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Abstract. We compute the total Chow-Witt rings of the classifying space Bµn of the
roots of unity, as well as the products BGm×Bµn and Bµm×Bµn for all m,n ≥ 1 based
on the strategy by di Lorenzo and Mantovani (2023) for Bµn with n even. Moreover we
compute the total Ij-cohomology and Chow-Witt rings of Pq × Pr for all q, r ≥ 1 and of
BGm ×BGm.
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Introduction

Chow-Witt groups have gained increasing attention in intersection theory and enumerative
geometry over the past 20 years. Classically, a central concept of intersection theory
are Chow groups of a scheme containing information about the subschemes in a given
dimension. Another invariant of schemes is the Witt ring of quadratic forms over a scheme
introduced by [Kne77, Chapter I §5]. Chow-Witt groups were then conceived by [BM00]
via a fiber product of Chow and Witt theory, and implemented in technical detail by
[Fas05].

One object of interest in this area are characteristic classes of vector bundles like Chern
classes, Euler classes and Stiefel-Whitney classes living in the different theories mentioned
above. In topology the Euler class assigns to a real vector bundle an element in the
singular cohomology of the base space with a local coefficient system (integral coefficients
if the vector bundle is orientable). One of its properties is being an obstruction for the
vector bundle to split off a trivial summand, meaning if such a splitting exists then the
Euler class vanishes. Now for vector bundles over a scheme, one can of course consider
characteristic classes with values in Chow groups, but it turns out that these satisfy
the classical obstruction property only for C-schemes. For schemes over general fields
and in particular over R a characteristic class with this obstruction property lives in the
Chow-Witt groups (compare Thm. 1.1).

Motivic classifying spaces of algebraic groups were introduced by [MV99], imitating the
long-familiar concept of classifying spaces in topology. The étale and geometric classifying
space classify G-bundles in the sense that according to [MV99, §4 Proposition 1.15] in the
Nisnevich local motivic homotopy category of schemes, the set of maps from some X into
the classifying space of G is in bijection to the set of isomorphism classes of G-torsors over
X. Around the same time Totaro independently defined the Chow ring of a classifying
space by means of scheme approximations [Tot99], without defining the classifying space
itself which usually does not exist in the category of schemes. This turned out to agree
with the definition of Morel-Voevodsky and provides an important tool for computing
Chow rings which was later extended to Chow-Witt groups by [AF16, Theorem 3.3].
Some examples for computations of Chow-Witt rings include projective space Pn by

[Fas13], which also provides a powerful tool for Ij-cohomology of projective bundles.
The ring structure for Pn and BGm was computed by [Wen24] as a special case of a
Grassmannian. Later [LM23] computed the Chow-Witt ring of Bµn for even n. We will
heavily build on these two articles in this work. Further examples can be found in [HW19]
and [HXZ20].

In this work we aim to compute several new examples for Chow-Witt rings of classifying
spaces of groups and products thereof. We will extend the argument of [LM23], considering
Bµn as a Gm-bundle over BGm and then applying a localization sequence to deduce the
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Chow-Witt groups of the former from those of the latter, to n odd (Thm. 2.8):

Theorem A. Let n be an odd natural number and k a perfect field of characteristic

coprime to 2 and n. Denote by C̃H (X) the total Chow-Witt ring of a smooth scheme X.
Then there is an isomorphism of graded GW(k)-algebras

C̃H (Bµn) ∼= GW(k)[e]/(I(k) · e, n · e)

where e ∈ C̃H
1
(Bµn,O(1)) denotes the Euler class of OBµn(−1).

Then we compute the Ij-cohomology of Pm×Pn (Thm. 3.5) using the projective bundle
formula of [Fas13], then combine this with the Chow groups of the same space ([Tot14,
Theorem 2.10, 2.12]) via a fiber product statement of [HW19, Lemma 2.11], see Cor. 4.2
and Cor. 4.3.

Theorem B. For k a perfect field of characteristic coprime to 2, there is an isomorphism
of graded GW(k)-algebras

C̃H (BGm ×BGm) ∼= GW(k)[e1, e2, e3, H1, H2, H3]/(I(k) · (H1, H2, H3, e1, e2, e3),

e21 + e22 +H3e1e2 − e23,J )

where e1, e2 and e3 correspond to the Euler classes of O(1, 0), O(0, 1), O(1, 1), respectively,
the H1, H2, H3 are a kind of analogue of the hyperbolic form h living in the twisted degree
0 groups, and J is a relation ideal. These are described in more detail in Cor. 4.2.

Later we will use a very similar strategy like for a single copy of Bµn to deduce the
Chow-Witt rings of BGm ×Bµn (Thm. 5.2) and Bµm ×Bµn (Thm. 6.3) from that of
BGm × BGm. For some values of m and n this argument is inconclusive for degree 0
which is why in these cases we employ a comparison with Witt cohomology, which in turn
can be computed via a Künneth formula developed by [HMW24, Theorem 4.7]. Most of
the ring structure can be derived from that of BGm ×BGm by precisely understanding
the isomorphisms identifying those Chow-Witt groups whose twists become isomorphic
over BGm×Bµn respectively Bµm×Bµn. These rings depend on the parity of m and n.
Their algebra presentations are so lengthy in total that we decided against including them
in the introduction and the reader should refer to the respective theorems for details.
It will turn out that some but not all of the products considered - namely Pm × Pn,

BGm×BGm, BGm×Bµn, Bµm×Bµn - satisfy a Künneth isomorphism for Chow-Witt
rings, see Remark 6.5. This provides examples to the already known fact that such an
isomorphism cannot be true for Chow-Witt rings of general products. It remains an open
question to establish a nice set of conditions under which this holds. Such conditions
are known for both Chow rings [Tot14, Theorem 2.12] and Witt cohomology [HMW24,
Proposition 4.7], but not for Ij-cohomology or Chow-Witt rings.
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Notation and Conventions

Throughout all of this paper, let k be a perfect field of characteristic not 2. Perfectness
is relevant for some motivic homotopy arguments, for example avoiding smoothness issues
since every regular finite type scheme over a perfect field is already smooth. There
are methods to circumvent this condition in many applications developed by [EK20],
and it might be possible that it can be entirely removed, see also [HMW24, Section
2.3]. Characteristic different from 2 is a common assumption in the theory of quadratic
forms, because quadratic forms agreeing with symmetric bilinear forms simplifies matters.
Recent works, e.g. [Fel20], accomplish at least the construction of Chow-Witt groups
as well as functoriality and long exact localization sequences in arbitrary characteristic.
However there remain arguments, such as the decomposition of Chow-Witt groups into
Chow groups and Ij-cohomology (Section 1.3) and the projective bundle theorem for
Ij-cohomology (Prop. 3.2), that are only known to be true in characteristic unequal 2.

All rings are associative and unital. All schemes are considered to be separated
of finite type over k. This implies that the image of a closed subscheme under a proper
morphism of schemes is again closed, which is necessary to construct a pushforward map
on Chow-Witt groups. When working with cohomological Chow-Witt groups or any other
kind of cohomology, that is, from Section 1.5 onward, all schemes are required to be
smooth. For a scheme X and an integer i denote by X(i) the set of points of dimension
i in X, i.e. points whose closure has dimension i. If X is smooth and thus has a fixed
dimension, denote by X(i) the set of points of codimension i.
For a commutative ring A and symbols x1, x2, . . ., we denote by A⟨x1, x2, . . .⟩ the

free A-module generated by x1, x2, . . ., not to be confused with the polynomial ring
A[x1, x2, . . .].
We use the following standard notation.

GW(k) Grothendieck-Witt ring of quadratic forms over k
W(k) Witt ring of quadratic forms modulo hyperbolic spaces
I(k) the fundamental ideal of GW(k) or W(k)

CHi(X), CHi(X) i-th (co)homological Chow group of a scheme X

Chi(X), Chi(X) i-th (co)homological Chow group modulo 2

C̃Hi(X,L), C̃H
i
(X,L) i-th (co)homological Chow-Witt group twisted by a line

bundle L over X
KMW

∗ (k) the graded Milnor-Witt K-theory ring
KM

∗ (k) the graded Milnor K-theory ring
I∗(k) = KW

∗ (k) the graded ring consisting of powers of I(k), where
I≤0(k) := W(k)

All of these will be introduced in detail in Chapter 1.
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1 Chow-Witt Rings

This chapter introduces Chow-Witt groups and rings and some of their fundamental
properties. In some places we will only sketch ideas but do not include proofs, and the
reader should be aware that some results cited from the literature are highly non-trivial.

1.1 Motivation and Relation to Chow Groups

The Chow-Witt ring is a quadratic refinement of the Chow ring, so to provide some
context we will start with a quick recollection on the latter. A more detailed account can
be found e.g. in [Ful98, Chapter 1].
Let X be a scheme over k. The group of algebraic i-cycles of X is the free abelian

group on closed subschemes of X of dimension i, and the i-th Chow group CHi(X) is
then obtained by dividing out rational equivalence. This can be expressed by the exact
sequence ⊕

W∈X(i+1)

κ(W )×
div−−→

⊕
V ∈X(i)

Z⟨V ⟩ −→ CHi(X) −→ 0 .

The idea of Chow-Witt groups C̃Hi(X) is to consider algebraic cycles
∑
nV [V ] not

with integral coefficients nV , but instead coefficients in the Grothendieck-Witt ring
GW(k), the group completion of quadratic forms over k up to isometry, equipped with
direct sum and tensor product. This is motivated by the fact that the Grothendieck-Witt
ring captures the arithmetic of the base field in more detail. Through this one hopes to
generalize certain results that hold only over the base field C in classical intersection
theory (using Chow groups), considering that GW(C) ∼= Z. For example, the zeroth
motivic stable stem is isomorphic to GW(k) by [Mor03, 6.4.1] whereas its topological
analogue is πs0(S) ∼= Z. A further example is the following splitting theorem of Morel,
matching the obstruction property of topological Euler classes.

Theorem 1.1 ([Mor12, Thm 8.14]). Assume r ≥ 4. Let X be a smooth affine k-scheme
of dimension ≤ r, and let ξ be an oriented algebraic vector bundle of rank r. Then:

ξ splits off a trivial line bundle⇔ e(ξ) = 0 ∈ C̃H
r
(X)

The analogous statement for Chern classes under the assumption that k is algebraically
closed was proved by [Mur94, Theorem 3.8]. This obstruction property for vector bundles
to split off a trivial summand is also true for Euler classes of topological spaces which
take values in singular cohomology with integral coefficients. In fact, there is also a
direct connection between Ij-cohomology, which is a quotient of Chow-Witt groups, and
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1 Chow-Witt Rings

singular cohomology: For a smooth scheme X over a field k ⊇ R and a line bundle L over
X, Jacobson [Jac17] defines a real cycle class map

H i(X, Ij ,L) −→ H i
sing(X(R);Z(L))

where X(R) denotes the set of real points of X with the analytic topology. This is an
isomorphism if j > dimX [Jac17, Corollary 8.3], or if j ≥ i and X is cellular [HWXZ21,
Theorem 5.7].

In order to do construct such a quadratic refinement it will be helpful to rephrase the
above definition of Chow groups in terms of Milnor K-theory.

Definition 1.2. Let F be a finitely generated field extension over k. Its Milnor K-theory
KM

∗ (F ) is the graded-commutative ring generated by the symbols [a] for all a ∈ F×

in degree 1, modulo the relations [a][1 − a] for all a ̸= 0, 1 and [a] + [b] = [ab] for all
a, b ∈ F×. The i-th degree of this ring is the i-th Milnor K-theory group of F , denoted
KM
i (F ).

Observing that we have F× = KM
1 (F ), Z = KM

0 (F ) and 0 = KM
−1(F ), the exact

sequence defining the i-th Chow group above can be expressed using the chain complex

. . . −→
⊕

x∈X(i+1)

KM
1 (κ(x))

div−−→
⊕
y∈X(i)

KM
0 (κ(y))

div−−→
⊕

z∈X(i−1)

KM
−1(κ(z)) −→ . . .

known as the Gersten complex C∗(X,K
M
∗ , i) and the i-th Chow group is the homology

at the middle term. Naively we want to replace KM in the above chain complex by its
“quadratic refinement”, Milnor-Witt K-theory KMW:

Definition 1.3. Let F be a finitely generated field extension over k. Its Milnor-Witt
K-theory KMW

∗ (F ) is the graded (non-commutative) ring generated by the symbols
1. [a] for all a ∈ F× in degree 1,
2. η in degree −1
modulo the relations
1. [a] · [1− a] for a ̸= 0, 1,
2. [a] + [b] + η · [a] · [b]− [ab] for a, b ∈ F×,
3. η · [a]− [a] · η for a ∈ F×,
4. η2 · [−1] + 2η.
The i-th degree of this ring is the i-th Milnor-Witt K-theory group of F , which is denoted
by KM

i (F ).

In this setup, however, it is more difficult to define the map div. This will be the task
of the next section.
This construction of Milnow-Witt K-theory as a quadratic refinement of Milnor K-

theory is partly justified by the following result of Morel.

Proposition 1.4 ([Mor12, 3.10]). Let F be a finitely generated field extension over k. For
a ∈ F×, denote by ⟨a⟩ the 1-dimensional quadratic form over k defined by (x, y) 7→ a ·x ·y.

2



1 Chow-Witt Rings

Then the assignment

GW(k) −→ KMW
0 (F )

⟨a⟩ 7−→ 1 + η · [a]

extends to a well defined ring isomorphism.

Example 1.5. 1. The Grothendieck-Witt ring of any quadratically closed field is iso-
morphic to Z [Lam05, II.3.1].

2. GW(R) ∼= Z[Z/2] [Lam05, II.3.2].

In view of this isomorphism we will denote the elements 1+ η[a] in KMW
0 (F ) by ⟨a⟩. In

particular, the hyperbolic form h = ⟨1⟩+ ⟨−1⟩ = 1 + ⟨−1⟩ ∈ GW(F ) maps to 2 + η[−1]
and we will denote this element by h as well. Note that under this identification the last
relation from Def. 1.3 becomes ηh, and the second relation guarantees ⟨ab⟩ = ⟨a⟩⟨b⟩.

There are two obvious maps comparing Milnor and Milnor-Witt K-theory:

Definition 1.6. Multiplication with the hyperbolic form h defines a map of graded
KM

∗ (F )-modules
h : KM

∗ (F ) −→ KMW
∗ (F )

called the hyperbolic map. Dividing out the ideal generated by the element η defines a
graded ring epimorphism

ρ : KMW
∗ (F ) −→ KM

∗ (F )

which we will call the reduction map.

The composition ρ ◦ h equals multiplication with ρ(h) = ρ(2 + η[−1]) = 2. Both h and
ρ will extend to maps comparing Chow and Chow-Witt rings.

Example 1.7. 1. For a quadratically closed field, both KM
0 and KMW

0 are isomorphic
to Z. The hyperbolic map is given by multiplication with 2, and the reduction map is
the identity.

2. The Grothendieck-Witt group of R is isomorphic to the group ring Z[Z/2] with the
elements of Z/2 corresponding to the quadratic forms ⟨1⟩ and ⟨−1⟩. The hyperbolic
map is given by multiplication with the hyperbolic form ⟨1⟩+ ⟨−1⟩, and the reduction
map is the Z-linear extension of the map sending both ⟨1⟩ and ⟨−1⟩ to 1 ∈ KM

0 (R) ∼= Z

1.2 The Gersten-Witt Complex

In this section we follow the exposition of [Fas20] (the original construction is due to
[Fas08]) to define a family of chain complexes where the i-th degree of the j-th complex is

C∗(X,K
MW
∗ , j) :=

⊕
x∈X(i)

KMW
j+i (κ(x))

3



1 Chow-Witt Rings

and the differentials mimic the divisor map div. Due to its technical complexity the
explicit description of this chain complex is rarely used in computations, as opposed to
the tools introduced in Sections 1.3 and 1.5.

First let F be a finitely generated field extension over the base field k and ν : F → Z a dis-
crete valuation. Denote by Oν the valuation ring, mν its maximal ideal and κ(ν) = Oν/mν

its residue field, and choose a uniformizing parameter, i.e. a generator π of mν . For u ∈ Oν ,
denote the image of u in κ(ν) by u.

Theorem 1.8 (Morel). Under the above conditions, there exists a unique morphism of
graded abelian groups

∂πν : K
MW
∗ (F ) −→ KMW

∗−1 (κ(ν))

satisfying
1. ∂πν ([π] · [u2] · . . . · [un]) = [u2] · . . . · [un],
2. ∂πν ([u1] · . . . · [un]) = 0,
3. ∂πν (η · α) = η∂πν (α)
for any u1, . . . un ∈ O×

ν and α ∈ KMW
∗ (F ).

Proof. See [Mor12, 3.15]. The idea is to define an auxilary map into the polynomial ring

Θπ
ν : Z×O×

ν = F× −→ KMW
∗ (κ(ν))[x]/(x2)/(x2 − x · [−1])

(πn · u) 7−→ [u] +

(
n−1∑
i=0

⟨(−1)i⟩⟨u⟩

)
x

η 7−→ η

where the symbol x lives in degree 1. Then check that this is compatible with the relations
of Milnor-Witt K-theory and thus can be extended to a graded ring homomorphism on
KMW

∗ (F ). Now set
sπν (α) + ∂πν (α)x := Θπ

ν (α)

and ∂πν is the desired map.
Uniqueness follows because the group KMW

n (F ) is generated by all symbols of the form
ηm · [u1] · . . . · [un] and ηm[π] · [u2] · . . . · [un].

For Milnor-Witt K-theory, unlike Milnor K-theory, this residue homomorphism depends
not only on ν but also on the choice of π. To remove this dependency we will introduce
twisted Milnor-Witt K-theory.

Definition 1.9. Let F be a finitely generated field extension over k and L a line bundle
over F . Denote by L0 the complement of the zero section of L. Define

KMW
∗ (F,L) := KMW

∗ (F )⊗Z[F×] Z[L0] .

The analogous definition can be made for Milnor K-theory and this allows to define
twisted versions of the hyperbolic and reduction map:

hL : K
M
∗ (F,L) −→ KMW

∗ (F,L), ρL : K
MW
∗ (F,L) −→ KM

∗ (F,L)

4



1 Chow-Witt Rings

Recall that a line bundle over F is just a 1-dimensional vector space, and its zero
section is the zero element. For any l ∈ L0 there is an isomorphism L ∼= F descending to
L0 ∼= F× and ultimately

KMW
∗ (F )

∼=−→ KMW
∗ (F,L)

a 7−→ a⊗ l

but there is no canonical choice for this. Twisted Milnor-Witt K-theory is a priori not a
ring, but only a graded KMW

∗ (F )-module.
Now for a valuation ν : F → Z and a uniformizing parameter π define a twisted residue

homomorphism:

∂πν : K
MW
∗ (F,L) −→ KMW

∗−1 (κ(ν), (mν/m
2
ν)

∨ ⊗ Lκ(ν))
a⊗ l 7−→ ∂πν (a)⊗ π∨ ⊗ l

Here Lκ(ν) denotes the restriction of L to κ(ν), π denotes the class of π in mν/m
2
ν ,

and π∨ its κ(ν)-dual. The appearance of (mν/mν)
∨ will be explained in a moment.

This homomorphism is independent of the choice of π: For any π′ := u · π, we have
(π′)∨ = ⟨u−1⟩π∨ and further ∂π

′
ν (a) = ⟨u−1⟩∂πν (a) by [Fas20, Remark 1.9], therefore we

compute
∂π

′
ν (a)⊗ (π′)∨ = ⟨u−1⟩∂πν (a)⊗ ⟨u⟩π∨ = ∂πν (a)⊗ π∨ .

Thus one can drop π from the notation. Note that this is still dependent on the choice of
ν.

