h) = Z,/2.
Thus one can form the following commutative square:

GW(F) —% 57 =~  KM®k)

| | !

W(F) —% 5 7/2 =~ KMk)/2

Thus the kernels of the two rank maps are isomorphic, which justifies calling the kernel
of rk: GW(F') — Z the fundamental ideal of the Grothendieck-Witt ring and denoting
it by I(F) as well.
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Example 1.20. 1. If F'is a quadratically closed field (for example C), then GW(F') = Z
and W(F') = Z/2. Both rank maps are the identity and the fundamental ideal is zero.

2. If F = R, then GW(F) = Z[Z/2] and W(F') = Z. The top rank map sends both
elements (1), (—1) of Z/2 to 1 and the fundamental ideal is thus isomorphic to Z and
generated by the element (1) — (—1). The left vertical map sends (1) to 1 and (—1) to
—1 € W(F) 2 Z, and the bottom rank map is just the quotient map.

The Milnor conjecture on quadratic forms proved by [OVV07, 4.1] asserts that I" (F) is
isomorphic to KM(F')/2 as graded ring. Hence one can even form a commutative square
of graded rings

KMWY(F, ) —— KM(F)

I

I*(F, L) —2— KM(F)/2

which by [Mor04, 5.3] is a pullback square. This is a fact that, to the author’s best
knowledge, actually relies on the characteristic of the base field k£ being different from 2,
compare also [Fas20, Rem. 1.5].

The inclusions I*(F,£) C I'"1(F, L) are given by multiplication with n € KMW(F),
which is compatible with the differential of the Gersten-Witt complex by construction as
in Thm. Therefore one can define a subcomplex

CUX,I",L) = @ P (k(x), £ det Q) @ det Q1)
xeX (@)
and a quotient complex

XTI )= P
zeX (@)

Similarly, dividing out n is compatible with the Gersten-Witt differential and thus one
an define a quotient complex

) M
C'(X,K,", @ Zﬂ
zeX (@)

Observe that the Gersten complex and cohomology with coefficients in KM (F) is in-
dependent of twist, thus those for KM(F)/2 and T" are as well and therefore the line
bundle £ is omitted from notation in these cases.

Definition 1.21. Let X be a smooth scheme. Define its i-th I7-cohomology

H' (X, I, L)=H'(C*(X,I*,j,L)
and reduced I7-cohomology
H'(X,I') = H'(C*(X, T, j))

10
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The groups HY(X,I° L) are sometimes also called Witt cohomology and denoted
HY(X,W,L), in view of I'(F) = W(F). Further define the Milnor cohomology and
(cohomological) Chow groups of X
H'(X, K}') = H'(C*(X, K" j))
CH!(X) = HY(X, KM).

According to [AF16, 2.8] there is in fact a pullback square of chain complexes:

C*(X¢K>o1<v[w7]7[’) — C*(Xv le}/l7])
Lo
C*(X,I*,j, L) —— C*(X,T,j)
Further one can deduce the following short exact sequences of graded rings from the

definitions of KMW, KM 1* and T", and analogous sequences of graded modules for their
twisted versions.

0— KM(F) s KMV(F) — *(F) — 0

0 — KM(F) 2 KM(F) — KM(F) /22T (F) — 0
0 — I*(F) — KMYV(F) & KM(F) — 0
0 — IFYF) — I*(F) 5T (F) — 0

All of these induce short exact sequences on chain complexes and thus long exact
cohomology sequences which assemble into the “key diagram” of [HW19, Section 2.4].

CH/(X) —9— CH/(X)

hr .2

HI(X, 17, £) —— CH (X, £) —— CHI(X) —%5 H1(X, 11, £)

lid mod h mod 2 lid

~ v

Hi(X, I 0) _n, H(X,I', L) i) Chi(X) _P. H*Y(X, T, )

(1.2)

~ ~

0 0

Here Ch denotes mod 2-Chow groups. The maps p and p are both called reduction map,
and h, is called the hyperbolic map. The differential 3 is referred to as the Bockstein.
The lower horizontal sequence consisting of the maps 3, n, p sometimes gets the nickname
Bar sequence. The fact that the leftmost and rightmost vertical as well as the topmost
horizontal arrows are identity maps is due to the pullback square of chain complexes
above. The four maps in the central square are ring homomorphisms.

11
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Hornbostel-Wendt prove the following useful statement about this diagram. This
already mentions the ring structure on Chow-Witt and I7-cohomology, which we will
discuss in more detail in Section [L6l

Proposition 1.22 ([HW19, Prop. 2.11]). Let X be a smooth scheme over k. Consider
the canonical ring homomorphism

c: CHX)=@ P CHEX.L) —H XTI -)xg, o) P kerde
i€Z LEPic(X)/2 LePic(X)/2

with structure maps for the fiber product as in the central square of the “key diagram”
above. This morphism is always surjective. It is injective in a given degree (i, L) if one of
the following conditions holds:

1. CHY(X) has no non-trivial 2-torsion.

2. the map n: H{(X, 'Y L) — HY(X, I, L) is injective.

The map c is in fact a morphism of GW(k)-algebras, where on the right-hand side
GW (k) acts on the first factor via the action of W(k) =2 GW(k)/h and on the second via
K3 (k) = GW(k)/1(k).

1.4 Functoriality: Flat Pullback and Proper Pushforward

The first goal of this section is to define for every proper morphism f: X — Y of schemes
and a line bundle £ on Y a map f,: CH;(X, f*£) — CH;(Y, £) on Chow-Witt groups,
following the exposition of [Fas20, Section 2.3] (originally due to [Fas08]).

Let X, Y be schemes over k, £ a line bundle over Y. Let x € X(;) and y = f(z) € Y;).
We define a map

(f*)w,y: Kyw(ﬁ(x)a det(in(x)/k) ® ‘C) - Ki\i[i—\?[—z(m(y% det(Qﬁ(y)/k) ® E)

by setting (fi)zy = 0 if the field extension x(x) C k(y) is infinite, and (fx)zy = Tre(a) r(y)
if that field extension is finite and thus i = j.

Recall that a morphism f: X — Y is called proper if it is separated, of finite type,
and universally closed.

Theorem 1.23 (Proper Pushforward (Fasel)). Let f: X — Y be a proper morphism
and denote by c the codimension of its image in Y. Then the morphisms

f*: C*(X7Kiv[w7j7 f*ﬁ) — C*(Y7 K}kVIWaJv £)
and, if X andY are smooth,
for CN(X, KW G, f L@ det Q) — CHY, KW, + ¢, L@ det Qy )

obtained by summing over the (fi)szy defined above are both morphisms of complexes. The
resulting maps on Chow-Witt groups and Milnor- Witt cohomology are also denoted f,.

12
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Proof. See |Fas08|, Corollaire 10.4.5]. O

As the pushforward morphism is constructed in [Fas08|, Corollaire 10.4.5] from the
fiber product of chain complexes of |[AF16, 2.8] (see before Prop. [1.22)), it is evidently
compatible with the structure maps p, mod h, p and mod 2 of this fiber product as well
as the hyperbolic map A,y which on the fiber product can be represented as -(0, 2).

There is an isomorphism of line bundles det f*Q)\ﬁ/k ® det Qx /1, = det Qx/y by |[Har77,
Prop. I1.8.11]. Hence substituting £ for det €} /i ® L allows to write the pushforward
map as A }

CH "(X,detQy/y @ f*£) — CH (Y, L). (1.3)
For pullback morphisms there are the following two statements.

Theorem 1.24 (Flat Pullback (Fasel)). Let f: X — Y be a flat morphism and L a line
bundle over X. Then there are morphisms of complezes

£ OV, KMV 4, £ L) — Ch—codimy x (X, K)™W, j — codimy X, det Qx/y ® L)
and, if X andY are smooth,

Fr e KNG L) — O Y 5. L)
The resulting maps on Chow-Witt groups and Milnor- Witt cohomology are denoted f*.

Proof sketch. This is a very vague sketch. See [Fas08| Corollaire 10.4.2] for details.

A morphism of schemes f: X — Y induces a functor f*: D*(P(Y)) — D*(P(X))
between the derived categories of bounded presheaves over Y and X and that induces a
morphism on Witt groups (which we will not introduce in detail in this work). Checking
that this morphism is compatible with the inclusions of the fundamental ideals as well as
the differentials of the Gersten-Witt complex produces two morphisms of complexes

[P CuY I7, 4, L) — Cu—codimy x (X, I7,j — codimy X, L ® Qx/y)
and, if X and Y are smooth,
ffrerY, I 4, f° L) — C*(X, I, 4, L).

Forming the fiber product with the Gersten complex for Milnor K-theory, after checking
compatibility of f* with the structure maps of this fiber product, yields the statement. [J

Again, the pullback morphism is compatible with the structure maps p and mod h of
this fiber product as well as the hyperbolic map h,.

Proposition 1.25 (General Pullback (Fasel)). Let X and Y be smooth schemes over
k, L a line bundle over Y and f: X — Y any morphism of schemes. Then there is a
pullback map

f*: CH'(Y, L) — CH (X, f*L)
Proof. See |Fas20, 3.3]. O

13
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1.5 Properties

The following will make repeated appearance in many computations throughout this
work.

Proposition 1.26 (Localization Sequence). Let X be a smooth scheme over k, L a line
bundle over X, v: Z — X a closed smooth subscheme of codimension ¢ and j: U — X
its complement. Then there is for each i € Z a long exact sequence called the localization
sequence:

o CH (2L @ det Qy)y) 2 CH (X, £) L5 CH (U, j°£)
— Hi7 et (7, kMW VL@det Qyx) — ...

i—codimx (Z)»

This sequence continues indefinitely to the left and right meaning that Milnor-Witt
cohomology groups of all possible bidegrees occur.

Localization sequences are compatible with pullbacks of scheme morphisms in the
following sense.

Lemma 1.27. Let f: X = Y be a morphism of smooth schemes and L a line bundle
onY. Let v: Z CY a closed subscheme of codimension c and j: U =Y N Z CY its
complement, and denote Xz = f~(Z) and Xy = f~Y(U). Assume that Xz is smooth
and further that there is an isomorphism of bundles f*NzY = Nx,X. Then there is a
commutative ladder of localization sequences:

o CH (ZL @ det Qyy) —=s CH (Y, £) —L— CH (U, 5°L) —2 ...

% | |
= CH “(Xg, frL @ det Oy, x) — CH (X, f*£) — CH (Xu, f55°L) 2 ...

Proof. The argument for Witt cohomology from [HMW24, Lemma 3.5] translates directly
to this setting. O

Proof. Fasel [Fas20, Section 2.2] proves that under these conditions, there is a long exact
sequence

t—codimx (Z)

...~ CH (2,1 L& det i* QY @ det Q) 25 CH (X, £) L5 CH (U, L) ...

The pushforward (sp). exists because s is a closed immersion and thus proper. Substi-
tuting line bundles as in Eq. (1.3)) yields the statement. O

Proposition 1.28 (Square Periodicity). Let X be a smooth scheme over k and L and
M line bundles over X. For all i there is a canonical isomorphism

o CH (X, L) —s CH (X, £ © M®2).

When the line bundle M is clear from context, we will sometimes drop it from the notation
and simply write .

14
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This will be crucial for defining a total Chow-Witt ring in the next section. The
statement seems to be well known, but nevertheless the author was not able to find a
written account for Chow-Witt groups, so we will give a short argument here.

Proof. Consider again the pullback square of Section The complexes with coefficients
in KM(k) and T"(k) = KM(k)/2 are independent of twist by construction. For the
complex with coefficients in I*(k), the square periodicity map comes from multiplication

with the quadratic form [M®? = 4 0y ® M®?] ¢ HO(X, 10 M®?) = WO (X, M®?). A
proof that this is indeed an isomorphism can be found for example in [BC12]. O

From this constructions the following is immediate.

Lemma 1.29. The following diagram commuites.

CH'(X,£) —%— CH' XL’®M®2)
CH'(X

Proposition 1.30 (Homotopy Invariance). Let X be a smooth scheme and 7: E — X a
vector bundle. Then the pullback

7*: CH (X) — CH (E)
18 a Ting isomorphism.

Proof. See [Fas08|, Corollaire 11.3.2]. O

1.6 Ring Structure

The first step towards defining the multiplicative structure for the Chow-Witt ring is the
exterior product

pr H'(X, KMV )@ HY (Y, KXW, L) — H'(X x Y, KM, prif @ pr3L’)

for X and Y smooth schemes and £, £’ line bundles over X and Y, respectively. For this
consider the fiber product of chain complexes from Section The external products
on C*(X, KM, j) as defined by |Ros96] and C*(X, I*, 4, —) as defined by [GNO03] induce
a product on their fiber product C*(X, KMW . j, —). Fasel [Fas07, 4.12] proves that this
product is well-defined and descends to a product on cohomology.

Definition 1.31. Let X be a smooth scheme over k and £, M line bundles over X.
Define the product on Milnor-Witt cohomology

HY(X, K;™ £y ® H' (X, K} M) — HT (X, KM, Lo M)

as the composition of the exterior product p with the pullback along the diagonal map
A X - X xX.

15
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This product is associative by [Fas07, Prop. 6.6]. It is neither commutative nor anti-
commutative, but satisfies the following property due to [HW19, Prop. 2.5].

LemmaAl/.i?)Z. Let X be a f\@ooth scheme over k and L and M line bundles over X.
Let o € CH (X, L) and 8 € CHJ(X,M). Then

Ba = (-1)7af.

