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Abstract

In this work, we study the equivariant algebraic cobordism rings for the action of
a torus T on smooth varieties over an algebraically closed field of characteristic zero.
Algebraic cobordism is the universal oriented cohomology theory which generalises Chow
groups and connective K-theory. Due to its universality, one needs more sophisticated
frameworks in order to describe the algebraic cobordism rings using the universal formal
group law.

This work is split into five main parts. In the first part, we recall the construction of
algebraic cobordism and define equivariant algebraic cobordism as well as horospherical
and spherical varieties which are the objects of main interest throughout this work.
These objects are illustrated by presenting several relevant computations which provide
the necessary tools being subsequently used in the following chapters.

In the second part, the current state of research related to computations in equivariant
cobordism is reviewed. Furthermore, we prove a relation in equivariant cobordism which
will be essential in the sequel of this work. Additionally, we prove that the localisation
at T -fixed points also holds for a refinement of coefficients. Lastly, for a connected
reductive algebraic group G and a maximal torus T in G, we provide a proof of a
Künneth formula in T -equivariant cobordism for smooth projective G-varieties X and
Y if X × Y has finitely many T -fixed points with respect to the diagonal action. The
last two results of course imply similar statements for equivariant Chow groups and
equivariant connective K-theory the first of which is a new result even for Chow groups.

The third part is dedicated to the main theorem of this work. First, we review the
proof techniques for the computations of rational T -equivariant Chow groups of smooth
projective spherical G-varieties which we then adapt to rational equivariant cobordism
making the necessary modifications. Using the relation from the second part, we can
prove the structure theorem which describes the rational T -equivariant cobordism rings
of smooth projective spherical G-varieties.

In the fourth part, we provide a plethora of computations in order to apply the main
theorem of this work. We describe the geometry of smooth projective horospherical
varieties of Picard number one including the odd symplectic Grassmannians and compute
their rational T -equivariant cobordism rings. Additionally, we extend these results to
some specific smooth projective horospherical varieties of Picard number two. These
results of course imply similar statements for e.g. rational T -equivariant Chow groups.
Furthermore, the given computations were previously unknown even in the Chow group
case.

The last part of this work provides computations of classes in rational equivariant
cobordism. To be more precise, we can determine the ring structure for certain smooth
T -filtrable schemes by describing the generators of the rational equivariant cobordism
module in the rational equivariant cobordism ring. This develops the state of research
because we can now multiply certain classes inside the rational T -equivariant cobor-
dism ring. This will then be applied to the example of the odd symplectic Grassman-
nian IG(2, 5) in which we describe the generators of the rational T -equivariant cobor-
dism module geometrically and then compute their classes in the rational T -equivariant
cobordism ring. As above, similar results for rational T -equivariant Chow groups can
be deduced from the previous result.
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Résumé

Dans ce travail, nous étudions les anneaux de cobordisme algébrique équivariant pour
l’action d’un tore T sur des variétés lisses sur un corps algébriquement clos de caractéris-
tique nulle. Le cobordisme algébrique est la théorie cohomologique orientée universelle
qui généralise les groupes de Chow et laK-théorie. En raison de son universalité, on a be-
soin de techniques plus sophistiquées pour décrire les anneaux de cobordisme algébrique
en utilisant la loi de groupe formelle universelle.

Cette thèse est divisée en cinq parties. Dans la première partie, nous rappelons la
construction du cobordisme algébrique et définissons le cobordisme algébrique équiva-
riant ainsi que les variétés horosphériques et sphériques qui sont les principaux objets
d’intérêt tout au long de ce travail. Ces objets sont illustrés par la présentation de plu-
sieurs calculs pertinents qui fournissent des outils nécessaires qui seront utilisés dans les
chapitres suivants.

Dans la deuxième partie, nous présentons l’état actuel des recherches aux calculs en
cobordisme équivariant. De plus, nous prouvons une relation en cobordisme équivariant
qui est essentielle dans la suite de ce travail. Nous prouvons aussi que la localisation aux
points fixes de T reste valide pour un raffinement des coefficients. Enfin, pour un groupe
algébrique réductif connexe G et un tore maximal T dans G, nous donnons une preuve
d’une formule de Künneth en cobordisme T -équivariant pour des G-variétés projectives
lisses X et Y si X × Y a un nombre fini de points fixes de T par rapport à l’action
diagonale. Les deux derniers résultats bien sûr impliquent des résultats similaires pour les
groupes de Chow équivariants et la K-théorie équivariant. Le résultat sur le raffinement
des coefficients est nouveau même pour les groupes de Chow.

La troisième partie est consacrée au théorème principal de cette thèse. Dans un
premier temps, nous passons en revue les techniques de preuve pour les calculs des
groupes de Chow rationnels T -équivariants des G-variétés sphériques projectives lisses
que nous étendons ensuite pour le cobordisme rationnel T -équivariant. En utilisant la
relation de la deuxième partie, nous prouvons le théorème principal qui décrit les anneaux
de cobordisme rationnels T -équivariants des G-variétés sphériques projectives lisses.

Dans la quatrième partie, nous effectuons de nombreaux calculs qui illustrent le théo-
rème principal de ce travail. Nous décrivons la géométrie des variétés horosphériques pro-
jectives lisses de nombre de Picard 1, y compris les grassmanniennes symplectiques im-
paires, et calculons leurs anneaux de cobordisme rationnels T -équivariants. De plus, nous
étendons ces résultats à certaines variétés horosphériques projectives lisses de nombre
de Picard 2. Ces résultats se spécialisent au cas des groupes de Chow rationnels T -
équivariants et sont déjà nouveaux dans le cas des groupes de Chow.

La dernière partie de ce travail fournit des calculs de classes de nature géométrique en
cobordisme rationnel T -équivariant. Comme on peut déterminer la structure d’anneau de
certaines variétés lisses T -filtrable en décrivant les générateurs du module de cobordisme
rationnel T -équivariant et en localisant aux points fixes, on peut désormais multiplier
ces classes géométriques dans l’anneau de cobordisme rationnel T -équivariant. Nous ap-
pliquons ces techniques au cas de la grassmannienne symplectique impaire IG(2, 5) dans
laquelle nous décrivons les générateurs du module de cobordisme rationnel T -équivariant
de manière géométrique puis calculons leurs classes dans l’anneau de cobordisme ration-
nel T -équivariant. Comme ci-dessus, un résultat similaire pour les groupes de Chow
rationnels T -équivariant peut être déduit du résultat précedent.
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Kurzfassung

In dieser Dissertation berechnen wir äquivariante Kobordismusringe für die Wirkung
eines Torus T auf glatten Varietäten über einem algebraisch abgeschlossenem Körper
von Charakteristik null. Algebraischer Kobordismus ist die universelle orientierte Ko-
homologietheorie und verallgemeinert aufgrund dessen Chowgruppen und konnektive
K-Theorie. Die Beschreibung von Kobordismusringen benötigt weitergehende Metho-
den, weil das universelle Gruppengesetz für Berechnungen der Ringstrukturen verwendet
werden muss.

Diese Arbeit ist in fünf Kapitel gegliedert. Im ersten Kapitel wird die Konstruktion
von algebraischem Kobordismus wiederholt und äquivarianter Kobordismus definiert.
Des Weiteren werden sphärische und horosphärische Varietäten eingeführt, welche die
wichtigsten Beispielklassen für die dargelegten Berechnungen darstellen. Diese Objekte
werden anhand von einigen Beispielen am Ende des ersten Kapitels veranschaulicht.

Im zweiten Kapitel wird der aktuelle Forschungsstand hinsichtlich der Berechnungen
von äquivariantem Kobordismus von Varietäten dargelegt. Weiterhin wird eine Rela-
tion in äquivariantem Kobordismus bewiesen, welche im weiteren Verlauf der Arbeit
mehrfach verwendet wird. Zudem wird ein Lokalisierungstheorem für einen verfeinerten
Koeffizientenring formuliert und abschließend eine Künneth Formel für T -äquivarianten
Kobordismus gezeigt, wobei T ein maximaler Torus ist. Die letzten beiden Resultate
implizieren ähnliche Resultate für äquivariante Chowgruppen und äquivariante konnek-
tive K-Theorie, wobei das verfeinerte Lokalisierungstheorem sogar ein neues Resultat
für Chowgruppen darstellt.

Das dritte Kapitel befasst sich mit dem Hauptsatz der vorliegenden Arbeit. Zuerst
werden die Beweistechniken für die Berechnungen von rationalen äquivarianten Chowrin-
gen von glatten, projektiven und sphärischen Varietäten dargestellt, welche im Laufe des
Kapitels für rationalen äquivarianten Kobordismus erweitert werden, um den Hauptsatz
zu beweisen. Hierbei ist die beschriebene Relation aus Kapitel zwei von besonderer Rele-
vanz. Letztere ermöglicht die Berechnung von rationalen T -äquivarianten Kobordismus-
ringen von glatten, projektiven und sphärischen Varietäten.

Im vierten Kapitel werden unter Verwendung des Hauptsatzes zahlreiche explizite
Rechnungen durchgeführt. Zunächst wird die Geometrie von glatten, projektiven und
horosphärischen Varietäten von Picard-Rang eins analysiert, um danach deren rationa-
le T -äquivariante Kobordismusringe zu berechnen. Unter anderem werden diese Ringe
für ungerade symplektische Grassmann-Varietäten berechnet und des Weiteren auch für
einige glatte, projektive und horosphärische Varietäten von Picard-Rang zwei. Wir erhal-
ten dadurch auch neue Ergebnisse für rationale T -äquivariante Chowringe von glatten,
projektiven und horosphärischen Varietäten.

Im letzten Kapitel der Arbeit werden die Klassen der Erzeuger im rationalen T -
äquivarianten Kobordismusring berechnet. Die Ringstruktur der rationalen T -äquiva-
rianten Kobordismusringe kann beschrieben werden, indem die Erzeuger des Moduls in
der Algebra identifiziert werden. Dies erweitert den aktuellen Forschungsstand, da nun
für glatte und T -filtrierbare Varietäten die Klassen der Erzeuger miteinander multipli-
ziert werden können. Diese Theorie wird dann am Beispiel der ungeraden symplektischen
Grassmann-Varietät IG(2, 5) angewendet, indem die Erzeuger des Moduls geometrisch
beschrieben werden, was für die Berechnung der Klassen notwendig ist. Dadurch kann
der rationale T -äquivariante Kobordismusring von IG(2, 5) beschrieben werden, was er-
neut ähnliche Resultate für rationale T -äquivariante Chowringe liefert.
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Henry July

1 Introductions

1.1 Introduction (English version)

1.1.1 Motivation

Cohomology theories have been always of great interest in algebraic geometry, let it be
the notions of Chow groups, K-theory or quantum cohomology. One needs to distiguish
between non-oriented and oriented cohomology theories and our main focus will lie on
the latter ones. The orientation basically means that the cohomology theory has the
additional structure of Chern classes for complex vector bundles. These cohomology
theories are primarily used in order to understand the geometric intersection theory of
varieties, the latter being the main part of Hilbert’s 15th problem.