For the construction of Chow-Witt groups we will twist by a line bundle of the following
form.

Definition 1.10. Let f : X → Y be a morphism of schemes, with f ♯ : f−1OY → OX the
associated map of sheaves.
1. Let E be an OX -module. A Y -derivation of OX into E is a map D : OX → E of
OX -modules such that D ◦ f ♯ = 0 and D satisfies the Leibniz rule

D(ab) = aD(b) +D(a)b .

2. The sheaf (or module) of relative differentials ΩX/Y is the OX -module representing
the functor Derf♯(OX ,−), equipped with the universal derivation d : OX → ΩX/Y .

3. The determinant det E of a rank r OX -module is defined as the highest exterior power
ΛrE . The determinant of ΩX/Y is sometimes denoted ωX/Y .

The existence of ΩX/Y is shown for example in [Har77, II.8]. If f is smooth, ΩX/Y is
locally free and is also referred to as the cotangent bundle of f .

Example 1.11. 1. The sheaf of differentials ΩX/X along the identity on X is the zero
sheaf.

2. For a projective space Prk, the sheaf ωPr/k = detΩPr/k is isomorphic to the twisting
sheaf OPr(−r − 1) [Har77, II.8.20.1].

5



1 Chow-Witt Rings

We will consider the Milnor-Witt K-theory of κ(W ) twisted by the line bundle
det(Ωκ(W )/k). If i : X → Y is a regular embedding of smooth schemes, there is an
isomorphism

det(ΩX/k) ∼= i∗ det(ΩY/k)⊗ det(NXY )

of line bundles over X, where NXY is the normal bundle of X in Y (see after [Fas20, Eq.
1.4]). For a discrete valuation ν : F → Z with ring of integers Oν , maximal ideal mν and
residue field κ(ν), the quotient map Oν → κ(ν) induces a map F = Frac(Oν) → κ(ν)
with kernel mν , exhibiting (mν/m

2
ν)

∨ as the normal bundle of the morphism of schemes
Spec(κ(ν))→ Spec(F ). Therefore the above isomorphism reads

det(Ωκ(ν)/k) ∼= F ⊗ det(ΩF/k)⊗ (mν/m
2
ν)

∨ (1.1)

in this case. This also explains the appearance of (mν/m
2
ν)

∨ in the construction of the
twisted residue homomorphism - this homomorphism can also be interpreted as

∂πν : K
MW
∗ (F,detΩF/k ⊗ L) −→ KMW

∗−1 (κ(ν),detΩκ(ν)/k ⊗ Lκ(ν)) .

Next we will construct the so-called transfer morphism which will form the foundation
for both the Gersten-Witt differential and pushforwards. Consider the polynomial ring
F [t] and a monic irreducible polynomial p ∈ F [t] and denote F (p) = F [t]/(p). Then the
p-adic valuation νp : F (t)→ Z determines a residue homomorphism

∂p : K
MW
∗ (F (t),det(ΩF (t)/k)) −→KMW

∗−1 (F (p), (mp/m
2
p)

∨ ⊗F [t] det(ΩF [t]/k))

∼=KMW
∗−1 (F (p), det(ΩF (p)/k)) .

Fasel [Fas20, 1.20] proves the following, based on [Mor12, 3.24].

Proposition 1.12. The sequence

0 −→ KMW
i (F,det(ΩF/k)) −→ KMW

i (F (t), det(ΩF (t)/k))∑
p ∂p−−−−→

⊕
p

KMW
i−1 (F (p), det(ΩF (p)/k)) −→ 0

where the sum in the third term goes over all monic irreducible polynomials in F [t], is
split exact.

Denote by ∂∞ the residue homomorphism determined by the discrete valuation

ν∞ : F (t) −→ Z
f/g 7−→ deg(g)− deg(f) .

Definition 1.13. 1. For a finite field extension F/k and a monic irreducible polynomial
p ∈ F [t] define the transfer morphism as the composition

TrF (p),F : KMW
i−1 (F (p),det(ΩF (p)/k)) ⊆

⊕
p

KMW
i−1 (F (p), det(ΩF (p)/k))

s−→ KMW
i (F (t), det(ΩF (t)/k))

∂∞−−→ KMW
i−1 (F,det(ΩF/k))

where s is a section of
∑

p ∂p as described in the previous proposition.
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2. If L/F is another finite field extension, choose a filtration

F = F0 ⊆ . . . ⊆ Fn = L

such that for all i the field extension Fi is of the form Fi−1(pi) for some monic
irreducible polynomial pi ∈ Fi−1[t], and set

TrL,F = TrF1,F0 ◦ . . . ◦ TrFn,Fn−1 : K
MW
i (L,det(ΩL/k)) −→ KMW

i (F,det(ΩF/k)) .

The first part of the definition is independent of the choice of section s because the
composite

KMW
i (F,detΩF/k) −→ KMW

i (F (p),detΩF (p)/k)
∂∞−−→ KMW

i−1 (F,detΩF/k)

is trivial as explained in [Fas20, Remark 1.14]. The second part is proved by [Mor12,
4.27] to be independent of the chosen filtration.

Now let X be a (finite type, separated) scheme over k. We want to construct a residue
homomorphism KMW

i+1 (κ(x), det(Ωκ(x)/k))→ KMW
i (κ(y),det(Ωκ(y)/k)) for fixed x ∈ X(i),

y ∈ X(i+1). If x /∈ {y} set the residue homomorphism to be zero. Otherwise denote by Z̃

the normalization of {y} with all points of codimension ≥ 2 removed. Normal implies
regular and therefore, since k is perfect, Z̃ is smooth. The morphism i : Z̃ → X is finite.
Under these conditions, for any point z ∈ Z̃ of codimension 1 lying over y the composition

νdiv : κ(x)
× div−−→ Z⟨{z′} | z′ ∈ Z̃(1), i(z′) = y⟩ −→ Z⟨z⟩

is a discrete valuation with residue field κ(z) (see [Har77, before Lemma 6.1]) and we
consider the associated boundary morphism

∂div : K
MW
∗ (κ(x),L) −→ KMW

∗−1 (κ(z), (mdiv/m
2
div)

∨ ⊗ L
Z̃
) .

Set L = detΩκ(x)/k and insert the isomorphism Eq. (1.1) to obtain

∂div : K
MW
∗ (κ(x), detΩκ(x)/k) −→ KMW

∗−1 (κ(z),detΩκ(z)/k) .

Further if i(z) = y the field extension κ(y)/κ(z) is finite and thus there is a canonical
transfer

Trκ(z),κ(y) : K
MW
i (κ(z),det(Ωκ(z)/k)) −→ KMW

i (κ(y),det(Ωκ(y)/k)) .

Summing over the composition of these two maps for all z ∈ Z̃(1) with i(z) = y finally
yields a boundary morphism

∂x,y : K
MW
∗ (κ(x), det(Ωκ(x)/k)) −→ KMW

∗−1 (κ(y), det(Ωκ(y)/k))

for the Gersten-Witt complex. Morel [Mor12, 5.31] proves that this is in fact a chain
differential under the assumption that the characteristic of k is coprime to 2, and [Fel20]
removes this assumption. With this we can finally make the following definition.
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Definition 1.14. Let X be a scheme over k and L a line bundle over X. For every
integer j define the homological Gersten-Witt complex by

Ci(X,K
MW
∗ , j,L) =

⊕
x∈X(i)

KMW
j+i (κ(x),L ⊗ det(Ωκ(x)/k))

with differential ∂ : Ci(X,K
MW
∗ , j,L)→ Ci−1(X,K

MW
∗ , j,L) given by summing over the

residue homomorphisms defined above. If further X is smooth of dimension d, define the
cohomological Gersten-Witt complex

Ci(X,KMW
∗ , j,L) = Cd−i(X,K

MW
∗ , j − d,L ⊗ detΩ∨

X/k) =⊕
x∈X(i)

KMW
j−i (κ(x),L ⊗ det(Ωκ(x)/k)⊗ detΩ∨

X/k)

with differential ∂ : Ci(X,KMW
∗ , j,L)→ Ci+1(C,KMW

∗ , j,L).

The additional twist detΩ∨
X/k will later ensure that the pullback along a flat morphism

of schemes induces no change of twist on cohomological Chow-Witt groups. This makes
cohomological Chow-Witt groups with fixed twist a contravariant functor and will further
lead to the ring structure being Pic(X)/2)-graded. In contrast, for homological Chow-Witt
groups the definition is chosen so that pushforward induces no change of twist.

Definition 1.15. Let X be a scheme over k and L a line bundle over X. The homological
respectively (if X is smooth) cohomological Chow-Witt groups twisted by L are defined
by

C̃Hi(X,L) = Hi(C∗(X,K
MW
∗ ,−i,L)∗)

C̃H
i
(X,L) = H i(C∗(X,KMW

∗ , i,L)) .
The Milnor-Witt cohomology groups are defined by

H i(X,KMW
j ,L) = H i(C∗(X,KMW

∗ , j,L)) .

Spelled out, for homological Chow-Witt groups we take homology at the left-hand
term of

. . . −→
⊕
x∈X(i)

KMW
0 (κ(x), det(Ωκ(x)/k)) −→

⊕
y∈X(i−1)

KMW
−1 (κ(y),det(Ωκ(y)/k)) −→ . . .

and for cohomological Chow-Witt groups we take cohomology at the left-hand term of

. . . −→
⊕
x∈X(i)

KMW
0 (κ(x), det(mx/m

2
x)

∨) −→
⊕

y∈X(i+1)

KMW
−1 (κ(y), det(my/m

2
y)

∨) . . .

i.e. we always take (co)homology at the term containing subschemes V of (co)dimension
i and KMW

0 , and in both complexes the differentials decrease dimension (=increase
codimension) of subschemes and decrease the degree of KMW

∗ . Note that Chow-Witt
groups are precisely Milnor-Witt cohomology groups in diagonal bidegrees, i.e. i = j.
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Remark 1.16. This is not the original definition; [Fas05] and [Fas08] originally introduced
the Gersten-Witt complex as a fiber product of complexes which we will present in the
next section. The construction of the complex as detailed above is due to [Mor12] and
shown by [AF16, 2.8] to be equivalent to the classical definition.

1.3 Fiber Product Decomposition

In this section we will introduce some more cohomology theories and their relation to
Chow-Witt groups respectively Milnor-Witt cohomology. This will not only provide
context for Chow-Witt groups but also some useful tools for later computations.

Definition 1.17. Let F be a finitely generated field extension over k. The Witt ring
W(F ) consists of isometry classes of quadratic forms over F modulo metabolic forms
(direct sum of several copies of the hyperbolic form). It becomes a commutative ring with
direct sum and tensor product.

It is immediate from this construction that the Witt ring is isomorphic to GW(F )/h.

Example 1.18. 1. The Witt ring of a quadratically closed field is isomorphic to Z/2
[Lam05, 3.1].

2. The Witt ring of R is isomorphic to Z [Lam05, 3.2].

Definition 1.19. Let F be a finitely generated field extension over k. Consider the rank
map rk: GW(F ) → Z. It descends to a map W(F ) → Z/ rk(h) = Z/2 which is also
called rank.
1. The kernel of the latter is called the fundamental ideal I(F ) of the Witt ring.

2. Denote by Ii(F ) the powers of this ideal and by I
i
(F ) the quotient Ii(F )/Ii+1(F ).

3. The Witt K-theory of F denoted I∗(F ) (or sometimes KW
∗ (F )) is the graded ring

given by KW
i (F ) = Ii(F ), where for i ≤ 0 we set Ii(F ) = W(F ).

4. The quotient groups I
i
(F ) also assemble into a graded ring I

∗
(F ), sometimes called

reduced Witt K-theory.
All of these have twisted variants W(F,L), I(F,L), I∗(F,L), I∗(F,L) for a line bundle
L over F .

It follows from this definition that

W(F )/I(F ) ∼= (GW(F )/h)/I(F ) ∼= (GW(F )/I(F ))/h ∼= Z/ rk(h) ∼= Z/2 .

Thus one can form the following commutative square:

GW(F ) Z KM
0 (k)

W(F ) Z/2 KM
0 (k)/2

rk ∼=

rk ∼=

Thus the kernels of the two rank maps are isomorphic, which justifies calling the kernel
of rk : GW(F )→ Z the fundamental ideal of the Grothendieck-Witt ring and denoting
it by I(F ) as well.

9
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Example 1.20. 1. If F is a quadratically closed field (for example C), then GW(F ) ∼= Z
and W(F ) ∼= Z/2. Both rank maps are the identity and the fundamental ideal is zero.

2. If F = R, then GW(F ) ∼= Z[Z/2] and W(F ) ∼= Z. The top rank map sends both
elements ⟨1⟩, ⟨−1⟩ of Z/2 to 1 and the fundamental ideal is thus isomorphic to Z and
generated by the element ⟨1⟩ − ⟨−1⟩. The left vertical map sends ⟨1⟩ to 1 and ⟨−1⟩ to
−1 ∈W(F ) ∼= Z, and the bottom rank map is just the quotient map.

The Milnor conjecture on quadratic forms proved by [OVV07, 4.1] asserts that I
∗
(F ) is

isomorphic to KM
∗ (F )/2 as graded ring. Hence one can even form a commutative square

of graded rings

KMW
∗ (F,L) KM

∗ (F )

I∗(F,L) KM
∗ (F )/2

ρ

ρ̃

which by [Mor04, 5.3] is a pullback square. This is a fact that, to the author’s best
knowledge, actually relies on the characteristic of the base field k being different from 2,
compare also [Fas20, Rem. 1.5].
The inclusions Ii(F,L) ⊆ Ii−1(F,L) are given by multiplication with η ∈ KMW

−1 (F ),
which is compatible with the differential of the Gersten-Witt complex by construction as
in Thm. 1.8. Therefore one can define a subcomplex

Ci(X, I∗, j,L) =
⊕
x∈X(i)

Ij+i(κ(x),L ⊗ detΩκ(x) ⊗ detΩ∨
X/k)

and a quotient complex

Ci(X, I
∗
, j) =

⊕
x∈X(i)

I
j+i

(κ(x)) .

Similarly, dividing out η is compatible with the Gersten-Witt differential and thus one
an define a quotient complex

Ci(X,KM
∗ , j) =

⊕
x∈X(i)

KM
i+j(κ(x)) .

Observe that the Gersten complex and cohomology with coefficients in KM
∗ (F ) is in-

dependent of twist, thus those for KM
∗ (F )/2 and I

∗
are as well and therefore the line

bundle L is omitted from notation in these cases.

Definition 1.21. Let X be a smooth scheme. Define its i-th Ij-cohomology

H i(X, Ij ,L) = H i(C∗(X, I∗, j,L)
and reduced Ij-cohomology

H i(X, I
j
) = H i(C∗(X, I

∗
, j))

10



1 Chow-Witt Rings

The groups H i(X, I0,L) are sometimes also called Witt cohomology and denoted
H i(X,W,L), in view of I0(F ) = W(F ). Further define the Milnor cohomology and
(cohomological) Chow groups of X

H i(X,KM
j ) = H i(C∗(X,KM

∗ , j))

CHi(X) = H i(X,KM
i ) .

According to [AF16, 2.8] there is in fact a pullback square of chain complexes:

C∗(X,KMW
∗ , j,L) C∗(X,KM

∗ , j)

C∗(X, I∗, j,L) C∗(X, I
∗
, j)

Further one can deduce the following short exact sequences of graded rings from the
definitions of KMW

∗ , KM
∗ , I∗ and I

∗
, and analogous sequences of graded modules for their

twisted versions.

0 −→ KM
∗ (F )

h−→ KMW
∗ (F ) −→ I∗(F ) −→ 0

0 −→ KM
∗ (F )

·2−→ KM
∗ (F ) −→ KM

∗ (F )/2 ∼= I
∗
(F ) −→ 0

0 −→ I∗(F ) −→ KMW
∗ (F )

ρ−→ KM
∗ (F ) −→ 0

0 −→ I∗+1(F ) −→ I∗(F )
ρ̃−→ I

∗+1
(F ) −→ 0

All of these induce short exact sequences on chain complexes and thus long exact
cohomology sequences which assemble into the “key diagram” of [HW19, Section 2.4].

CHi(X) CHi(X)

H i(X, Ii+1,L) C̃H
i
(X,L) CHi(X) H i+1(X, Ii+1,L)

H i(X, Ii+1,L) H i(X, Ii,L) Chi(X) H i+1(X, Ii+1,L)

0 0

id

hL ·2

id

ρ

modhL

∂L

mod2 id

η ρ̃ β

(1.2)

Here Ch denotes mod 2-Chow groups. The maps ρ and ρ̃ are both called reduction map,
and hL is called the hyperbolic map. The differential β is referred to as the Bockstein.
The lower horizontal sequence consisting of the maps β, η, ρ̃ sometimes gets the nickname
Bär sequence. The fact that the leftmost and rightmost vertical as well as the topmost
horizontal arrows are identity maps is due to the pullback square of chain complexes
above. The four maps in the central square are ring homomorphisms.
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Hornbostel-Wendt prove the following useful statement about this diagram. This
already mentions the ring structure on Chow-Witt and Ij-cohomology, which we will
discuss in more detail in Section 1.6.

Proposition 1.22 ([HW19, Prop. 2.11]). Let X be a smooth scheme over k. Consider
the canonical ring homomorphism

c : C̃H (X) :=
⊕
i∈Z

⊕
L∈Pic(X)/2

C̃H
i
(X,L) −→ H∗(X, I∗,−)×⊕

L Ch∗(X)

⊕
L∈Pic(X)/2

ker ∂L

with structure maps for the fiber product as in the central square of the “key diagram”
above. This morphism is always surjective. It is injective in a given degree (i,L) if one of
the following conditions holds:
1. CHi(X) has no non-trivial 2-torsion.
2. the map η : H i(X, Ii+1,L)→ H i(X, Ii,L) is injective.

The map c is in fact a morphism of GW(k)-algebras, where on the right-hand side
GW(k) acts on the first factor via the action of W(k) ∼= GW(k)/h and on the second via
KM

0 (k) ∼= GW(k)/I(k).

1.4 Functoriality: Flat Pullback and Proper Pushforward

The first goal of this section is to define for every proper morphism f : X → Y of schemes
and a line bundle L on Y a map f∗ : C̃Hi(X, f

∗L)→ C̃Hi(Y,L) on Chow-Witt groups,
following the exposition of [Fas20, Section 2.3] (originally due to [Fas08]).

Let X, Y be schemes over k, L a line bundle over Y . Let x ∈ X(i) and y = f(x) ∈ Y(j).
We define a map

(f∗)x,y : K
MW
∗ (κ(x), det(Ωκ(x)/k)⊗ L) −→ KMW

∗+j−i(κ(y),det(Ωκ(y)/k)⊗ L)

by setting (f∗)x,y = 0 if the field extension κ(x) ⊆ κ(y) is infinite, and (f∗)x,y = Trκ(x),κ(y)
if that field extension is finite and thus i = j.
Recall that a morphism f : X → Y is called proper if it is separated, of finite type,

and universally closed.

Theorem 1.23 (Proper Pushforward (Fasel)). Let f : X → Y be a proper morphism
and denote by c the codimension of its image in Y . Then the morphisms

f∗ : C∗(X,K
MW
∗ , j, f∗L) −→ C∗(Y,K

MW
∗ , j,L)

and, if X and Y are smooth,

f∗ : C
∗(X,KMW

∗ , j, f∗L ⊗ detΩX/k) −→ C∗+c(Y,KMW
∗ , j + c,L ⊗ detΩY/k)

obtained by summing over the (f∗)x,y defined above are both morphisms of complexes. The
resulting maps on Chow-Witt groups and Milnor-Witt cohomology are also denoted f∗.
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Proof. See [Fas08, Corollaire 10.4.5].