It immediately follows that all classes in degree 0 are central in the Chow-Witt ring.

In Prop. we found that Chow-Witt groups are invariant under squares of line
bundles. So when adding up all Chow-Witt groups to form a ring we don’t want to
include all of these isomorphic groups, but only sum over Pic(X)/2. For this we need to
ensure the following compatibility.

Lemma 1.33. The square periodicity isomorphism is compatible with multiplication in
the sense that the following diagram commutes for all line bundles L, L', M, M" on X.

e mult it

CH'(X, £) x CH (X, L) , CH (X, L L)

LOM X @ pqt l‘ﬂM@M’

CH'(X, £ M®?) x CH' (X, £/ & (M)?) 2% CH™ (X, L& £/ @ (M © M)

Proof. As explained in the proof of Prop. considering KMW as the fiber product
I* X v g K M exhibits the square periodicity isomorphism as the fiber product of the iden-

tity on Chow groups and the square periodicity isomorphism for I7-cohomology. The latter
is given by multiplication with the quadratic form [M — MY @ M®?] € HO(X,1°, M®?)

by [BC12|. To prove the Lemma we have to show that for a € 6ﬁz(X, L)and g € cH’ (X, L):
ppm(@)  ore(B) = o [M— MY @ M) B M — (M) @ (M)
=af- M — M @M M — (M) @ (M)
=af- MM — MaM) @ (Me M)
= Pmam (@f)

The second equality holds because the class [M — MY @ M®?] lives in degree 0 and is
thus in the center of the Witt cohomology ring as per Lemma The third equality
follows because the product in the Witt ring W (k) is given by tensor product of quadratic
forms. O

A very detailed account of all technicalities concerning the choices of line bundles
representing classes in Pic(X')/2 and the necessary compatibilities can be found in [BC12].

Definition 1.34. We define the total Chow-Witt ring of a smooth scheme X as the

graded ring '
CHX)= @ CH(X.L
i€Z LEPIC(X)/2

with the multiplication detailed above.

16
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We will use the notation CH for the Z x (Pic(X)/2)-graded ring, as opposed to CH
which in the literature is commonly used to denote the Z-graded ring of Chow-Witt
groups with trivial twist. The computations in this work are all concerned with the total
Chow-Witt ring CH.

Proposition 1.35. Let X, Y be smooth schemes over k and f: X — 'Y a morphism.
Then the pullback map

F*: CH (Y) — CH (X)
1 a Ting homomorphism.
Proof. Previously in Prop. we have constructed a pullback homomorphism of groups
F*: CH (Y, L) — CH (X, f*L)
for each ¢ € Z and L a line bundle over Y. These assemble into a map
b P CHY£—>€B P CH'(X, L)
i LePic(Y) i LePic(Y)

which is shown in [Fas07, 7.2] to be a ring homomorphism. Further f induces a pullback
map f*: Pic(Y) — Pic(X) —which is in general neither injective nor surjective —and
this in turn induces

D P cuu o —@P P cHEM).

i LePic(Y) i MePic(X)

Here the multiplicative structure on the left hand side is inherited from that of the right
hand side and hence it is easy to check that this is a ring homomorphism as well. Now
to get to the total Chow-Witt rings indexed over the mod 2-Picard group, consider the
diagram

D, B repiery) CH (V. £) —L— @, @ piepiex) CH (X, M)

@ @ﬁEPlc Y)/2 CH (Y ﬁ) 77777 ’ @ @MEPIC(X)/Z CH (X M)

where the vertical arrows are the quotient maps dividing out all square periodicity
isomorphisms. The bottom horizontal map f* then emerges from the universal property
of quotients and is automatically a ring homomorphism. O

There are also ring structures on Chow groups, I/-cohomology and Tj—cohomology
defined in an analogous way as composition of an exterior product and the pullback along
the diagonal map. The reduction maps

modhe: CH (X, L) —s H'(X,T', L)
p: CH (X, L) —s CH/(X)
5 H(X,I', L) — H'(X,T)

17
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are all Z-graded ring homomorphisms with respect to these products, essentially because
they are induced by graded ring homomorphisms

KMV (k) — KMV (k) /= KM ()
KMV (k) — KMV (k) /h = I (k)
I (k) — I*(k)/n = I (k) /T (k) = T ().

In the case of p and p, these ring homomorphisms forget the Pic(X)/2-grading on the
domain and regard it only as a Z-graded ring, with i-th degree

@ C\ﬁi(X, L) — CHY(X) respectively @ HY(X,I', L) — H’(X,?)
LePic(X)/2 LePic(X)/2

Definition 1.36. Let X be a smooth scheme. We denote the Chow ring of X by

CH*(X) = P CH'(X)
i€Z
and the total I7-cohomology ring by
Hx.m=0 € HEITL

i€Z LEPic(X)/2

with the multiplicative structures detailed above.

1.7 Equivariant Chow-Witt Rings

In this section we define the Chow-Witt ring 6\1-/1.(BG) of the classifying space BG of
an algebraic group G following Totaro [Tot99]. Such a classifying space always exists
in Morel-Voevodsky’s Al-homotopy category, but not in the category of schemes. It is
however possible to approximate BG by certain schemes and these suffice (and are in
fact quite useful) to compute the Chow-Witt ring.

Proposition 1.37 (Totaro, Asok-Fasel). Let G be a linear algebraic group over k and s
a natural number. Let V' be a finite-dimensional faithful G-representation over k such
that G acts freely outside a G-invariant closed subset S CV of codimension > s, and
the quotient (V . .S)/G ezists as a scheme over k. Then Pic((V ~\ S)/G) is independent
of the choices of V and S if s > 3, the Chow group CH'((V ~ S)/G) is independent
of V and S, and for a line bundle £ € Pic((V \ S)/G) and i < s — 1, the Chow- Witt

group 6\1-/12((‘/ N S)/G, L) is independent of V and S. We say that (V ~ S)/G is an
approximation for BG in codimension < s — 1.

In the Al-homotopy category, the colimit over a family {(V; \ S;)/G}ien as in the
proposition with codim S; > 7 is in fact homotopy equivalent to the classifying space
B G [MV99, Prop. 4.2.6]. The computations in this work, however, will all take place in
the category of schemes. The above result is due to |[Tot99, 1.1] for Chow groups and
was observed by [AF16, 3.3] and [HW19, 3.1] to transfer to Chow-Witt groups.

18
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Proof. For the statement about the Picard group, note that according to [EH16, 1.30] it
is isomorphic to the first Chow group CH!((V . S)/G) which is independent of V and S
by [Tot14} 2.5].

Fix a (finite-dimensional faithful) representation V' and let S C S’ C V be two subsets
satisfying the conditions. Consider the decomposition

(8"~ S)/G < (VN S/G) & (V~5)/G.

The subset S/G C S’/G being closed, it follows from excision [AF16, Lemma 2.13] that
j* is an isomorphism on Chow-Witt groups in codimension < s — 1. In case S and S’ are
smooth this also follows from the localization sequence

L CH (N 9)/G,i"L @ det (sr-.5)/6)/((v~5)/G))
L CH (VN S)/G, L) 25 CH ((V ~ §)/G, j*L) —

where r is the codimension of (5~ S)/G in (V \ S)/G, since Chow-Witt groups (and,
in fact, all Milnor-Witt and similar cohomology groups) vanish in negative codimension.
For two closed subsets S ¢ S’ apply the same argument to S C SUS and S’ C SUS".

Now let V and W be two representations with subsets S C V and T  C W sat-
isfying the conditions, and let s be a mutual lower bound for the codimensions of
these subsets. Consider the vector bundles (V x W)~ (S x W)/G — (V . S)/G and
(VxW)N(VxT)/G— (W\T)/G. Independence of S as proven above shows that the
two total spaces have isomorphic Chow-Witt groups in degrees < s — 1, and homotopy
invariance shows that the same is true for the base spaces. O

Example 1.38. Consider the group G,,, acting by multiplication on V' = A™*! for some
r > 1. This action is free outside of S = {0} which has codimension r 4+ 1. The quotient
(AT"1 < {0})/G,,, = P exists as a scheme. Thus P" is an approximation for BG,, in
codimension < r.

Fasel [Fas13, 11.8] computes

GW(k) i=0,ori=rand r odd

aﬁZ(Pr O)=(Z 0 <i<randieven

0 <i<rand?odd

0<i<randieven

CH (IP’ Opr(1)) = 0<¢<7andiodd

1 =r and r even.

1=0
1> 0 and 7 even

Thus we find

IIZ

CH (BGm,OBGm
1> 0 and 7 odd

17> 0 and 7 even

IIZ

CH'(BG,,
CH (BGm, Opg,, (1 7> 0 and ¢ odd
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1 Chow-Witt Rings

The factor 2 indicated that the image of the respective group under reduction p to the
Chow group is generated by 2.

Example 1.39. Denote by V, the line bundle over Spec(k) associated to the 1-dimension
representation of Gy, given by A.v = A" -v. Then (V;, x (V" {0}))/G,, is a line bundle
over (V™1 < {0})/G,, = P" and the complement of its zero section is an approximation
for Bu, in codimension < r, as will be explained in Section [2.1] This approximation
was already used by [Tot14] and [Bro03| to compute the Chow groups of By, and then
adapted by [LM23] to compute the Chow-Witt groups of B, if n is even. For both
computations, one can consider the localization sequence associated to the decomposition

P" 2% (Vo x (VTES{01) /Gy <= (Vi x (VTN {0})) /G N s0(P7) .
For Chow groups it then easily follows that
CH'(Buy) = CH(BG,,)/n
and one obtains
CH*(Buy) 2 Zlc]/n - c

where ¢ corresponds to the first Chern class of the tautological bundle Op,,, (—1). For
Chow-Witt groups the sequence will turn out to be more complicated. This will be the
subject of Section

The existence of such V' and S for a given linear algebraic group G and codimension s
is guaranteed by [Tot99, Remark 1.4]. This allows for the following definition.

Definition 1.40. Let G be a linear algebraic group over k. Set
Pic(BG) = Pic((V N 9)/G)

for V and S as in Prop. with codimension of S greater than 2, and for £ € Pic(BG)
set

CH'(BG, L) = CH ((V ~ 5)/G, L)

for V and S as in Prop. with codimension of S greater than i + 1. The product

of two classes a € aﬁZ(B(Gm, L), pe cH’ (BGyy,, M) is defined as their product in an
approximation of BG in codimensions > ¢ 4 j. This is well-defined because the map j*
in the proof of Prop. is a ring homomorphism. The ring obtained in this way is the
total Chow-Witt ring 6ﬁ.(BG). The Chow ring CH*(BG) is defined analogously.

The product obtained this way is well-defined because the map j* in the localization
sequence in the proof of Prop. [1.37]is a ring homomorphism.

The same argument as for Prop. proves the following two statements.

Corollary 1.41. Let G, V and S be as in Prop.[1.37 Then for i < s—1 and all j, the
Milnor-Witt cohomology H'((V ~. S)/G, KJMW, L) is independent of the choice of V and
S.
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1 Chow-Witt Rings

Corollary 1.42. Let G, V and S be as in Prop.[1.37 Then for i < s—1 and all j, the
I’ -cohomology H'(V . S)/G, I, L) is independent of the choice of V and S.

This allows for a definition of non-diagonal Milnor-Witt and I/-cohomology groups of
a classifying space completely analogous to Def.

Corollary 1.43. Let G and H be linear algebraic groups over k. Let V be a finite-
dimensional faithful G-representation with subset S CV of codimension > s and W a
finite-dimensional faithful H-representation with subset T'C W of codimension >t as in
Prop. . Then Eﬁl((v NS)/Gx (WNT)/H,L) fori<min(s,t) — 1 is independent
of V, S, W and T.

Proof. Consider V' x W as the obvious representation of the group G x H. Then G x H
acts freely outside of (S x W)U (V x T) and the latter has codimension > min(s,t) in
V' x W. Thus one can apply Prop. [1.37 O

1.8 Euler Classes

Definition 1.44. Let X be a smooth scheme, 7: E — X a vector bundle of rank r with
zero section sg, £ a line bundle over X and ¢ an integer. The Euler map of 7 is defined
as the composition

(ﬂ_*)fl —q

CH (X, £ ® wpyx)) 22 CH (B, L) "2 CH (X, £)

— —0
and the Euler class e(E) or e(7) € CHT(X, w}é/x) is the image of 1 € CH (X, Q) under
this map. The same definition can be made for I’-cohomology (also called Euler class

e), Chow groups (called top Chern class ¢,) and mod 2-Chow groups (called top Stiefel-
Whitney class ¢, ).

Since in this work we will only ever deal with top Chern and Stiefel-Whitney classes,
we will omit the index r from the notation. As explained in [Fas08| Section 13.2] there is
an isomorphism of vector bundles det(Qp/y) = 7* det(E"). Note that the line bundles
det E and det EV differ by a square and thus the Chow—V!ivtE groups twisted by these
are isomorphic. This justifies considering e(F) to live in CH (X, det EV) even though
technically it lives in cH (X,det E), which in some cases makes the notation slightly
more readable (e.g. writing O(1) instead of O(—1)). As explained after Thms. [1.23]
and the Euler map is compatible with the maps p, p, mod hy and mod 2 introduced
in the diagram Eq. (1.2), that is, p(e(E)) = c¢(E), p(e(E)) = ¢(E) and so on. Further the
hyperbolic map hdet o, sends ¢(E) to he(£): The hyperbolic map commutes with the
Euler map, and since the latter is GW(k)-linear it sends hp(1) =h =h-1to h-e(E).