The original motivation to understand algebraic cobordism was to find an analogue to
the cobordism of differentiable manifolds introduced in the fundamental paper of Quillen
(cf. [48]). Quillen observed that the complex cobordism theory MU∗(X) is the universal
complex oriented cohomology theory on the category of differentiable manifolds. Later
on, Levine and Morel (cf. [37]) were able to prove analogues of MU∗ for the category
of smooth k-schemes for any field k of characteristic zero. They called the resulting
universal oriented cohomology theory Ω∗ algebraic cobordism and furthermore, they
gave applications and examples explaining the relations between Ω∗ and the functor K0
of Grothendieck groups or the Chow ring functor CH∗.

Equivariant cohomology theories originally arose because one wanted to understand
the ordinary cohomology theory of classifying spaces. Subsequently, equivariant co-
homology theories were studied as they include group actions on varieties into their
computations. It turned out that those are a very powerful tool in order to describe the
ordinary cohomology theories and many computations were made in equivariant coho-
mology theories (e.g. [1, 7, 8, 9, 11, 12, 17, 20, 30, 31, 32, 34, 50]) for different kinds of
varieties. As we are mainly interested in algebraic cobordism, we also mostly investigate
equivariant algebraic cobordism of smooth varieties over a field of characteristic zero.

The last objects of interest in this thesis are spherical varieties. Those were studied
for example in [6, 16, 29, 39, 41, 42, 43, 44, 45, 46, 47]. This class of varieties includes
a wide range of very well known varieties as for example flag varieties, toric varieties,
symmetric varieties, wonderful varieties or horospherical varieties. The geometry of the
latter was intensively studied for example in [16, 41, 42, 43, 44, 46]. In this thesis our
main focus lies on computations of equivariant algebraic cobordism of spherical varieties
and on explicit computations for horospherical varieties. In fact, this last class of varieties
includes a phletora of interesting examples as flag varieties, toric varieties or the odd
symplectic Grassmannian IG(k, 2n+ 1) for n ≥ 2 and k ∈ [2, n].

The motivation specifically for this work was the state of the research at the time this
project was started. Let G be a connected reductive algebraic group with a maximal
torus T in G over some algebraically closed field k of characteristic zero. Brion computed
the rational T -equivariant Chow rings for smooth projective spherical G-varieties (cf. [7])
and T -equivariant cobordism rings were already computed for e.g. smooth toric varieties
(cf. [34]), flag varieties (cf. [28]), wonderful symmetric varieties of minimal rank (cf. [28])
and smooth projective varieties with finitely many T -fixed points and finitely many T -
stable curves (cf. [31]). Therefore, a natural question is the generalisation of Brion’s
results to rational T -equivariant cobordism for any smooth projective spherical G-variety
especially because the geometry of spherical varieties is an active field of research.
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1.1 Introduction (English version)

1.1.2 Main results

In this section, we describe our main results. We start by providing necessary no-
tations and definitions needed in the main theorems of this thesis. First of all, the
following lemma illustrates the correspondence between formal group laws and oriented
cohomology theories which is one of the fundamental facts of this theory (see Section
2.1 for more details).

Lemma. [37, Lemma 1.1.3] Let A∗ be an oriented cohomology theory on Smk for any
field k of characteristic zero. Then there is a unique power series

FA(u, v) =
∑
i,j

ai,ju
ivj ∈ A∗(k)[[u, v]]

with ai,j ∈ A1−i−j(k) such that for any X ∈ Smk and any pair of line bundles L and M
on X, we have

FA(c1(L), c1(M)) = c1(L⊗M).

Furthermore, the pair (A∗(k), FA) is a commutative formal group law of rank one.

For example Chow groups are associated to FCH(u, v) = u + v and K-theory to
FK(u, v) = u+ v−βuv. Algebraic cobordism corresponds to the universal commutative
formal group law FΩ of rank one.

Next, we fix some notation which we use throughout the thesis. Let G be a connected
reductive algebraic group G over an algebraically closed field k of characteristic zero.
Furthermore, let B ⊆ G be a Borel subgroup, T ⊆ B a maximal torus, W the Weyl
group of G corresponding to the maximal torus of B and U the unipotent radical of B.
Additionally, we choose the order on weights induced by the Borel subgroup B, i.e. for
two weights χ, χ′ we have χ ≥ χ′ if χ−χ′ is a non-negative linear combination of simple
roots.

Definition. Let X be a normal G-variety. We call X spherical if it contains an open
B-orbit.

In the following, we recall that the T -equivariant cobordism ring Ω∗T (X) for a smooth
variety X is given by an inverse limit of ordinary cobordism rings of mixed quotients,
the latter being constructed from the group T (cf. Definition 2.40). We remark that
Ω∗T (X) is an Ω∗T (k)-algebra and furthermore, for any smooth projective variety X with
finitely many T -fixed points, the generators in the Ω∗T (k)-module Ω∗T (X) are some classes
[f : Y → X] where f is a projective T -equivariant morphism from a smooth variety Y
(cf. [31, Corollary 4.8]). From now on we use S(T ) := Ω∗T (k). We also recall that
the T -equivariant cobordism ring S(T ) is isomorphic to the graded power series ring
L[[t1, ..., tn]]gr (cf. Construction 3.25) where n denotes the rank of the torus T (cf. [32,
Proposition 6.7]) and L the Lazard ring (cf. Construction 2.8).

In order to proceed to the main results of this thesis, we define the rational T -
equivariant cobordism ring Ω∗T (X)Q := Ω∗T (X)⊗Z Q for a smooth variety X where this
tensor product denotes the graded topological tensor product (cf. Construction 3.30).
We remark that Ω∗T (X)Q is an S(T )Q-algebra if X is smooth.

Now, we give the state of the art before this project was conducted. The next
proposition is a generalisation by Krishna [31] of classical localisation results (cf. [7, 12,

2
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17]) which is a very powerful tool in order to compute rational T -equivariant cobordism
for varieties having finitely many fixed points and stable curves.

Proposition. [31, Theorem 7.8] Let X be a smooth projective scheme where a torus
T acts with finitely many fixed points x1, ..., xp and finitely many stable curves. Let
i : XT → X be the inclusion of the fixed point locus. Then the image of

i∗ : Ω∗T (X)Q → Ω∗T (XT )Q = S(T )pQ

is the set of (f1, ..., fp) ∈ S(T )pQ such that fi ≡ fj mod χ whenever xi and xj are
connected by a stable irreducible curve where T acts through the weight χ.

This proposition already suggests several possible generalisations which are first of
all of course extending the statement to smooth projective varieties with a torus action
where T acts with finitely many T -fixed points, but infinitely many T -stable curves.
One class of potential candidates is the class of smooth projective spherical varieties as
those always have finitely many T -fixed points (cf. Lemma 4.8). Therefore, we tried to
generalise the statements for rational T -equivariant Chow groups for smooth projective
spherical G-varieties. Since there is no presentation of the T -equivariant cobordism
module, one cannot run the same proof as for rational T -equivariant Chow groups, but
instead one needs different lemmata in order to be able to run a similar strategy. The
first technical result is the following lemma (cf. Lemma 3.36).

Lemma. Let T be a torus of rank n and F be a finite subgroup. Then we have a graded
L-algebra isomorphism

Ω∗T (k)Q ∼= Ω∗T/F (k)Q.

This statement ensures that the rational T -equivariant cobordism does not see a
difference between actions of maximal tori of SL2 or PSL2. These actions occur naturally
in Brion’s description of fixed point loci of spherical varieties, see below. This lemma is
proved only using formal group laws and computations in formal power series. Indeed,
this statement also holds if one considers coefficients in Z[ 1

p1
, ..., 1

p`
] where p1, ..., p` are

the primes occurring in the prime factorisation of the order of the group F .
The following result by Brion describes the fixed point loci of spherical varieties.

Proposition. [7, Proposition 7.1] Let X be a spherical G-variety and let T ′ ⊆ T be a
subtorus of codimension one.

(i) Each irreducible component of XT ′ is a spherical CG(T ′)-variety.

(ii) If T ′ is regular, then XT ′ is at most one-dimensional.

(iii) If T ′ is singular, then XT ′ is at most two-dimensional. Furthermore, any two-
dimensional connected component of XT ′ is either a rational ruled surface

Fn = P(OP1 ⊕OP1(n))

where CG(T ′) acts through the natural action of SL2, or the projective plane where
CG(T ′) acts through the projectivisation of a non-trivial SL2-module of dimension
three.
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1.1 Introduction (English version)

Before we are able to state the main result of this thesis, we provide some more
background regarding formal group laws. We recall the existence of a unique formal
graded power series χ(ui) ∈ L[[u1, ..., un]]gr which satisfies FΩ(ui, χ(ui)) = 0 where FΩ
denotes the universal commutative formal group law of rank one. For any positive integer
b ∈ Z≥1 we establish the following notations.

ui +FΩ uj := FΩ(ui, uj) ∈ L[[ui, uj ]]gr,

[−1]FΩui := χ(ui) ∈ L[[ui]]gr,

ui −FΩ uj := FΩ(ui, χ(uj)) ∈ L[[ui, uj ]]gr,

[0]FΩui := 0,
[b]FΩui := FΩ(ui, [b− 1]FΩui) ∈ L[[ui]]gr.

It is clear that [b]FΩu is divisible by u for any u ∈ L[[u1, ..., un]]gr of degree 1.
The next theorem is a replacement for the fact that we do not have any explicit

presentation of T -equivariant cobordism as in the case of T -equivariant Chow groups.
This result (cf. Theorem 3.39) is crucial for the proof of the structure theorem for the
rational T -equivariant cobordism rings of smooth projective spherical G-varieties.

Theorem. Let X be a smooth T -variety, [h : Y → X] the equivariant fundamental class
of a T -stable cobordism cycle and f ∈ k(Y ) a rational T -eigenfunction with weight χ.
Denote by Z0 and Z∞ the zeros and poles of f , respectively, and assume that they are
smooth. Then the relation

cT1 (Lχ) · [Y → X] = h∗FΩ ([Z0 → Y ], [−1]FΩ [Z∞ → Y ])

holds in ΩT
∗ (X) where FΩ denotes the universal formal group law and [−1]FΩ is the

inverse in the universal formal group law.

Next, we provide the last two definitions which are necessary in order to state the
main theorem of this thesis (cf. Theorem 4.13).