As the pushforward morphism is constructed in [Fas08, Corollaire 10.4.5] from the
fiber product of chain complexes of [AF16, 2.8] (see before Prop. 1.22), it is evidently
compatible with the structure maps ρ, modh, ρ̃ and mod 2 of this fiber product as well
as the hyperbolic map hL which on the fiber product can be represented as ·(0, 2).

There is an isomorphism of line bundles det f∗Ω∨
Y/k ⊗ detΩX/k ∼= detΩX/Y by [Har77,

Prop. II.8.11]. Hence substituting L for detΩ∨
Y/k ⊗ L allows to write the pushforward

map as

C̃H
i−c

(X,detΩX/Y ⊗ f∗L) −→ C̃H
i
(Y,L) . (1.3)

For pullback morphisms there are the following two statements.

Theorem 1.24 (Flat Pullback (Fasel)). Let f : X → Y be a flat morphism and L a line
bundle over X. Then there are morphisms of complexes

f∗ : C∗(Y,K
MW
∗ , j, f∗L) −→ C∗−codimY X(X,K

MW
∗ , j − codimY X,detΩX/Y ⊗ L)

and, if X and Y are smooth,

f∗ : C∗(Y,KMW
∗ , j, f∗L) −→ C∗(X,KMW

∗ , j,L) .

The resulting maps on Chow-Witt groups and Milnor-Witt cohomology are denoted f∗.

Proof sketch. This is a very vague sketch. See [Fas08, Corollaire 10.4.2] for details.
A morphism of schemes f : X → Y induces a functor f∗ : Db(P(Y )) → Db(P(X))

between the derived categories of bounded presheaves over Y and X and that induces a
morphism on Witt groups (which we will not introduce in detail in this work). Checking
that this morphism is compatible with the inclusions of the fundamental ideals as well as
the differentials of the Gersten-Witt complex produces two morphisms of complexes

f∗ : C∗(Y, I
∗, j, f∗L) −→ C∗−codimY X(X, I

∗, j − codimY X,L ⊗ ΩX/Y )

and, if X and Y are smooth,

f∗ : C∗(Y, I∗, j, f∗L) −→ C∗(X, I∗, j,L) .

Forming the fiber product with the Gersten complex for Milnor K-theory, after checking
compatibility of f∗ with the structure maps of this fiber product, yields the statement.

Again, the pullback morphism is compatible with the structure maps ρ and modh of
this fiber product as well as the hyperbolic map hL.

Proposition 1.25 (General Pullback (Fasel)). Let X and Y be smooth schemes over
k, L a line bundle over Y and f : X → Y any morphism of schemes. Then there is a
pullback map

f∗ : C̃H
i
(Y,L) −→ C̃H

i
(X, f∗L)

Proof. See [Fas20, 3.3].
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1.5 Properties

The following will make repeated appearance in many computations throughout this
work.

Proposition 1.26 (Localization Sequence). Let X be a smooth scheme over k, L a line
bundle over X, ι : Z ↪→ X a closed smooth subscheme of codimension c and j : U ↪→ X
its complement. Then there is for each i ∈ Z a long exact sequence called the localization
sequence:

. . . −→ C̃H
i−c

(Z, ι∗L ⊗ detΩZ/X)
ι∗−→ C̃H

i
(X,L) j∗−→ C̃H

i
(U, j∗L)

−→ H i−c+1(Z,KMW
i−codimX(Z), ι

∗L ⊗ detΩZ/X) −→ . . .

This sequence continues indefinitely to the left and right meaning that Milnor-Witt
cohomology groups of all possible bidegrees occur.
Localization sequences are compatible with pullbacks of scheme morphisms in the

following sense.

Lemma 1.27. Let f : X → Y be a morphism of smooth schemes and L a line bundle
on Y . Let ι : Z ⊆ Y a closed subscheme of codimension c and j : U = Y ∖ Z ⊆ Y its
complement, and denote XZ = f−1(Z) and XU = f−1(U). Assume that XZ is smooth
and further that there is an isomorphism of bundles f∗NZY ∼= NXZ

X. Then there is a
commutative ladder of localization sequences:

. . . C̃H
i−c

(Z, ι∗L ⊗ detΩZ/Y ) C̃H
i
(Y,L) C̃H

i
(U, j∗L) . . .

. . . C̃H
i−c

(XZ , f
∗ι∗L ⊗ detΩXZ/X) C̃H

i
(X, f∗L) C̃H

i
(XU , f

∗j∗L) . . .

ι∗

f∗

j∗

f∗

∂

f∗

∂

Proof. The argument for Witt cohomology from [HMW24, Lemma 3.5] translates directly
to this setting.

Proof. Fasel [Fas20, Section 2.2] proves that under these conditions, there is a long exact
sequence

. . . −→ C̃H
i−codimX(Z)

(Z, i∗L⊗det i∗Ω∨
X/k⊗detΩZ/k)

i∗−→ C̃H
i
(X,L) j∗−→ C̃H

i
(U, j∗L) . . .

The pushforward (s0)∗ exists because s0 is a closed immersion and thus proper. Substi-
tuting line bundles as in Eq. (1.3) yields the statement.

Proposition 1.28 (Square Periodicity). Let X be a smooth scheme over k and L and
M line bundles over X. For all i there is a canonical isomorphism

φM : C̃H
i
(X,L) −→ C̃H

i
(X,L ⊗M⊗2) .

When the line bundleM is clear from context, we will sometimes drop it from the notation
and simply write φ.
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This will be crucial for defining a total Chow-Witt ring in the next section. The
statement seems to be well known, but nevertheless the author was not able to find a
written account for Chow-Witt groups, so we will give a short argument here.

Proof. Consider again the pullback square of Section 1.3. The complexes with coefficients
in KM

∗ (k) and I
∗
(k) ∼= KM

∗ (k)/2 are independent of twist by construction. For the
complex with coefficients in I∗(k), the square periodicity map comes from multiplication

with the quadratic form [M⊗2 id−→ OX ⊗M⊗2] ∈ H0(X, I0,M⊗2) = W 0(X,M⊗2). A
proof that this is indeed an isomorphism can be found for example in [BC12].

From this constructions the following is immediate.

Lemma 1.29. The following diagram commutes.

C̃H
i
(X,L) C̃H

i
(X,L ⊗M⊗2)

CHi(X)

φ

ρ
ρ

Proposition 1.30 (Homotopy Invariance). Let X be a smooth scheme and π : E → X a
vector bundle. Then the pullback

π∗ : C̃H (X) −→ C̃H (E)

is a ring isomorphism.

Proof. See [Fas08, Corollaire 11.3.2].

1.6 Ring Structure

The first step towards defining the multiplicative structure for the Chow-Witt ring is the
exterior product

µ : H i(X,KMW
j ,L)⊗H i′(Y,KMW

j′ ,L′) −→ H i+i′(X × Y,KMW
j+j′ , pr

∗
1L ⊗ pr∗2L′)

for X and Y smooth schemes and L, L′ line bundles over X and Y , respectively. For this
consider the fiber product of chain complexes from Section 1.3. The external products
on C∗(X,KM

∗ , j) as defined by [Ros96] and C∗(X, I∗, j,−) as defined by [GN03] induce
a product on their fiber product C∗(X,KMW

∗ , j,−). Fasel [Fas07, 4.12] proves that this
product is well-defined and descends to a product on cohomology.

Definition 1.31. Let X be a smooth scheme over k and L, M line bundles over X.
Define the product on Milnor-Witt cohomology

H i(X,KMW
j ,L)⊗H i′(X,KMW

j′ ,M) −→ H i+i′(X,KMW
j+j′ ,L ⊗M)

as the composition of the exterior product µ with the pullback along the diagonal map
∆: X → X ×X.
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This product is associative by [Fas07, Prop. 6.6]. It is neither commutative nor anti-
commutative, but satisfies the following property due to [HW19, Prop. 2.5].

Lemma 1.32. Let X be a smooth scheme over k and L and M line bundles over X.
Let α ∈ C̃H

i
(X,L) and β ∈ C̃H

j
(X,M). Then

βα = ⟨−1⟩ijαβ .

It immediately follows that all classes in degree 0 are central in the Chow-Witt ring.
In Prop. 1.28 we found that Chow-Witt groups are invariant under squares of line

bundles. So when adding up all Chow-Witt groups to form a ring we don’t want to
include all of these isomorphic groups, but only sum over Pic(X)/2. For this we need to
ensure the following compatibility.

Lemma 1.33. The square periodicity isomorphism is compatible with multiplication in
the sense that the following diagram commutes for all line bundles L, L′,M,M′ on X.

C̃H
i
(X,L)× C̃H

j
(X,L′) C̃H

i+j
(X,L ⊗ L′)

C̃H
i
(X,L ⊗M⊗2)× C̃H

j
(X,L′ ⊗ (M′)⊗2) C̃H

i+j
(X,L ⊗ L′ ⊗ (M⊗M′)⊗2)

mult

φM ×φM′ φM⊗M′

mult

Proof. As explained in the proof of Prop. 1.28, considering KMW
∗ as the fiber product

I∗×KM
∗ /2

KM
∗ exhibits the square periodicity isomorphism as the fiber product of the iden-

tity on Chow groups and the square periodicity isomorphism for Ij-cohomology. The latter
is given by multiplication with the quadratic form [M→M∨⊗M⊗2] ∈ H0(X, I0,M⊗2)

by [BC12]. To prove the Lemma we have to show that for α ∈ C̃H
i
(X,L) and β ∈ C̃H

j
(X,L′):

φM(α) · φM′(β) = α · [M−→M∨ ⊗M⊗2] · β · [M′ −→ (M′)∨ ⊗ (M′)⊗2]

= αβ · [M−→M∨ ⊗M⊗2] · [M′ −→ (M′)∨ ⊗ (M′)⊗2]

= αβ · [M⊗M′ −→ (M⊗M′)∨ ⊗ (M⊗M′)⊗2]

= φM⊗M′(αβ)

The second equality holds because the class [M→M∨ ⊗M⊗2] lives in degree 0 and is
thus in the center of the Witt cohomology ring as per Lemma 1.32. The third equality
follows because the product in the Witt ring W(k) is given by tensor product of quadratic
forms.

A very detailed account of all technicalities concerning the choices of line bundles
representing classes in Pic(X)/2 and the necessary compatibilities can be found in [BC12].

Definition 1.34. We define the total Chow-Witt ring of a smooth scheme X as the
graded ring

C̃H (X) :=
⊕
i∈Z

⊕
L∈Pic(X)/2

C̃H
i
(X,L)

with the multiplication detailed above.
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We will use the notation C̃H for the Z× (Pic(X)/2)-graded ring, as opposed to C̃H
∗

which in the literature is commonly used to denote the Z-graded ring of Chow-Witt
groups with trivial twist. The computations in this work are all concerned with the total

Chow-Witt ring C̃H .

Proposition 1.35. Let X, Y be smooth schemes over k and f : X → Y a morphism.
Then the pullback map

f∗ : C̃H (Y ) −→ C̃H (X)

is a ring homomorphism.

Proof. Previously in Prop. 1.25 we have constructed a pullback homomorphism of groups

f∗ : C̃H
i
(Y,L) −→ C̃H

i
(X, f∗L)

for each i ∈ Z and L a line bundle over Y . These assemble into a map⊕
i

⊕
L∈Pic(Y )

C̃H
i
(Y,L) −→

⊕
i

⊕
L∈Pic(Y )

C̃H
i
(X, f∗L)

which is shown in [Fas07, 7.2] to be a ring homomorphism. Further f induces a pullback
map f∗ : Pic(Y )→ Pic(X) —which is in general neither injective nor surjective —and
this in turn induces⊕

i

⊕
L∈Pic(Y )

C̃H
i
(X, f∗L) −→

⊕
i

⊕
M∈Pic(X)

C̃H
i
(X,M) .

Here the multiplicative structure on the left hand side is inherited from that of the right
hand side and hence it is easy to check that this is a ring homomorphism as well. Now
to get to the total Chow-Witt rings indexed over the mod 2-Picard group, consider the
diagram ⊕

i

⊕
L∈Pic(Y ) C̃H

i
(Y,L)

⊕
i

⊕
M∈Pic(X) C̃H

i
(X,M)

⊕
i

⊕
L∈Pic(Y )/2 C̃H

i
(Y,L)

⊕
i

⊕
M∈Pic(X)/2 C̃H

i
(X,M)

f∗

f∗

where the vertical arrows are the quotient maps dividing out all square periodicity
isomorphisms. The bottom horizontal map f∗ then emerges from the universal property
of quotients and is automatically a ring homomorphism.

There are also ring structures on Chow groups, Ij-cohomology and I
j
-cohomology

defined in an analogous way as composition of an exterior product and the pullback along
the diagonal map. The reduction maps

modhL : C̃H
i
(X,L) −→ H i(X, Ii,L)

ρ : C̃H
i
(X,L) −→ CHi(X)

ρ̃ : H i(X, Ii,L) −→ H i(X, I
i
)

17
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are all Z-graded ring homomorphisms with respect to these products, essentially because
they are induced by graded ring homomorphisms

KMW
∗ (k) −→ KMW

∗ (k)/η = KM
∗ (k)

KMW
∗ (k) −→ KMW

∗ (k)/h = I∗(k)

I∗(k) −→ I∗(k)/η = I∗(k)/I∗+1(k) = I
∗
(k) .

In the case of ρ and ρ̃, these ring homomorphisms forget the Pic(X)/2-grading on the
domain and regard it only as a Z-graded ring, with i-th degree⊕
L∈Pic(X)/2

C̃H
i
(X,L) −→ CHi(X) respectively

⊕
L∈Pic(X)/2

H i(X, Ii,L) −→ H i(X, I
i
) .

Definition 1.36. Let X be a smooth scheme. We denote the Chow ring of X by

CH∗(X) =
⊕
i∈Z

CHi(X)

and the total Ij-cohomology ring by

H (X, I∗) =
⊕
i∈Z

⊕
L∈Pic(X)/2

H i(X, Ii,L)

with the multiplicative structures detailed above.

1.7 Equivariant Chow-Witt Rings

In this section we define the Chow-Witt ring C̃H (BG) of the classifying space BG of
an algebraic group G following Totaro [Tot99]. Such a classifying space always exists
in Morel-Voevodsky’s A1-homotopy category, but not in the category of schemes. It is
however possible to approximate BG by certain schemes and these suffice (and are in
fact quite useful) to compute the Chow-Witt ring.

Proposition 1.37 (Totaro, Asok-Fasel). Let G be a linear algebraic group over k and s
a natural number. Let V be a finite-dimensional faithful G-representation over k such
that G acts freely outside a G-invariant closed subset S ⊆ V of codimension ≥ s, and
the quotient (V ∖ S)/G exists as a scheme over k. Then Pic((V ∖ S)/G) is independent
of the choices of V and S if s ≥ 3, the Chow group CHi((V ∖ S)/G) is independent
of V and S, and for a line bundle L ∈ Pic((V ∖ S)/G) and i < s − 1, the Chow-Witt

group C̃H
i
((V ∖ S)/G,L) is independent of V and S. We say that (V ∖ S)/G is an

approximation for BG in codimension < s− 1.

In the A1-homotopy category, the colimit over a family {(Vi ∖ Si)/G}i∈N as in the
proposition with codimSi ≥ i is in fact homotopy equivalent to the classifying space
BétG [MV99, Prop. 4.2.6]. The computations in this work, however, will all take place in
the category of schemes. The above result is due to [Tot99, 1.1] for Chow groups and
was observed by [AF16, 3.3] and [HW19, 3.1] to transfer to Chow-Witt groups.
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1 Chow-Witt Rings

Proof. For the statement about the Picard group, note that according to [EH16, 1.30] it
is isomorphic to the first Chow group CH1((V ∖ S)/G) which is independent of V and S
by [Tot14, 2.5].

Fix a (finite-dimensional faithful) representation V and let S ⊆ S′ ⊆ V be two subsets
satisfying the conditions. Consider the decomposition

(S′ ∖ S)/G
i
↪−→ (V ∖ S/G)

j
←−↩ (V ∖ S′)/G .

The subset S/G ⊆ S′/G being closed, it follows from excision [AF16, Lemma 2.13] that
j∗ is an isomorphism on Chow-Witt groups in codimension < s− 1. In case S and S′ are
smooth this also follows from the localization sequence

. . . −→ C̃H
i−r

((S′ ∖ S)/G, i∗L ⊗ detΩ((S′∖S)/G)/((V ∖S)/G))

i∗−→ C̃H
i
((V ∖ S)/G,L) j∗−→ C̃H

i
((V ∖ S′)/G, j∗L) −→ . . .

where r is the codimension of (S′ ∖ S)/G in (V ∖ S)/G, since Chow-Witt groups (and,
in fact, all Milnor-Witt and similar cohomology groups) vanish in negative codimension.
For two closed subsets S ⊈ S′ apply the same argument to S ⊆ S ∪ S′ and S′ ⊆ S ∪ S′.
Now let V and W be two representations with subsets S ⊆ V and T ⊆ W sat-

isfying the conditions, and let s be a mutual lower bound for the codimensions of
these subsets. Consider the vector bundles (V ×W ) ∖ (S ×W )/G → (V ∖ S)/G and
(V ×W )∖ (V ×T )/G→ (W ∖T )/G. Independence of S as proven above shows that the
two total spaces have isomorphic Chow-Witt groups in degrees < s− 1, and homotopy
invariance shows that the same is true for the base spaces.

Example 1.38. Consider the group Gm, acting by multiplication on V = Ar+1 for some
r ≥ 1. This action is free outside of S = {0} which has codimension r + 1. The quotient
(Ar−1 ∖ {0})/Gm

∼= Pr exists as a scheme. Thus Pr is an approximation for BGm in
codimension < r.

Fasel [Fas13, 11.8] computes

C̃H
i
(Pr,O) ∼=


GW(k) i = 0, or i = r and r odd

Z 0 < i ≤ r and i even

2Z 0 < i < r and i odd

C̃H
i
(Pr,OPr(1)) ∼=


2Z 0 ≤ i < r and i even

Z 0 ≤ i ≤ r and i odd

GW(k) i = r and r even.

Thus we find

C̃H
i
(BGm,OBGm)

∼=


GW(k) i = 0

Z i > 0 and i even

2Z i > 0 and i odd

C̃H
i
(BGm,OBGm(1))

∼=

{
2Z i ≥ 0 and i even

Z i ≥ 0 and i odd
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The factor 2 indicated that the image of the respective group under reduction ρ to the
Chow group is generated by 2.

Example 1.39. Denote by Va the line bundle over Spec(k) associated to the 1-dimension
representation of Gm given by λ.v = λn ·v. Then (Vn× (V r+1

1 ∖{0}))/Gm is a line bundle
over (V r+1

1 ∖ {0})/Gm
∼= Pr and the complement of its zero section is an approximation

for Bµn in codimension < r, as will be explained in Section 2.1. This approximation
was already used by [Tot14] and [Bro03] to compute the Chow groups of Bµn and then
adapted by [LM23] to compute the Chow-Witt groups of Bµn if n is even. For both
computations, one can consider the localization sequence associated to the decomposition

Pr s0−→ (Vn × (V r+1
1 ∖ {0}))/Gm ←↩

((
Vn × (V r+1

1 ∖ {0})
)
/Gm

)
∖ s0(Pr) .

For Chow groups it then easily follows that

CHi(Bµn) ∼= CHi(BGm)/n

and one obtains
CH∗(Bµn) ∼= Z[c]/n · c

where c corresponds to the first Chern class of the tautological bundle OBµn(−1). For
Chow-Witt groups the sequence will turn out to be more complicated. This will be the
subject of Section 2.2.