We will prove a formula for the Euler class of the tensor product of certain line bundles,
following |Lev20, Theorem 10.1(2)].
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1 Chow-Witt Rings

Proposition 1.45. Let X be a smooth scheme over k and L, M line bundles over X.
Then
e(L @ M®?) =e(L) + he(c(M))

where hpv: CHYX) — CH' (X, L) is the hyperbolic map. In particular:

e(ﬁ@n) — {

Proof. Let us first recall where all the occurring classes live. The Euler class e(£) is an
—1 —1
element of CH (X, £), and likewise e(£L® M®?) € CH (X, £ ® M®?) which by quadratic
—1
) is isomorphic to CH (X, £). The Chern class ¢(M) lives in

~ho(c(L)) n even
n odd

IS IS

>

@
—~

)
~

periodicity (Prop. [1.
CHY(X).

We start by proving the statement for the classifying space for line bundles BG,,, = P>
together with the tautological bundle £L = M = O(-1). BG,, is not a scheme but a
motivic space, but according to Prop. [1.37] one can understand its Chow-Witt groups and
Euler classes through P" for r sufficiently large. Denote by O(n,m) the line bundle over
BG,,, x BG, that is the tensor product of the pullback of Opg,,(n) on the first factor
and the pullback of Opg,, (m) on the second factor. We want to determine the Euler class
of the bundle £L ® M? = O(—1, —2) over BG,,, x BG,,. Consider the reduction map p to
CH!(BG,, x BG,,) which maps the Euler class of a line bundle to its first Chern class.
The first Chern class is additive, thus pe(£ ® M®?) = ¢(£L ® M®2) = ¢(L) + 2¢(M).

Under the same map ¢(O(—1,0)) € aﬁl(BGm x BGy,, O(—1,0)) is sent to c¢(O(0, —1)),
and ho(—1,0)(c(O(0,—1))) is sent to 2¢(O(0, —1)). The reduction map is injective in this
case, since its kernel is the image of H!(BG,, x BG,, ', O(—1,—2)) in the long exact
sequence coming from the sequence of sheaves I't1 — KMW _ K]M as stated in
Section and that group will be shown to vanish in Thm. (which does not rely on
this Prop.). From this it follows that e(O(—1, —2)) = e(O(—1,0)) +ho(-1,0)(c(O(0, =1))).

Now for the general statement. Let £ and M be two line bundles over X. According to
IMV99, Prop. 4.3.8] there exist classifying maps f,g: X — BGy, so that £ = f*O(-1)
and M 2 g*O(—1) and therefore pri £ ® prjM®2 2 (f, 9)*O(—1, —2) over BG,,, x BG,.
Thus we compute:

e(L® M%) =e((f,9)'O(~1,-2))

= (f,9)"e(O(-1,-2))

= (£,9)"e(O(=1,0)) + (f,9)"ho(=1,0)(c(O(0, ~1)))

= (f,9)"e(0O—=1,0) + hs gro(-1,0)((f,9)" c(O(0, —1)))
= e(L) + he(c(M))

The statement about £%™ can be deduced inductively, inserting hs(c L) = he(L) in the
odd case. O
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1 Chow-Witt Rings

Remark 1.46. For arbitrary line bundles £, M over a scheme X there is no formula
of this kind as explained in the third paragraph of [Lev20, Section 10]: Consider the
universal case X = BG,, x BG,,, £ = priOpg,,(—1), M = pr50pg,,(—1). Then

e(O(~1,0)) € CH (BGy x BGpm, O(1,0))
e(0(0,~1)) € CH' (BGy x BGpm, 0(0,1))
e(O(=1,0) @ O(0, —1)) = e(O(—1, ~1)) € CH (BGp x BGrm, O(1,1)).

Thus to express e(O(—1,—1)) in terms of e(O(—1,0)) and e(O(0,—1)), one would addi-
tionally need classes in degrees (0,O(1,0)) and (0,0(0,1)). Levine now claims that the
groups in those degrees vanish, which is not quite correct since [Wen24, Theorem 1.1]

——0
does not imply CH (BG,,, O(1)) = 0 as stated in [Lev20, Section 10, p.2220]. The rest
of Levine’s argument, however, still stands: in Cor. we prove that the subgroup

(GHU(BGm, 0(1,0)) - CH' (BGyn, O(0, 1))
+ (éﬁO(BGm,O(o, 1) aﬁl(BGm,O(l,O))) C CH' (BGm, 0(1,1))
does not contain e(£ ® M) but only 2-e(£ ® M) (using the symbols of Cor. [4.3} the
subgroup on the left is generated by Hies and Hoep, and the only relation in degree

(1,0(1,1)) is Hiea + Haey — heg from Eq. (4.3)), so es cannot be expressed as a linear
combination of Hjey and Haey).
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2 The Chow-Witt Ring of B,

Throughout this chapter, let n be a positive natural number and the base field k be a
perfect field with characteristic coprime to 2 and n. Denote by u, the group of roots of
unity, a linear algebraic group given as a scheme by Spec(k[z]/(z™ —1)). The main result
in this chapter is to compute the total Chow-Witt ring

CH Bu) = € CH(Bun L)
1€Z LEPic(Bun)/2

for odd n. The strategy closely follows that for even n due to [LM23|. The model for
By, described here was originally constructed in [Voe03, Lemma 6.3] and used in [Bro03|
Theorem 7.1] and |[Tot14, Theorem 2.10] to compute its Chow groups.

2.1 A Model for B,

We construct an approximation of B, in the sense of Prop.

For a € Z denote by V, the vector bundle over Spec(k) associated to the 1-dimensional
representation of Gy, with action given by A.v = A* . v. Products of such represen-
tations are always considered with diagonal action. As explained in Example [1.3§]
(V7 < {0})/G,, ~ P! is an approximation of BG,, in codimension < r — 1. Over
this space, consider the bundle

By = (Vo x (VTN H{0D)) /Gy — (VTN {0})/G

given by projection on the second factor. Lemma [2.2] will show that this is a line bundle.
Note that the zero coordinate in the factor V,, is the image of the zero section sg of the
line bundle (V;, x (Vi1 < {0}))/Gyp.

Lemma 2.1. There is a map of G,,-bundles over P"
(VIS A{0}) /i — (Vo S {0}) x (V5 {0D)) /G
inducing isomorphisms on Chow-Witt groups in codimension < r — 1.
Proof. See the proof of [Bro03, Theorem 7.1(i)]. O

Since (V™ \ {0})/pn is an approximation for By, in codimension < r — 1, this shows
that E] ~ so(IP") is also an approximation for computing these Chow-Witt groups. The
advantage of using E" ~ so(P") over (V; ™\ {0})/py is that the former can be embedded
into a line bundle over P", namely the twisting bundle O(n), as the complement of the
zero section as shown in the following lemma.
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2 The Chow-Witt Ring of Bu,

Lemma 2.2 ([LM23, Section 4.1.4]). For any n € Z, the line bundle E], is isomorphic
to O(n) over P.

Proof. We start by proving the statement for n = —1. The tautological line bundle
O(—1) is the subscheme of P" x A" containing those points ([Xo : ... : X,], (Yo,...,Y}))
for which there is a scalar ¢t such that (Yi,...,Y;) = t(Xo,...,X,). Denote by L the
pullback of O(—1) along Vy ™ < {0} — V/™!/G,, = P". This is the subscheme of
(Vi {0}) x VI containing those points ((Xo, . .., X), (Yo, . .., Y;)) for which there
is a scalar t such that (Y1,...,Y;) = t(Xo,..., X,). This is an G,,-invariant subscheme
and thus inherits the G,-action from (Vi < {0}) x V7.
Now consider the map

o: L — (VT {0}) x V4
(Xo,..., X)), Yo,...,Y})) — (Xo, ..., Xy, 1)
= ((Xo,..., Xy), (tXo,...,tX;))

which is readily checked to be an isomorphism. This map is equivariant with respect to
the G,,-action previously defined on each side:

POMX,Y)) = p(M(X, £X)) = p((AX, £X)) = (X, £- A7) = Ap((X, X))

Therefore (VT {0}) x V_1/Gy, =2 L/G, = O(—1).

All other line bundles O(n) can be constructed as tensor powers of O(—1), adhering to
the rule O(m) ® O(n) = O(m + n). Using that tensor products commute with quotients
we have

(Vin x (VTN A{0D) /Gm) @ (Vo x (VTN {0})) /G)
= ((Vm ® Vi) x (VlH_l N {0})) /Gm
= (Vm+n X (VlH_l ~ {0})) /Gm

as line bundles over P" 2 (V71 < {0})/G,, for all m,n € Z. Thus the statement holds
for all n € Z. O

The scheme E; \ so(P") will serve as an approximation of By, in the sense of
Prop. throughout the next sections. The bundle map m: EJ ~\ so(P") — P" induces
a ring homomorphism

pi*: CH (P") — CH (E", ~ so(P"))

for all » and thus also . .
©*: CH (BG,,) — CH (Buy) .
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2 The Chow-Witt Ring of Bu,

2.2 Computing the Chow-Witt Groups

The following known result will be used in the computation.

Theorem 2.3 ([Fas13, Theorem 11.7]). Let k be a perfect field of characteristic coprime
to 2. Then we have the following isomorphisms of GW (k)-modules.

KMY(k) i=0
2K (k) i>1 odd

(k) 1>0 even

=i
M
{QKj—z<
M .
K2 (k) i>1 odd.

12

H'(BGy,, K™, 0(1))

The factor 2 indicates that the image of the respective group under reduction p to the
Chow group is generated by 2.

The total Chow-Witt ring of BG,,, has been computed in [Wen24, Theorem 1.1]:

Proposition 2.4 (Wendt). There is an isomorphism of GW (k)-algebras
CH (BG,) = GW(k)[e, H]/(I(k) - e, I(k) - H, H? — 2h)

—1
where e € CH (BG,,, O(1)) corresponds to the Euler class of Opg,,(—1) and H corre-
sponds to the element represented by (0,2) in

CH'(BGy, O(1)) € H(BGm, I°,0(1)) x CH(BGy,).

The inclusion in the last line is in fact an inclusion by [HW19, Prop. 2.11] if CHY(BG,,)
has trivial 2-torsion which is satisfied since by [Tot14, Thm 2.10], CH(BG,,) = Z.

By |[EH16, Prop. 1.30], the Picard group of By, is isomorphic to CH!(Bpu,) which
is shown in |[Tot14, Theorem 2.10] to be isomorphic to Z/n. Thus for even n, we need
to consider two equivalence classes of line bundles in Pic(Bpuy,)/2 represented by O and
O(1) (defined as the pullbacks of the respective line bundles on P"), and for odd n only
the trivial line bundle O.

For even n, the Chow-Witt ring has been computed in [LM23, Theorem 5.3.4].

Definition 2.5 (di Lorenzo-Mantovani).

1. Let X be a smooth scheme and £ a line bundle over X. Let s be a global section of
L£%? with smooth and non-empty vanishing locus D C X, and denote U = X . D.
Then there is a non-degenerate quadratic form on L]y

q: Lly @ Ly — Oy
a®@br— (a®b)/s
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2 The Chow-Witt Ring of Bu,

—0
determining an element geen € CH (U, Oy). This element satisfies i - (ggen — 1) =0
and is mapped to n ® f¥ by the boundary map

9: CH (U) — HO(D, KMV, 0p)

in the localization sequence associated to the embedding D C X, where f is a local
equation with vanishing set D and fV its dual [LM23, Lemma 3.3.2].

2. Let n be even and consider the scheme E] constructed in the previous section with
the line bundle Ogr (n/2). Since E}, is isomorphic to O(n) as line bundle over P", the
line bundle

Op; (1/2)%% 2 Opy (n) 2 Opr (n) xpr By, = Opr (n) xpr Opr(n)

comes equipped with a section given by the diagonal map whose vanishing locus is
precisely the zero section sg of the bundle E] — P". Applying the construction from
the first part of this definition yields an element in the zeroth Chow-Witt group and

we set 0 0
U= qgen — 1 € CH (E], \ s09,0) = CH (B, O).

Theorem 2.6 (di Lorenzo-Mantovani). There are isomorphisms of groups

GW(k) @ W(k) i=0

—1

CH (Bpn, O) 2 Z/2n i > 2 even
Z/(%) i odd
‘ Z i=0
CH' (B, O(1)) 2 { Z/(2) i > 2 even
Z/2n i odd.

Further there is an isomorphism of GW (k)-algebras
CH (Bun) & GW(k)[U, H, €] /(I(k)H, I(k)e, hU, HU,nHe, H> — 2h, U? + 2U, Ue — 2ne)

where e and H correspond to the pullbacks of the respective elements described in Prop.
——0
and U € CH (B, O) is as constructed in Def. .

We will compute the case of odd n . Following the strategy of [LM23, Prop. 5.2.3] for
even n consider the localization sequence associated to the decomposition

P <% BT <5 B~ so(P)
which reads as follows.

L CH (P syL ® det Qpy pr) 2% CH' (BT, £) 5 CH (B ~ s0,1°£)

— H'(P", KMV, stL @ det Qpr pr) — ...
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2 The Chow-Witt Ring of Bu,

In the first term Lemma implies det Qg /pr = det Qo,, (,,)/pr Which in turn is isomor-
phic to O(n) [Har77, Example 8.20.1] and thus trivial for odd n. By homotopy invariance,
the pullback along the bundle map pr: E] — P" induces an isomorphism on Chow-Witt
groups. The composition

71—

CH (P, s3£ @ O(n)) 222 CH'(BY, £) & CH (P, £)

is multiplication with the Euler class of the line bundle E; by Def. Now using that
P" and E], \ s¢ are approximations for BG,, respectively B, in the sense of Prop. [1.3
for r > 4 this localization sequence is isomorphic to the following one.