Definition. Let u ∈ L[[u1, ..., un]]gr be a homogeneous element of degree 1. Then for
n ∈ Z≥1 we define

[−n]FΩu := [−1]FΩ ([n]FΩu) .

Furthermore, if there exists a homogeneous element u′ ∈ (L[[u1, ..., un]]gr)Q of degree 1
such that [m]FΩu

′ = u holds for m ∈ Z≥1, then we define[ 1
m

]
FΩ

u := u′.

Definition. In the setting of the above definition we define the operator ρn/m by

ρn/mu :=
[n]FΩ

([
1
m

]
FΩ
u

)
u

in (L[[u1, ..., un]]gr)Q for any n ∈ Z \ {0} and m ∈ Z≥1.

Now, we established all the necessary tools in order to be able to state the main
theorem (cf. Theorem 4.13) of this thesis. The ordering of the T -fixed points in the
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connected components of XT ′ for singular codimension one subtori T ′ ⊆ T will be
described in the paragraph below the following theorem.

Theorem. For any smooth projective and spherical G-variety X, the pullback map

i∗ : Ω∗T (X)Q → Ω∗T (XT )Q

is injective. Moreover, the image of i∗ consists of all families (fx)x∈XT such that

(i) fx ≡ fy mod cT1 (Lχ) whenever x and y are connected by a T -stable curve where T
acts through the weight χ.

(ii) (fx− fy) + ρ1/2c
T
1 (Lα)(fz − fx) ≡ 0 mod cT1 (Lα)2 whenever α is a positive root of

G relative to T , x, y and z lie in a connected component of XKer(α)0 isomorphic to
a projective plane P2 and x ≥ y ≥ z are ordered by their corresponding weights.

(iii) fw − fx − fy + fz ≡ 0 mod cT1 (Lα)2 whenever α is a positive root of G relative to
T , w, x, y and z lie in a connected component of XKer(α)0 isomorphic to P1 × P1

and w ≥ x, y ≥ z are ordered by their corresponding weights.

(iv) ρ−n/2cT1 (Lα)(fy − fz) + ρn/2c
T
1 (Lα)(fw − fx) ≡ 0 mod cT1 (Lα)2 whenever α is a

positive root of G relative to T , w, x, y and z lie in a connected component of
XKer(α)0 isomorphic to a rational ruled surface Fn, n ≥ 1, and w ≥ x ≥ y ≥ z are
ordered by their corresponding weights.

This theorem allows us to describe the rational T -equivariant cobordism rings as long
as we can determine the surfaces occurring in the connected components of the fixed
point subschemes XT ′ . One more major tool in the proof of the previous theorem is
the computation of the rational T -equivariant cobordism ring of projective planes and
Hirzebruch surfaces (cf. Proposition 4.16). In order to be able to state this proposition,
we describe the irreducible components of XT ′ for singular codimension one subtori T ′
coming from the previous Proposition in some more detail.

Therefore, let D be the torus of diagonal matrices in SL2 and let α be the positive
root. First, we want to consider the two cases of P(V ) for a non-trivial SL2-module V
of dimension three. Set Vn+1 := Symn+1(k2). Let V = V0 ⊕ V1 be the first non-trivial
SL2-module of dimension three. The weights of D in V are α/2, 0 and −α/2 induced
by the given group action of D on V from Example 3.9 (iii). We denote by x, y and
z the corresponding fixed points of D in P(V ) which are also described in Example
3.9 (iii). To be more explicit, the corresponding fixed points to the weights α/2, 0,−α/2
are x = [1 : 0 : 0], y = [0 : 1 : 0] and z = [0 : 0 : 1], respectively. Therefore, we identify
Ω∗D(P(V )D)Q with S(D)3

Q.
Similarly, for the second non-trivial SL2-module V = V2 = sl2 of dimension three,

the corresponding weights are α, 0 and −α whereas the corresponding fixed points are
again x = [1 : 0 : 0], y = [0 : 1 : 0] and z = [0 : 0 : 1], respectively.

Next, we consider the case F0 = P1 × P1 with D-action given by

d · ([a : b], [u : v]) = ([da : d−1b], [du : d−1v]).

We denote by w and z the D-fixed points ([1 : 0], [1 : 0]) and ([0 : 1], [0 : 1]), respectively.
Further, we denote the remaining two D-fixed points ([1 : 0], [0 : 1]) and ([0 : 1], [1 : 0])
by x and y, respectively.

5



1.1 Introduction (English version)

Lastly, we have a look at the rational ruled surfaces Fn, n ≥ 1, which we describe in
large detail in Example 3.9 (v). We recall that Fn has four D-fixed points w, x, y and
z with corresponding weights (n + 1)α/2, α/2,−α/2 and −(n + 1)α/2, respectively, by
the induced D-action on Fn which is presented in Example 3.9 (v). Therefore, we can
identify Ω∗D(FDn )Q with S(D)4

Q.
Now, we are able to state the previously announced proposition (cf. Proposition

4.16).

Proposition. Let X be a Hirzebruch surface Fn or a projective plane P(V ).

(i) The image of the pullback

i∗ : Ω∗D(Fn)Q → S(D)4
Q

consists of all (fw, fx, fy, fz) ∈ S(D)4
Q such that

fw ≡ fx ≡ fy ≡ fz mod cD1 (Lα) and
fw − fx − fy + fz ≡ 0 mod cD1 (Lα)2

hold for n = 0 and of all (fw, fx, fy, fz) ∈ S(D)4
Q such that

fw ≡ fx ≡ fy ≡ fz mod cD1 (Lα) and
ρ−n/2c

D
1 (Lα)(fy − fz) + ρn/2c

D
1 (Lα)(fw − fx) ≡ 0 mod cD1 (Lα)2

hold for n ≥ 1.

(ii) Moreover, the image of

i∗ : Ω∗D(P(V ))Q → S(D)3
Q

consists of all (fx, fy, fz) such that

fx ≡ fy ≡ fz mod cD1 (Lα) and
(fx − fy) + ρ1/2c

D
1 (Lα)(fz − fx) ≡ 0 mod cD1 (Lα)2

hold.

The major application of the main Theorem is given by describing the geometry of
smooth projective horospherical G-varieties X of Picard number one. These varieties
were classified by Pasquier [43] and the classification is given by the following theorem.

Proposition. [43, Theorem 0.1] Let G be a connected reductive algebraic group. Let X
be a smooth projective horospherical G-variety with Picard number one. Then one of the
following cases can occur.

(i) X is homogeneous.

(ii) X is horospherical of rank 1. Its automorphism group is a connected non-reductive
linear algebraic group, acting with exactly two orbits.

Moreover, in the second case X is uniquely determined by its two closed G-orbits Y and
Z, isomorphic to G/PY and G/PZ , respectively, and (G,PY , PZ) is one of the triples of
the following list.
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(1) (Bn, P (ωn−1), P (ωn)) for n ≥ 3

(2) (B3, P (ω1), P (ω3))

(3) (Cn, P (ωm), P (ωm−1)) for n ≥ 2 and m ∈ [2, n]

(4) (F4, P (ω2), P (ω3))

(5) (G2, P (ω1), P (ω2)

Here we denote by P (ωi) the maximal parabolic subgroup of G corresponding to the
dominant weight ωi using the notations from Bourbaki [5].

Remark. In our notation P (ωi) denotes the maximal parabolic subgroup PS\αi for the
simple root αi associated to the fundamental weight ωi.

In the sequel, we are only interested in the cases which are not homogeneous because
the rational T -equivariant cobordism for the homogeneous varieties can be described
using [31, Theorem 7.8]. Therefore, we recall the construction from [16, Section 1.3].

Let X be a smooth projective horospherical but non homogeneous variety of Picard
number one with associated triple (G,PY , PZ). In this case, we denote the previous
triple also by (G,P (ωY ), P (ωZ)) for the corresponding fundamental weights ωY and ωZ .
Furthermore, the dense orbit is given by G/H = G · [vY + vZ ] ⊆ P(VY ⊕ VZ) where VY
and VZ are the irreducible G-representations with highest weights ωY and ωZ and the
corresponding highest weight vectors vY and vZ . We conclude by the construction that
PY and PZ are the stabilisers of [vY ] and [vZ ] in P(VY ) and P(VZ) and that Y and Z
are the G-orbits of [vY ] and [vZ ] in P(VY ) and P(VZ), respectively. Lastly, we have that
X = G · [vY + vZ ] ⊆ P(VY ⊕VZ) is the closure of the G-orbit G · [vY +vZ ] in P(VY ⊕VZ).

The T -fixed points of X are given by the T -fixed points of the two closed G-orbits.
Now, we analyse the T -stable curves and the fixed point subschemes XT ′ for some
given X in order to be able to use the main Theorem with the aim of obtaining the
rational T -equivariant cobordism of X. It is known how to determine the T -stable
curves in the closed orbits G/PY and G/PZ which are flag varieties (see e.g. [15]). Next,
we investigate the T -stable curves meeting the dense open orbit G/H for any smooth
projective horospherical variety X of Picard number one. We will use the diagram

G/H

G/(PY ∩ PZ)

G/PY G/PZ

π

pY pZ

(1.1)

where π is a C∗-bundle corresponding to the fact that X is horospherical of rank one.
Additionally, we define χ := ωY −ωZ to be the difference of the two given fundamental

weights. Having established these notations, we are able to state another essential result
of this thesis (cf. Lemma 5.23).
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Lemma. For any smooth projective horospherical variety X of Picard number one we
have the following properties.

(1) The only T -stable curves in X meeting the open orbit G/H occurring as a connected
component of XT ′ for some codimension one subtorus T ′ are of the form π−1(z)
where z ∈ G/(PY ∩ PZ) is a T -fixed point.

(2) The surfaces occurring in XT ′ only arise from codimension one subtori of the form
T ′ = Ker(wα)0 = Ker(wχ)0 for some positive root α which is a non-zero multiple of
χ and some w ∈W .

This result is the main ingredient for the algorithm which determines the surfaces in
the connected components of XT ′ . Here, we refer to Example 5.24 in which we describe
all occurring surfaces in the connected components of XT ′ for all smooth projective
horospherical varieties X of Picard number one. From this we can then deduce the
structure of the rational T -equivariant cobordism rings of all smooth projective horo-
spherical varieties of Picard number one which are explicitly given in Example 5.25.
We emphasise that all of these computations in the mentioned examples also hold for
rational T -equivariant Chow groups and that even for Chow groups, those computations
were previously unknown.