The existence of such V and S for a given linear algebraic group G and codimension s
is guaranteed by [Tot99, Remark 1.4]. This allows for the following definition.

Definition 1.40. Let G be a linear algebraic group over k. Set

Pic(BG) ∼= Pic((V ∖ S)/G)

for V and S as in Prop. 1.37 with codimension of S greater than 2, and for L ∈ Pic(BG)
set

C̃H
i
(BG,L) ∼= C̃H

i
((V ∖ S)/G,L)

for V and S as in Prop. 1.37 with codimension of S greater than i + 1. The product

of two classes α ∈ C̃H
i
(BGm,L), β ∈ C̃H

j
(BGm,M) is defined as their product in an

approximation of BG in codimensions ≥ i+ j. This is well-defined because the map j∗

in the proof of Prop. 1.37 is a ring homomorphism. The ring obtained in this way is the

total Chow-Witt ring C̃H (BG). The Chow ring CH∗(BG) is defined analogously.

The product obtained this way is well-defined because the map j∗ in the localization
sequence in the proof of Prop. 1.37 is a ring homomorphism.

The same argument as for Prop. 1.37 proves the following two statements.

Corollary 1.41. Let G, V and S be as in Prop. 1.37. Then for i < s− 1 and all j, the
Milnor-Witt cohomology H i((V ∖ S)/G,KMW

j ,L) is independent of the choice of V and
S.
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Corollary 1.42. Let G, V and S be as in Prop. 1.37. Then for i < s− 1 and all j, the
Ij-cohomology H i((V ∖ S)/G, Ij ,L) is independent of the choice of V and S.

This allows for a definition of non-diagonal Milnor-Witt and Ij-cohomology groups of
a classifying space completely analogous to Def. 1.40.

Corollary 1.43. Let G and H be linear algebraic groups over k. Let V be a finite-
dimensional faithful G-representation with subset S ⊆ V of codimension ≥ s and W a
finite-dimensional faithful H-representation with subset T ⊆W of codimension ≥ t as in

Prop. 1.37. Then C̃H
i
((V ∖ S)/G× (W ∖ T )/H,L) for i < min(s, t)− 1 is independent

of V , S, W and T .

Proof. Consider V ×W as the obvious representation of the group G×H. Then G×H
acts freely outside of (S ×W ) ∪ (V × T ) and the latter has codimension ≥ min(s, t) in
V ×W . Thus one can apply Prop. 1.37.

1.8 Euler Classes

Definition 1.44. Let X be a smooth scheme, π : E → X a vector bundle of rank r with
zero section s0, L a line bundle over X and i an integer. The Euler map of π is defined
as the composition

C̃H
i−r

(X,L ⊗ ωE/X))
(s0)∗−−−→ C̃H

i
(E, π∗L) (π∗)−1

−−−−→ C̃H
i
(X,L)

and the Euler class e(E) or e(π) ∈ C̃H
r
(X,ω∨

E/X) is the image of 1 ∈ C̃H
0
(X,O) under

this map. The same definition can be made for Ij-cohomology (also called Euler class
e), Chow groups (called top Chern class cr) and mod 2-Chow groups (called top Stiefel-
Whitney class cr).

Since in this work we will only ever deal with top Chern and Stiefel-Whitney classes,
we will omit the index r from the notation. As explained in [Fas08, Section 13.2] there is
an isomorphism of vector bundles det(ΩE/X) ∼= π∗ det(E∨). Note that the line bundles
detE and detE∨ differ by a square and thus the Chow-Witt groups twisted by these
are isomorphic. This justifies considering e(E) to live in C̃H

r
(X,detE∨) even though

technically it lives in C̃H
r
(X,detE), which in some cases makes the notation slightly

more readable (e.g. writing O(1) instead of O(−1)). As explained after Thms. 1.23
and 1.24, the Euler map is compatible with the maps ρ, ρ̃, modhL and mod 2 introduced
in the diagram Eq. (1.2), that is, ρ(e(E)) = c(E), ρ̃(e(E)) = c(E) and so on. Further the
hyperbolic map hdetΩE/X

sends c(E) to h e(E): The hyperbolic map commutes with the
Euler map, and since the latter is GW(k)-linear it sends hO(1) = h = h · 1 to h · e(E).

We will prove a formula for the Euler class of the tensor product of certain line bundles,
following [Lev20, Theorem 10.1(2)].
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Proposition 1.45. Let X be a smooth scheme over k and L,M line bundles over X.
Then

e(L ⊗M⊗2) = e(L) + hL(c(M))

where hL∨ : CH1(X)→ C̃H
1
(X,L) is the hyperbolic map. In particular:

e(L⊗n) =

{
n
2 · hO(c(L)) n even
n
2h · e(L) n odd

Proof. Let us first recall where all the occurring classes live. The Euler class e(L) is an
element of C̃H

1
(X,L), and likewise e(L⊗M⊗2) ∈ C̃H

1
(X,L⊗M⊗2) which by quadratic

periodicity (Prop. 1.28) is isomorphic to C̃H
1
(X,L). The Chern class c(M) lives in

CH1(X).
We start by proving the statement for the classifying space for line bundles BGm = P∞

together with the tautological bundle L = M = O(−1). BGm is not a scheme but a
motivic space, but according to Prop. 1.37 one can understand its Chow-Witt groups and
Euler classes through Pr for r sufficiently large. Denote by O(n,m) the line bundle over
BGm ×BGm that is the tensor product of the pullback of OBGm(n) on the first factor
and the pullback of OBGm(m) on the second factor. We want to determine the Euler class
of the bundle L⊗M2 = O(−1,−2) over BGm ×BGm. Consider the reduction map ρ to
CH1(BGm ×BGm) which maps the Euler class of a line bundle to its first Chern class.
The first Chern class is additive, thus ρ e(L ⊗M⊗2) = c(L ⊗M⊗2) = c(L) + 2 c(M).

Under the same map e(O(−1, 0)) ∈ C̃H
1
(BGm×BGm,O(−1, 0)) is sent to c(O(0,−1)),

and hO(−1,0)(c(O(0,−1))) is sent to 2 c(O(0,−1)). The reduction map is injective in this
case, since its kernel is the image of H1(BGm ×BGm, I

1,O(−1,−2)) in the long exact
sequence coming from the sequence of sheaves Ij+1 → KMW

j → KM
j as stated in

Section 1.3, and that group will be shown to vanish in Thm. 3.5 (which does not rely on
this Prop.). From this it follows that e(O(−1,−2)) = e(O(−1, 0))+hO(−1,0)(c(O(0,−1))).

Now for the general statement. Let L andM be two line bundles over X. According to
[MV99, Prop. 4.3.8] there exist classifying maps f, g : X → BGm so that L ∼= f∗O(−1)
andM∼= g∗O(−1) and therefore pr∗1L⊗ pr∗2M⊗2 ∼= (f, g)∗O(−1,−2) over BGm×BGm.
Thus we compute:

e(L ⊗M⊗2) = e((f, g)∗O(−1,−2))
= (f, g)∗ e(O(−1,−2))
= (f, g)∗ e(O(−1, 0)) + (f, g)∗hO(−1,0)(c(O(0,−1)))
= (f, g)∗ e(O−1, 0) + h(f,g)∗O(−1,0)((f, g)

∗ c(O(0,−1)))
= e(L) + hL(c(M))

The statement about L⊗n can be deduced inductively, inserting hL(cL) = h e(L) in the
odd case.
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Remark 1.46. For arbitrary line bundles L,M over a scheme X there is no formula
of this kind as explained in the third paragraph of [Lev20, Section 10]: Consider the
universal case X = BGm ×BGm, L = pr∗1OBGm(−1),M = pr∗2OBGm(−1). Then

e(O(−1, 0)) ∈ C̃H
1
(BGm ×BGm,O(1, 0))

e(O(0,−1)) ∈ C̃H
1
(BGm ×BGm,O(0, 1))

e(O(−1, 0)⊗O(0,−1)) = e(O(−1,−1)) ∈ C̃H
1
(BGm ×BGm,O(1, 1)) .

Thus to express e(O(−1,−1)) in terms of e(O(−1, 0)) and e(O(0,−1)), one would addi-
tionally need classes in degrees (0,O(1, 0)) and (0,O(0, 1)). Levine now claims that the
groups in those degrees vanish, which is not quite correct since [Wen24, Theorem 1.1]

does not imply C̃H
0
(BGm,O(1)) = 0 as stated in [Lev20, Section 10, p.2220]. The rest

of Levine’s argument, however, still stands: in Cor. 4.3 we prove that the subgroup(
C̃H

0
(BGm,O(1, 0)) · C̃H

1
(BGm,O(0, 1))

)
+
(
C̃H

0
(BGm,O(0, 1)) · C̃H

1
(BGm,O(1, 0))

)
⊆ C̃H

1
(BGm,O(1, 1))

does not contain e(L ⊗M) but only 2 · e(L ⊗M) (using the symbols of Cor. 4.3: the
subgroup on the left is generated by H1e2 and H2e1, and the only relation in degree
(1,O(1, 1)) is H1e2 +H2e1 − he3 from Eq. (4.3), so e3 cannot be expressed as a linear
combination of H1e2 and H2e1).
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2 The Chow-Witt Ring of Bµn

Throughout this chapter, let n be a positive natural number and the base field k be a
perfect field with characteristic coprime to 2 and n. Denote by µn the group of roots of
unity, a linear algebraic group given as a scheme by Spec(k[x]/(xn− 1)). The main result
in this chapter is to compute the total Chow-Witt ring

C̃H (Bµn) =
⊕
i∈Z

⊕
L∈Pic(Bµn)/2

C̃H
i
(Bµn,L)

for odd n. The strategy closely follows that for even n due to [LM23]. The model for
Bµn described here was originally constructed in [Voe03, Lemma 6.3] and used in [Bro03,
Theorem 7.1] and [Tot14, Theorem 2.10] to compute its Chow groups.

2.1 A Model for Bµn

We construct an approximation of Bµn in the sense of Prop. 1.37.
For a ∈ Z denote by Va the vector bundle over Spec(k) associated to the 1-dimensional

representation of Gm with action given by λ.v = λa · v. Products of such represen-
tations are always considered with diagonal action. As explained in Example 1.38
(V r

1 ∖ {0})/Gm ≃ Pr−1 is an approximation of BGm in codimension < r − 1. Over
this space, consider the bundle

Ern :=
(
Vn × (V r+1

1 ∖ {0})
)
/Gm −→ (V r+1

1 ∖ {0})/Gm

given by projection on the second factor. Lemma 2.2 will show that this is a line bundle.
Note that the zero coordinate in the factor Vn is the image of the zero section s0 of the
line bundle (Vn × (V r+1

1 ∖ {0}))/Gm.

Lemma 2.1. There is a map of Gm-bundles over Pr(
V r+1
1 ∖ {0}

)
/µn −→

(
(Vn ∖ {0})× (V r+1

1 ∖ {0})
)
/Gm

inducing isomorphisms on Chow-Witt groups in codimension < r − 1.

Proof. See the proof of [Bro03, Theorem 7.1(i)].

Since (V r+1
1 ∖ {0})/µn is an approximation for Bµn in codimension < r− 1, this shows

that Ern ∖ s0(Pr) is also an approximation for computing these Chow-Witt groups. The
advantage of using Ern∖ s0(Pr) over (V r+1

1 ∖{0})/µn is that the former can be embedded
into a line bundle over Pr, namely the twisting bundle O(n), as the complement of the
zero section as shown in the following lemma.
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Lemma 2.2 ([LM23, Section 4.1.4]). For any n ∈ Z, the line bundle Ern is isomorphic
to O(n) over Pr.

Proof. We start by proving the statement for n = −1. The tautological line bundle
O(−1) is the subscheme of Pr×Ar+1 containing those points ([X0 : . . . : Xr], (Y0, . . . , Yr))
for which there is a scalar t such that (Y1, . . . , Yr) = t(X0, . . . , Xr). Denote by L the
pullback of O(−1) along V r+1

1 ∖ {0} → V r+1
1 /Gm

∼= Pr. This is the subscheme of
(V r+1

1 ∖ {0})× V r+1
0 containing those points ((X0, . . . , Xr), (Y0, . . . , Yr)) for which there

is a scalar t such that (Y1, . . . , Yr) = t(X0, . . . , Xr). This is an Gm-invariant subscheme
and thus inherits the Gm-action from (V r+1

1 ∖ {0})× V r+1
0 .

Now consider the map

φ : L −→ (V r+1
1 ∖ {0})× V−1

((X0, . . . , Xr), (Y0, . . . , Yr)) 7−→ (X0, . . . , Xr, t)

= ((X0, . . . , Xr), (tX0, . . . , tXr))

which is readily checked to be an isomorphism. This map is equivariant with respect to
the Gm-action previously defined on each side:

φ(λ.(X,Y )) = φ(λ.(X, tX)) = φ((λX, tX)) = (X, t · λ−1) = λ.φ((X, tX))

Therefore (V r+1
1 ∖ {0})× V−1/Gm

∼= L/Gm
∼= O(−1).

All other line bundles O(n) can be constructed as tensor powers of O(−1), adhering to
the rule O(m)⊗O(n) ∼= O(m+ n). Using that tensor products commute with quotients
we have ((

Vm × (V r+1
1 ∖ {0})

)
/Gm

)
⊗
((
Vn × (V r+1

1 ∖ {0})
)
/Gm

)
∼=
(
(Vm ⊗ Vn)× (V r+1

1 ∖ {0})
)
/Gm

∼=
(
Vm+n × (V r+1

1 ∖ {0})
)
/Gm

as line bundles over Pr ∼= (V r+1
1 ∖ {0})/Gm for all m,n ∈ Z. Thus the statement holds

for all n ∈ Z.

The scheme Ern ∖ s0(Pr) will serve as an approximation of Bµn in the sense of
Prop. 1.37 throughout the next sections. The bundle map π : Ern ∖ s0(Pr)→ Pr induces
a ring homomorphism

pi∗ : C̃H (Pr) −→ C̃H (Ern ∖ s0(Pr))

for all r and thus also
π∗ : C̃H (BGm) −→ C̃H (Bµn) .
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2 The Chow-Witt Ring of Bµn

2.2 Computing the Chow-Witt Groups

The following known result will be used in the computation.

Theorem 2.3 ([Fas13, Theorem 11.7]). Let k be a perfect field of characteristic coprime
to 2. Then we have the following isomorphisms of GW(k)-modules.

H i(BGm,K
MW
j ,O) ∼=


KMW
j (k) i=0

KM
j−i(k) i ≥ 2 even

2KM
j−i(k) i ≥ 1 odd

H i(BGm,K
MW
j ,O(1)) ∼=

{
2KM

j−i(k) i ≥ 0 even

KM
j−i(k) i ≥ 1 odd.

The factor 2 indicates that the image of the respective group under reduction ρ to the
Chow group is generated by 2.

The total Chow-Witt ring of BGm has been computed in [Wen24, Theorem 1.1]:

Proposition 2.4 (Wendt). There is an isomorphism of GW(k)-algebras

C̃H (BGm) ∼= GW(k)[e,H]/(I(k) · e, I(k) ·H,H2 − 2h)

where e ∈ C̃H
1
(BGm,O(1)) corresponds to the Euler class of OBGm(−1) and H corre-

sponds to the element represented by (0, 2) in

C̃H
0
(BGm,O(1)) ⊆ H0(BGm, I

0,O(1))× CH0(BGm) .

The inclusion in the last line is in fact an inclusion by [HW19, Prop. 2.11] if CH0(BGm)
has trivial 2-torsion which is satisfied since by [Tot14, Thm 2.10], CH0(BGm) ∼= Z.
By [EH16, Prop. 1.30], the Picard group of Bµn is isomorphic to CH1(Bµn) which

is shown in [Tot14, Theorem 2.10] to be isomorphic to Z/n. Thus for even n, we need
to consider two equivalence classes of line bundles in Pic(Bµn)/2 represented by O and
O(1) (defined as the pullbacks of the respective line bundles on Pr), and for odd n only
the trivial line bundle O.

For even n, the Chow-Witt ring has been computed in [LM23, Theorem 5.3.4].

Definition 2.5 (di Lorenzo-Mantovani).
1. Let X be a smooth scheme and L a line bundle over X. Let s be a global section of
L⊗2 with smooth and non-empty vanishing locus D ⊆ X, and denote U := X ∖D.
Then there is a non-degenerate quadratic form on L|U

q : L|U ⊗ L|U −→ OU
a⊗ b 7−→ (a⊗ b)/s
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2 The Chow-Witt Ring of Bµn

determining an element qgen ∈ C̃H
0
(U,OU ). This element satisfies h · (qgen − 1) = 0

and is mapped to η ⊗ f̄∨ by the boundary map

∂ : C̃H
0
(U) −→ H0(D,KMW

−1 ,OD)

in the localization sequence associated to the embedding D ⊆ X, where f is a local
equation with vanishing set D and f∨ its dual [LM23, Lemma 3.3.2].

2. Let n be even and consider the scheme Ern constructed in the previous section with
the line bundle OEr

n
(n/2). Since Ern is isomorphic to O(n) as line bundle over Pr, the

line bundle

OEr
n
(n/2)⊗2 ∼= OEr

n
(n) ∼= OPr(n)×Pr Ern

∼= OPr(n)×Pr OPr(n)

comes equipped with a section given by the diagonal map whose vanishing locus is
precisely the zero section s0 of the bundle Ern → Pr. Applying the construction from
the first part of this definition yields an element in the zeroth Chow-Witt group and
we set

U := qgen − 1 ∈ C̃H
0
(Ern ∖ s0,O) ∼= C̃H

0
(Bµn,O) .

Theorem 2.6 (di Lorenzo-Mantovani). There are isomorphisms of groups

C̃H
i
(Bµn,O) ∼=


GW(k)⊕W(k) i = 0

Z/2n i ≥ 2 even

Z/(n2 ) i odd

C̃H
i
(Bµn,O(1)) ∼=


Z i = 0

Z/(n2 ) i ≥ 2 even

Z/2n i odd.

Further there is an isomorphism of GW(k)-algebras

C̃H (Bµn) ∼= GW(k)[U,H, e]/(I(k)H, I(k)e, hU,HU, nHe,H2 − 2h, U2 + 2U,Ue− 2ne)

where e and H correspond to the pullbacks of the respective elements described in Prop. 2.4

and U ∈ C̃H
0
(Bµn,O) is as constructed in Def. 2.5.

We will compute the case of odd n . Following the strategy of [LM23, Prop. 5.2.3] for
even n consider the localization sequence associated to the decomposition

Pr
s0
↪−→ Ern

ι←−↩ Ern ∖ s0(Pr)

which reads as follows.

. . . −→ C̃H
i−1

(Pr, s∗0L ⊗ detΩEr
n/Pr)

(s0)∗−−−→ C̃H
i
(Ern,L)

ι∗−→ C̃H
i
(Ern ∖ s0, ι

∗L)
−→ H i(Pr,KMW

i−1 , s
∗
0L ⊗ detΩEr

n/Pr) −→ . . .
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2 The Chow-Witt Ring of Bµn

In the first term Lemma 2.2 implies detΩEr
n/Pr ∼= detΩOPr (n)/Pr which in turn is isomor-

phic to O(n) [Har77, Example 8.20.1] and thus trivial for odd n. By homotopy invariance,
the pullback along the bundle map pr: Ern → Pr induces an isomorphism on Chow-Witt
groups. The composition

C̃H
i−1

(Pr, s∗0L ⊗O(n))
(s0)∗−−−→ C̃H

i
(Ern,L)

pr∗←−−∼= C̃H
i
(Pr,L)

is multiplication with the Euler class of the line bundle Ern by Def. 1.44. Now using that
Pr and Ern ∖ s0 are approximations for BGm respectively Bµn in the sense of Prop. 1.37,
for r > i this localization sequence is isomorphic to the following one.