.= CH ' (BGu, s3L) 22 CH'(BGw, £) 22 CH' (Bjun, *L)

— HY(BGy,, KMV, s5L) — ... (2.1)
Note that ¢ o pr = 7.
Equipped with this we can compute the group structure.
Theorem 2.7. Let n be odd. Then:
i GW(k) i1=0
CH (Bun,0) =

Proof. For i > 0, insert Thm. and Prop. to see that the localization sequence
Eq. (2.1) evaluates to

K (k) (1) P kM (k) (el) —— CH (Bpan, 0) —— KM (k)
[l 1 12

Z(e 1y — T g 0

for ¢ even and
oK N (k) (He V) U oM (k) (He') — s CH (Bpun, ©) —— KM (k)
IR 12 12

Z(He Yy — T giHe 0

for i odd. Since E] = O(n) as line bundles over P" by Lemma its Euler class
evaluates to n/2h - e(O(1)) = —n/2he = —ne using Prop. From this it follows that

a\H/Z(B,un) > Z/n for 0 < i < n. Denoting m: E] — P" or by abuse of notation also
7: By, — BG,, and using the symbols from Prop. 2.4] one can also write
i {Z/n(w*(ei» 0<i<mn,ieven

CH (Bﬂn) = Z/n<7T*(Hei)> 0<1i<mn,iodd. (2.2)
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For ¢ = 0 we get

CH (BGp,O(n)) — CH (BGm,®) —s CH (Bpn,©) — HO(BGyp, KMV, O(n))
12 114 12
0 GW (k) KM (k) =0

which immediately implies a\ﬁO(B tn, O) = GW(k). O

2.3 Multiplicative Structure

For odd n we observed in Thm. that all Chow-Witt groups of By, are isomorphic
to those of BG,, modulo ne. Since the quotient map is the map 7* from the local-
ization sequence and this is a ring homomorphism, the Chow-Witt ring of By, is
also isomorphic to that of BG,, modulo n7*(e) and modulo the quadratic periodicity
isomorphism

d1: CH (B, O(1)) = CH' (Brun, O ((n+1)/2)2) = CH' (Bjun, 0).

This is not true for even n, since in that case there is an element in a\ﬁo(B tin, O) (denoted
U in [LM23]) which is not in the image of aﬁ.(B(Gm).

Since ¢ and thus also v is compatible with multiplication (Lemma it suffices to
understand its action on the generators 7*(H) and 7*(e). Consider

7 (H) = (0,2) € CH (Bptn, O(1)) € H(Bjin, I°, O(1)) X 05,00y CH (Bytn)

B,Un)

where the inclusion is justified by Prop. and the fact that CH(Bu,) = Z has
trivial 2-torsion. On the second factor, 1 is the identity. On the first, 1)1 being a group
homomorphism already implies that it maps 0 to 0. Thus

(7" (H)) = (0,2) € CH (Bjin, 0) € H(Bjins O) X e,y CH(Bua)  (2.3)

which under the isomorphism aﬁO(Bun, O) =2 GW(k) corresponds to the hyperbolic
form h. Therefore the class 7*(H) is not required as a generator for the Chow-Witt ring
of By,

The relation I(k) - H from BG,, now becomes I (k) - h which already holds in GW (k).
Similarly H? — 2h becomes h? — 2h which is also true in GW (k). The relation I(k) - e
just becomes I(k) - 7*(e).

Because Euler classes are compatible with pullbacks, 7*(e) is the Euler class of
OBy, (—1) and we can rename it into e. This yields the following concise description.

Theorem 2.8. For n odd, there is an isomorphism of GW (k)-algebras
CH (Byn) = GW(k)[e] /(I(k) - e,n - €)

where ¢ € CH' (Bpy,) is the Euler class of the tautological line bundle O(—1) on By,.
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2 The Chow-Witt Ring of Bu,

To obtain this description it is not necessary to compute 17*(e), but for better
understanding we will illustrate the argument anyway. Consider a second isomorphism

bo: CH (Bin, O(2)) = CH (B, O(n + 1)%2) = CH (B, O)

coming from the isomorphism of line bundles O(2) = O(n + 2) and the square periodicity
isomorphism ¢, 11y This fits into the following commutative diagram:

—1

CH'(Bjin, 0(1)) x CH (B, O(1)) — 2%, CH " (B, 0(2))

W1 X1 l l 2

—1

CH' (Bjin, O(n + 1)) x CH (B, O(n + 1)) ™ CH ™ (Bpun, 020 + 2))

\LSOO((TH—I)/Z) X PoO((n+1)/2) ‘/’O(n+1)l

CH'(Bjin, ©) x CE (B, O) mult CH ™ (B, 0)

The bottom square commutes by Lemma and the top one because the ring multipli-
cation is constructed to be compatible with isomorphisms of line bundles. With this one
can compute:

(" (e)) = (n+1) - (" (e))

= " Ll (e) = "L () ()
n+1l . . n+1
= -p*r*(He) = 5 -m*(He)

The first equality follows from the relation n7*(e), the second from the relation I(k) - e
and GW (k)-linearity of 7* and 1, and the third from Eq. (2.3]). The second to last
equality comes from the above diagram and the last one holds because O(2n + 2) is

already a square over BG,, and thus ¢» is already divided out in @\H/.(BGm).

2.4 Milnor-Witt Cohomology in Non-Diagonal Bidegrees
The following will become useful in later computations.
Lemma 2.9. Let i, j integers with i # 0. If j <1 then

H'(Bpn, K}V, £) 0.

Proof. Consider the localization sequence from the proof of Thm. Inserting Thm.
shows that unless ¢ = 0 and £ is trivial, this is isomorphic to
o — KL(k) — KN(k) — HY (B, K;™ L) — K} (k) — ...

Since K%(kz) = 0 this implies Hi(Bun,KJMW,E) =0 for j < i. O
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2.5 I’-Cohomology of By,

Corollary 2.10.

If n is odd:
H*(Bpn, I") = W(k)
If n is even:
H*(Bjin, I*) = W(k)[U,e]/(I(k)e,U? +2U, Ue)

Proof. Combine Thms. and and the fact that the sequence of abelian groups
CH!(Bpun) 22 CH' (Byn, ©) — H(Bpun, I', 0) — 0
is exact.

First consider odd n. The composition p o hp equals multiplication with 2 and further
it follows from the previous computations of the groups aﬁl(B,un) and CHY(Bpu,) that
the reduction map p is injective in positive degrees. For degree zero consider the fiber
product formula from Prop. m using that CH®(Bpu,,) = Z has no 2-torsion. Note that
the structure map a\ﬁo(B,un, O) — H°(Buy, I°,0) is given by dividing out the image
of hp and clearly mod hp o hp = 0, and recall that the pair (0,2) in this fiber product
corresponds to the hyperbolic form h € GﬁO(B tin, O). Thus the hyperbolic map ho acts
by

ho: CH*(Bu,) = Zic]/(nc) — GW(k)[e]/(I(k) - e,ne) = CH (Buy)
1—h

¢t — hel = 2¢!

Since 2¢’ generates aﬁl(B,un) =~ 7/n(e’) as a GW(k)-module for i > 1, this means that
all higher I7-cohomology groups vanish. In degree 0

H®(Bjin, I°,0) = CH' (Bjun, O)/h = GW (k) /h = W (k) .
If n is even an analogous argument shows that the hyperbolic maps are given by
ho: CH*(Bun) = Z[c]/(nc) — GW (k)[U, H,e]/(...) = CH (Bun)

1—h

N he! = 2t i even
C A
He' 7 odd

howy: CH(Buy) = Z[e]/(nc) — GW(R)[U, H, el /(....) = CH'(Bp,)

1— H
i Het 7 even
¢’ — . o
he* = 2e* 4 odd
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2 The Chow-Witt Ring of Bu,

This shows that the groups G\H/Z(B,un, O(i + 1)) which are generated by He' become
trivial in I7-cohomology. For i > 1, this further implies

Hi(Bpn, I', O(i)) = Z/2n(e") /26! = 7,/2(e') = W (k) /I(Kk)(€") .

The relation nHe is a multiple of he = 2e and thus no longer appears. In degree 0 and
trivial twist compute

HO(Byiy, 1°,0) = CH' (Bjuy, 0)/h = (GW(k) & W(k)(U))/h = W(k) (1,U).

The statement follows by adding up these groups and inheriting the multiplication and
relations from the Chow-Witt ring. O

Remark 2.11. Let the base field k£ contain the real numbers R. Our scheme approxima-
tions of By, are not cellular, thus the condition under which [HWXZ21, Theorem 5.7]
proves that the real cycle class map

HZ(BM’M Ijv ‘C) — Hsling(Bun<R)7 Z(ﬁ))
is an isomorphism for j = i is not met.

If n is even, this is in fact not an isomorphism: The real realization, i.e. taking the set
of real points of a scheme equipped with the analytic topology, commutes with products
and quotients. This means that the real realization of E) = Opr(n) which is a line bundle
over P", is again a real line bundle over P"(R) = RP", and in case n is even this is
orientable. The zero section is also preserved under real realization, and removing the
zero section of an oriented line bundle over RIP" divides the total space into two connected
components which are both homotopy equivalent to RP". Finally, taking the colimit over
our approximations of increasing dimensions also commutes with real realization, thus
Bgmtn(R) is homotopy equivalent to RP*° II RP*. Its (untwisted) singular cohomology
ring is

cing(Bun(R); Z) = Hg,,(RP*; Z) @ H*(RP™; Z) = Zlz]/2x & Zy] /2y

where x and y live in degree 2 and this is not isomorphic to the untwisted part of
the I7-cohomology we have computed above. The real cycle class map is, however, an
isomorphism for j > i + 3: Jacobson [Jacl7, Corollary 8.3] proves this for j > dim X.
By Cor. we can use E! to compute H(Bpy, I, L) if r > i + 2 and this scheme has
dimension r + 1 > ¢ + 3. What happens in these bidegrees is roughly that the last term
of the localization sequence does not vanish, contributing an additional generator
Ue' to the Milnor-Witt and thus also the I7-cohomology group.

If n is odd, the space of real points Bu,(R) is contractible with cohomology ring
7.~ W(R) concentrated in degree 0, thus coinciding with our results for I7-cohomology.
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3 The [’-Cohomology of P? x P’

3.1 Fasel’s Projective Bundle Formula

Let X be a smooth scheme, E a vector bundle of rank » on X and p: P(E) — X the
associated projective bundle. Denoting by &€ the locally free Ox-module associated to F,
there is a Op(g)-module G defined by the short exact sequence

0— Gg —)p*g — OIP’(E)(l) — 0.

We denote the total space of the vector bundle associated to Gg by Gg. Further let £
be a line bundle on X. For a € Z denote by L(a) the line bundle p*£ ® Op(g)(a) over
P(E). Recall that by quadratic periodicity (Prop. [1.28)), I7-cohomology twisted by £(a)
is isomorphic to that twisted in £ if a is even and £(—1) if a is odd.

In |Fas13|, Fasel constructs maps

pls HU(X,T) 2 HIP(E),T) 2250 H+ @(B), 17+, £(-1))
-e(O 1))e—1 . .
BT HH(B(E), I, £(~a)

for a > 1 and 7 € Z, where 6£(_1) is the Bockstein introduced in Eq. lb and

Ohn = > b @PH UXT ") — H(P(E),I,pL)
1<a<r—-1 a
a even

O 3wl @ HX T s HE(E), 1 p L(-1)
1<a<r—1 a
a odd

for i € Z. These two maps are split injective by |Fas13, Cor. 5.8].

Definition 3.1 (Fasel). For a vector bundle E — X and its associated projective bundle
P(E), define the groups

E[i(]P’(E), I, p*L) == coker e~

even

H'(P(E), 7, p*L£(—1)) := coker ©%,.

Fasel calls this group the reduced I J-cohomology, but we will not adopt this because we
are using the term to describe I -cohomology. Note also that the tilde in this definition
has nothing to do with the notation for Chow-Witt groups.
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3 The I’-Cohomology of P9 x P"

Denote by &g € H™H(P(E), I"*, Op(g)(—r)) the orientation class of the projective
bundle P(E) associated to a trivial vector bundle F of rank r over X, as defined in [Fas13,
Definition 6.1]. By [Fas13, Prop. 6.4] the triviality condition on the vector bundle can
be omitted if 7 is odd, as in this case { agrees with the Euler class of GY,. Fasel’s main
theorems |Fasl3, Theorems 9.1, 9.2, 9.4] summarize to the following.

Proposition 3.2 (Fasel). Let X be a scheme, L a line bundle over X, E a vector bundle
of rank r over X and p: P(E) — X the associated projective bundle, and i € 7. Then if
r 1s odd, the compositions

1. Hi(X, I, L) 5 H(P(E), I, p*L) — Hi(P(E), I/, p*L) and
2. H="Y(X, [P~ L) oy H'(P(E), I, p* LOwp(g) x) — ﬁi(P(E)7Ij7p*£®wP(E)/X)
are isomorphisms of W (
3. H'(P(E), IV, p*L(~1)
4. and if € is free then
HI(X, 1, )@ H (X, P o) P, i gy 1 per)
— HY(P(E), 7, p*L)

k)-algebras. If r is even,

) =0,

1 an tsomorphism.