Next, we investigate some smooth projective horospherical varieties of Picard num-
ber two using the same algorithm. Furthermore, in the classification of these varieties,
products of varieties are explicitly excluded, but nevertheless it is always a natural ques-
tion to evaluate the T -equivariant cobordism rings of products of varieties. Therefore,
we establish some Künneth formula for T -equivariant cobordism (cf. Proposition 3.63)
which also reduces to a Künneth formula for T -equivariant Chow groups.

Proposition. (Künneth formula) Let X,Y be smooth projective G-varieties such that
X × Y has finitely many T -fixed points with respect to the diagonal action. Then there
exists an isomorphism

Ω∗T (X)⊗Ω∗T (k) Ω∗T (Y ) ∼= Ω∗T (X × Y ).

We recall that S(T )Q[M−1] is the graded ring obtained by inverting all non-zero linear
forms

∑n
j=1mjtj in S(T )Q which is described more generally in Construction 3.43. For

a smooth k-scheme X with a torus action, we denote Ω∗T (X)Q ⊗S(T )Q S(T )Q[M−1] by
Ω∗T (X)Q[M−1].

The following definition (cf. Definition 6.5) is well-defined because the pushfor-
ward map i∗ : Ω∗T (XT )Q → Ω∗T (X)Q becomes an isomorphism after base change to
S(T )Q[M−1] for a smooth T -filtrable variety X (cf. Corollary 6.4).

Definition. Let X be a smooth T -filtrable variety with an action of a torus T . Further,
let [Y → X] ∈ Ω∗T (X)Q[M−1] and x ∈ X be an isolated T -fixed point. We distinguish
between isolated fixed points and connected components F ⊆ XT which are not an isolated
point. For any isolated fixed point we define the equivariant multiplicity

ex,X [Y → X] ∈ S(T )Q[M−1]

8
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of X at x to be given by the equality

[Y → X] = i∗

 ∑
x∈XT

isolated

ex,X [Y → X][x→ x] +
∑

F⊆XT

eF [F ′ → F ]


which holds in Ω∗T (X)Q[M−1] for some eF ∈ S(T )Q[M−1] and [F ′ → F ] ∈ Ω∗T (F )Q.

Using this definition, we can state the last main result (cf. Proposition 6.7) which is
used in order to compute classes in Ω∗T (X)Q for smooth T -filtrable schemes X.

Proposition. Let X be a smooth T -filtrable scheme with a T -action. Let x ∈ X be an
isolated fixed point and [f : Y → X] a class in the S(T )Q-algebra Ω∗T (X)Q. Assume
further that all fixed points in the fibre f−1(x) are isolated. Then we have

ex,X [Y → X] =
∑
y∈Y T
f(y)=x

ey,Y [Y → Y ].

The second obvious generalisation of the first Proposition is to consider some refined
coefficient ring which results in mainly proving the localisation theorem (cf. [31, Theo-
rem 7.6]) with a refined coefficient ring. The following result (cf. Theorem 3.59) proves
the localisation result for a refined coefficient ring Z[S−1

X ] where SX denotes some mul-
tiplicative set which will be discussed in more detail in Definition 3.58. This theorem
also generalises Brion’s result [7, Theorem 3.3] for Chow groups because it considers a
finer coefficient ring.

Theorem. Let X be a smooth projective variety where a torus T of rank n acts with
finitely many isolated fixed points x0, ..., xp. Let i : XT → X be the inclusion of the fixed
point locus. Then the image of i∗ : Ω∗T (X)Z[S−1

X ] → Ω∗T (XT )Z[S−1
X ] is the intersection of

the images of the restriction maps

i∗T ′ : Ω∗T (XT ′)Z[S−1
X ] → Ω∗T (XT )Z[S−1

X ]

where T ′ runs over all subtori of codimension one in T .

This theorem enables us to make almost all of our computations also for this refined
coefficient ring. In some cases, we need to invert p = 2 additionally, if it is not already
inverted in Z[S−1

X ], because the difference of SL2 and PSL2, which is a group of order
two, plays a major role in the proof of our main Theorem. This result then of course also
generalises the description of rational T -equivariant Chow groups of smooth projective
G-spherical varieties to the finer coefficient ring Z[S−1

X ] and furthermore, this gives a
new result even for Chow groups.

1.1.3 Organisation of the thesis

In this section, we outline the structure of the thesis including the organisation of
the five chapters.

In Chapter 2, we mainly present established notions and constructions which will
be used in the sequel of the thesis. First of all, we recall the construction of algebraic
cobordism Ω∗ due to Levine and Morel [37] in Section 2.2 and discuss its main properties

9
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originally provided in [37]. In what follows, we define equivariant algebraic cobordism
(cf. Definition 2.40) which was independently invented by Krishna [32] and Heller,
Malagón-López [20]. We subsequently analyse its most important properties proved in
[20, 32].

In the last section of Chapter 2, we discuss spherical and horospherical varieties (cf.
Definition 2.47) and investigate examples which will be essential throughout the thesis.

In Chapter 3, we provide necessary notions in order to be able to state main known
results for computations in equivariant algebraic cobordism (cf. [20, 28, 31, 34]). In this
chapter, we are mainly interested in torus actions on schemes.

We start this chapter by introducing the notion of T -filtrable schemes (cf. Section
3.1). Next, we prove that the rational T -equivariant cobordism ring is isomorphic to
the rational T/F -equivariant cobordism ring if F is a finite subgroup of T (cf. Lemma
3.36). Indeed, this statement also holds if one only considers coefficients in Z[ 1

p1
, ..., 1

p`
]

for appropriate primes p1, ..., p`. In what follows, we prove that T -equivariant cobordism
satisfies a certain relation (cf. Theorem 3.39) which reduces to Brion’s relation (cf. [7,
Theorem 2.1]) in Chow groups described earlier in this chapter.

After having defined the necessary notions, we present the description of the rational
T -equivariant cobordism ring of smooth projective varieties with finitely many T -fixed
points and finitely many T -stable curves which was proved by Krishna in [31, Theorem
7.8]. One of the main purposes of this chapter is to generalise the previous statement
to finer coefficient rings (cf. Proposition 3.60) using the refined localisation theorem (cf.
Proposition 3.59).

For later use, we proceed by proving a Künneth formula for T -equivariant cobordism
of smooth projective varieties with finitely many T -fixed points (cf. Proposition 3.63).

In Chapter 4 we describe the rational T -equivariant cobordism rings of smooth
projective G-spherical varieties X (cf. Theorem 4.13). The proof of the latter result
specifically requires the fact that we are working over an algebraically closed field because
one has to take n-th roots of unity in order to describe the connected components of
XT ′ for codimension one subtori T ′ ⊆ T which can be seen in the proof of [7, Theorem
7.1]. Later on, Theorem 4.13 can be reduced to computing the rational T -equivariant
cobordism of projectives planes and Hirzebruch surfaces (cf. Proposition 4.16). The
previous results can also be proved over some refined coefficient ring Z[ 1

p1
, ... 1

p`
] (cf.

Remark 4.23).
We finish the chapter computing the rational T -equivariant cobordism rings of the

odd symplectic Grassmannians IG(k, 2n+1) for n ≥ 2 and k ∈ [2, n] (cf. Example 4.31).
The main purpose of Chapter 5 is the computation of rational T -equivariant cobor-

dism rings for smooth projective horospherical varieties using Theorem 4.13. This is done
by describing the T -stable curves and the T -fixed points of the corresponding varieties.

In the following, we are mainly interested in smooth projective horospherical G-vari-
eties X with Pic(X) ∼= Z. These varieties were classified in [43] and the geometry was
described in [16]. We extend the understanding of the geometry of the given varieties
and using that, we describe their rational T -equivariant cobordism rings.

To finish this chapter, we compute the rational T -equivariant cobordism of some
specific smooth projective horospherical G-varieties X with Pic(X) ∼= Z2.

In the closing Chapter 6, we finally study classes in the rational T -equivariant
cobordism rings which were only described combinatorially up to this point. First, we
define the notion of equivariant multiplicities (cf. Definition 6.5) based on the idea of
equivariant multiplicities for equivariant Chow groups (cf. [7]). Using this definition,
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we investigate the equivariant multiplicities for some classes [f : Y → X] in the rational
T -equivariant cobordism ring of smooth T -filtrable schemes X at isolated fixed points
x ∈ X (cf. Proposition 6.7). This result can be similarly proved for the refined coefficient
ring. An essential ingredient in the proof is the self-intersection formula proved by
Krishna [31, Proposition 3.1]. The rest of this chapter is mainly dedicated to examples
which show the significance of the results in this thesis. In all the computations we can
deduce that it is enough to invert finitely many primes in the coefficient ring, and in
most cases it is even enough to invert p = 2.

Furthermore, we discuss the differences between equivariant cobordism and other
oriented equivariant cohomology theories such as equivariant connective K-theory or
equivariant Chow groups.

Many results of this thesis are in [26].

1.2 Introduction (version française)

1.2.1 Motivation

Les théories cohomologiques ont toujours été d’un grand intérêt en géométrie algé-
brique, que ce soit les notions de groupes de Chow, de K-théorie ou de cohomologie
quantique. On peut faire la distinction entre les théories cohomologiques orientées et
non orientées. Nous nous concentrerons principalement sur les premières. L’orientation
signifie essentiellement que la théorie cohomologique dispose d’une notion de classes de
Chern pour les fibrés vectoriels complexes. Ces théories cohomologiques sont principale-
ment utilisées pour comprendre la théorie de l’intersection géométrique des variétés qui
trouve sa source dans le 15ème problème de Hilbert.

La motivation originale pour comprendre le cobordisme algébrique était de trouver
un analogue au cobordisme des variétés différentielles introduit dans l’article fonda-
mental de Quillen (cf. [48]). Quillen a observé que la théorie du cobordisme complexe
MU∗(X) est la théorie cohomologique orientée universelle complexe sur la catégorie des
variétés différentielles. Plus tard, Levine et Morel (cf. [37]) ont pu montrer l’existence
d’une théorie analogue à MU∗ pour la catégorie des k-schémas lisses pour tout corps k
de caractéristique nulle. Ils ont appelé cobordisme algébrique la théorie cohomologique
orientée universelle Ω∗ ainsi obtenue et en outre, ils ont donné des applications et des
exemples expliquant les relations entre Ω∗ et le foncteur K0 des groupes de Grothendieck
ou le foncteur d’anneaux de Chow CH∗.

Les théories cohomologiques équivariantes sont apparues à l’origine parce qu’on vou-
lait comprendre la théorie cohomologique ordinaire des espaces de classification. Par la
suite, les théories cohomologiques équivariantes ont été étudiées car elles incluent des
actions de groupe sur les variétés dans leurs calculs. Il s’est avéré que celles-ci sont un
outil très puissant pour décrire les théories cohomologiques ordinaires et de nombreux
calculs ont été effectués dans des théories cohomologiques équivariantes (par exemple
[1, 7, 8, 9, 11, 12, 17, 20, 30, 31, 32, 34, 50]) pour différents types de variétés. Comme
nous nous intéressons notamment au cobordisme algébrique, nous étudions aussi princi-
palement le cobordisme algébrique équivariant des variétés lisses sur un corps de carac-
téristique nulle.