. . . −→ C̃H
i−1

(BGm, s
∗
0L)

e(Er
n)·−−−−→ C̃H

i
(BGm,L)

(ι◦pr)∗−−−−→ C̃H
i
(Bµn, ι

∗L)
−→ H i(BGm,K

MW
i−1 , s

∗
0L) −→ . . . (2.1)

Note that ι ◦ pr = π.
Equipped with this we can compute the group structure.

Theorem 2.7. Let n be odd. Then:

C̃H
i
(Bµn,O) ∼=

{
GW(k) i = 0

Z/n i ≥ 1

Proof. For i > 0, insert Thm. 2.3 and Prop. 2.4 to see that the localization sequence
Eq. (2.1) evaluates to

KM
0 (k)⟨ei−1⟩ KM

0 (k)⟨ei⟩ C̃H
i
(Bµn,O) KM

−1(k)

Z⟨ei−1⟩ Z⟨ei⟩ 0

· e(Er
n)

∼= ∼= ∼=

·(−n)e

for i even and

2KM
0 (k)⟨Hei−1⟩ 2KM

0 (k)⟨Hei⟩ C̃H
i
(Bµn,O) KM

−1(k)

Z⟨Hei−1⟩ Z⟨Hei⟩ 0

· e(Er
n)

∼= ∼= ∼=

·(−n)e

for i odd. Since Ern
∼= O(n) as line bundles over Pr by Lemma 2.2, its Euler class

evaluates to n/2h · e(O(1)) = −n/2he = −ne using Prop. 1.45. From this it follows that

C̃H
i
(Bµn) ∼= Z/n for 0 < i ≤ n. Denoting π : Ern → Pr or by abuse of notation also

π : Bµn → BGm and using the symbols from Prop. 2.4, one can also write

C̃H
i
(Bµn) ∼=

{
Z/n⟨π∗(ei)⟩ 0 < i ≤ n, i even
Z/n⟨π∗(Hei)⟩ 0 < i ≤ n, i odd.

(2.2)
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2 The Chow-Witt Ring of Bµn

For i = 0 we get

C̃H
−1

(BGm,O(n)) C̃H
0
(BGm,O) C̃H

0
(Bµn,O) H0(BGm,K

MW
−1 ,O(n))

0 GW(k) KM
−1(k) = 0

∼= ∼= ∼=

which immediately implies C̃H
0
(Bµn,O) ∼= GW(k).

2.3 Multiplicative Structure

For odd n we observed in Thm. 2.7 that all Chow-Witt groups of Bµn are isomorphic
to those of BGm modulo ne. Since the quotient map is the map π∗ from the local-
ization sequence 2.1 and this is a ring homomorphism, the Chow-Witt ring of Bµn is
also isomorphic to that of BGm modulo nπ∗(e) and modulo the quadratic periodicity
isomorphism

ψ1 : C̃H
i
(Bµn,O(1)) ∼= C̃H

i
(
Bµn,O ((n+ 1)/2)⊗2

)
∼= C̃H

i
(Bµn,O) .

This is not true for even n, since in that case there is an element in C̃H
0
(Bµn,O) (denoted

U in [LM23]) which is not in the image of C̃H (BGm).
Since φ and thus also ψ1 is compatible with multiplication (Lemma 1.33) it suffices to

understand its action on the generators π∗(H) and π∗(e). Consider

π∗(H) = (0, 2) ∈ C̃H
0
(Bµn,O(1)) ⊆ H0(Bµn, I

0,O(1))×Ch0(Bµn)
CH0(Bµn)

where the inclusion is justified by Prop. 1.22 and the fact that CH0(Bµn) ∼= Z has
trivial 2-torsion. On the second factor, ψ1 is the identity. On the first, ψ1 being a group
homomorphism already implies that it maps 0 to 0. Thus

ψ1(π
∗(H)) = (0, 2) ∈ C̃H

0
(Bµn,O) ⊆ H0(Bµn,O)×Ch0(Bµn)

CH0(Bµn) (2.3)

which under the isomorphism C̃H
0
(Bµn,O) ∼= GW(k) corresponds to the hyperbolic

form h. Therefore the class π∗(H) is not required as a generator for the Chow-Witt ring
of Bµn.

The relation I(k) ·H from BGm now becomes I(k) · h which already holds in GW(k).
Similarly H2 − 2h becomes h2 − 2h which is also true in GW(k). The relation I(k) · e
just becomes I(k) · π∗(e).
Because Euler classes are compatible with pullbacks, π∗(e) is the Euler class of
OBµn(−1) and we can rename it into e. This yields the following concise description.

Theorem 2.8. For n odd, there is an isomorphism of GW(k)-algebras

C̃H (Bµn) ∼= GW(k)[e]/(I(k) · e, n · e)

where e ∈ C̃H
1
(Bµn) is the Euler class of the tautological line bundle O(−1) on Bµn.
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2 The Chow-Witt Ring of Bµn

To obtain this description it is not necessary to compute ψ1π
∗(e), but for better

understanding we will illustrate the argument anyway. Consider a second isomorphism

ψ2 : C̃H
i
(Bµn,O(2)) ∼= C̃H

i
(Bµn,O(n+ 1)⊗2) ∼= C̃H

i
(Bµn,O)

coming from the isomorphism of line bundles O(2) ∼= O(n+2) and the square periodicity
isomorphism φO(n+1). This fits into the following commutative diagram:

C̃H
i
(Bµn,O(1))× C̃H

j
(Bµn,O(1)) C̃H

i+1
(Bµn,O(2))

C̃H
i
(Bµn,O(n+ 1))× C̃H

j
(Bµn,O(n+ 1)) C̃H

i+j
(Bµn,O(2n+ 2))

C̃H
i
(Bµn,O)× C̃H

j
(Bµn,O) C̃H

i+j
(Bµn,O)

mult

ψ1×ψ1 ψ2

φO((n+1)/2) ×φO((n+1)/2)

mult

φO(n+1)

mult

The bottom square commutes by Lemma 1.33 and the top one because the ring multipli-
cation is constructed to be compatible with isomorphisms of line bundles. With this one
can compute:

ψ(π∗(e)) = (n+ 1) · ψ(π∗(e))

=
n+ 1

2
hψ(π∗(e)) =

n+ 1

2
· ψ(π∗(H))ψ(π∗(e))

=
n+ 1

2
· ψ∗π∗(He) =

n+ 1

2
· π∗(He) .

The first equality follows from the relation nπ∗(e), the second from the relation I(k) · e
and GW(k)-linearity of π∗ and ψ, and the third from Eq. (2.3). The second to last
equality comes from the above diagram and the last one holds because O(2n + 2) is

already a square over BGm and thus ψ2 is already divided out in C̃H (BGm).

2.4 Milnor-Witt Cohomology in Non-Diagonal Bidegrees

The following will become useful in later computations.

Lemma 2.9. Let i, j integers with i ̸= 0. If j < i then

H i(Bµn,K
MW
j ,L) ∼= 0 .

Proof. Consider the localization sequence from the proof of Thm. 2.7. Inserting Thm. 2.3
shows that unless i = 0 and L is trivial, this is isomorphic to

. . . −→ KM
j−i(k) −→ KM

j−i(k) −→ H i(Bµn,K
MW
j ,L) −→ KM

j−i−1(k) −→ . . .

Since KM
<0(k) = 0 this implies H i(Bµn,K

MW
j ,L) = 0 for j < i.

30



2 The Chow-Witt Ring of Bµn

2.5 Ij-Cohomology of Bµn

Corollary 2.10.

If n is odd:

H (Bµn, I
∗) ∼= W(k)

If n is even:

H (Bµn, I
∗) ∼= W(k)[U, e]/(I(k)e, U2 + 2U,Ue)

Proof. Combine Thms. 2.6 and 2.8 and the fact that the sequence of abelian groups

CHi(Bµn)
hO−−→ C̃H

i
(Bµn,O) −→ H i(Bµn, I

i,O) −→ 0

is exact.
First consider odd n. The composition ρ ◦ hO equals multiplication with 2 and further

it follows from the previous computations of the groups C̃H
i
(Bµn) and CHi(Bµn) that

the reduction map ρ is injective in positive degrees. For degree zero consider the fiber
product formula from Prop. 1.22 using that CH0(Bµn) ∼= Z has no 2-torsion. Note that

the structure map C̃H
0
(Bµn,O)→ H0(Bµn, I

0,O) is given by dividing out the image
of hO and clearly modhO ◦ hO = 0, and recall that the pair (0, 2) in this fiber product

corresponds to the hyperbolic form h ∈ C̃H
0
(Bµn,O). Thus the hyperbolic map hO acts

by

hO : CH∗(Bµn) ∼= Z[c]/(n c) −→ GW(k)[e]/(I(k) · e, ne) ∼= C̃H (Bµn)

1 7−→ h

ci 7−→ hei = 2ei

Since 2ei generates C̃H
i
(Bµn) ∼= Z/n⟨ei⟩ as a GW(k)-module for i ≥ 1, this means that

all higher Ij-cohomology groups vanish. In degree 0

H0(Bµn, I
0,O) ∼= C̃H

0
(Bµn,O)/h ∼= GW(k)/h ∼= W(k) .

If n is even an analogous argument shows that the hyperbolic maps are given by

hO : CH∗(Bµn) ∼= Z[c]/(n c) −→ GW(k)[U,H, e]/(. . .) ∼= C̃H (Bµn)

1 7−→ h

ci 7−→

{
hei = 2ei i even

Hei i odd

hO(1) : CH∗(Bµn) ∼= Z[c]/(n c) −→ GW(k)[U,H, e]/(. . .) ∼= C̃H (Bµn)

1 7−→ H

ci 7−→

{
Hei i even

hei = 2ei i odd
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2 The Chow-Witt Ring of Bµn

This shows that the groups C̃H
i
(Bµn,O(i + 1)) which are generated by Hei become

trivial in Ij-cohomology. For i ≥ 1, this further implies

H i(Bµn, I
i,O(i)) ∼= Z/2n⟨ei⟩/2ei ∼= Z/2⟨ei⟩ ∼= W(k)/I(k)⟨ei⟩ .

The relation nHe is a multiple of he = 2e and thus no longer appears. In degree 0 and
trivial twist compute

H0(Bµn, I
0,O) ∼= C̃H

0
(Bµn,O)/h ∼= (GW(k)⊕W(k)⟨U⟩)/h ∼= W(k)⟨1, U⟩ .

The statement follows by adding up these groups and inheriting the multiplication and
relations from the Chow-Witt ring.

Remark 2.11. Let the base field k contain the real numbers R. Our scheme approxima-
tions of Bµn are not cellular, thus the condition under which [HWXZ21, Theorem 5.7]
proves that the real cycle class map

H i(Bµn, I
j ,L) −→ H i

sing(Bµn(R),Z(L))

is an isomorphism for j = i is not met.
If n is even, this is in fact not an isomorphism: The real realization, i.e. taking the set

of real points of a scheme equipped with the analytic topology, commutes with products
and quotients. This means that the real realization of Ern

∼= OPr(n) which is a line bundle
over Pr, is again a real line bundle over Pr(R) = RPr, and in case n is even this is
orientable. The zero section is also preserved under real realization, and removing the
zero section of an oriented line bundle over RPr divides the total space into two connected
components which are both homotopy equivalent to RPr. Finally, taking the colimit over
our approximations of increasing dimensions also commutes with real realization, thus
Bgmµn(R) is homotopy equivalent to RP∞ ⨿ RP∞. Its (untwisted) singular cohomology
ring is

H∗
sing(Bµn(R);Z) ∼= H∗

sing(RP∞;Z)⊕H∗(RP∞;Z) ∼= Z[x]/2x⊕ Z[y]/2y

where x and y live in degree 2 and this is not isomorphic to the untwisted part of
the Ij-cohomology we have computed above. The real cycle class map is, however, an
isomorphism for j ≥ i + 3: Jacobson [Jac17, Corollary 8.3] proves this for j ≥ dimX.
By Cor. 1.42 we can use Ern to compute H i(Bµn, I

j ,L) if r ≥ i+ 2 and this scheme has
dimension r + 1 ≥ i+ 3. What happens in these bidegrees is roughly that the last term
of the localization sequence 2.1 does not vanish, contributing an additional generator
Uei to the Milnor-Witt and thus also the Ij-cohomology group.
If n is odd, the space of real points Bµn(R) is contractible with cohomology ring

Z ∼= W(R) concentrated in degree 0, thus coinciding with our results for Ij-cohomology.
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3 The Ij-Cohomology of Pq × Pr

3.1 Fasel’s Projective Bundle Formula

Let X be a smooth scheme, E a vector bundle of rank r on X and p : P(E) → X the
associated projective bundle. Denoting by E the locally free OX -module associated to E,
there is a OP(E)-module GE defined by the short exact sequence

0 −→ GE −→ p∗E −→ OP(E)(1) −→ 0 .

We denote the total space of the vector bundle associated to GE by GE . Further let L
be a line bundle on X. For a ∈ Z denote by L(a) the line bundle p∗L ⊗ OP(E)(a) over
P(E). Recall that by quadratic periodicity (Prop. 1.28), Ij-cohomology twisted by L(a)
is isomorphic to that twisted in L if a is even and L(−1) if a is odd.

In [Fas13], Fasel constructs maps

µLa : H
i(X, I

j
)
p∗−→ H i(P(E), I

j
)
βL(−1)−−−−→ H i+1(P(E), Ij+1,L(−1))

· e(OP(E)(1))
a−1

−−−−−−−−−−→ H i+a(P(E), Ij+a,L(−a))

for a ≥ 1 and i ∈ Z, where βL(−1) is the Bockstein introduced in Eq. (1.2), and

ΘL
even :=

∑
1≤a≤r−1
a even

µLa :
⊕
a

H i−a(X, I
j−a

) −→ H i(P(E), Ij , p∗L)

ΘL
odd :=

∑
1≤a≤r−1
a odd

µLa :
⊕
a

H i−a(X, I
j−a

) −→ H i(P(E), Ij , p∗L(−1))

for i ∈ Z. These two maps are split injective by [Fas13, Cor. 5.8].

Definition 3.1 (Fasel). For a vector bundle E → X and its associated projective bundle
P(E), define the groups

H̃ i(P(E), Ij , p∗L) := cokerΘL
even

H̃ i(P(E), Ij , p∗L(−1)) := cokerΘL
odd .

Fasel calls this group the reduced Ij-cohomology, but we will not adopt this because we

are using the term to describe I
j
-cohomology. Note also that the tilde in this definition

has nothing to do with the notation for Chow-Witt groups.
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3 The Ij-Cohomology of Pq × Pr

Denote by ξE ∈ Hr−1(P(E), Ir−1,OP(E)(−r)) the orientation class of the projective
bundle P(E) associated to a trivial vector bundle E of rank r over X, as defined in [Fas13,
Definition 6.1]. By [Fas13, Prop. 6.4] the triviality condition on the vector bundle can
be omitted if r is odd, as in this case ξ agrees with the Euler class of G∨

E . Fasel’s main
theorems [Fas13, Theorems 9.1, 9.2, 9.4] summarize to the following.

Proposition 3.2 (Fasel). Let X be a scheme, L a line bundle over X, E a vector bundle
of rank r over X and p : P(E)→ X the associated projective bundle, and i ∈ Z. Then if
r is odd, the compositions

1. H i(X, Ij ,L) p∗−→ H i(P(E), Ij , p∗L) ↠ H̃ i(P(E), Ij , p∗L) and
2. H i−r+1(X, Ij−r+1,L) ·ξ◦p∗−−−→ H i(P(E), Ij , p∗L⊗ωP(E)/X) ↠ H̃ i(P(E), Ij , p∗L⊗ωP(E)/X)
are isomorphisms of W(k)-algebras. If r is even,

3. H̃ i(P(E), Ij , p∗L(−1)) = 0,
4. and if E is free then

H i(X, Ij ,L)⊕H i−r+1(X, Ij−r+1,L) p∗⊕(·ξ◦p∗)−−−−−−−→ H i(P(E), Ij , p∗L)

↠ H̃ i(P(E), Ij , p∗L)

is an isomorphism.

Together with the fact that the maps ΘL
even and ΘL

odd are split injective, this theorem
yields a direct formula to compute the Ij-cohomology groups of a projective bundle.

Caution: Pr = P(kr+1) is the projective bundle associated to the trivial rank r + 1
vector bundle over k and thus a rank r + 1 projective bundle.

Before computing the Ij-cohomology of the product Pq × Pr we need to know the
Ij-cohomology ring of a single copy of projective space Pr over a base field k. The additive
structure is an immediate consequence of the previous theorem and the multiplicative
structure is due to [Wen24, Prop. 4.1]. The reduced Ij-cohomology ring follows for
example from [Fas13, Theorem 4.1].

Corollary 3.3 (Fasel, Wendt). The total Ij-cohomology ring of projective space Pr over
a base field k is

H (Pr, I∗) ∼= W(k)[e, R]/(I(k) · e, er+1, e ·R,R2)

as W(k)-algebras, where e corresponds to the class e(OPr(−1)) ∈ H1(Pr, I1,OPr(1)) and
R corresponds to ξ ∈ Hr(Pr, Ir,OPr(r − 1)). The reduced cohomology ring is⊕

i

H i(Pr, Ii) ∼= Z/2Z[c]/ cr+1

where c corresponds to the class c(OPr(−1)) ∈ H1(Pr, I1). The reduction morphism
ρ̃ : H∗(Pr, I∗,−)→ H∗(Pr, I∗) maps e to c and R to cr.

Wendt characterizes the class e as βO(1)(1). That this is in fact the Euler class of
O(−1) follows from Lemma 3.7.
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3 The Ij-Cohomology of Pq × Pr

3.2 The Ij-Cohomology Ring of Pq × Pr

Consider the product space Pq ×Pr for q, r ≥ 1. By [EH16, Prop. 1.30], the Picard group
of a smooth scheme is isomorphic to its first Chow group, which in the case of Pq × Pr is
shown in [Tot14, Theorem 2.12] to be isomorphic to Pic(Pq)× Pic(Pr) ∼= Z× Z.

Notation 3.4. We denote the two projections by

pr1 : Pq × Pr −→ Pr and pr2 : Pq × Pr −→ Pr .

Line bundles on Pq × Pr are of the form pr∗1OPq(s) ⊗ pr∗2OPr(t) and we will use the
shorthand notation

O(s, t) := pr∗1OPq(s)⊗ pr∗2OPr(t) .

Ij-cohomology considers twists in Pic(Pq × Pr)/2 ∼= Z/2×Z/2, whose elements can be
represented e.g. by the line bundles O(0, 0), O(0, 1), O(1, 0) and O(1, 1).

Theorem 3.5. Let k be a perfect field of characteristic coprime to 2. The total Ij-
cohomology ring of Pq × Pr is isomorphic to the following (Z,Pic(Pq × Pr)/2)-graded
W(k)-algebra:

W(k)[e1, e2, e3, R1, R2]/(I(k) · e1, I(k) · e2, I(k) · e3, e21 + e22 − e23,
eq+1
1 , er+1

2 , e1R1, e2R2, R
2
1, R

2
2,

e2R1 − eq1e3, e1R2 − er2e3, e3R1 − eq1e2, e3R2 − e1er2)

where

e1 7−→ e(O(−1, 0)) ∈ H1(Pq × Pr, I1,O(1, 0))
e2 7−→ e(O(0,−1)) ∈ H1(Pq × Pr, I1,O(0, 1))
e3 7−→ e(O(−1,−1)) ∈ H1(Pq × Pr, I1,O(1, 1))
R1 7−→ ξOq+1

Pr
∈ Hq(Pq × Pr, Iq,O(q + 1, 0))

R2 7−→ ξOr+1
Pq

∈ Hr(Pq × Pr, Ir,O(0, r + 1)) .