Together with the fact that the maps ©%,, and ©%,, are split injective, this theorem
yields a direct formula to compute the I7-cohomology groups of a projective bundle.

Caution: P" = P(k"+!) is the projective bundle associated to the trivial rank 7 + 1
vector bundle over k and thus a rank r 4+ 1 projective bundle.

Before computing the I7-cohomology of the product P4 x P we need to know the
I’-cohomology ring of a single copy of projective space P" over a base field k. The additive
structure is an immediate consequence of the previous theorem and the multiplicative
structure is due to [Wen24, Prop. 4.1]. The reduced I’/-cohomology ring follows for

example from |Fas13, Theorem 4.1].

Corollary 3.3 (Fasel, Wendt). The total I’ -cohomology ring of projective space P" over
a base field k is

H* (P, I*) =2 W(k)[e, R]/(I(k) -e,e" !, e-R, R?)

as W (k)-algebras, where e corresponds to the class e(Opr(—1)) € HY(P", I', Opr (1)) and
R corresponds to & € H"(P", 1", Opr(r — 1)). The reduced cohomology ring is

P H(P,T) 2 z/22[d /!
where T corresponds to the class ¢(Opr(—1)) € Hl(P’”,Tl). The reduction morphism
p: H*(P",I*,—) — H*(P",T") maps e to T and R to .

Wendt characterizes the class e as 8¢1)(1). That this is in fact the Euler class of
O(-1) follows from Lemma [3.7]

34



3 The I’-Cohomology of P9 x P"

3.2 The I’-Cohomology Ring of P? x P"

Consider the product space P? x P for ¢, r > 1. By [EH16| Prop. 1.30], the Picard group
of a smooth scheme is isomorphic to its first Chow group, which in the case of P? x P" is
shown in [Tot14, Theorem 2.12] to be isomorphic to Pic(P?) x Pic(P") = Z x Z.

Notation 3.4. We denote the two projections by
pri: P x P" — P" and pry: P9 x P" — P".

Line bundles on P? x P" are of the form priOpq(s) @ prjOpr(t) and we will use the
shorthand notation

O(s,t) == priOpa(s) @ pryOpr(t) .

I’-cohomology considers twists in Pic(P? x P")/2 =2 Z/2 x Z/2, whose elements can be
represented e.g. by the line bundles O(0,0), O(0,1), O(1,0) and O(1,1).

Theorem 3.5. Let k be a perfect field of characteristic coprime to 2. The total I7-
cohomology ring of P4 x P is isomorphic to the following (Z,Pic(P? x P")/2)-graded
W(k)-algebra:
W(k)[e1, e2, e3, R, Ro]/(I(k) - 1, I(k) - ea, I (k) - e3, €3 + €3 — €3,
etf—i_la672“+1761R1762R27R%7R§7

q T q T
62R1 — €1€3, €1R2 — €9€3, €3R1 — €1€2, 63R2 — 6162)

where
e1 — e(O(—1,0)) € HY (P! x P", I', O(1,0))
ea — e(0(0, —1)) € H' (P! x P", I', 0(0,1))
ez — e(O(—1,-1)) e H' (P x P", I',O(1,1))
Ry &pupn € HY(P! x P", 17, 0(q + 1,0))
Ry — g%qﬂ € H'(P!xP", I",0(0,r + 1))

To prove this theorem we will apply Fasel’s formula Prop. to the projective bundle
pi=pry: P1 x PT 2 P(OSTT) — P".

The reduced cohomology of P? x P" can be computed immediately using [Fas13|
Theorem 4.1]:

Proposition 3.6.
P Hipr < P T) = 22200, ) /(@ )
i

where
e — ¢(0(-1,0)) e H'(P? x P, T))
& — (00, 1)) e H'(P? x P, T))
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3 The I’-Cohomology of P9 x P"

To shorten notation, in the following we will use the symbols ey, es, e3, R1, Ra, ¢1, €
to also denote their corresponding classes in the (reduced) I7-cohomology ring. Observe
that

)
)
ples) = 6( (=1,-1)) =¢(O0(-1,0) ® O(0, —1)) =c1 + 2
)
)

Z
Z

N

where the third row uses the formula for Stiefel-Whitney classes of tensor products of
line bundles, and the rest follows by pulling the respective classes back to one factor of
the product where the reduction morphism is already known.

The classes ¢ for 0 < i < r generate H*(P",I*) as a bi-graded W (k)-module and thus
their images under the maps

P, g and (o) op* = (Ri)op™s H(P',T') — H* (P! x P'.T)

appearing in Fasel’s formula produce a generating set of H*(P4 x P", I*). Our strategy
will be to express all of these in terms of the classes ey, ea, €3, Ry, Rs to show that
those generate H*(PY x P", I*, —) as a W(k)-algebra. For the pullback map p* we simply
have p* ¢ = ¢b, and likewise Ry - p*(¢) = R; - ¢5. The main obstacle is to understand
the Bockstein homomorphism S¢; 4 that occurs as a component of 1=, We will use the
following lemma of Fasel [Fas13, Lemma 3.1].

Lemma 3.7 (Fasel). Let X be a smooth scheme and L, M line bundles over X. Let
a € H(X, I, L). Then the Bockstein homomorphism
Bromv: H(X,T) — HFY (X, I Lo MY)
maps p(a) to a - e(M).
To compute BO(S,t)(E’féé), insert £ = O(k,1), a = ek, € H(P? x P", I, O(k,1)) and
M = O(k — s,l — t) and obtain
Bos) (@) = Bogsn (pokn (€feh)) = efey - e(O(k — 5,1 —1)).

Note that Euler classes of squares vanish in I7-cohomology, hence only the parity of k — s
and [ — t is relevant.

In the projective bundle formula there appear only Bocksteins whose twist is tau-
tological on the first factor of the product, and they are composed with the map

p*: HY(P",T') — H'(P? x Prji) whose image is generated by p*c’ = @,. So the relevant
values are:
Bo.i) (@) = erey

50(1,i+1)(5§) = ehes
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3 The I’-Cohomology of P9 x P"

and thus
pG7 O () = efel
pG () = e Leles

Having determined the images of the maps p*, % and -R; appearing in Fasel’s formula
yields a set of generators of all diagonal I7-cohomology groups of P4 x P as W (k)-modules.
By describing all of these as products of e, e, e3, R1, Ro it follows that these five classes
generate the total I/-cohomology ring as a W (k)-algebra.

Concerning relations, there are e‘f“, e1 Ry, R% as well as egﬂ, ea R, R% which are
pulled back from the individual factors. Since all other possible products of e1, ea, Ry
and Ry generate their own summands in the I7-cohomology groups of P4 x P there are
no new relations between these four generators.

So it remains to determine the relations involving es. Since eg lives in

HY(P < P, 1, 0(1,1)) = u¥ Y HEO (P T°)
= i V() - W) /1(k)
= ez W(k)/I(k)

one can deduce the relation I(k) - e3. From our computations of the ps deduce further
that the e\ eles for 0 <i < g and 0 < j < r each generate their own summand and thus
are not subject to any relations. To determine e consider its reduction:

plez) =ples)’ = (@1 + @) =C + 20102+ 6 =21 + 5

The last equality holds because 2 € I(k) vanishes in I(k)-torsion. Since €3 lives in
H?(P4xP", I%, 0) which by the projective bundle formula equals W (k)/I(k)-e2&W (k) /I(k)-€2,
the only possible preimage of ¢f + ¢ is e} + €3. Therefore e = €% + €. Similar argu-
ments yield e(feg = eaRy, ehes = e Ry, e3R; = 6?62 and e3Ry = ejeh. Now we have
covered all possible monomials involving es and thus determined all relations, finishing

the computation.

Corollary 3.8. Let k be a perfect field of characteristic coprime to 2. The total I7-
cohomology ring of BG,, X BGy, is isomorphic to the following (Z,Pic(BG,, x BG,,)/2)-
graded W (k)-algebra:

W(k)[e1, e, e3]/(I(k) - e, I(k) - e, I(k) - e3, €3 + 3 — €3)

where
e1 — e(O(—1,0)) e HY(BG,, x BG,,,I1*,0(1,0))
eg — ¢(0(0, —1)) € H'(BG,, x BG,,I',0(0,1))
ez — e(O(—1, 1)) € HY(BG,, x BG,,,I',0(1,1)).
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3 The I’-Cohomology of P9 x P"

Proof. This follows from the computation of H*(P? x P", [*) in Thm. and the approx-
imation of classifying spaces in Corollaries. and P? x P" is an approximation for
BG,, x BGy, in degrees < min(q,r) — 1. The classes R; and R» as well as all relations

involving Ry, Ra, ef or €} live in degrees above this boundary and thus don’t appear
here. O

Remark 3.9. The considered schemes P? x P are all cellular and thus the real cycle

class map A A ‘
H'(X, I, L) — H'(X(R),Z(£))

is an isomorphism for all ¢ by [HWXZ21|, Theorem 5.7]. Compare this for example with
the computation of [Hat01, Example 3.E.5] of the singular cohomology of RP> x RP>
in (non-twisted) Z-coefficients:

H*(RP™ x RP*; Z) = Z[\, p, v/ (2X, 2, 2v, v + N2y + M)

with A and p living in degree 2 and v in degree 3. This embeds as the untwisted subring
of the total I7-cohomology ring of BG,, x BG,, via

A —s €2

W 6%

VvV —— €e1€3€3
and the relation

2 2 2 2292, 42 24 22 9 2 2
VS 4+ N+ A — efezes + ejes + efey = ejes(ef + e5 + e3)

is respected since €3 + e3 + €3 = 0.

3.3 [’-Cohomology in Non-Diagonal Bidegrees

The computations in the following chapters will involve H*(P4 x P", I/, L) for j =i — 1.
It turns out that this group is straightforward to compute for j < ¢ which we will do in
this section.

Proposition 3.10. Let j < .

W (k) i=0,L£=0(0,0)
W(k)eW(k) i=q=r odd, L= 0(0,0)
B < P10 £) = W(k) i=r, L=0(0,r—1) and [r # q or r even/
T W(k) i=q, L=0(q—1,0) and [qg # r or q even]
W(k) i=q+r, L=0(@—-1,r—-1)
0 else

38



3 The I’-Cohomology of P9 x P"

Proof. Observe that for j < i, I'=* = W(k) by definition and 7 =o. This implies that
in these cases the I7-cohomology groups are isomorphic to the groups H*(P? x P" 7 L)
as defined in Def. 3.1l

Recall:
W(k) i=0,L=0

HY(P", I, L)={W(k) i=r, L=0O(—1)
0 else

The statement then follows immediately from the projective bundle theorem (Prop.[3.2)).

O]
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4 The Chow-Witt Ring of BG,, x BG,,

4.1 The Chow-Witt Ring of P! x P" and BG,, x BG,,

According to Prop. there is an isomorphism
c: CH'(PUx P') = H'(PU x P, I*, —) X cnepoxery €D kerdg
LEPic(P1xPT)/2
where ‘ ' ‘ ‘
d%: CHY(PY x P") — H'TL(P? x P", I L)
is the boundary map of the long exact cohomology sequence associated to the sequence

I — KMW 5 KM of chain complexes. In order to compute this kernel, first compute the
Chow ring in which it lives using a result of Totaro about Chow rings of products:

Proposition 4.1 ([Tot14, Lemma 2.3, Theorem 2.12]).
CH*(P") = Z[c]/(c")
CH*(P? x P") = Zey, o] /(1T 51
CH*(P? x P")/2 = H*(P? x P" T") = Z/27Z[c;,G) /(€T e 27+
According to the “key diagram” explained in Section [1.3] 9, equals §, omod2. We
have already computed this Bockstein 3, in the previous section after Lemma SO now
it is straightforward to describe its kernel. From this explicit description one checks that

for a € ker 0y and B € ker Opq, the product af lies in ker Orgaq and thus the kernels
assemble into the Z x (Pic /2)-graded ring

Z[Cy,Co, Ca, 11,79, ho, hs] /(T K) = @D kerdy
LEPic(PIXPT) /2
Ci1— ¢ € ker 8(19(1’0)
Cy — c9 € ker 8(19(071)
C3+— c1 +c2 € ker 8(19(171)
r — ¢ € ker 8219(%1,0)
o > ¢y € ker 0p ¢, 41)
hi— 2 € ker 9, )
hy — 2 € ker 9y

h3 — 2 € ker 8?9(171)
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4 The Chow-Witt Ring of BG,, x BG,,

where J' is the ideal generated by

hi —4,h3 —4,h% — 4,

hiho — 2hs, hohs — 2h1, h1hs — 2ho,

2C1 4+ h3Cy — hoC3, h1C1 + hoCo — h3(C3, hoCy + h1Cy — 2C3, h3Cq + 2Cy — h1Cs
and K is the ideal generated by

C? 4 C% + h3C1Cy — C3,
g+l el 2,2
Cl 7C§ ,ClTl,CQT’Q,’I"l,'I"Q,

Ci{Cs — Cary,C5C5 — Cyra, Csry — C1Co, Crg — C1C5 .

Note that ker dp g,y also contains 1 = {c§ and (c1 + ¢2)* = ¢ + 2c102 + 63
So now we can apply Prop. and Thm. to obtain the following.