Les derniers objets d’intérêt de cette thèse sont les variétés sphériques. Celles-ci ont
été étudiées par exemple dans [6, 16, 29, 39, 41, 42, 43, 44, 45, 46, 47]. Cette classe
de variétés comprend un large éventail de variétés très connues comme par exemple les
variétés drapeaux, les variétés toriques, les variétés symétriques, les variétés magnifiques
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ou les variétés horosphériques. La géométrie de ces dernières a été intensivement étudiée
par exemple dans [16, 41, 42, 43, 44, 46]. Dans cette thèse, nous nous concentrons princi-
palement sur les calculs du cobordisme algébrique équivariant des variétés sphériques et
sur les calculs explicites pour les variétés horosphériques. En fait, cette dernière classe de
variétés comprend de nombreux exemples intéressants comme les variétés drapeaux, les
variétés toriques ou la grassmannienne symplectique impaire IG(k, 2n + 1) pour n ≥ 2
et k ∈ [2, n].

La motivation spécifique pour ce travail était l’état de la recherche au moment où ce
projet a été lancé. Soit G un groupe algébrique réductif connexe avec un tore maximal
T dans G sur un corps algébriquement clos k de caractéristique nulle. Brion a calculé les
anneaux de Chow rationnels T -équivariants pour les G-variétés sphériques projectives
lisses (cf. [7]) et des anneaux de cobordisme T -équivariants ont déjà été calculés pour
par exemple les variétés toriques lisses (cf. [34]), les variétés de drapeaux (cf. [28]), les
compactifications magnifiques des variétés symétriques de rang minimal (cf. [28]) et les
variétés projectives lisses avec un nombre fini de points fixes de T et un nombre fini
de courbes T -stables (cf. [31]). Par conséquent, une question naturelle est la généralisa-
tion des résultats de Brion au cobordisme rationnel T -équivariant pour toute G-variété
sphérique projective lisse, d’autant plus que la géométrie des variétés sphériques est un
domaine de recherche actif.

1.2.2 Principaux résultats

Dans cette section, nous décrivons nos principaux résultats. Nous commençons par
donner les notations et définitions nécessaires aux principaux théorèmes de cette thèse.
Tout d’abord, le lemme suivant illustre la correspondance entre les lois formelles de
groupes et les théories cohomologiques orientées qui est l’un des faits fondamentaux de
cette théorie (voir la Section 2.1 pour plus de détails).
Lemme. [37, Lemme 1.1.3] Soit A∗ une théorie cohomologique orientée sur Smk pour
un corps k de caractéristique nulle. Alors il existe une unique série formelle

FA(u, v) =
∑
i,j

ai,ju
ivj ∈ A∗(k)[[u, v]]

avec ai,j ∈ A1−i−j(k) telle que pour tout X ∈ Smk et toute paire de fibrés en droites L
et M sur X, nous avons

FA(c1(L), c1(M)) = c1(L⊗M).

De plus, le couple (A∗(k), FA) est une loi de groupe formelle commutative de rang un.
Par exemple, les groupes de Chow sont associés à FCH(u, v) = u+v et la K-théorie à

FK(u, v) = u+v−βuv. Le cobordisme algébrique correspond à la loi de groupe formelle
commutative universelle FΩ de rang un.

Ensuite, nous fixons quelques notations que nous utilisons tout au long de la thèse.
Soit G un groupe algébrique réductif connexe sur un corps algébriquement clos k de
caractéristique nulle. De plus, soit B ⊆ G un sous-groupe de Borel, T ⊆ B un tore
maximal,W le groupe de Weyl de G correspondant au tore maximal de B et U le radical
unipotent de B. Nous choisissons l’ordre sur les poids induit par le sous-groupe de Borel
B, c’est-à-dire que pour deux poids χ, χ′ on a χ ≥ χ′ si χ − χ′ est une combinaison
linéaire non négative de racines simples.
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Définition. Soit X une G-variété normale. On dit que X est sphérique si elle contient
une B-orbite ouverte.

Dans la suite, nous rappelons que l’anneau de cobordisme T -équivariant Ω∗T (X) pour
une variété lisseX est donné par une limite inverse des anneaux de cobordisme ordinaires
de quotients mixtes, ces derniers étant construits à partir du groupe T (cf. Définition
2.40). Nous remarquons que Ω∗T (X) est une Ω∗T (k)-algèbre et de plus, pour toute variété
projective lisse X avec un nombre fini de points fixes de T , les générateurs dans le Ω∗T (k)-
module Ω∗T (X) sont certaines classes [f : Y → X] où f est un morphisme projectif T -
équivariant de source une variété lisse Y (cf. [31, Corollaire 4.8]). A partir de maintenant
nous utilisons S(T ) := Ω∗T (k). Nous rappelons également que l’anneau de cobordisme
T -équivariant S(T ) est isomorphe à l’anneau de séries formelles gradué L[[t1, ..., tn]]gr
(cf. Construction 3.25) où n désigne le rang du tore T (cf. [32, Proposition 6.7]) et L
l’anneau de Lazard (cf. Construction 2.8).

Afin d’énoncer les résultats principaux de cette thèse, nous définissons l’anneau de
cobordisme rationnel T -équivariant Ω∗T (X)Q := Ω∗T (X) ⊗Z Q pour une variété lisse X
où ce produit tensoriel désigne le produit tensoriel topologique gradué (cf. Construction
3.30). Nous remarquons que Ω∗T (X)Q est une S(T )Q-algèbre si X est lisse.

Nous donnons maintenant l’état de l’art avant la réalisation de ce projet. La proposi-
tion suivante est une généralisation par Krishna [31] des résultats classiques de localisa-
tion (cf. [7, 12, 17]) qui est un outil très puissant pour calculer le cobordisme rationnel
T -équivariant pour les variétés ayant un nombre fini de points fixes et de courbes stables.

Proposition. [31, Théorème 7.8] Soit X un schéma projectif lisse où un tore T agit
avec un nombre fini de points fixes x1, ..., xp et un nombre fini de courbes stables. Soit
i : XT → X l’inclusion du lieu des points fixes. Alors l’image de

i∗ : Ω∗T (X)Q → Ω∗T (XT )Q = S(T )pQ

est l’ensemble des (f1, ..., fp) ∈ S(T )pQ tels que fi ≡ fj mod χ chaque fois que xi et xj
sont reliés par une courbe irréductible stable où T agit par le poids χ.

Cette proposition suggère déjà plusieurs généralisations possibles dont une est l’ex-
tension de l’énoncé aux variétés projectives lisses avec une action de tore où T agit avec
un nombre fini de points fixes de T , mais un nombre infini de courbes T -stables. Une
classe de candidats potentiels est la classe des variétés sphériques projectives lisses, car
celles-ci ont toujours un nombre fini de points fixes de T (cf. Lemme 4.8). Par consé-
quent, nous avons essayé de généraliser les résultats de Brion [7] concernant les groupes
de Chow rationnels T -équivariants pour les G-variétés sphériques projectives lisses. Puis-
qu’il n’y a pas de présentation du module de cobordisme T -équivariant, on ne peut pas
faire la même preuve que pour les groupes de Chow rationnels T -équivariants, mais on
a besoin de différents lemmes afin d’adapter la stratégie. Le premier résultat technique
est le lemme suivant (cf. Lemme 3.36).

Lemme. Soit T un tore de rang n et F un sous-groupe fini. Nous avons alors un iso-
morphisme des L-algèbres graduées

Ω∗T (k)Q ∼= Ω∗T/F (k)Q.

Cet énoncé assure que le cobordisme rationnel T -équivariant ne voit pas de différence
entre les actions des tores maximaux de SL2 ou de PSL2. Ces actions apparaissent natu-
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rellement dans la description de Brion des lieux de points fixes des variétés sphériques,
voir ci-dessous. Ce lemme est prouvé uniquement en utilisant des lois de groupe formelles
et des calculs sur les séries formelles. En effet, cette affirmation est également valable
si l’on considère des coefficients dans Z[ 1

p1
, ..., 1

p`
] où p1, ..., p` sont les nombres premiers

apparaissant dans la factorisation en nombre premiers de l’ordre du groupe F .
Le résultat suivant de Brion décrit les lieux de points fixes des variétés sphériques.

Proposition. [7, Proposition 7.1] Soit X un G-variété sphérique et soit T ′ ⊆ T un
sous-tore de codimension un.

(i) Chaque composante irréductible de XT ′ est une CG(T ′)-variété sphérique.

(ii) Si T ′ est régulier, alors XT ′ est au plus de dimension un.

(iii) Si T ′ est singulier, alors XT ′ est au plus de dimension deux. De plus, toute com-
posante connexe de dimension deux de XT ′ est soit une surface réglée rationnelle

Fn = P(OP1 ⊕OP1(n))

où CG(T ′) agit par l’action naturelle de SL2, soit le plan projectif où CG(T ′) agit
par la projectivisation d’un SL2-module non trivial de dimension trois.

Avant de pouvoir énoncer le résultat principal de cette thèse, nous fournissons quel-
ques informations supplémentaires sur les lois des groupes formelles. Nous rappelons
l’existence d’une unique série formelle graduée χ(ui) ∈ L[[u1, ..., un]]gr qui satisfait la
relation FΩ(ui, χ(ui)) = 0. Pour tout entier positif b ∈ Z≥1 nous fixons les notations
suivantes.

ui +FΩ uj := FΩ(ui, uj) ∈ L[[ui, uj ]]gr,

[−1]FΩui := χ(ui) ∈ L[[ui]]gr,

ui −FΩ uj := FΩ(ui, χ(uj)) ∈ L[[ui, uj ]]gr,

[0]FΩui := 0,
[b]FΩui := FΩ(ui, [b− 1]FΩui) ∈ L[[ui]]gr.

On voit que [b]FΩu est divisible par u pour tout u ∈ L[[u1, ..., un]]gr de degré 1.
Le théorème suivant permet de contourner le fait que nous n’avons pas de présen-

tation explicite du cobordisme T -équivariant comme dans le cas des groupes de Chow
T -équivariants. Ce résultat (cf. Théorème 3.39) est essentiel pour la preuve du théorème
de structure pour les anneaux de cobordisme rationnels T -équivariants des G-variétés
sphériques projectives lisses.