To prove this theorem we will apply Fasel’s formula Prop. 3.2 to the projective bundle

p := pr2 : Pq × Pr ∼= P(O⊕q+1
Pr ) −→ Pr .

The reduced cohomology of Pq × Pr can be computed immediately using [Fas13,
Theorem 4.1]:

Proposition 3.6. ⊕
i

H i(Pq × Pr, Ii) ∼= Z/2Z[c1, c2]/(cq+1
1 , cr+1

2 )

where

c1 7−→ c(O(−1, 0)) ∈ H1(Pq × Pr, I1)

c2 7−→ c(O(0,−1)) ∈ H1(Pq × Pr, I1)

35



3 The Ij-Cohomology of Pq × Pr

To shorten notation, in the following we will use the symbols e1, e2, e3, R1, R2, c1, c2
to also denote their corresponding classes in the (reduced) Ij-cohomology ring. Observe
that

ρ̃(e1) = c1

ρ̃(e2) = c2

ρ̃(e3) = c(O(−1,−1)) = c(O(−1, 0)⊗O(0,−1)) = c1 + c2

ρ̃(R1) = cq1
ρ̃(R2) = cr2 .

where the third row uses the formula for Stiefel-Whitney classes of tensor products of
line bundles, and the rest follows by pulling the respective classes back to one factor of
the product where the reduction morphism is already known.

The classes ci for 0 ≤ i ≤ r generate H (Pr, I∗) as a bi-graded W(k)-module and thus
their images under the maps

p∗, µLa and (·ξOq+1
Pr

) ◦ p∗ = (·R1) ◦ p∗ : H (Pr, I∗) −→ H (Pq × Pr, I∗)

appearing in Fasel’s formula produce a generating set of H (Pq × Pr, I∗). Our strategy
will be to express all of these in terms of the classes e1, e2, e3, R1, R2 to show that
those generate H (Pq × Pr, I∗,−) as a W(k)-algebra. For the pullback map p∗ we simply
have p∗ ci = ci2, and likewise R1 · p∗(ci) = R1 · ci2. The main obstacle is to understand
the Bockstein homomorphism βO(1,t) that occurs as a component of µLa . We will use the
following lemma of Fasel [Fas13, Lemma 3.1].

Lemma 3.7 (Fasel). Let X be a smooth scheme and L, M line bundles over X. Let
α ∈ H i(X, Ij ,L). Then the Bockstein homomorphism

βL⊗M∨ : H i(X, I
i
) −→ H i+1(X, Ii+1,L ⊗M∨)

maps ρ̃(α) to α · e(M).

To compute βO(s,t)(c
k
1c
l
2), insert L = O(k, l), α = ek1e

l
2 ∈ H i(Pq × Pr, Ii,O(k, l)) and

M = O(k − s, l − t) and obtain

βO(s,t)(c
k
1c
l
2) = βO(s,t)(ρO(k,l)(e

k
1e
l
2)) = ek1e

l
2 · e(O(k − s, l − t)) .

Note that Euler classes of squares vanish in Ij-cohomology, hence only the parity of k− s
and l − t is relevant.
In the projective bundle formula there appear only Bocksteins whose twist is tau-

tological on the first factor of the product, and they are composed with the map

p∗ : H i(Pr, Ii)→ H i(Pq × Pr, Ii) whose image is generated by p∗ci = ci2. So the relevant
values are:

βO(1,i)(c
i
2) = e1e

i
2

βO(1,i+1)(c
i
2) = ei2e3
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3 The Ij-Cohomology of Pq × Pr

and thus

µOPr (i)
a (ci) = ea1e

i
2

µOPr (i+1)
a (ci) = ea−1

1 ei2e3 .

Having determined the images of the maps p∗, µLa and ·R1 appearing in Fasel’s formula
yields a set of generators of all diagonal Ij-cohomology groups of Pq×Pr as W(k)-modules.
By describing all of these as products of e1, e2, e3, R1, R2 it follows that these five classes
generate the total Ij-cohomology ring as a W(k)-algebra.
Concerning relations, there are eq+1

1 , e1R1, R
2
1 as well as er+1

2 , e2R2, R
2
2 which are

pulled back from the individual factors. Since all other possible products of e1, e2, R1

and R2 generate their own summands in the Ij-cohomology groups of Pq × Pr there are
no new relations between these four generators.

So it remains to determine the relations involving e3. Since e3 lives in

H1(Pq × Pr, I1,O(1, 1)) = µ
OPr (−1)
1 H0(Pr, I0)

= µ
OPr (−1)
1 (1) ·W(k)/I(k)

= e3 ·W(k)/I(k)

one can deduce the relation I(k) · e3. From our computations of the µLa deduce further
that the ei1e

j
2e3 for 0 ≤ i < q and 0 ≤ j < r each generate their own summand and thus

are not subject to any relations. To determine e23 consider its reduction:

ρ̃(e23) = ρ̃(e3)
2 = (c1 + c2)

2 = c21 + 2c1c2 + c22 = c21 + c22

The last equality holds because 2 ∈ I(k) vanishes in I(k)-torsion. Since e23 lives in
H2(Pq×Pr, I2,O) which by the projective bundle formula equals W(k)/I(k)·e21⊕W(k)/I(k)·e22,
the only possible preimage of c21 + c22 is e21 + e22. Therefore e

2
3 = e21 + e22. Similar argu-

ments yield eq1e3 = e2R1, e
r
2e3 = e1R2, e3R1 = eq1e2 and e3R2 = e1e

r
2. Now we have

covered all possible monomials involving e3 and thus determined all relations, finishing
the computation.

Corollary 3.8. Let k be a perfect field of characteristic coprime to 2. The total Ij-
cohomology ring of BGm×BGm is isomorphic to the following (Z,Pic(BGm×BGm)/2)-
graded W(k)-algebra:

W(k)[e1, e2, e3]/(I(k) · e1, I(k) · e2, I(k) · e3, e21 + e22 − e23)

where

e1 7−→ e(O(−1, 0)) ∈ H1(BGm ×BGm, I
1,O(1, 0))

e2 7−→ e(O(0,−1)) ∈ H1(BGm ×BGmI
1,O(0, 1))

e3 7−→ e(O(−1,−1)) ∈ H1(BGm ×BGm, I
1,O(1, 1)) .
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3 The Ij-Cohomology of Pq × Pr

Proof. This follows from the computation of H (Pq ×Pr, I∗) in Thm. 3.5 and the approx-
imation of classifying spaces in Corollaries. 1.42 and 1.43. Pq×Pr is an approximation for
BGm ×BGm in degrees < min(q, r)− 1. The classes R1 and R2 as well as all relations
involving R1, R2, e

q
1 or er2 live in degrees above this boundary and thus don’t appear

here.

Remark 3.9. The considered schemes Pq × Pr are all cellular and thus the real cycle
class map

H i(X, Ij ,L) −→ H i(X(R),Z(L))

is an isomorphism for all i by [HWXZ21, Theorem 5.7]. Compare this for example with
the computation of [Hat01, Example 3.E.5] of the singular cohomology of RP∞ × RP∞

in (non-twisted) Z-coefficients:

H∗(RP∞ × RP∞;Z) ∼= Z[λ, µ, ν]/(2λ, 2µ, 2ν, ν2 + λ2µ+ λµ2)

with λ and µ living in degree 2 and ν in degree 3. This embeds as the untwisted subring
of the total Ij-cohomology ring of BGm ×BGm via

λ 7−→ e21

µ 7−→ e22

ν 7−→ e1e2e3

and the relation

ν2 + λ2µ+ λµ2 7−→ e21e
2
2e

2
3 + e41e

2
2 + e21e

4
2 = e21e

2
2(e

2
1 + e22 + e23)

is respected since e21 + e22 + e23 = 0.

3.3 Ij-Cohomology in Non-Diagonal Bidegrees

The computations in the following chapters will involve H i(Pq × Pr, Ij ,L) for j = i− 1.
It turns out that this group is straightforward to compute for j < i which we will do in
this section.

Proposition 3.10. Let j < i.

H i(Pq × Pr, Ij ,L) ∼=



W(k) i = 0, L = O(0, 0)
W(k)⊕W(k) i = q = r odd, L = O(0, 0)
W(k) i = r, L = O(0, r − 1) and [r ̸= q or r even]

W(k) i = q, L = O(q − 1, 0) and [q ̸= r or q even]

W(k) i = q + r, L = O(q − 1, r − 1)

0 else
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3 The Ij-Cohomology of Pq × Pr

Proof. Observe that for j < i, Ij−i = W(k) by definition and I
j−i

= 0. This implies that
in these cases the Ij-cohomology groups are isomorphic to the groups H̃ i(Pq × Pr, Ij ,L)
as defined in Def. 3.1.

Recall:

H i(Pr, Ij ,L) ∼=


W(k) i = 0, L = O
W(k) i = r, L = O(r − 1)

0 else

The statement then follows immediately from the projective bundle theorem (Prop. 3.2).
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4 The Chow-Witt Ring of BGm ×BGm

4.1 The Chow-Witt Ring of Pq × Pr and BGm ×BGm

According to Prop. 1.22 there is an isomorphism

c : C̃H (Pq × Pr) ∼= H∗(Pq × Pr, I∗,−)×⊕
L Ch∗(Pq×Pr)

⊕
L∈Pic(Pq×Pr)/2

ker ∂L

where
∂iL : CHi(Pq × Pr) −→ H i+1(Pq × Pr, Ii+1,L)

is the boundary map of the long exact cohomology sequence associated to the sequence
I → KMW → KM of chain complexes. In order to compute this kernel, first compute the
Chow ring in which it lives using a result of Totaro about Chow rings of products:

Proposition 4.1 ([Tot14, Lemma 2.3, Theorem 2.12]).

CH∗(Pr) ∼= Z[c]/(cr+1)

CH∗(Pq × Pr) ∼= Z[c1, c2]/(cq+1
1 , cr+1

2 )

CH∗(Pq × Pr)/2 ∼= H∗(Pq × Pr, I∗) ∼= Z/2Z[c1, c2]/(cq+1
1 , c 2r+1)

According to the “key diagram” explained in Section 1.3, ∂L equals βL ◦mod2. We
have already computed this Bockstein βL in the previous section after Lemma 3.7, so now
it is straightforward to describe its kernel. From this explicit description one checks that
for α ∈ ker ∂L and β ∈ ker ∂M, the product αβ lies in ker ∂L⊗M and thus the kernels
assemble into the Z× (Pic /2)-graded ring

Z[C1, C2, C3, r1, r2, h1, h2, h3]/(J ′,K) ∼=
⊕

L∈Pic(Pq×Pr)/2

ker ∂L

C1 7−→ c1 ∈ ker ∂1O(1,0)

C2 7−→ c2 ∈ ker ∂1O(0,1)

C3 7−→ c1 + c2 ∈ ker ∂1O(1,1)

r1 7−→ cq1 ∈ ker ∂qO(q+1,0)

r2 7−→ cr2 ∈ ker ∂rO(0,r+1)

h1 7−→ 2 ∈ ker ∂0O(1,0)

h2 7−→ 2 ∈ ker ∂0O(0,1)

h3 7−→ 2 ∈ ker ∂0O(1,1)
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4 The Chow-Witt Ring of BGm ×BGm

where J ′ is the ideal generated by

h21 − 4, h22 − 4, h23 − 4,

h1h2 − 2h3, h2h3 − 2h1, h1h3 − 2h2,

2C1 + h3C2 − h2C3, h1C1 + h2C2 − h3C3, h2C1 + h1C2 − 2C3, h3C1 + 2C2 − h1C3

and K is the ideal generated by

C2
1 + C2

2 + h3C1C2 − C2
3 ,

Cq+1
1 , Cr+1

2 , C1r1, C2r2, r
2
1, r

2
2,

Cq1C3 − C2r1, C
r
2C3 − C1r2, C3r1 − Cq1C2, C3r2 − C1C

r
2 .

Note that ker ∂O(0,0) also contains 1 = c01c
0
2 and (c1 + c2)

2 = c21 + 2c1c2 + c22.
So now we can apply Prop. 1.22 and Thm. 3.5 to obtain the following.

Corollary 4.2. For k a perfect field of characteristic coprime to 2, there is an isomor-
phism of graded GW(k)-algebras

C̃H (Pq × Pr) ∼= GW(k)[H1, H2, H3, e1, e2, e3, R1, R2]/(I(k) · (H1, H2, H3, e1, e2, e3)

e21 + e22 +H3e1e2 − e23,J , e
q+1
1 , er+1

2 , e1R1, e2R2, R
2
1, R

2
2,

eq1e3 − e2R1, e
r
2e3 − e1R2, e3R1 − eq1e2, e3R2 − e1er2)

where e1, e2, e3 correspond to

e(L∨) ∈ C̃H
1
(Pq × Pr,L)

and H1, H2, H3 to

(0, 2) ∈ C̃H
0
(Pq × Pr,L) ⊆ H0(Pq × Pr, I0,L)×Ch0(Pq×Pr) CH

0(Pq × Pr)

for L = O(1, 0),O(0, 1),O(1, 1), respectively, and R1 and R2 are the pullbacks of the
orientation classes along the projections onto each factor. The ideal J is generated by
the relations

H2
1 − 2h,H2

2 − 2h,H2
3 − 2h, (4.1)

H1H2 − 2H3, H2H3 − 2H1, H1H3 − 2H2, (4.2)

2e1 +H3e2 −H2e3, H1e1 +H2e2 −H3e3, H2e1 +H1e2 − 2e3, H3e1 + 2e2 −H1e3 . (4.3)

Note that

(0, 2) = hO(1) ∈ C̃H
0
(Pq × Pr,O) ⊆ H0(Pq × Pr, I0,O)×Ch0(Pq×Pr) CH

0(Pq × Pr)

is the hyperbolic form h ∈ GW(k), and the classesH1,H2,H3 are the images of 1 under the

hyperbolic maps hL : CH0(Pq × Pr)→ C̃H
0
(Pq × Pr,L)) for L = O(1, 0),O(0, 1),O(1, 1),

respectively. They can be thought of as twisted versions of the hyperbolic form h.
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4 The Chow-Witt Ring of BGm ×BGm

Proof. We will use the fiber product formula from Prop. 1.22. The fiber product of two
GW(k)-algebras contains precisely those pairs in the set-wise product where both entries
have the same image in Ch∗(Pq × Pr). This entire proof consists of spelling out that
set-wise characterization.

Recall that we have a set of generators C1, C2, C3, h1, h2, h3, r1, r2 of ⊕L ker ∂L and
e1, e2, e3, R1, R2 of H (Pq × Pr, I∗) as GW(k)-algebras. Thus as GW(k)-modules, these
two are generated by all monomials of the form hi11 h

i2
2 h

i3
3 C

i4
1 C

i5
2 C

i6
3 r

i7
1 r

i8
2 respectively

ej41 e
j5
2 e

j6
3 R

j7
1 R

j8
2 where the exponents are non-negative integers. Observe that monomials

of the first form are mapped to zero in Ch∗(Pq ×Pr) if and only if the monomial vanishes
in ⊕L ker ∂L already or if at least one of i1, i2, i3 is not zero. A monomial of the second
form is in the kernel of ρ̃ if and only if it already vanishes in H (Pq × Pr, I∗).
To determine for a given monomial α of the first form all pairs in the fiber product that

have α as second coordinate, compute the mod 2-reduction α and its preimage ρ̃−1(α) in
the Ij-cohomology ring. The latter can be read off from our description of H (Pq×Pr, I∗)
in Thm. 3.5.

If α = 0 or one of the exponents i1, i2, i3 is non-zero, then ρ̃−1(α) = ker(ρ̃). Otherwise
if α = Ci41 C

i5
2 C

i6
3 r

i7
1 r

i8
2 we find that ρ̃−1(α) = ei41 e

i5
2 e

i6
3 R

i7
1 R

i8
2 +ker(ρ̃). Hence the following

form a set of generators of the fiber product as a GW(k)-module.

• (0, hi11 h
i2
2 h

i3
3 C

i4
1 C

i5
2 C

i6
3 r

i7
1 r

i8
2 ) if one out of i1, i2, i3 non-zero

• (ei41 e
i5
2 e

i6
3 R

i7
1 R

i8
2 , C

i4
1 C

i5
2 C

i6
3 r

i7
1 r

i8
2 ) for i4, i5, i6, i7, i8 any non-negative integers such

that the second entry of the pair is not zero

• (β, 0) with β ∈ ker(ρ̃)

The third case, however, is redundant: Any β ∈ ker(ρ̃) can be expressed as a W(k)-linear
combination of monomials ej41 e

j5
2 e

j6
3 R

j7
1 R

j8
2 with coefficients βj4,...,j8 in I(k) ⊆W(k). Now

if βj4,...,j8 is in I(k), then the pair (βj4,...,j8 , 0) is in the fiber product W(k)×Z/2Z ∼= GW(k)
and therefore one can write

(β, 0) =
∑

j4,...,j8

(βj4,...,j8 , 0) · (e
j4
1 e

j5
2 e

j6
3 R

j7
1 R

j8
2 , C

j4
1 C

j5
2 C

j6
3 r

j7
1 r

j8
2 )

thus reducing to the second case.
All pairs in the first two cases can be expressed as monomials in the following eight

pairs, which therefore form a set of generators of the fiber product as a GW(k)-algebra. We
assign the symbols on the left-hand side to the corresponding elements in the Chow-Witt
ring.

c : C̃H (Pq × Pr)
∼=−→H (Pq × Pr, I∗)×⊕

L Ch∗(Pq×Pr)

⊕
L∈Pic(Pq×Pr)/2

ker ∂L

H1, H2, H3 7−→(0, h1), (0, h2), (0, h3)

e1, e2, e3 7−→(e1, C1), (e2, C2), (e3, C3)

R1, R2 7−→(R1, r1), (R2, r2)
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4 The Chow-Witt Ring of BGm ×BGm

Relations in the fiber product on the right hand side consist of pairs such that each
coordinate is a relation in the respective factor. The fundamental ideal becomes

I(k) 7−→(I(k), 0)

thus all pairs which contain I(k) in the first coordinate become relations in the fiber
product, that is,

I(k)e1, I(k)e2, I(k)e3 7−→(I(k), 0) · (e1, C1) = (I(k)e1, 0) = (0, 0), . . .

Further one finds relations

I(k)H1, I(k)H2, I(k)H3 7−→(I(k), 0) · (0, h1), . . .

The relations in J ′ live in degree 0 and 1 where the only non-trivial relations in the
I∗-cohomology ring are I(k)ei which are already covered above. Thus each of these has a
straightforward analogue in the Chow-Witt ring

H2
1 − 2h = H2

1 − h2, . . . 7−→(0, h21)− (0, 4), . . .

he1 +H3e2 −H2e3 7−→(0, 2)(e1, C1) + (0, h3)(e2, C2)− (0, h2)(e3, C3)

=(0, 2C1 + h3C2 − h2C3)

and we will denote the ideal generated by these by J . Something interesting happens
with the relation e21 + e22 − e23. There are several pairs in the fiber product containing this
in the first coordinate, the most obvious one being

e21 + e22 − e23 7−→(e21 + e22 − e23, C2
1 + C2

2 − C2
3 )

=(e21 + e22 − e23, C2
1 + C2

2 − (C2
1 + C2

2 + h3C1C2))

=(e21 + e22 − e23,−h3C1C2)

whose second coordinate is not a relation in the Chow ring. Only subtracting (0,−h3C1C2)
yields the following relation.

e21 + e22 +H3e1e2 − e23 7−→(e21 + e22 − e23, C2
1 + C2

2 + h3C1C2 − C2
3 )

=(e21 + e22 − e23, 0)

All other relations from Thm. 3.5 appear in a unique pair in the fiber product whose
second coordinate is in K, thus each yields one relation:

eq+1
1 , . . . 7−→(eq+1

1 , Cq+1
1 ), . . .

eq1e3 − e2R1, . . . 7−→(eq1e3 − e2R1, C
q
1C3 − C2r1), . . .