Corollary 4.2. For k a perfect field of characteristic coprime to 2, there is an isomor-
phism of graded GW (k)-algebras

CH (Pq X ]P)T) = GW(kZ)[Hl,HQ,H3,€1,€2,63,R1,R2]/(I(k‘) . (Hl,HQ,H3,€1,€2,€3)
6% + e% + H361€2 - 6%, jv 6({4_15 e§+1, €1R1, 62R27 R%a R%?

eles — eaR1,ehes — e1Ra, e3Ry — elea, e3Ry — e1€))
where e1, es, ez correspond to
e(£V) € CH (P! x P', L)
and Hy, Hy, Hs to
(0,2) € CH (BY x P, £) € H(BY x P, 1%, £) X cyopapr) CHO(BY x ")

for L = 0(1,0),0(0,1),0(1,1), respectively, and Ry and Ry are the pullbacks of the
orientation classes along the projections onto each factor. The ideal J is generated by
the relations

H? — 2h, H — 2h, H} — 2h, (4.1)
Hy Hy — 2Hs, HyHs — 2H,, H, Hs — 2H, .
2e1 + Hses — Hoes, Hiey + Hoeo — Hses, Hoey + Hieg — 2e3, Hseq + 2eo — Hyeg . (43)

Note that
@m:%meaﬁwxWﬁMJNWxMﬂﬂmeWMOWWXW)

is the hyperbolic form h € GW (k), and the classes Hy, Ha, H3 are the images of 1 under the
—0

hyperbolic maps hy: CHO(PY x P") — CH (P? x P", L)) for £ = O(1,0),0(0,1),0(1,1),

respectively. They can be thought of as twisted versions of the hyperbolic form h.
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4 The Chow-Witt Ring of BG,, x BG,,

Proof. We will use the fiber product formula from Prop. The fiber product of two
GW (k)-algebras contains precisely those pairs in the set-wise product where both entries
have the same image in Ch*(P? x P"). This entire proof consists of spelling out that
set-wise characterization.

Recall that we have a set of generators Cy, Co, Cs, hy, ha, hs, 71, ro of @&, ker d, and
e1, €2, e3, Ry, Ry of H*(P? x P, I'*) as GW(k)-algebras. Thus as GW(k)-modules, these
two are generated by all monomials of the form R h2 BB O CL CisriTrie respectively
ef*el el R\" R1® where the exponents are non-negative integers. Observe that monomials
of the first form are mapped to zero in Ch* (P4 x P") if and only if the monomial vanishes
in @, ker d, already or if at least one of i, i3, i3 is not zero. A monomial of the second
form is in the kernel of p if and only if it already vanishes in H*(P? x P", I*).

To determine for a given monomial « of the first form all pairs in the fiber product that
have a as second coordinate, compute the mod 2-reduction @ and its preimage p~!(a@) in
the I’-cohomology ring. The latter can be read off from our description of H*(P? x P", I*)
in Thm. 3.5

If a = 0 or one of the exponents i1, ig, i3 is non-zero, then p—! (@) = ker(p). Otherwise
if o = C1CECioriTris we find that p~ (@) = elel el R R +ker(p). Hence the following
form a set of generators of the fiber product as a GW(k)-module.

o (0, W h2RPECHCLE CloriTris) if one out of 4y, 49, i3 non-zero
° (ei%?e?R?Rig,Ci“C? §6ri7r§8) for 4, is, ig, i7, i3 any non-negative integers such
that the second entry of the pair is not zero

e (3,0) with g € ker(p)

The third case, however, is redundant: Any 3 € ker(p) can be expressed as a W (k)-linear
combination of monomials e1*el’ e’ RI” RY® with coefficients 3}, j, in I(k) € W(k). Now
if Bj,,....js is in I(k), then the pair (3j,,. js,0) is in the fiber product W (k) x7/5Z = GW (k)

and therefore one can write

(B,0)= Y (Bisins 0) - (' eyl RY Ry, CLCF Cor{Tr)
J4,--,J8
thus reducing to the second case.

All pairs in the first two cases can be expressed as monomials in the following eight
pairs, which therefore form a set of generators of the fiber product as a GW (k)-algebra. We
assign the symbols on the left-hand side to the corresponding elements in the Chow-Witt
ring.

c: CH (P! x P') SSHY(PU x P’ I*) Xy cne(paxery D) kerdg
LEPic(PIxP)/2
Hy, Hy, H3 —(0, hq), (0, ha), (0, h3)
e1, ez, ez — (e, Ch), (e, Ca), (e3,C3)
Ry, Ry —(Ry,71), (R2,72)
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4 The Chow-Witt Ring of BG,, x BG,,

Relations in the fiber product on the right hand side consist of pairs such that each
coordinate is a relation in the respective factor. The fundamental ideal becomes

I(k) —(I(K),0)

thus all pairs which contain I(k) in the first coordinate become relations in the fiber
product, that is,

I(k)el,I(k)eg,I(k)eg '—)(I(k),O) . (61, Cl) = (I(k)el,O) = (0,0), e
Further one finds relations
I(k)Hq,I(k)Hy, I(k)Hs —(I(k),0) - (0, hy), ...

The relations in J' live in degree 0 and 1 where the only non-trivial relations in the
I*-cohomology ring are I(k)e; which are already covered above. Thus each of these has a
straightforward analogue in the Chow-Witt ring
H? —2h = H? — h?, ... —(0,h?) — (0,4), ...
hey + Hzeo — Hoeg >—>(0, 2)(61, 01) + (0, h3)(€2, CQ) — (0, hz)(eg, 03)
:(0, 2C1 + h3Cy — thg)
and we will denote the ideal generated by these by [J. Something interesting happens
with the relation e + €3 — e3. There are several pairs in the fiber product containing this
in the first coordinate, the most obvious one being
el el —el—(ef ted—e3, CE+CF -0
=(ef + €3 — €3, CT + C5 — (CF + C5 + hsC1Ca))
(el + 5 — e, —h3C1Ch)

whose second coordinate is not a relation in the Chow ring. Only subtracting (0, —h3C1C3)
yields the following relation.

e+ e2 4+ Hzejeg — €3 —(e3 + €5 — €3,0% + C% + h3C1Cy — C3F)
:(6% + e% - 6%, 0)
All other relations from Thm. appear in a unique pair in the fiber product whose
second coordinate is in X, thus each yields one relation:

q+1 q+1 q+1
el ... (el 01T,
6‘%63 — 62R1, . '—)(6‘{63 — 62R1, Ci]C;g — CQTl), e O

Corollary 4.3. For k a perfect field of characteristic coprime to 2, there is an isomor-
phism of graded GW (k)-algebras

a\ﬁ.(BGm X BGm) = GW(k)[el,62,63,H1,H2,H3]/(I(]{2) . (Hl,HQ,Hg,el,ez,eg)
e% + 6% + Hszejeq — eg, J)

with the symbols on the right hand side corresponding to the same classes as in Cor. [{.9
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4 The Chow-Witt Ring of BG,, x BG,,

Proof. We have already observed that (V™! \ {0})/G,, = P" is an approximation of
BGy, in codimension < r in the sense of Prop. By Cor. the product space
P? x P" is an approximation of BG,, x BG,, in codimension < ming,r — 1.

In the description of Cor. the classes ey, es, e3, H1, Hs, H3 remain stable for all
q,r > 2 and thus survive in the Chow-Witt ring of BG,,, x BG,,. The classes R; and R»
on the other hand live in codimension g respectively r» which is not in the range where
P? x P" is an approximation for BG,, x BG,,. The same holds for all relations involving

q r
e] or es. Ul

4.2 Milnor-Witt K-Theory Groups in Non-Diagonal Bidegrees

For the computations in Chapter [5{ we will also need to know the group H*(P? x P", K]M)
for j € {i—1,i—2}. To this end observe that the argument of [HW19, Prop. 2.11] extends
to a statement about Milnor-Witt cohomology in non-diagonal bidegrees. In this case
the key diagram of [HW19| reads as follows:
' M id ' M

Hi(X, KM —4 s mi(X, kM)
he 2
H/(X, [+, L) —— H/(X, KMV, ) —"— H(X,KM) —2— H*Y(X, [+, L)

Jid mod hp mod 2 Jid

Hi(X, 4, L) —"— Hi(X, 1, L) —"— Hi(x,KM/2) —2 H+(X, 41, L)

)

i+1 M id i+1 M
HTH(X, K} —— H™H(X,K}Y)
Proposition 4.4. The canonical group homomorphism
¢ == (mod he) x p: H' (X, K}"™V, L) — ker 6 X gi(x gem /) ker 0
[}

18 always surjective. It is injective if one of the following conditions hold:

1. HY(X, KJM) has no non-trivial 2-torsion.

2. The map n: H{(X, "Y1 L) — HY(X, ', L) is injective.

If further H'TY(X, KJM) has no non-trivial 2-torsion, then ker § equals H*(X, 17, L).

Proof. The existence of the group homomorphism « is implied by the universal property
of the fiber product.
For surjectivity of ¢ consider an element (a, 8) € kerd X pi(x M /9) ker 8. Choose an
]

arbitrary lift & € H(X, K]MW, L) of a and denote the image of this lift in ker 9 by ~.
The reduction of v agrees with the reduction of 5, thus 5 — « has a lift B € H'(X, K]M)

Then & + hz(f) is in the preimage of (o, 8) under ¢.
Assume condition (1) holds and consider an element e € ker ¢ = ker p N ker(mod hr).
By exactness this must have a lift £ along h,s. Due to commutativity of the upper square
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4 The Chow-Witt Ring of BG,, x BG,,

in the key diagram & must be 2-torsion and thus trivial by assumption, hence € = 0. This
proves injectivity. Under condition (2) choose a lift & in H*(X, I’*1, £). Then & must be
zero due to injectivity of n and commutativity of the left-most square, and thus ¢ = 0.
The last statement about ker d follows from the commutativity of the top square in
the diagram: If multiplication with 2 is injective, then so is p o hy and thus h,. Since §
sits in the left vertical exact sequence before h., it follows that § = 0. O

Lemma 4.5. For j < i:

(W (k) i=0,L=0
W(k)(R1,R2) i=q=r odd, L=0(0,0)
P % IP)T,K]MW,E) ~ W(k)(R1) Z =q, L=0(q—1,0) and [qg # r or q even/
W(k)(Rz2) i=r, L=00,r—1) and [g #r orr even]
W(k)(R1-Ry) i=q+r, L=0(q—1,r—1)
0 else

0 else
Proof. Note that H* (P4 xPT, KJM) vanishes for j < i (as follows e.g. from [Tot14, Theorem
2.12]) thus condition (1) of the fiber product formula Prop. [1.4]is satisfied, and its subgroup
ker @ vanishes as well. Hence H'(P? x P", K}V, L) = kerd C H'(P? x P", I7, L) where
the latter has been computed in Prop. m Since HTY(P7 x P, KJM) also vanishes, the
last inclusion is in fact an equality.
For the statement on BG,, x BG,,, use the approximation of equivariant Chow-Witt

groups from Cor. O
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5 Chow-Witt Ring of BG,, x Bu,

Throughout this chapter, let n be a positive integer, and k a perfect field with characteristic
coprime to 2 and n.

The Picard group of BG,, x B, is isomorphic to its first Chow group by [EH16,
Prop. 1.30] which is computed in [Tot14, Theorem 2.10, Lemma 2.12] to be isomorphic to
Z x Z/n. For line bundles on BG,,, x Bu, (or more precisely, its scheme approximations)
we adopt the same notation

O(s,t) = pr10pg,, (5) @ prOpy, (1)

as for bundles on BG,, x BG,,. Let E] be the approximation of By, constructed in
Chapter [2| and consider the vector bundle 7: P4 x E] — P4 x P". Let £ be a line bundle
over P? x EJ . Consider the localization sequence associated to the closed subscheme
id, id,
Pt x P pa e r 89 pa e (BT so(PT)).

Using the same arguments as in Thm. — scheme approximations of classifying spaces,
the isomorphism det Qy, Er /paxpr = det Qé}?’qxﬂw(n) JPaxpr = O(0,n) of line bundles over
P? x P", and homotopy invariance — for g and r sufficiently large this sequence is
isomorphic to

..~ CH (BGu, % BGp, siL ® 0(0, —n)) "% CH'(BG,, x BGp, L)

Yy CH'(BGu % B, t*L) — H'(BGy, x BGp, KMV, 3£ © 0(0,n)) —s ... (5.1)

(2

As already shown in Chapter [2] the line bundle E — P" is isomorphic to Opr(n). Thus
P? x Ey is isomorphic to pr;Opr(n) = O(0,n) and therefore the map -e(m) can also be
expressed as -e(O(0,n)). This Euler class can be computed using Prop.

~ho(c1(0(0,1))) = —Hzea n even

hey = —ney n odd

IS IS

e(0(0,n))) = {

5.1 Group Structure

Theorem 5.1. For L any line bundle on BG,, X Bu, the following are isomorphisms
of GW (k)-modules.

If n is odd:
CH (BGp, X Bin, £) = CH (BGyy, x BGy,)/nes
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5 Chow-Witt Ring of BG,, X Buy

If n is even:

i GW (k) ® W(k)(Ua) i =0, L trivial
CH (BGy % Bun, L) = { __,
CH (BGy, x BGp,, £)/5 Haez  else

Here Us is the pullback of the class U from Thm. along the projection pry: BGp, X B, — Bun
onto the second factor, and e is the pullback of es defined in Cor.[].3 along .

Since the bundle O(0,1) on BG,,, X By, is defined as the pullback along 7 of the same
bundle on BG,, x BG,,, and Euler classes commute with pullbacks, es is actually the
Euler class of O(0,—1) on BG,,, X Biy,.