Théorème. Soit X une T -variété lisse, [h : Y → X] la classe fondamentale équivariante
d’un cycle de cobordisme T -stable, f ∈ k(Y ) une T -fonction propre rationnelle de poids
χ et soient Z0 et Z∞ le lieu des zéros et le lieu des pôles de f . De plus, nous supposons
que Z0 et Z∞ sont lisses. Alors on a la relation

cT1 (Lχ) · [Y → X] = h∗FΩ ([Z0 → Y ], [−1]FΩ [Z∞ → Y ])

dans ΩT
∗ (X) où FΩ désigne la loi de groupe formelle universelle et [−1]FΩ est l’inverse

dans la loi de groupe formelle universelle.
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Ensuite, nous donnons les deux dernières définitions qui sont nécessaires pour énoncer
le théorème principal de cette thèse (cf. Théorème 4.13).

Définition. Soit u ∈ L[[u1, ..., un]]gr un élément homogène de degré 1. Pour n ∈ Z≥1 on
définit

[−n]FΩu := [−1]FΩ ([n]FΩu) .

De plus, s’il existe un élément homogène u′ ∈ (L[[u1, ..., un]]gr)Q de degré 1 tel que
[m]FΩu

′ = u est vrai pour m ∈ Z≥1, alors nous définissons[ 1
m

]
FΩ

u := u′.

Définition. Dans le cadre de la définition ci-dessus, nous définissons l’opérateur ρn/m
par

ρn/mu :=
[n]FΩ

([
1
m

]
FΩ
u

)
u

dans (L[[u1, ..., un]]gr)Q pour tout n ∈ Z \ {0} et m ∈ Z≥1.

Nous avons maintenant établi tous les outils nécessaires afin de pouvoir énoncer le
théorème principal (cf. Théorème 4.13) de cette thèse. L’ordre des points fixes de T
dans les composantes connexes de XT ′ sera décrit dans le paragraphe après le théorème
suivant pour les sous-tores singuliers T ′ ⊆ T de codimension un.

Théorème. Pour toute G-variété sphérique projective lisse X, le tiré en arrière

i∗ : Ω∗T (X)Q → Ω∗T (XT )Q

est injectif. De plus, l’image de i∗ est constituée de toutes les familles (fx)x∈XT telles
que

(i) fx ≡ fy mod cT1 (Lχ) chaque fois que x et y sont reliés par une courbe T -stable où
T agit par le poids χ.

(ii) (fx−fy)+ρ1/2c
T
1 (Lα)(fz−fx) ≡ 0 mod cT1 (Lα)2 lorsque α est une racine positive

de G par rapport à T , x, y et z se trouvent dans une composante connexe de XKer(α)0

isomorphe à un plan projectif P2 et x ≥ y ≥ z sont ordonnés par leurs poids
correspondants.

(iii) fw − fx − fy + fz ≡ 0 mod cT1 (Lα)2 lorsque α est une racine positive de G par
rapport à T , w, x, y et z se trouvent dans une composante connexe de XKer(α)0

isomorphe à P1×P1 et w ≥ x, y ≥ z sont ordonnés par leurs poids correspondants.

(iv) ρ−n/2cT1 (Lα)(fy − fz) + ρn/2c
T
1 (Lα)(fw − fx) ≡ 0 mod cT1 (Lα)2 lorsque α est une

racine positive de G par rapport à T , w, x, y et z se trouvent dans une composante
connexe de XKer(α)0 isomorphe à une surface réglée rationnelle Fn, n ≥ 1, et
w ≥ x ≥ y ≥ z sont ordonnés par leurs poids correspondants.
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Ce théorème nous permet de décrire les anneaux de cobordisme rationnels T -équiva-
riants dès que nous pouvons déterminer les surfaces apparaissant dans les composantes
connexes des lieux de points fixes XT ′ . Un autre outil important dans la preuve du
théorème précédent est le calcul de l’anneau de cobordisme rationnel T -équivariant des
plans projectifs et des surfaces de Hirzebruch (cf. Proposition 4.16). Afin de pouvoir
énoncer cette proposition, nous décrivons un peu plus en détail les composantes irréduc-
tibles de XT ′ pour les sous-tores singuliers T ′ de codimension un issus de la Proposition
précédente.

Par conséquent, soit D le tore des matrices diagonales dans SL2 et soit α la racine
positive. Dans un premier temps, nous voulons considérer les deux cas de P(V ) pour
un SL2-module V non trivial de dimension trois. Nous fixons Vn+1 := Symn+1(k2). Soit
V = V0 ⊕ V1 le premier SL2-module non trivial de dimension trois. Les poids de D dans
V sont α/2, 0 et −α/2 induits par l’action de groupe donnée de D sur V de l’Exemple
3.9 (iii). Nous désignons par x, y et z les points fixes de D correspondants dans P(V )
qui est également décrit dans l’Exemple 3.9 (iii). Pour être plus explicite, les points fixes
correspondants aux poids α/2, 0,−α/2 sont x = [1 : 0 : 0], y = [0 : 1 : 0] et z = [0 : 0 : 1],
respectivement. Par conséquent, nous identifions Ω∗D(P(V )D)Q avec S(D)3

Q.
De même, pour le second SL2-module non trivial V = V2 = sl2 de dimension trois,

les poids correspondants sont α, 0 et −α tandis que les points fixes correspondants sont
à nouveau x = [1 : 0 : 0], y = [0 : 1 : 0] et z = [0 : 0 : 1], respectivement.

Ensuite, nous considérons le cas F0 = P1 × P1 avec l’action de D donnée par

d · ([a : b], [u : v]) = ([da : d−1b], [du : d−1v]).

Nous désignons par w et z les points fixes de D qui sont donnés par ([1 : 0], [1 : 0])
et ([0 : 1], [0 : 1]), respectivement. De plus, nous désignons les deux points fixes de D
restants ([1 : 0], [0 : 1]) et ([0 : 1], [1 : 0]) par x et y, respectivement. Enfin, nous nous
intéressons aux surfaces réglées rationnelles Fn, n ≥ 1, que nous décrivons en détail dans
l’Exemple 3.9 (v). Nous rappelons que Fn a quatre points fixes de D que nous désignons
par w, x, y et z avec leurs poids correspondants (n + 1)α/2, α/2,−α/2 et −(n + 1)α/2,
respectivement, induits par l’action de D sur Fn qui est présentée dans l’Exemple 3.9 (v).
Par conséquent, nous pouvons identifier Ω∗D(FDn )Q avec S(D)4

Q.
Maintenant nous sommes en mesure d’énoncer la proposition annoncée précédemment

(cf. Proposition 4.16).

Proposition. Soit X une surface de Hirzebruch Fn ou un plan projectif P(V ).

(i) L’image du tiré en arrière i∗ : Ω∗D(Fn)Q → S(D)4
Q consiste en tous les tuples

(fw, fx, fy, fz) ∈ S(D)4
Q tels que

fw ≡ fx ≡ fy ≡ fz mod cD1 (Lα) et
fw − fx − fy + fz ≡ 0 mod cD1 (Lα)2

sont valables pour n = 0 et en tous les (fw, fx, fy, fz) ∈ S(D)4
Q tels que

fw ≡ fx ≡ fy ≡ fz mod cD1 (Lα) et
ρ−n/2c

D
1 (Lα)(fy − fz) + ρn/2c

D
1 (Lα)(fw − fx) ≡ 0 mod cD1 (Lα)2

sont valables pour n ≥ 1.
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(ii) De plus, l’image de i∗ : Ω∗D(P(V ))Q → S(D)3
Q consiste en tous les tuples (fx, fy, fz)

tels que

fx ≡ fy ≡ fz mod cD1 (Lα) et
(fx − fy) + ρ1/2c

D
1 (Lα)(fz − fx) ≡ 0 mod cD1 (Lα)2.

Nous donnons une application du Théorème principal en considérant les variétés
horosphériques projectives lisses X de nombre de Picard un. Ces variétés ont été classées
par Pasquier [43] et la classification est donnée par le théorème suivant.

Proposition. [43, Theorem 0.1] Soit G un groupe algébrique réductif connexe. Soit X
une G-variété horosphérique projective lisse de nombre de Picard égal à un. Alors l’un
des cas suivants peut se produire.

(i) X est homogène.

(ii) X est horosphérique de rang 1. Son groupe d’automorphisme est un groupe algé-
brique linéaire connexe non réductif, agissant avec exactement deux orbites.

De plus, dans le second cas, X est déterminé de manière unique par ses deux G-orbites
fermées Y et Z, isomorphes à G/PY et G/PZ , respectivement, et (G,PY , PZ) est un des
triplets de la liste suivante.

(1) (Bn, P (ωn−1), P (ωn)) pour n ≥ 3.

(2) (B3, P (ω1), P (ω3))

(3) (Cn, P (ωm), P (ωm−1)) pour n ≥ 2 et m ∈ [2, n].

(4) (F4, P (ω2), P (ω3))

(5) (G2, P (ω1), P (ω2)

Nous désignons ici par P (ωi) le sous-groupe parabolique maximal de G correspondant au
poids dominant ωi en utilisant les notations de Bourbaki [5].

Remarque. Dans notre notation P (ωi) désigne le sous-groupe parabolique maximal
PS\αi pour la racine simple αi associée au poids fondamental ωi.

Dans la suite, nous ne nous intéressons qu’aux cas qui ne sont pas homogènes car le
cobordisme rationnel T -équivariant pour les variétés homogènes peut être décrit à l’aide
de [31, Théorème 7.8]. Par conséquent, nous rappelons la construction de [16, Section
1.3].

Soit X une variété horosphérique projective lisse mais non homogène de nombre
de Picard un avec le triplet associé (G,PY , PZ). Dans ce cas, nous désignons le triplet
précédent également par (G,P (ωY ), P (ωZ)) pour les poids fondamentaux correspondants
ωY et ωZ . De plus, l’orbite dense est donnée par G/H = G · [vY + vZ ] ⊆ P(VY ⊕ VZ)
où VY et VZ sont les représentations irréductibles de G de plus hauts poids ωY et ωZ et
les vecteurs de plus hauts poids correspondants vY et vZ . On conclut par construction
que PY et PZ sont les stabilisateurs de [vY ] et [vZ ] dans P(VY ) et P(VZ) et que Y et
Z sont les G-orbites de [vY ] et [vZ ] dans P(VY ) et P(VZ), respectivement. Enfin, nous
avons que X = G · [vY + vZ ] ⊆ P(VY ⊕ VZ) est la fermeture de la G-orbite G · [vY + vZ ]
dans P(VY ⊕ VZ).
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Les points fixes de T sont donnés par les points fixes de T dans les G-orbites fermées.
Maintenant, nous analysons les courbes T -stables et les sous-schémas des points fixes
XT ′ pour un certain X donné afin de pouvoir utiliser le Théorème principal dans le but
d’obtenir le cobordisme rationnel T -équivariant de X. On sait comment déterminer les
courbes T -stables dans les orbites fermées G/PY et G/PZ qui sont des variétés drapeaux
(voir par exemple [15]). Ensuite, nous étudions les courbes T -stables rencontrant l’orbite
ouverte dense G/H pour toute variété horosphérique projective lisse X de nombre de
Picard un. Nous utiliserons le diagramme

G/H

G/(PY ∩ PZ)

G/PY G/PZ

π

pY pZ

(1.2)

où π est une C∗-fibration correspondant au fait que X est horosphérique de rang un.
De plus, nous définissons χ := ωY −ωZ comme étant la différence des deux poids fon-

damentaux donnés. Après avoir établi ces notations, nous sommes en mesure d’énoncer
un autre résultat essentiel de cette thèse (cf. Lemma 5.23).