Corollary 4.3. For k a perfect field of characteristic coprime to 2, there is an isomor-
phism of graded GW(k)-algebras

C̃H (BGm ×BGm) ∼= GW(k)[e1, e2, e3, H1, H2, H3]/(I(k) · (H1, H2, H3, e1, e2, e3)

e21 + e22 +H3e1e2 − e23,J )

with the symbols on the right hand side corresponding to the same classes as in Cor. 4.2.
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Proof. We have already observed that (V r+1
1 ∖ {0})/Gm

∼= Pr is an approximation of
BGm in codimension < r in the sense of Prop. 1.37. By Cor. 1.43 the product space
Pq × Pr is an approximation of BGm ×BGm in codimension < min q, r − 1.
In the description of Cor. 4.2 the classes e1, e2, e3, H1, H2, H3 remain stable for all

q, r ≥ 2 and thus survive in the Chow-Witt ring of BGm ×BGm. The classes R1 and R2

on the other hand live in codimension q respectively r which is not in the range where
Pq × Pr is an approximation for BGm ×BGm. The same holds for all relations involving
eq1 or er2.

4.2 Milnor-Witt K-Theory Groups in Non-Diagonal Bidegrees

For the computations in Chapter 5 we will also need to know the group H i(Pq × Pr,KM
j )

for j ∈ {i−1, i−2}. To this end observe that the argument of [HW19, Prop. 2.11] extends
to a statement about Milnor-Witt cohomology in non-diagonal bidegrees. In this case
the key diagram of [HW19] reads as follows:

H i(X,KM
j ) H i(X,KM

j )

H i(X, Ij+1,L) H i(X,KMW
j ,L) H i(X,KM

j ) H i+1(X, Ij+1,L)

H i(X, Ij+1,L) H i(X, Ij ,L) H i(X,KM
j /2) H i+1(X, Ij+1,L)

H i+1(X,KM
j ) H i+1(X,KM

j )

id

hL ·2

id

ρ

modhL

∂

mod2 id

η ρ̃

δ

β

id

Proposition 4.4. The canonical group homomorphism

ϕ := (modhL)× ρ : H i(X,KMW
j ,L) −→ ker δ ×Hi(X,KM

j /2)
ker ∂

is always surjective. It is injective if one of the following conditions hold:
1. H i(X,KM

j ) has no non-trivial 2-torsion.

2. The map η : H i(X, Ij+1,L)→ H i(X, Ij ,L) is injective.
If further H i+1(X,KM

j ) has no non-trivial 2-torsion, then ker δ equals H i(X, Ij ,L).

Proof. The existence of the group homomorphism α is implied by the universal property
of the fiber product.
For surjectivity of ϕ consider an element (α, β) ∈ ker δ ×Hi(X,KM

j /2)
ker ∂. Choose an

arbitrary lift α̃ ∈ H i(X,KMW
j ,L) of α and denote the image of this lift in ker ∂ by γ.

The reduction of γ agrees with the reduction of β, thus β − γ has a lift β̃ ∈ H i(X,KM
j ).

Then α̃+ hL(β̃) is in the preimage of (α, β) under ϕ.
Assume condition (1) holds and consider an element ε ∈ kerϕ = ker ρ ∩ ker(modhL).

By exactness this must have a lift ε̃ along hL. Due to commutativity of the upper square
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4 The Chow-Witt Ring of BGm ×BGm

in the key diagram ε̃ must be 2-torsion and thus trivial by assumption, hence ε = 0. This
proves injectivity. Under condition (2) choose a lift ε̃′ in H i(X, Ij+1,L). Then ε̃′ must be
zero due to injectivity of η and commutativity of the left-most square, and thus ε = 0.
The last statement about ker δ follows from the commutativity of the top square in

the diagram: If multiplication with 2 is injective, then so is ρ ◦ hL and thus hL. Since δ
sits in the left vertical exact sequence before hL, it follows that δ = 0.

Lemma 4.5. For j < i:

H i(Pq × Pr,KMW
j ,L) ∼=



W(k) i = 0, L = O
W(k)⟨R1, R2⟩ i = q = r odd, L = O(0, 0)
W(k)⟨R1⟩ i = q, L = O(q − 1, 0) and [q ̸= r or q even]

W(k)⟨R2⟩ i = r, L = O(0, r − 1) and [q ̸= r or r even]

W(k)⟨R1 ·R2⟩ i = q + r, L = O(q − 1, r − 1)

0 else

H i(BGm ×BGm,K
MW
j ,L) ∼=

{
W(k) i = 0, L = O
0 else

Proof. Note that H i(Pq×Pr,KM
j ) vanishes for j < i (as follows e.g. from [Tot14, Theorem

2.12]) thus condition (1) of the fiber product formula Prop. 4.4 is satisfied, and its subgroup
ker ∂ vanishes as well. Hence H i(Pq × Pr,KMW

j ,L) ∼= ker δ ⊆ H i(Pq × Pr, Ij ,L) where
the latter has been computed in Prop. 3.10. Since H i+1(Pq × Pr,KM

j ) also vanishes, the
last inclusion is in fact an equality.

For the statement on BGm ×BGm, use the approximation of equivariant Chow-Witt
groups from Cor. 1.43.
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5 Chow-Witt Ring of BGm ×Bµn

Throughout this chapter, let n be a positive integer, and k a perfect field with characteristic
coprime to 2 and n.
The Picard group of BGm × Bµn is isomorphic to its first Chow group by [EH16,

Prop. 1.30] which is computed in [Tot14, Theorem 2.10, Lemma 2.12] to be isomorphic to
Z×Z/n. For line bundles on BGm ×Bµn (or more precisely, its scheme approximations)
we adopt the same notation

O(s, t) = pr∗1OBGm(s)⊗ pr∗2OBµn(t)

as for bundles on BGm × BGm. Let E
r
n be the approximation of Bµn constructed in

Chapter 2 and consider the vector bundle π : Pq ×Ern → Pq × Pr. Let L be a line bundle
over Pq × Ern. Consider the localization sequence associated to the closed subscheme

Pq × Pr
(id,s0)
↪−−−−→ Pq × Ern

(id,ι)←−−− Pq × (Ern ∖ s0(Pr)) .

Using the same arguments as in Thm. 2.7 — scheme approximations of classifying spaces,
the isomorphism detΩ∨

Pq×Er
n/Pq×Pr

∼= detΩ∨
OPq×Pr (n)/Pq×Pr

∼= O(0, n) of line bundles over

Pq × Pr, and homotopy invariance — for q and r sufficiently large this sequence is
isomorphic to

. . . −→ C̃H
i−1

(BGm ×BGm, s
∗
0L ⊗O(0,−n))

· e(π)−−−→ C̃H
i
(BGm ×BGm,L)

ι∗−→ C̃H
i
(BGm ×Bµn, ι∗L) −→ H i(BGm ×BGm,K

MW
i−1 , s

∗
0L ⊗O(0, n)) −→ . . . (5.1)

As already shown in Chapter 2 the line bundle Ern → Pr is isomorphic to OPr(n). Thus
Pq × Ern is isomorphic to pr∗2OPr(n) = O(0, n) and therefore the map · e(π) can also be
expressed as · e(O(0, n)). This Euler class can be computed using Prop. 1.45:

e(O(0, n))) =

{
−n

2 · hO(c1(O(0, 1))) = −H2e2 n even

−n
2he2 = −ne2 n odd

5.1 Group Structure

Theorem 5.1. For L any line bundle on BGm ×Bµn the following are isomorphisms
of GW(k)-modules.

If n is odd:

C̃H
i
(BGm ×Bµn,L) ∼= C̃H

i
(BGm ×BGm)/ne2
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If n is even:

C̃H
i
(BGm ×Bµn,L) ∼=

{
GW(k)⊕W(k)⟨U2⟩ i = 0, L trivial

C̃H
i
(BGm ×BGm,L)/n2H2e2 else

Here U2 is the pullback of the class U from Thm. 2.6 along the projection pr2 : BGm×Bµn → Bµn
onto the second factor, and e2 is the pullback of e2 defined in Cor. 4.3 along π.

Since the bundle O(0, 1) on BGm×Bµn is defined as the pullback along π of the same
bundle on BGm ×BGm, and Euler classes commute with pullbacks, e2 is actually the
Euler class of O(0,−1) on BGm ×Bµn.

Proof. Except for i = 0 and trivial twist, the rightmost term in the localization sequence
Eq. (5.1) is shown to vanish in Lemma 4.5, proving the statement in these cases.
Assume that n is odd. Then the localization sequence implies

C̃H
i
(BGm ×Bµn,L)

∼= C̃H
i
(BGm ×BGm,L)/ e(O(0, n)) · C̃H

i−1
(BGm ×BGm,L ⊗O(0, n))

∼= C̃H
i
(BGm ×BGm,L)/ne2 · C̃H

i−1
(BGm ×BGm,L ⊗O(0, n)) .ΘL

even

In fact this argument also covers the case i = 0 with trivial twist, since over BGm ×Bµn
the line bundle O(1, 0) is trivial and thus

C̃H
0
(BGm ×Bµn,O) ∼= C̃H

0
(BGm ×Bµn,O(0, 1)) .

This works because O(1, 0) is trivial over BGm ×Bµn but not over BGm ×BGm.
Now assume that n is even. For i = 0 and trivial twist, Lemma 4.5 shows that

H0(BGm × BGm,K
MW
−1 , s∗0O ⊗ O(0, n)) ∼= W(k) and H1(BGm × BGm,K

MW
0 ,O) ∼= 0.

In the previous section we have computed C̃H
0
(BGm×BGm,O) ∼= GW(k). Furthermore

C̃H
−1

(BGm ×BGm, s
∗
0O ⊗O(0,−n)) vanishes for degree reasons. Thus the localization

sequence 5.1 reads:

0 −→ GW(k) −→ C̃H
0
(BGm ×Bµn,O) −→W(k) −→ 0

Now consider the class U ∈ C̃H
0
(Bµn,O) constructed in [LM23, Prop. 5.2.1] and its

pullback along the projection pr2 : BGm ×Bµn → Bµn (or pr2 : Pq ×Ern ∖ s0 → Ern ∖ s0
to be precise). This class is shown in [LM23] to define a split of the boundary morphism

C̃H
0
(Bµn, ι

∗L) −→ H0(BGm,K
MW
−1 , s∗0L ⊗O(0, n))

of the localization sequence Eq. (2.1). The map pr2 together with its respective restrictions
induces the following maps between the sequences Eq. (2.1) and Eq. (5.1) (all groups
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have trivial twist):

. . . C̃H
0
(BGm) C̃H

0
(Bµn) H0(BGm,K

MW
−1 ) . . .

. . . C̃H
0
(BGm ×BGm) C̃H

0
(BGm ×Bµn) H0(BGm ×BGm,K

MW
−1 ) . . .

·ne

pr∗2

ι∗

pr∗2

∂

pr∗2

·ne2 (id×ι)∗ ∂

This diagram commutes according to Lemma 1.27 since we have

pr∗2N(s0 : Pr −→ Ern)
∼= pr∗2OPr(n)

∼= O(0, n) ∼= N(id× s0 : Pq × Pr −→ Pq −→ Ern) .

The right-most vertical arrow is an isomorphism which follows from the projective
bundle theorem (Prop. 3.2) together with the fact that these two Milnor-Witt cohomology
groups are naturally isomorphic to the corresponding Ij-cohomology groups as explained
in the proof of Lemma 4.5. Together with commutativity of the right-hand square this
shows that pr∗2(U) =: U2 defines a split of the boundary map in the localization sequence
5.1 which proves the statement for i = 0 and L trivial.

5.2 Ring Structure

Theorem 5.2. We have the following isomorphisms of graded GW(k)-algebras.

If n is odd:

C̃H (BGm ×Bµn) ∼=GW(k)[e1, e2, H1]/(I(k) · (H1, e1, e2), H
2
1 − 2h, ne2)

where

H1 7−→hO(1,0)(1) ∈ C̃H
0
(BGm ×Bµn,O(1, 0))

e1 7−→ e(O(1, 0)) ∈ C̃H
1
(BGm ×Bµn,O(1, 0))

e2 7−→ e(O(0, 1)) ∈ C̃H
1
(BGm ×Bµn,O)

If n is even:

C̃H (BGm ×Bµn) ∼=GW(k)[H1, H2, H3, U2, e1, e2, e3]/(I(k) · (H1, H2, H3, e1, e2, e3),

J , e21 + e22 +H3e1e2 − e23,
n

2
H2e2, U

2
2 + 2U2, (h,H1, H2, H3) · U2,

U2e1 −
n

2
H3e2, U2e2 − ne2, U2e3 −

n

2
H1e2)
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5 Chow-Witt Ring of BGm ×Bµn

where J is the ideal of relations from Cor. 4.2,

H1 7−→ hO(1,0)(1) ∈ C̃H
0
(BGm ×Bµn,O(1, 0))

H2 7−→ hO(0,1)(1) ∈ C̃H
0
(BGm ×Bµn,O(0, 1))

H3 7−→ hO(1,1)(1) ∈ C̃H
0
(BGm ×Bµn,O(1, 1))

e1 7−→ e(O(−1, 0)) ∈ C̃H
1
(BGm ×Bµn,O(1, 0))

e2 7−→ e(O(0,−1)) ∈ C̃H
1
(BGm ×Bµn,O(0, 1))

e3 7−→ e(O(−1,−1)) ∈ C̃H
1
(BGm ×Bµn,O(1, 1))

and U2 ∈ C̃H
0
(BGm×Bµn,O) is the pullback of the class U introduced in Def. 2.5 along

the projection map pr2 : BGm ×Bµn → Bµn.

Note that hL(1) equals

(0, 2) ∈ C̃H
0
(BGm×Bµn,L) ⊆ H0(BGm×Bµn, I0,L)×Ch0(BGm×Bµn)CH

0(BGm×Bµn)

for all line bundles L in Pic(BGm × Bµn). The inclusion here is justified by [HW19,

Prop. 2.11] if C̃H
0
(BGm ×Bµn) has no non-trivial 2-torsion which is satisfied by [Tot14,

Theorem 2.10, Lemma 2.12].

Proof. For odd n this computation is very similar to that of Bµn in Thm. 2.8: The
Chow-Witt ring of BGm ×Bµn is isomorphic to that of BGm ×BGm modulo ne2 and
the quadratic periodicity isomorphisms for O(0, 1) ∼= O(0, n + 1) ∼= O(0, (n + 1)/2)⊗2

and O(1, 1) ∼= O(1, n+ 1) ∼= O(1, (n+ 1)/2)⊗2.
Consider the class

H2 = (0, 2) ∈ C̃H
0
(BGm ×Bµn,O(0, 1))

⊆ H0(BGm ×Bµn, I0,O(0, 1))×Ch0(BGm×Bµn) CH
0(BGm ×Bµn) .

By Prop. 1.28 the square periodicity isomorphism φ acts as the identity on the second

factor, and on the first factor it maps 0 to 0, thus it sends H2 to h ∈ C̃H
0
(BGm×Bµn,O).

Similarly, H3 maps to H1.
As a consequence, e2 is mapped to (n + 1)/2H2e2. The latter is a generator of the

free summand Z/n⟨H2e2 of C̃H
1
(BGm×Bµn,O(0, 0)) and would also serve as a GW(k)-

algebra generator of the total Chow-Witt ring, but in order to achieve a more readable
presentation we will instead write down e2.

For φ(e3) ∈ C̃H
1
(BGm ×Bµn,O(1, 0)) note that the reduction map to Chow groups

sends e3 and thus also φ(e3) to c1 + c2. As we have computed in Thm. 5.1,

C̃H
1
(BGm ×Bµn,O(1, 0)) = C̃H

1
(BGm ×BGm,O(1, 0))/(n · e2)

= Z⟨e1⟩ ⊕ Z⟨H3e2⟩ ⊕ Z⟨H2e3⟩/(n · e2, he1 +H3e2 −H2e3)

= Z⟨e1⟩ ⊕ Z/n⟨H3e2⟩
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and the only element here whose image in the Chow group is c1+c2, is e1+(n+1)/2·H3e2.
With this one can simplify the relations inherited from BGm ×BGm as follows.

Eqs. (4.1) and (4.2) are all equivalent to H2
1 − 2h.

he1 +H3e2 −H2e3 = he1 +H1e2 − h(e1 +
n+ 1

2
H1e2)

= H1e2 −
n+ 1

2
2H1e2

= 0 and analogously for the other relations from Eq. (4.3)

I(k) ·H2 = I(k) ·H3 = I(k) ·H1

I(k) · e3 = I(k) · e1 + I(k) · (n+ 1)/2H3e2 follows from I(k)e1 and I(k)e2

e21 + e22 +H1e1e2 − e23 = e21 + e22 +H1e1e2 − (e1 +
n+ 1

2
H3e2)

2

= e21 + e22 +H1e1e2 − e21 − (n+ 1)e1H1e2 − (
n+ 1

2
)24e22 = 0

This completes the proof for odd n.
For even n, the relations in the Chow-Witt ring of BGm×Bµn are also inherited from

BGm ×BGm and since the Picard group of these two spaces are isomorphic there are no
quadratic periodicity isomorphisms to be divided out. The only thing left to determine
are the relations involving U2.
By construction, hU2 = 0. To compute H1U2, consider the reduction map

C̃H
0
(BGm ×Bµn,O(1, 0) CH0(BGm ×Bµn)

Z⟨H1⟩ Z

ρ

∼= ∼=

This sends the generator H1 to 2, and since the target is torsion-free this map is
injective. It is also compatible with multiplication. Since ρ(U2) = 0 by construction, it
follows that ρ(H1U2) = 0 and thus one concludes H1U2 = 0. Analogous arguments show
H2U2 = H3U2 = 0.

To compute U2
2 recall that U2 is defined as the image of U ∈ C̃H

0
(Bµn,O) as con-

structed in Def. 2.5 under the ring homomorphism

pr∗2 : C̃H (Bµn) −→ C̃H (BGm ×Bµn)

induced by the projection pr2 : BGm × Bµn → Bµn on the second factor. By [LM23,
Prop. 5.2.3], for Bµn there is a relation U2 = −2U . This implies

U2
2 = pr∗2(U)2 = pr∗2(U

2) = pr∗2(−2U) = −2U2

over BGm ×Bµn. The same argument yields

U2e2 = pr∗2(U)pr∗2(e) = pr∗2(Ue) = pr∗2(ne) = ne2
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where e is the Euler class of the bundle OBµn(1) (denoted T in the [LM23]).
For U2e1 consider the reduction map

ρ : C̃H
1
(BGm ×Bµn,O(1, 0)) −→ CH1(BGm ×Bµn)

which sends U2 and thus also U2e1 to zero. By Thm. 5.1 the Chow-Witt group on the
left is

C̃H
1
(BGm ×Bµn,O(1, 0)) ∼= C̃H

1
(BGm ×BGm,O(1, 0))/nH3e2

= Z⟨e1⟩ ⊕ Z⟨H3e2⟩ ⊕ Z⟨H2e3⟩/(H2e3 − he1 −H3e2, nH3e2)

= Z⟨e1⟩ ⊕ Z/n⟨H3e2⟩

and the Chow group on the right is Z⟨c1⟩ ⊕ Z/n⟨c2⟩ by [Tot14, Theorem 2.10, Lemma
2.12]. The reduction map ρ maps Euler classes to the corresponding Chern classes, thus
the kernel of ρ contains only the two elements 0 and n/2H3e2. To distinguish between
these two, consider

U2e1e2 = ⟨−1⟩2U2e2e1 = (U2e2)e1 = ne2e1

which implies that U2e2 cannot be zero, leaving only the possibility U2e1 = n/2H3e2. An
analogous argument shows U2H3 = n/2H1e2.