Proof. Except for ¢ = 0 and trivial twist, the rightmost term in the localization sequence
Eq. (5.1)) is shown to vanish in Lemma proving the statement in these cases.
Assume that n is odd. Then the localization sequence implies

CH'(BGyy, X B, L)
~ CH'(BGy, % BGrm, L)/ e(O(0,n)) - CH  (BGyp X BGrm, £® O(0, 1))
~ CH'(BGy, X BGom, £)/nes - CH (BGu % BGu, £® O(0,n)) .05

even

In fact this argument also covers the case ¢ = 0 with trivial twist, since over BG,, x Buy,
the line bundle O(1,0) is trivial and thus

CH' (BGy, X Bjin, ©) = CH (BGy X Bjin, 0(0,1)).

This works because O(1,0) is trivial over BG,,, X By, but not over BG,, x BG,.

Now assume that n is even. For i = 0 and trivial twist, Lemma shows that
HO(BGyy % BGpy KMV, 550 © O(0,1)) = W(k) and H'(BGy, x BGp, KMV, 0) 2 0.
—0
In the previous section we have computed CH (BG,,, X BG,,, O) = GW (k). Furthermore

1
CH (BG,, x BGy,, s;O ® O(0,—n)) vanishes for degree reasons. Thus the localization
sequence [5.1] reads:

0 —s GW(k) —> CH (BGy X B, O) — W(k) — 0

—0
Now consider the class U € CH (Buy,, ©O) constructed in [LM23, Prop. 5.2.1] and its
pullback along the projection pry: BG,, X By, — By, (or pra: P x E N\ s — E) \ So
to be precise). This class is shown in [LM23] to define a split of the boundary morphism

—0

CH (Bjin, L) — H°(BG,,, KMV s5L ® 0(0,n))

of the localization sequence Eq. (2.1]). The map pry together with its respective restrictions
induces the following maps between the sequences Eq. (2.1) and Eq. (5.1) (all groups
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5 Chow-Witt Ring of BG,, X Buy
have trivial twist):

e GH(BG,) s G (Ba) s HO(BG KMY) s

ipré ipré lprg

(idx o)

... ™2 CH (BGy x BGp ) YY CH (BGy, x Bun) % HO(BGyy x BGp, KMW) —5 ...
This diagram commutes according to Lemma since we have
prsN(so: P — E}) = pryOpr(y) = O(0,n) = N(id x so: P! x P" — P? — E7).

The right-most vertical arrow is an isomorphism which follows from the projective
bundle theorem (Prop. together with the fact that these two Milnor-Witt cohomology
groups are naturally isomorphic to the corresponding I7-cohomology groups as explained
in the proof of Lemma Together with commutativity of the right-hand square this
shows that pr3(U) =: Us defines a split of the boundary map in the localization sequence
which proves the statement for s = 0 and £ trivial. O

5.2 Ring Structure

Theorem 5.2. We have the following isomorphisms of graded GW (k)-algebras.
If n is odd:

/Gﬁ.(BGm X B;un) %GW(k:)[el,eg,Hl]/(I(k) . (Hl,el,eg),H% — 2h,n€2)
where

—0
Hy —ho0)(1) € CH (BGy, X By, O(1,0))
—1
e1 —¢(0(1,0)) € CH (BG,, x Bun,O(1,0))
es —e(0(0,1)) € 6\1-/11(BGm X By, O)
If n is even:
CH' (BGy, x Bin) = GW(K)[Hy, Ha, H3, U, e1, e, 3] /(I(k) - (Hy, Ha, Hz, e1, e2, ¢3),
J, el + €3+ Hzerex — €3, gHQ(ZZa U3 + 2Us, (h, Hy, Ha, H3) - Us,

User — gﬂsez, Usez — nea, Uses — gH1€2)
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5 Chow-Witt Ring of BG,, X Buy

where J is the ideal of relations from Cor. [{.3,
Hy — ho.oy(1) € CH (BGy, x Bpun, O(1,0))
)
—0
H3 — h(’)(l,l)(l) € CH (BGm X .B,l,l,n7 ( s )
(=1,0)) € CH' (BGm x Bjin, O(1,0))
es 3 6(0(0,~1)) € CH (BGr, X Bjin, O(0,1))
1
e3 —e(O(—1,—-1)) € CH (BGy, x Bun,0(1,1))

o
Hy —> hogy(1) € CH (BGy, x Bpin, 0(0,1))
0(1,1))

e] —— 6(0

and U € 6ﬁO(BGm X Bin, Q) is the pullback of the class U introduced in Def. along
the projection map pry: BGy,, X By, — Buy.

Note that hr(1) equals
(0,2) € CH (BGyx Bitn, £) € H(BGyx Byt 1% £) X ey, 50y CH (B X Bt

for all line bundles £ in Pic(BG,, X Buy). The inclusion here is justified by [HW19,

——0
Prop. 2.11] if CH (BG,, X Bpuy) has no non-trivial 2-torsion which is satisfied by [Tot14]
Theorem 2.10, Lemma 2.12].

Proof. For odd n this computation is very similar to that of Bu, in Thm. The
Chow-Witt ring of BG,, X Bpu, is isomorphic to that of BG,, x BG,, modulo nes and
the quadratic periodicity isomorphisms for O(0,1) = O(0,n + 1) = O(0, (n + 1)/2)%?
and O(1,1) 2 O(1,n+ 1) 2 O(1, (n + 1)/2)®2.

Consider the class

Hs = (0,2) € CH (BGy x Bjin, 0(0, 1))
C HY(BGy, X Bin, I°, 00, 1)) X 005, x ) CHY(BG X Biin) -

By Prop. the square periodicity isomorphism ¢ acts as the identity on the second

—0
factor, and on the first factor it maps 0 to 0, thus it sends Hs to h € CH (BG,,, X By, O).
Similarly, Hs maps to Hj.
As a consequence, e is mapped to (n + 1)/2Haes. The latter is a generator of the

—1
free summand Z/n(Hzes of CH (BGy, X By, O(0,0)) and would also serve as a GW (k)-
algebra generator of the total Chow-Witt ring, but in order to achieve a more readable
presentation we will instead write down es.

—1
For p(e3) € CH (BGy, x By, O(1,0)) note that the reduction map to Chow groups
sends es and thus also ¢(e3) to ¢; + c2. As we have computed in Thm. [5.1

CH ' (BGy X Bin, O(1,0)) = CH (BGr, X BGrn, O(1,0))/(n - e2)
= Z<€1> (&) Z<H362> & Z<H263>/(n - e, her + Hzes — H263)
= Z{e1) ® Z/n{Hses)
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5 Chow-Witt Ring of BG,, X Buy

and the only element here whose image in the Chow group is ¢1 +¢g, is e; +(n+1)/2- Hzes.
With this one can simplify the relations inherited from BG,, x BG,, as follows.

Eqs. (&.1) and ([£.2) are all equivalent to H? — 2h.

n+1
hei + Hzey — Hoez = hey + Hiea — h(e1 + TH162)

1
= Hyey — ”;r 2H) e
=0 and analogously for the other relations from Eq. (4.3))
I(k)-Hy=I(k)- H3 = I(k) - Hy
I(k)-e3=1(k)-e1+ I(k)-(n+1)/2Hses follows from I(k)e; and I(k)es
1
e% + e% + Hiejex — eg = e% + e% + Hyejeq — (e1 + n—2{— H3€2)2

=e? +e3+ Hyeeo—es — (n+1)egHyey — (nTH)24e% =0
This completes the proof for odd n.

For even n, the relations in the Chow-Witt ring of BG,,, X Bu,, are also inherited from
BG,,, x BG,, and since the Picard group of these two spaces are isomorphic there are no
quadratic periodicity isomorphisms to be divided out. The only thing left to determine
are the relations involving Us.

By construction, hUs = 0. To compute H1Us, consider the reduction map

—0

CH (BG,, X Byn,0(1,0) —2— CH®(BG,, x Buy)
112 IR
Z.(H,) Y/

This sends the generator H; to 2, and since the target is torsion-free this map is
injective. It is also compatible with multiplication. Since p(Us) = 0 by construction, it
follows that p(H1Uz) = 0 and thus one concludes H1Us = 0. Analogous arguments show
HyUy = H3Us = 0.

To compute UZ recall that Us is defined as the image of U € 6ﬁ0(3un, O) as con-
structed in Def. under the ring homomorphism

pry: aﬁ.(B,un) — aﬁ.(BGm X Blip)

induced by the projection pry: BG,, X Bu, — Bpu, on the second factor. By [LM23,
Prop. 5.2.3], for By, there is a relation U? = —2U. This implies

U3 = pr3(U)? = pr3(U?) = pri(—2U) = —2U2
over BG,, X Bu,. The same argument yields

Uszey = pry(U)pri(e) = pry(Ue) = pri(ne) = nes
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5 Chow-Witt Ring of BG,, X Buy

where e is the Euler class of the bundle Op,,, (1) (denoted 7" in the [LM23]).
For Use; consider the reduction map

p: CH (BGy, X Biin, O(1,0)) —s CHY(BG,, x Bjun)

which sends Us and thus also Usey to zero. By Thm. the Chow-Witt group on the
left is

—1

CH (BGy, X Bjin, O(1,0)) = CH (BGy, X BGrm, O(1,0))/nHses
= Z<€1> D Z<H3€2> D Z<H263>/(H2€3 — hep — ngg, aneg)
= Z<61> D Z/n<H3€2>

and the Chow group on the right is Z{c1) ® Z/n(c2) by [Tot14, Theorem 2.10, Lemma
2.12]. The reduction map p maps Euler classes to the corresponding Chern classes, thus
the kernel of p contains only the two elements 0 and n/2Hses. To distinguish between
these two, consider

Useieq = <—1>2U26261 = (Uzez)e; = negeq
which implies that Usey cannot be zero, leaving only the possibility Use; = n/2Hzes. An
analogous argument shows UsHs = n/2H;es. O
5.3 Milnor-Witt K-Theory Groups in Non-Diagonal Bidegrees
The computation in the next section will require H(BG,,, X Bjin, KM\{V, L).

Lemma 5.3. Let j < i. If i # 0 or L is not trivial, then H'(BG,, x Bun,KJMW,E)
vanishes.

Proof. Consider again the localization sequence Eq. (5.1)) which for arbitrary bidegrees
reads

. — H"Y(BGy x BGpy, KM, s5L ® O(0,n)) — H'(BGy, x BGpy, K™, L)

Y5 HY(BGy x B, KMV, 0*L) — H (BGyy, X BGp, KMV, 5L @ O(0,1)) — ...
The second and fourth terms are shown in Lemma to vanish - implying that the

third term vanishes as well - except when i = 0 and £ respectively sj£ ® O(0,n) are
trivial. O

5.4 ]’-Cohomology of BG,, x B,

Corollary 5.4.
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If n is odd:
H*(BGyu % Bpin, I*) 2W (1) [ex]/(I(k)ex)
If n is even:
H*(BG,, X Bjin, I*) =W (k)[Us, ey, e, e3](I(k) - (e1, €2, €3), €3 + €3 — €2,
U2 4 2Us, Uy - (e1, €2, €3))

The symbols Us, €1, €2, €3 are as in Thm. [5.3

Proof. Combine the computation of é\ﬁ.(BGm X By, from Thm. and the fact that
the sequence

CH'(BG,, X Bpun) 22 CH (BGyn X Bjin, £) — Hi(BGp X Bpin, I', £) — 0

is exact.

Using a similar argument as in Cor. we find that for n odd, the images of the
hyperbolic maps ho(,0) and ho(1,0) are the submodules of a\ﬁ.(BGm X Bpy) generated
by h and Hi, respectively. Dividing out hes = 2es also identifies the relation ney with es,
therefore the latter will be identified with zero as well.

If n is even, the images of the hyperbolic maps are generated by h, Hy, Ho and Hj.
After dividing these out, the relation 5 Haey disappears because it is a multiple of Hy.
The same holds for all of the relation ideal 7.

The statement then follows by addmg up the computed cohomology groups and
inheriting the ring structure from cH (BGy, x Buy,). O

Remark 5.5. If n is odd, both the Chow-Witt ring and the I/-cohomology ring satisfy
a Kiinneth isomorphism

CH (BGy) ®aw(x) CH (Bpun) = CH (BGy, x Bpy)

as GW (k)-algebras. If n is even, however, the Kiinneth map is neither injective nor
surjective: Both the Chow-Witt and I7-cohomology ring contain an element es that does
not come from one of the factors, and a new relation Use; — (n/2)Hsey respectively Use;.

Comparing with singular cohomology, the Kiinneth map not being surjective is not
surprising as the classical Kiinneth theorem also features an additional Tor-term when
none of the factor spaces has all free cohomology groups. The failure of injectivity, on
the other hand, is unexpected as this can never happen in singular cohomology. This can
be explained by considering the real cycle class map

H'(BG,, X By, I’, L) — H;mg((B(Gm X Bup)(R);Z(L)) .

[HWXZ21, Theorem 5.7] does not apply in this case since (our scheme approximations of)
BG,,, X By, are not cellular, but [Jac17, Corollary 8.3 shows that this is an isomorphism
if j > 2i + 5 (choose the approximation P" x E! with r > i + 2 which has dimension
2r +1 > 2i + 5 to compute H (BG,, X B, I?,L)). Similarly to Remark for
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5 Chow-Witt Ring of BG,, X Buy

higher powers of the fundamental ideal the product Use; does not vanish but presents an
additional free generator of the respective I’-cohomology groups.