Lemme. Pour toute variété horosphérique projective lisse X de nombre de Picard un,
nous avons les propriétés suivantes.

(1) Les seules courbes T -stables dans X qui rencontrent l’orbite ouverte G/H apparais-
sant comme une composante connexe de XT ′ pour un sous-tore T ′ de codimension
un sont de la forme π−1(z) où z ∈ G/(PY ∩ PZ) est un point fixe de T .

(2) Les surfaces apparaissant dans XT ′ ne proviennent que des sous-tores de codimen-
sion un de la forme T ′ = Ker(wα)0 = Ker(wχ)0 pour une racine positive α qui est
un multiple non nul de χ et un élément w ∈W .

Ce résultat est l’ingrédient principal de l’algorithme qui détermine les surfaces dans
les composantes connexes de XT ′ . Nous nous référons ici à l’Exemple 5.24 dans lequel
nous décrivons toutes les surfaces apparaissant dans les composantes connexes de XT ′

pour toutes les variétés horosphériques projectives lisses X de nombre de Picard un.
Nous pouvons alors en déduire la structure des anneaux de cobordisme rationnels T -
équivariants de toutes les variétés horosphériques projectives lisses de nombre de Picard
un, qui est explicitement donnée dans l’Exemple 5.25. Nous soulignons que tous ces
calculs dans les exemples mentionnés sont également valables pour les groupes de Chow
rationnels T -équivariants et que même pour les groupes de Chow, ces calculs étaient
auparavant inconnus.

Ensuite, nous étudions quelques variétés horosphériques projectives lisses de nombre
de Picard deux en utilisant le même algorithme. De plus, dans la classification de ces
variétés, les produits de variétés sont explicitement exclus, mais néanmoins, il est toujours
naturel d’évaluer les anneaux de cobordisme T -équivariants des produits de variétés. Par
conséquent, nous établissons une formule de Künneth pour le cobordisme T -équivariant
(cf. Proposition 3.63) qui se réduit également à une formule de Künneth pour les groupes
de Chow T -équivariants.
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Proposition. (Formule de Künneth) Soit X,Y des G-variétés projectives lisses telles
que X × Y a un nombre fini de points fixes de T par rapport à l’action diagonale. Alors
il existe un isomorphisme

Ω∗T (X)⊗Ω∗T (k) Ω∗T (Y ) ∼= Ω∗T (X × Y ).

Nous rappelons que S(T )Q[M−1] est l’anneau gradué obtenu en inversant toutes les
formes linéaires non nulles

∑n
j=1mjtj dans S(T )Q qui est décrit plus généralement dans

la Construction 3.43. Pour un k-schéma lisse X avec une action d’un tore T , nous
désignons Ω∗T (X)Q ⊗S(T )Q S(T )Q[M−1] par Ω∗T (X)Q[M−1].

La définition suivante (cf. Définition 6.5) est bien définie car le poussé en avant
i∗ : Ω∗T (XT )Q → Ω∗T (X)Q devient un isomorphisme après un changement de base vers
S(T )Q[M−1] pour une variété lisse T -filtrable X (cf. Corollaire 6.4).

Définition. Soit X une variété lisse T -filtrable avec une action d’un tore T . De plus,
soient [Y → X] ∈ Ω∗T (X)Q[M−1] et x ∈ X un point fixe de T isolé. Nous distinguons
deux types de composantes connexes de XT : celles qui sont formées d’un point fixe isolé,
notées x ∈ XT et les autres, notées F ⊆ XT . Pour tout point fixe isolé, nous définissons
la multiplicité équivariante

ex,X [Y → X] ∈ S(T )Q[M−1]

de X à x comme étant donnée par l’égalité

[Y → X] = i∗

 ∑
x∈XT

isolé

ex,X [Y → X][x→ x] +
∑

F⊆XT

eF [F ′ → F ]


où eF ∈ S(T )Q[M−1] et [F ′ → F ] ∈ Ω∗T (F )Q qui est toujours satisfaite dans l’anneau
Ω∗T (X)Q[M−1].

En utilisant cette définition, nous pouvons énoncer le dernier résultat principal (cf.
Proposition 6.7) qui est utilisé afin de calculer les classes dans Ω∗T (X)Q pour les schémas
lisses T -filtrables X.

Proposition. Soit X un schéma lisse T -filtrable avec une action de T . Soit x ∈ X un
point fixe isolé et [f : Y → X] une classe dans la S(T )Q-algèbre Ω∗T (X)Q. Supposons en
outre que tous les points fixes de la fibre f−1(x) sont isolés. Nous avons alors

ex,X [Y → X] =
∑
y∈Y T
f(y)=x

ey,Y [Y → Y ].

La deuxième généralisation évidente de la première Proposition consiste à considérer
un anneau de coefficients raffiné, ce qui a pour conséquence de prouver principalement le
théorème de localisation (cf. [31, Theorem 7.6]) avec un anneau de coefficients raffiné. Le
résultat suivant (cf. Theorem 3.59) prouve le résultat de localisation pour un anneau de
coefficients raffiné Z[S−1

X ] où SX désigne un ensemble multiplicatif qui sera discuté dans
la Définition 3.58. Ce théorème généralise également le résultat de Brion [7, Theorem
3.3] pour les groupes de Chow car il considère un anneau de coefficients plus fin.
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Théorème. Soit X une variété projective lisse où un tore T de rang n agit avec un
nombre fini de points fixes isolés x0, ..., xp. Soit i : XT → X l’inclusion du lieu des
points fixes. Alors l’image de i∗ : Ω∗T (X)Z[S−1

X ] → Ω∗T (XT )Z[S−1
X ] est l’intersection des

images des cartes de restriction

i∗T ′ : Ω∗T (XT ′)Z[S−1
X ] → Ω∗T (XT )Z[S−1

X ]

où T ′ parcours tous les sous-tores de codimension un de T .

Ce théorème nous permet de faire presque tous nos calculs également pour cet anneau
de coefficients raffiné. Dans certains cas, nous devons inverser p = 2 en plus, s’il n’est pas
déjà inversé dans Z[S−1

X ], car la différence entre SL2 et PSL2, qui est un groupe d’ordre
deux, joue un rôle majeur dans la preuve de notre Théorème principal. Ce résultat
généralise bien sûr la description des groupes de Chow rationnels T -équivariants des
G-variétés sphériques projectives lisses à l’anneau de coefficients plus fin Z[S−1

X ] et de
plus, cela donne un nouveau résultat même pour les groupes de Chow.

1.2.3 Organisation de la thèse

Dans cette section, nous décrivons la structure de la thèse, y compris l’organisation
des cinq chapitres.

Dans le Chapitre 2, nous présentons principalement des notions et des constructions
connues qui seront utilisées dans la suite de la thèse. Tout d’abord, nous rappelons
la construction du cobordisme algébrique Ω∗ de Levine et Morel [37] dans la Section
2.2 et discutons ses principales propriétés fournies à l’origine dans [37]. Dans ce qui
suit, nous définissons le cobordisme algébrique équivariant (cf. Définition 2.40) inventé
indépendamment par Krishna [32] et Heller, Malagón-López [20]. Nous analysons ensuite
ses propriétés les plus importantes démontrées dans [20, 32].

Dans la dernière section du Chapitre 2, nous discutons des variétés sphériques et
horosphériques (cf. Définition 2.47) et étudions des exemples qui seront essentiels tout
au long de la thèse.

Dans le Chapitre 3, nous fournissons les notions nécessaires pour pouvoir énoncer
les principaux résultats connus pour les calculs en cobordisme algébrique équivariant (cf.
[20, 28, 31, 34]). Dans ce chapitre, nous nous intéressons principalement aux actions des
tores sur les schémas.

Nous commençons ce chapitre en introduisant la notion de schémas T -filtrable (cf.
Section 3.1). Ensuite, nous prouvons que l’anneau de cobordisme rationnel T -équivariant
est isomorphe à l’anneau de cobordisme rationnel T/F -équivariant si F est un sous-
groupe fini de T (cf. Lemme 3.36). En effet, cette affirmation est également valable si l’on
ne considère que les coefficients dans Z[ 1

p1
, ..., 1

p`
] pour les nombres premiers appropriés

p1, ..., p`. Dans ce qui suit, nous prouvons que le cobordisme T -équivariant satisfait une
certaine relation (cf. Théorème 3.39) qui se réduit à la relation de Brion (cf. [7, Théorème
2.1]) dans les groupes de Chow décrite précédemment dans ce chapitre.

Après avoir défini les notions nécessaires, nous présentons la description de l’anneau
de cobordisme rationnel T -équivariant des variétés projectives lisses avec un nombre
fini de points fixes de T et un nombre fini de courbes T -stables qui a été prouvé par
Krishna dans [31, Théorème 7.8]. L’un des principaux objectifs de ce chapitre est de
généraliser l’énoncé précédent à des anneaux de coefficients plus fins (cf. Proposition
3.60) en utilisant le théorème de localisation raffiné (cf. Proposition 3.59).
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Pour une utilisation ultérieure, nous démontrons une formule de Künneth pour le
cobordisme T -équivariant des variétés projectives lisses avec un nombre fini de points
fixes de T (cf. Proposition 3.63).

Dans le Chapitre 4 nous décrivons les anneaux de cobordisme rationnels T -équiva-
riants des G-variétés sphériques projectives lisses X (cf. Théorème 4.13). La preuve
de ce dernier résultat nécessite spécifiquement le fait que l’on travaille sur un corps
algébriquement clos car il faut prendre les n-ièmes racines de l’unité pour décrire les
composantes connexes de XT ′ pour un sous-tore T ′ ⊆ T de codimension un ce qui se
voit en étudiant la preuve de [7, Theorem 7.1]. Nous montrons que le Théorème 4.13 peut
se réduire au calcul du cobordisme rationnel T -équivariant des plans projectifs et des
surfaces de Hirzebruch (cf. Proposition 4.16). Les résultats précédents peuvent également
être prouvés sur un anneau de coefficients raffiné Z[ 1

p1
, ... 1

p`
] (cf. Remarque 4.23).