5.3 Milnor-Witt K-Theory Groups in Non-Diagonal Bidegrees

The computation in the next section will require H i(BGm ×Bµn,KMW
i−1 ,L).

Lemma 5.3. Let j < i. If i ̸= 0 or L is not trivial, then H i(BGm × Bµn,KMW
j ,L)

vanishes.

Proof. Consider again the localization sequence Eq. (5.1) which for arbitrary bidegrees
reads

. . . −→ H i−1(BGm ×BGm,K
MW
j−1 , s

∗
0L ⊗O(0, n)) −→ H i(BGm ×BGm,K

MW
j ,L)

ι∗−→ H i(BGm ×Bµn,KMW
j , ι∗L) −→ H i(BGm ×BGm,K

MW
j−1 , s

∗
0L ⊗O(0, n)) −→ . . .

The second and fourth terms are shown in Lemma 4.5 to vanish - implying that the
third term vanishes as well - except when i = 0 and L respectively s∗0L ⊗ O(0, n) are
trivial.

5.4 Ij-Cohomology of BGm ×Bµn

Corollary 5.4.
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If n is odd:

H (BGm ×Bµn, I∗) ∼=W (k)[e1]/(I(k)e1)

If n is even:

H (BGm ×Bµn, I∗) ∼=W (k)[U2, e1, e2, e3](I(k) · (e1, e2, e3), e21 + e22 − e23,
U2
2 + 2U2, U2 · (e1, e2, e3))

The symbols U2, e1, e2, e3 are as in Thm. 5.2.

Proof. Combine the computation of C̃H (BGm ×Bµn) from Thm. 5.2 and the fact that
the sequence

CHi(BGm ×Bµn)
hL−−→ C̃H

i
(BGm ×Bµn,L) −→ H i(BGm ×Bµn, Ii,L) −→ 0

is exact.
Using a similar argument as in Cor. 2.10 we find that for n odd, the images of the

hyperbolic maps hO(0,0) and hO(1,0) are the submodules of C̃H (BGm ×Bµn) generated
by h and H1, respectively. Dividing out he2 = 2e2 also identifies the relation ne2 with e2,
therefore the latter will be identified with zero as well.
If n is even, the images of the hyperbolic maps are generated by h, H1, H2 and H3.

After dividing these out, the relation n
2H2e2 disappears because it is a multiple of H2.

The same holds for all of the relation ideal J .
The statement then follows by adding up the computed cohomology groups and

inheriting the ring structure from C̃H (BGm ×Bµn).

Remark 5.5. If n is odd, both the Chow-Witt ring and the Ij-cohomology ring satisfy
a Künneth isomorphism

C̃H (BGm)⊗GW(k) C̃H (Bµn) ∼= C̃H (BGm ×Bµn)

as GW(k)-algebras. If n is even, however, the Künneth map is neither injective nor
surjective: Both the Chow-Witt and Ij-cohomology ring contain an element e3 that does
not come from one of the factors, and a new relation U2e1− (n/2)H3e2 respectively U2e1.
Comparing with singular cohomology, the Künneth map not being surjective is not

surprising as the classical Künneth theorem also features an additional Tor-term when
none of the factor spaces has all free cohomology groups. The failure of injectivity, on
the other hand, is unexpected as this can never happen in singular cohomology. This can
be explained by considering the real cycle class map

H i(BGm ×Bµn, Ij ,L) −→ H i
sing((BGm ×Bµn)(R);Z(L)) .

[HWXZ21, Theorem 5.7] does not apply in this case since (our scheme approximations of)
BGm×Bµn are not cellular, but [Jac17, Corollary 8.3] shows that this is an isomorphism
if j ≥ 2i + 5 (choose the approximation Pr × Ern with r ≥ i + 2 which has dimension
2r + 1 ≥ 2i + 5 to compute H i(BGm × Bµn, I

j ,L)). Similarly to Remark 2.11, for
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higher powers of the fundamental ideal the product U2e1 does not vanish but presents an
additional free generator of the respective Ij-cohomology groups.

This differs from Chow theory, where the Künneth isomorphism holds for BGm ×Bµn
by [Tot14, Lemma 2.12].

53



6 Chow-Witt Ring of Bµm ×Bµn

Throughout this chapter let m and n be positive integers and k a perfect field of
characteristic coprime to 2, m and n.

The Picard group of Bµm×Bµn is isomorphic to its first Chow group which is computed
in [Tot14, Theorem 2.10, Lemma 2.12] to be isomorphic to Z/m× Z/n. For line bundles
on (scheme approximations of) BGm ×Bµn we adopt the usual notation

O(s, t) = pr∗1OBGm(s)⊗ pr∗2OBµn(t) .

We are going to use another instance of the localization sequence like in the previous
sections, this time associated to the decomposition

Pq × Ern
s0
↪−→ Eqm × Ern

ι←−↩ (Eqm × Ern)∖ s0(Pq × Ern) .

Under the usual isomorphisms this reads as follows:

. . . −→ C̃H
i−1

(BGm ×Bµn, s∗0L ⊗O(m, 0))
e(O(m,0))−−−−−−→ C̃H

i
(BGm ×Bµn,L)

ι∗−→ C̃H
i
(Bµm ×Bµn, ι∗L) −→ H i(BGm ×Bµn,KMW

i−1 , s
∗
0L ⊗O(m, 0)) −→ . . . (6.1)

Further we will use a trick for degree 0 building on work of Hudson-Matszangosz-Wendt
[HMW24]. Note that the group H0(X, I0,OX) forms a subring of the total Ij-cohomology
ring of X.

Lemma 6.1. The W(k)-algebra homomorphism

pr1 · pr2 : H0(Bµm, I
0,O)⊗W(k) H

0(Bµn, I
0,O) −→ H0(Bµm ×Bµn, I0,O)

is an isomorphism.

Proof. Recall from Def. 1.21 that H i(X,W,L) ∼= H i(X, I0,L), thus in degree 0 results
about Witt cohomology can be applied. In the following all groups have trivial twist and
we will omit the twist from notation.

Consider the following diagram of schemes

Pq × Ern OPq(m)× Ern (OPq(m)∖ s0)× Ern

Pq OPq(m) OPq(m)∖ s0

s0×id

pr1 pr1 pr1

ι×id

s0
ι
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and the W(k)-module homomorphism pr∗2 : H
0(Bµn,W) → H (OPq ,W). The ladder

lemma of [HMW24, Lemma 4.5] then states that the long exact localization sequence of
the bottom row tensored with H0(Ern,W) and that of the top row form a commutative
diagram of W(k)-modules:

...
...

H−1(Pq,W)⊗W(k) H
0(Ern,W) H−1(Pq ×Bµn,W)

H0(Pq,W)⊗W(k) H
0(Ern,W) H0(Pq ×Bµn,W)

H0(Bµm,W)⊗W(k) H
0(Ern,W) H0(Bµm ×Bµn,W)

H0(Pq,W)⊗W(k) H
0(Ern,W) H0(Pq ×Bµn,W)

H1(Pq,W)⊗W(k) H
0(Ern,W) H1(Pq ×Bµn,W)

...
...

(s0)∗⊗id

pr1·pr2

(s0×id)∗

ι∗⊗id

pr1·pr2

(ι×id)∗

∂⊗id

pr1·pr2

∂′

(s0)∗⊗id

pr1·pr2

(s0×id)∗

pr1·pr2

By our previous computation in Cor. 2.10 H0(Ern,W) ∼= H0(Bµn,W) is a free and
therefore flat W(k)-module, hence the left-hand column is exact. The first, second, fourth
and fifth horizontal maps are isomorphisms by the Künneth formula for Witt cohomology
[HMW24, Theorem 4.7]; the scheme Pq is cellular and H0(Bµn,W) ∼= W(k)⟨1, U⟩ (as
computed in Cor. 2.10) as well as H>0(Bµn,W) ∼= 0 (as computed in Lemma 2.9) are
free W(k)-modules. Thus by the five-lemma, the third horizontal map is an isomorphism
as well.

6.1 Group Structure

Theorem 6.2. Let i ∈ Z and L a line bundle over Bµm ×Bµn.

(i) If m and n are odd:

C̃H
i
(Bµm ×Bµn,L) ∼= C̃H

i
(BGm ×Bµn)/me1

∼= C̃H
i
(BGm ×BGm,L)/(me1, ne2)
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(ii) If m is odd and n even:

C̃H
i
(Bµm ×Bµn,L) ∼= C̃H

i
(BGm ×Bµn)/me1

∼=

{
GW(k)⊕W(k)⟨U2⟩ i = 0, L trivial

C̃H
i
(BGm ×BGm,L)/(me1, n2H2e2) else

If m is even and n odd, exchanging m and n reduces to case (ii).

(iii) If m and n are both even:

C̃H
i
(Bµm ×Bµn,L) ∼=

{
GW(k)⊕W(k)⟨U1, U2, U1U2⟩ i = 0, L trivial

C̃H
i
(BGm ×BGm)/(

m
2 H1e1,

n
2H2e2) else

Proof. Assume first that m is odd. Then Lemma 5.3 shows that the last term of Eq. (6.1)
vanishes except when i = 0 and s∗0L ⊗ O(m, 0) is trivial in Pic(BGm × Bµn)/2 which
is the case for L = O(1, 0). This case however can be circumvented by using that in
Pic(Bµm ×Bµn)/2, O(1, 0) ∼ O(0, 0) and thus there is an isomorphism

C̃H
i
(Bµm ×Bµn,O(1, 0)) ∼= C̃H

i
(Bµm ×Bµn,O(0, 0)) .

Therefore

C̃H
i
(Bµm×Bµn,L) ∼= C̃H

i
(BGm×Bµn,L)/ e(O(m, 0))·C̃H

i−1
(BGm×Bµn,L⊗O(m, 0))

for all line bundles L and i ∈ Z. This solves cases (i) and (ii).
(iii) In this case the last term of the localization sequence 6.1 vanishes and there is

again an isomorphism

C̃H
i
(Bµm×Bµn,L) ∼= C̃H

i
(BGm×Bµn,L)/ e(O(m, 0))·C̃H

i−1
(BGm×Bµn,L⊗O(m, 0))

except for i = 0 and s∗0L ⊗O(m, 0) trivial, i.e. L trivial.
For this remaining case, Lemma 6.1 shows

H0(Bµm ×Bµn, I0,O(0, 0)) ∼= H0(Bµm, I
0,O(0, 0))⊗W(k) H

0(Bµn, I
0,O(0, 0))

= W(k)⟨1, U1⟩ ⊗W(k) W(k)⟨1, U2⟩

as W(k)-algebras. To compute the Chow-Witt group, apply Hornbostel-Wendt’s fiber prod-
uct formula Prop. 1.22: From [Tot14, Theorem 2.10, Lemma 2.12] deduce CH0(Bµm×Bµn) ∼= Z⟨1⟩.
The kernel of the boundary map

∂O(0,0) : CH0(Bµm ×Bµn) −→ H1(Bµm ×Bµn, I1,O(0, 0))

is the whole domain as it follows from Lemma 3.7 that ∂O(0,0) = βO(0,0) ◦(mod 2) maps

1 to 1 · e(O(0, 0)) = 0. The structure map from CH0 to Ch0 is the usual mod 2 map.
The structure map from H0(Bµm × Bµn, I0,O(0, 0)) = W(k)⟨1, U1, U2, U1U2⟩ sends 1
to 1, and U1, U2 and thus also U1U2 to zero as di Lorenzo-Mantovani have already
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shown in their work on the Chow-Witt ring of Bµn [LM23, Remark 5.2.2]. Therefore the
Chow-Witt group in degree 0 evaluates to

C̃H
0
(Bµm ×Bµn,O) ∼= H0(Bµm ×Bµn, I0,O)×Ch0(Bµm×Bµn) CH

0(Bµm ×Bµn)

= W(k)⟨1, U1, U2, U1U2⟩ ×Z/2 Z⟨1⟩
= GW(k)⟨1⟩ ⊕W(k)⟨U1, U2, U1U2⟩ .

6.2 Ring Structure

Theorem 6.3. Let m and n be positive natural numbers.

(i) If m and n are odd:

C̃H (Bµm ×Bµn) ∼=GW(k)[e1, e2]/ (I(k) · (e1, e2),me1, ne2)
(ii) If m is odd and n even:

C̃H (Bµm ×Bµn) ∼=GW(k)[U2, H2, e1, e2]/(I(k) · (H2, e1, e2),me1,
n

2
H2e2,

H2
2 − 2h, hU2, H2U2, U

2
2 + 2U2, U2e1, U2e2 − ne2)

(iii) If m and n are even:

C̃H (Bµm ×Bµn) ∼=GW(k)[U1, U2, H1, H2, H3, e1, e2, e3]/(
m

2
H1e1,

n

2
H2e2,

I(k) · (H1, H2, H3, e1, e2, e3),J , e21 + e22 +H3e1e2 − e23,
(h,H1, H2, H3) · (U1, U2), U

2
1 + 2U1, U

2
2 + 2U2,

U1e1 −me1, U1e2 −
m

2
H3e1, U1e3 −

m

2
H2e1,

U2e1 −
n

2
H3e2, U2e2 − ne2, U2e3 −

m

2
H1e2)

Here U1 and U2 correspond to the pullbacks along the projections pr1 and pr2 of the class

U defined in Def. 2.5. The symbols ei map to e(L∨) ∈ C̃H
1
(Bµm ×Bµn,L) and Hi to

(0, 2) ∈ C̃H
0
(Bµm×Bµn,L) ⊆ H0(Bµm×Bµn, I0,L)×Ch0(Bµm×Bµn)CH

0(Bµm×Bµn)

for L = O(1, 0), O(0, 1), O(1, 1), respectively.

Proof. (i) In Thm. 6.2 we have seen that all Chow-Witt groups of Bµm × Bµn are
isomorphic to those of BGm ×Bµn modulo me1, thus the Chow-Witt ring is isomorphic
to that of BGm × Bµn modulo me2 and the quadratic periodicity isomorphism φ for
O(1, 0) ∼= O(m+ 1, 0) ∼= O((m+ 1)/2, 0)⊗2.
The same argument as in the proof of Thm. 5.2 for n odd shows φ(H1) = h. This

implies that the generator H1 as well as the relation I(k)H1 from C̃H (BGm × Bµn)
become redundant in C̃H (Bµm ×Bµn).
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For (ii) we can use an analogous argument, but now there are two quadratic periodicities
to consider, namely φO((m+1)/2,0) and φO((m+1)/2,1). Again using the arguments from
Thm. 5.2 yields

φO((m+1)/2,0)(H1) = h

φO((m+1)/2,1)(H3) = H2

φO((m+1)/2,1)(e3) = (m+ 1)/2H3e1 + e2 .

Thus the generatorsH1,H3 and e3 as well as the relationsH1U2,H3U2, e
2
1+e

2
2+H3e1e2−e23

and everything in the relation ideal J from Eqs. (4.1) to (4.3) except for H2
2 − 2h become

redundant. The relation U2e1 − (n/2)H3e2 becomes U2e1.
(iii) In this case there are no quadratic periodicity isomorphisms to be divided out.

All relations from the Chow-Witt ring of BGm × Bµn are inherited. Exchanging m
and n further allows to inherit the product of U1 with H1, H2, H3, e1, e2 and e3 from
Bµm ×BGm. The localization sequence Eq. (6.1) forces the relation e(O(m, 0)) which
equals (m/2)H1e1. The Künneth formula in degree 0 from Lemma 6.1 shows that U1U2 is
W(k)-linearly independent of the generators 1, U1 and U2 hence there are no additional
relations for this product.

6.3 Ij-Cohomology of Bµm ×Bµn

Corollary 6.4.

If m and n are odd:

H (Bµm ×Bµn, I∗) ∼=W (k)

If m is odd and n is even:

H (Bµm ×Bµn, I∗) ∼=W (k)[U2, e2](I(k)e2, U
2
2 + 2U2, U2e2)

If m and n are even:

H (Bµm ×Bµn, I∗) ∼= W(k)[U1, U2, e1, e2, e3]/(I(k) · (e1, e2, e3), e21 + e22 − e23,
U2
1 + 2U1, U

2
2 + 2U2, U1e1, U1e2, U1e3, U2e1, U2e2, U2e3)

Proof. Combine the computation of C̃H (Bµm ×Bµn) from Thm. 6.3 and the fact that
the sequence

CHi(Bµm ×Bµn)
hL−−→ C̃H

i
(Bµm ×Bµn,L) −→ H i(Bµm ×Bµn, Ii,L) −→ 0

is exact.
If m and n are odd, the image of the hyperbolic map hO(0,0) is the submodule of

C̃H (Bµm ×Bµn) generated by h. Dividing this out identifies the relation me1 with e1

and ne2 with e2. This leaves only the group C̃H
0
(Bµm×Bµn,O)/h ∼= GW(k)/h ∼= W(k).

If m is odd and n is even, the images of the hyperbolic maps hO(0,0) and hO(0,1) are
generated by h and H2, respectively. Dividing out h identifies me1 with e1 (since m is
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odd and 2e1 − he1 ∈ I(k)e1) causing e1 to become trivial, and all relations containing h
or H2 vanish.

If m and n are even, the images of the hyperbolic maps are generated by h, H1, H2, H3,
respectively. The relation U1e1 −me1 becomes U1e1, as me1 is a multiple of 2e1 = he1
and thus vanishes. All relations containing h, H1, H2 or H3 vanish.
The statement on ring structure follows by adding up the computed cohomology groups

and inheriting the ring structure from C̃H (Bµm ×Bµn).

Remark 6.5. For m and n both odd there is again a Künneth isomorphism

C̃H (Bµm)⊗ C̃H (Bµn) ∼= C̃H (Bµm ×Bµn)
H (Bµm, I

∗)⊗H (Bµn, I
∗) ∼= H (Bµm ×Bµn, I∗)

for both the Chow-Witt and the Ij-cohomology ring. If m and n are both even this map
is injective but not surjective because the right-hand side contains the class e3 that does
not come from one of the factors. If m is odd and n even, the map is surjective but
not injective because there is a new relation U2e1 − (n/2)H2e2 respectively U2e1 on the
right-hand side.

Like in Remark 5.5 the real cycle class map

H i(Bµm ×Bµn, Ij ,L) −→ H i
sing((Bµm ×Bµn)(R);Z(L))

is not an isomorphism in all bidegrees but only for j ≥ 2i + 6. In these bidegrees the
product U2e1 does not vanish but presents an additional generator of the Ij-cohomology
group, making the Künnneth map injective just like the one for singular cohomology.
In Chow theory, for comparison, the Künneth isomorphism holds by [Tot14, Lemma

2.12]: the group µm satisfies condition (ii) because k contains all e-th roots of unity where
e is the exponent of µn (even if it does not contain all n-th roots of unity).
To summarize, of the product spaces considered in this work only BGm ×Bµn with

n odd and Bµm × Bµn with both m and n odd satisfy a Künneth isomorphism for
Chow-Witt rings. For Bµm × Bµn with m and n odd the Künneth map is surjective
but not injective, for Pq × Pr, BGm × BGm and Bµm × Bµn with m and n even it is
injective but not surjective, and for BGm ×Bµn with n even and Bµm ×Bµn with m
odd and n even it is neither injective nor surjective. At this point it is unclear to the
author if this behavior can be predicted in any way.
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