This differs from Chow theory, where the Kiinneth isomorphism holds for BG,,, X By,
by [Tot14, Lemma 2.12].
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6 Chow-Witt Ring of Bu,, x Bu,

Throughout this chapter let m and n be positive integers and k a perfect field of
characteristic coprime to 2, m and n.

The Picard group of By, X By, is isomorphic to its first Chow group which is computed
in [Tot14, Theorem 2.10, Lemma 2.12] to be isomorphic to Z/m x Z/n. For line bundles
on (scheme approximations of) BG,, x Bu, we adopt the usual notation

O(s,t) = pri0pg,, (5) © praOpy, (1) -

We are going to use another instance of the localization sequence like in the previous
sections, this time associated to the decomposition

P! x E" <% E4 x E' <5 (BEL x E7) ~ so(P? x E7).
Under the usual isomorphisms this reads as follows:

...~ CH (BGu, % By, 3£ ® O(m,0)) <2 GH'(BG,, x Bjin, £)

Cs CH' (Bim X Biin, 1" L) —3 H'(BGry X Bpun, KMV, 5L @ O(m,0)) —s ... (6.1)

Further we will use a trick for degree 0 building on work of Hudson-Matszangosz-Wendt
[HMW24]. Note that the group H°(X, I°, Ox) forms a subring of the total I/-cohomology
ring of X.

Lemma 6.1. The W(k)-algebra homomorphism
pry - pro: HO(B/'Lmv IO') O) ®W(k) HO(BIU’H7 IO7 O) — HO(B/'LTTL X B/'Lna IO? O)
s an isomorphism.

Proof. Recall from Def. that HY{(X, W, £) = HY(X,1° L), thus in degree 0 results
about Witt cohomology can be applied. In the following all groups have trivial twist and
we will omit the twist from notation.

Consider the following diagram of schemes

P4 x [, % Opa(m) x B «—— (Opa(m) ~ s0) x B}

lprl JVPH lpﬁ

P! — s Opy(m) «——F—— Opa(m) \ 50

54
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and the W(k)-module homomorphism pr}: H°(Bp,, W) — H*(Ops, W). The ladder
lemma of [HMW24, Lemma 4.5] then states that the long exact localization sequence of
the bottom row tensored with HY(E", W) and that of the top row form a commutative
diagram of W (k)-modules:

H™H (P W) @woy HO(EL, W) 2222 H-Y (P9 % By, W)

(s0)«®id (s0xid)«

HO(P1, W) @y HO(ES, W) =225 HO(PY x By, W)
F®Rid (exid)*
HO(Bim, W) @y HO(E, W) ™23 HO(Biyy, % By, W)
o®id o’
HO(P1, W) @w(iy HO(Ej, W) =2 H°(P? x By, W)
(80)*®id (SoXid)*

~ ~

HY(PY, W) @y HO(EL, W) 222 HY(PY x Bpy,, W)

By our previous computation in Cor. HY(E", W) = H°(Bu,, W) is a free and
therefore flat W(k)-module, hence the left-hand column is exact. The first, second, fourth
and fifth horizontal maps are isomorphisms by the Kiinneth formula for Witt cohomology
[HMW24, Theorem 4.7]; the scheme P? is cellular and H®(Bu,, W) = W(k)(1,U) (as
computed in Cor. as well as H>%(Bu,, W) 2 0 (as computed in Lemma are
free W(k)-modules. Thus by the five-lemma, the third horizontal map is an isomorphism
as well. O

6.1 Group Structure

Theorem 6.2. Let i € Z and L a line bundle over B, X Buy,.

(i) If m and n are odd:
CH ' (Bfim X Bjin, £) = CH (BGy, x Bin)/mer

——1

>~ CH (BGy, x BGp, £)/(me1, nea)
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(ii) If m is odd and n even:
Eﬁi(Bum X Bip, L) = a\ﬁi(BGm X By)/meq
N GW (k) ® W(k)(Uz) i =0, L trivial
B {aﬁi(BGm x BGyy,, L)/(me1, 5 Haea) else
If m is even and n odd, exchanging m and n reduces to case (ii).

(iii) If m and n are both even:

— GW(I{J) D W(k‘)(Ul, UQ, U1U2> 1= 0, £ tm’vial
CH (Bpm X Bpn, L) =4 __;
CH (BG,, x BGy,) /(%5 Hie1, 5 Haea) else

Proof. Assume first that m is odd. Then Lemma shows that the last term of Eq.
vanishes except when ¢ = 0 and sj£ ® O(m,0) is trivial in Pic(BG,, x Bu,)/2 which
is the case for £ = O(1,0). This case however can be circumvented by using that in
Pic(Bpm X Bpuy)/2, O(1,0) ~ O(0,0) and thus there is an isomorphism

CH' (Bim X Bjin, O(1,0)) 2 CH (B x Bpn, 0(0,0)).
Therefore
CH' (Bt X Bjin, £) = CH' (BGm x Bin, £)/ ¢(O(m, 0))-CH' (BGyx Bin, LO(m, 0))

for all line bundles £ and i € Z. This solves cases (i) and (ii).
(iii) In this case the last term of the localization sequence vanishes and there is
again an isomorphism

CH' (Bt X B, £) & CH (BGp X Bpin, £)/ ¢(O(m, 0))-CH  (BGy X Bjin, L&O(m, 0))

except for i = 0 and sjL @ O(m,0) trivial, i.e. £ trivial.
For this remaining case, Lemma [6.1] shows
H®(Bim, x By, 1°,0(0,0)) = HO(Bpum, I°, 0(0,0)) @wy H(Bun, 1°,0(0,0))
= W(k)(1,U1) @w) W(k)(1,Uz)
as W (k)-algebras. To compute the Chow-Witt group, apply Hornbostel-Wendt’s fiber prod-

uct formula Prop. From [Tot14, Theorem 2.10, Lemma 2.12] deduce CH® (B, X B, = 7Z(1).
The kernel of the boundary map

90(0,0): CH(Bpim x Bpun) — H'(Bim X Bpn, 1", 0(0,0))

is the whole domain as it follows from Lemma that 9o (0,0) = Bo(o,0) ©(mod 2) maps

1 to 1-¢(0(0,0)) = 0. The structure map from CH® to Ch® is the usual mod 2 map.
The structure map from H®(B, X B, I°,0(0,0)) = W(k)(1,U;,Us, U Us) sends 1
to 1, and Uy, Uy and thus also UjU; to zero as di Lorenzo-Mantovani have already
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shown in their work on the Chow-Witt ring of Bu, |[LM23, Remark 5.2.2]. Therefore the
Chow-Witt group in degree 0 evaluates to

—0
CH (Bum X Bﬂna O) = HO(BNm X BNmIOv O) XChO(BmeB,un) CH0<B,U/m X Bﬂn)
= W(k)(1,U1,Uz, UrUs) Xz, Z(1)
= GW(/’C)@) EBW(]{J)<U1,U2,U1U2>. O

6.2 Ring Structure
Theorem 6.3. Let m and n be positive natural numbers.

(i) If m and n are odd:
aﬁ.(Bum X Bun) 2 GW(k)[e1,e2]/ (I(k) - (e1,e2), me1, nez)
(ii) If m is odd and n even:
CH (Bptm % Bun) 2 GW (k)[Us, Ha, €1, e2)/(I(k) - (Ha, e1, e3), me, gHQeQ,
H3 — 2h, hUs, HyUs, Uz 4 2Us, Usey, Uses — nes)
(iii) If m and n are even:
CH' (Bjum x Bpn) = GW (k)[Ur, Uy, Hy, Hy, Hy, e1, €2, e3)/ (5 Hier, 5 Hoes,
I(k) - (Hi, Ho, H3,e1,€2,€3), 7, 6% + e% + Hiejen — e%,
(h,Hy, Ho, H3) - (U1, Uy), U + 2Uy, U2 + 2Us,

m m
Uier —meq,Urea — §H3€1, Uresz — 5H2617

User — gH?)eQ, Usea — neg, Uses — %HWQ)

Here Uy and Uy correspond to the pullbacks along the projections pry and pry of the class
——1
U defined in Def. . The symbols e; map to e(LY) € CH (B X Bun, L) and H; to

——0
(0,2) € CH (Bpim X Biin, £) € H(Bpim X Bpin, 1%, L) X 30 (5,1, x ) CH (Bitn X Biin)
for L=0(1,0), O(0,1), O(1,1), respectively.

Proof. (i) In Thm. we have seen that all Chow-Witt groups of Bu,, x Bu, are
isomorphic to those of BG,, x B, modulo me, thus the Chow-Witt ring is isomorphic
to that of BG,, x Bu, modulo mes and the quadratic periodicity isomorphism ¢ for
0(1,0) =2 O(m +1,0) = O((m + 1)/2,0)%2.

The same argument as in the proof of Thm. for n odd shows ¢(H;) = h. This
implies that the generator H; as well as the relation I(k)H; from é\ﬁ.(BGm X By
become redundant in aﬁ.(B tm, X Bpiy).
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For (ii) we can use an analogous argument, but now there are two quadratic periodicities
to consider, namely Yo ((m11)/2,0) A0d PO((m41)/2,1)- Again using the arguments from
Thm. [5.2] yields

PO((m41)/2,0)(H1) = h

Po((m+1)/2,1)(Hs) = H2

PO((m41)/2,1)(€3) = (m +1)/2Hzer + ez
Thus the generators Hy, H3 and eg as well as the relations H1 Uy, H3Us, e%—l—e%—l—ngleg—eg
and everything in the relation ideal J from Egs. (4.1)) to (4.3)) except for HZ — 2h become
redundant. The relation Use; — (n/2)Hsea becomes Usey .

(iii) In this case there are no quadratic periodicity isomorphisms to be divided out.
All relations from the Chow-Witt ring of BG,, x Bu, are inherited. Exchanging m
and n further allows to inherit the product of U; with Hy, Hs, Hs, e1, es and eg from
By, X BGy,. The localization sequence Eq. (6.1]) forces the relation e(O(m,0)) which
equals (m/2)Hje;. The Kiinneth formula in degree 0 from Lemma shows that U1Us is

W (k)-linearly independent of the generators 1, U; and Us hence there are no additional
relations for this product. ]

6.3 I’-Cohomology of Bu,, x By,
Corollary 6.4.

If m and n are odd:
H*(Bpiym X By, I*) =2 W (k)
If m is odd and n is even:
H* (Bt X Bpin, I*) = W (k) [Us, e2](I(k)ea, U3 + 2Us, Uses)
If m and n are even:
H*(Bliy, X Bpin, I*) = W (k)[U1, Uz, e1, €2, €3]/ (I(k) - (e1, 2, €3), €5 + €3 — €3,
U + 2U1, Us + 2Us, Urer, Urea, Ures, User, Usea, Uses)

Proof. Combine the computation of 6ﬁ.(Bum X Biy) from Thm. and the fact that
the sequence

CH (B, % Biin) 22 CH (Bjim % Biin, £) — H (Bt % Bpn, I', £) — 0
is exact.
If m and n are odd, the image of the hyperbolic map ho() is the submodule of

a\ﬁ.(Bum X Buy) generated by h. Dividing this out identifies the relation me; with ey

and nep with es. This leaves only the group aﬁO(B,um X Bpin, O)/h = GW(k)/h = W(k).
If m is odd and n is even, the images of the hyperbolic maps ho(,0) and ho(,1) are
generated by h and Ha, respectively. Dividing out h identifies me; with e; (since m is
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odd and 2e; — he; € I(k)e;) causing e; to become trivial, and all relations containing h
or Hy vanish.

If m and n are even, the images of the hyperbolic maps are generated by h, Hy, Hs, Hs,
respectively. The relation Uje; — meq becomes Ujer, as mep is a multiple of 2e; = he;
and thus vanishes. All relations containing h, Hy, Hy or Hs vanish.

The statement on ring structure follows by adding up the computed cohomology groups
and inheriting the ring structure from aﬁ.(B tm X Biiy). O

Remark 6.5. For m and n both odd there is again a Kiinneth isomorphism

CH (Bjiy) ® CH (Bpn) = CH (B % Bin)
H*(Bpm, I*) @ H*(Bpin, I*) = H*(Bpim X Bn, I¥)

for both the Chow-Witt and the I7-cohomology ring. If m and n are both even this map
is injective but not surjective because the right-hand side contains the class e3 that does
not come from one of the factors. If m is odd and n even, the map is surjective but
not injective because there is a new relation Use; — (n/2)Haeg respectively Use; on the
right-hand side.

Like in Remark the real cycle class map

S

Hi(B,um X B,Unaljwc) — Hiing((BMm X Bun)(R); Z(L))

is not an isomorphism in all bidegrees but only for j > 2¢ + 6. In these bidegrees the
product Use; does not vanish but presents an additional generator of the I7-cohomology
group, making the Kiinnneth map injective just like the one for singular cohomology.

In Chow theory, for comparison, the Kiinneth isomorphism holds by [Tot14, Lemma
2.12]: the group pu,, satisfies condition (ii) because k contains all e-th roots of unity where
e is the exponent of pu,, (even if it does not contain all n-th roots of unity).

To summarize, of the product spaces considered in this work only BG,, x Bu, with
n odd and By, X Bu, with both m and n odd satisfy a Kiinneth isomorphism for
Chow-Witt rings. For By, X Bu, with m and n odd the Kiinneth map is surjective
but not injective, for P? x P", BG,, x BG,, and By, X Bu, with m and n even it is
injective but not surjective, and for BG,, X Bu, with n even and Bu,, X Bu, with m
odd and n even it is neither injective nor surjective. At this point it is unclear to the
author if this behavior can be predicted in any way.
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