On termine le chapitre en calculant les anneaux de cobordisme rationnels T -équiva-
riants des grassmanniennes symplectiques impaires IG(k, 2n+1) pour n ≥ 2 et k ∈ [2, n]
(cf . Exemple 4.31).

Le but principal du Chapitre 5 est le calcul des anneaux de cobordisme rationnels
T -équivariants pour les variétés horosphériques projectives lisses en utilisant le Théorème
4.13. Ceci est fait en décrivant les courbes T -stables et les points fixes de T des variétés
correspondantes.

Dans la suite, nous nous intéressons principalement aux G-variétés horosphériques
projectives lisses X avec Pic(X) ∼= Z. Ces variétés ont été classées dans [43] et la géomé-
trie a été décrite dans [16]. Nous étendons la compréhension de la géométrie des variétés
données et en utilisant cela, nous décrivons leurs anneaux de cobordisme rationnels T -
équivariants.

Pour terminer ce chapitre, nous calculons le cobordisme rationnel T -équivariant de
certaines G-variétés horosphériques projectives lisses spécifiques X avec Pic(X) ∼= Z2.

Dans le Chapitre 6 de clôture, nous étudions enfin les classes dans les anneaux de
cobordisme rationnels T -équivariants qui n’ont été décrites que de manière combinatoire
jusqu’à maintenant. Dans un premier temps, nous définissons la notion de multipli-
cité équivariante (cf. Définition 6.5) basée sur l’idée de multiplicités équivariantes pour
des groupes de Chow équivariants (cf. [7]). En utilisant cette définition, nous étudions
les multiplicités équivariantes pour certaines classes [f : Y → X] dans l’anneau de
cobordisme rationnel T -équivariant des schémas lisses T -filtrables X aux points fixes
isolés x ∈ X (cf. Proposition 6.7). Ce résultat peut être prouvé de manière similaire
pour l’anneau de coefficients raffiné. Un ingrédient essentiel de la preuve est la formule
d’auto-intersection démontrée par Krishna [31, Proposition 3.1]. Le reste de ce chapitre
est principalement consacré à des exemples qui montrent l’importance des résultats de
cette thèse. Dans tous les calculs, on peut déduire qu’il suffit d’inverser un nombre fini
de nombres premiers, et dans la plupart des cas il suffit même d’inverser p = 2.

De plus, nous discutons les différences entre le cobordisme équivariant et d’autres
théories cohomologiques orientées équivariantes telles que la K-théorie équivariante ou
les groupes de Chow équivariants.

De nombreux résultats de cette thèse se trouvent dans [26].
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2 Preliminaries

The main goal of this chapter is to present the established notions and constructions
of algebraic cobordism and equivariant algebraic cobordism. Therefore, we mainly refer
to [20, 32, 37, 38].

Notations 2.1. Let k be a field of characteristic zero. Firstly, we require all k-schemes
to be separated and of finite type over k. Since we will be concerned with the study of
schemes with group actions of linear algebraic groups and the corresponding quotient
schemes which often require the underlying scheme to be quasi-projective, we assume
throughout this thesis that all schemes over k are quasi-projective if nothing else is
explicitly mentioned. Next, we establish the well known notations which are mainly
used in the literature. Therefore, the category of quasi-projective k-schemes will be
denoted by Schk. A scheme is meant to be an object of this category Schk. Varieties
will be irreducible and reduced schemes. Furthermore, the full subcategory of Schk
consisting of smooth and quasi-projective k-schemes will be denoted by Smk. Similarly,
if G is a linear algebraic group over k, we denote the category of quasi-projective k-
schemes with a group action of G and G-equivariant maps by G − Schk. Frequently
these schemes will be called G-schemes. The corresponding category of smooth quasi-
projective G-schemes will be denoted by G − Smk. We assume all group actions to be
linear, i.e. for any G-action on a scheme X there exists a representation G→ GL(V ) on
a finite-dimensional vector space V and a G-equivariant immersion X → P(V ).

We will pass freely between vector bundles over X and the corresponding locally free
sheaves of OX -modules where OX denotes the structure sheaf of a scheme X. For a
locally free coherent sheaf E on a scheme X, we let q : P(E)→ X denote the projective
bundle associated to E . For a vector bundle E → X, we write P(E) instead of P(OX(E)),
where OX(E) denotes the sheaf of sections of E. We might omit the subscripts if there
is no confusion possible.

2.1 Oriented cohomology theories

In this section, we recall the main notions of oriented cohomology theories (cf. [37]).
Here we take the notations and conventions from [37].

Definition 2.2. Let V be a full subcategory of Schk. This subcategory V is said to be
admissible if it satisfies the following conditions.

(i) Spec k and the empty scheme ∅ are in V.

(ii) If Y → X is a smooth and quasi-projective morphism in Schk such that X ∈ V,
then Y ∈ V.

(iii) If X and Y are in V, then so is the product X ×k Y .

(iv) If X and Y are in V, then so is X
∐
Y .

It immediately follows that any such V contains Smk. In this thesis we will be mainly
interested in the case where V is the admissible subcategory Smk.

Notations 2.3. For Z ∈ Smk we denote by dimk(Z, z) the dimension over k of the
connected component of Z containing z ∈ Z. Let d ∈ Z be an integer. A morphism
f : Y → X in Smk has relative dimension d if we have dimk(Y, y)−dimk(X, f(y)) = d
for each y ∈ Y . We also say that f has relative codimension −d.
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2.1 Oriented cohomology theories

Definition 2.4. Let f : X → Z and g : Y → Z be two morphisms in an admissible
subcategory V of Schk. We say that f and g are transverse in V if

(i) TorOZq (OY ,OX) = 0 holds for all q > 0 and

(ii) the fibre product X ×Z Y is in V.

If V = Smk, then we just say that f and g are transverse.

For what follows R∗ denotes the category of commutative, graded rings with unit.
We recall that a functor A∗ : (Smk)op → R∗ is additive if A∗(∅) = 0 and for any
pair (X,Y ) ∈ (Smk)2 the canonical ring map A∗(X

∐
Y ) → A∗(X) × A∗(Y ) is an

isomorphism.

Definition 2.5. Let V be an admissible subcategory of Schk. An oriented cohomology
theory on V is given by

(D1) An additive functor A∗ : Vop → R∗.

(D2) For each projective morphism f : Y → X in V of relative codimension d, a homo-
morphism

f∗ : A∗(Y )→ A∗+d(X)

of graded A∗(X)-modules. Furthermore, we observe that the ring homomorphism
f∗ : A∗(X)→ A∗(Y ) gives A∗(Y ) the structure of an A∗(X)-module.

These satisfy the following conditions.

(A1) One has (IdX)∗ = IdA∗(X) for any X ∈ V. Moreover, given projective morphisms
f : Y → X and g : Z → Y in V of relative codimensions d and e, respectively, one
has

(f ◦ g)∗ = f∗ ◦ g∗ : A∗(Z)→ A∗+d+e(X).

(A2) Let f : X → Z and g : Y → Z be transverse morphisms in V, giving the cartesian
square

W X

Y Z

g′

f ′ f

g

in which we assume f to be projective of relative dimension d (thus so is f ′). This
implies g∗ ◦ f∗ = f ′∗ ◦ g′∗.

(PB) Let E → X be a rank n vector bundle over some X ∈ V and O(1) → P(E) the
canonical quotient line bundle with zero section s : P(E)→ O(1). Let 1 ∈ A0(P(E))
denote the multiplicative unit element. Define ψ ∈ A1(P(E)) by

ψ := s∗(s∗(1)).

Then A∗(P(E)) is a free A∗(X)-module with basis

(1, ψ, ..., ψn−1).
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(EH) Let E → X be a vector bundle over some X ∈ V and let p : V → X be an E-torsor.
Then p∗ : A∗(X)→ A∗(V ) is an isomorphism.

A morphism of oriented cohomology theories on V is a natural transformation of functors
Vop → R∗ which commutes with the maps f∗.

Remark 2.6. The morphisms of the form f∗ are called pullbacks and the morphisms of
the form f∗ are called pushforwards. Furthermore, the axiom (PB) will be referred to
as the projective bundle formula and the axiom (EH) as the extended homotopy
property.

Given any oriented cohomology theory A∗, one may use Grothendieck’s method (cf.
[18]) to define Chern classes ci(E) ∈ Ai(X) of a vector bundle E → X of rank n over X
which will be very important in the study of oriented cohomology theories. Axiom (PB)
from Definition 2.5 implies that there exist unique elements ci(E) ∈ A∗(X) for 0 ≤ i ≤ n
such that c0(E) = 1 and

n∑
i=0

(−1)ici(E)ψn−i = 0.

These Chern classes are characterised by the following properties where the properties
can be checked using the axioms listed above (cf. [37]).

(i) For any line bundle L over X ∈ Smk, c1(L) equals s∗s∗(1) ∈ A1(X), where the
morphism s : X → L denotes the zero section.

(ii) For any morphism f : Y → X in Smk and any vector bundle E → X, one has

ci(f∗E) = f∗(ci(E))

for each i ≥ 0.

(iii) If

0→ E′ → E → E′′ → 0

is a short exact sequence of vector bundles over X ∈ Smk, then one has

cn(E) =
n∑
i=0

ci(E′)cn−i(E′′)

for each integer n ≥ 0. This formula is referred to as Whitney sum formula.

Following Quillen [48], the main difference with Grothendieck’s axioms [18] is that in
general it is not true that

c1(L⊗M) = c1(L) + c1(M)

holds for line bundles L and M over the same base scheme. This leads to the theory of
formal group laws.

Definition 2.7. A commutative formal group law of rank one with coefficients
in R is a pair (R,FR) consisting of a commutative ring R and a formal power series
FR(u, v) =

∑
ai,ju

ivj ∈ R[[u, v]] satisfying the following conditions.
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2.1 Oriented cohomology theories

(i) F (u, 0) = F (0, u) = u ∈ R[[u]].

(ii) F (u, v) = F (v, u) ∈ R[[u, v]].

(iii) F (u, F (v, w)) = F (F (u, v), w) ∈ R[[u, v, w]].

Construction 2.8. Now, we will analyse the construction of the so-called Lazard Ring.
Therefore, we set L̃ := Z[{Ai,j |(i, j) ∈ N2}] and F̃ (u, v) =

∑
i,j Ai,ju

ivj ∈ L̃[[u, v]]. We
define the Lazard Ring L to be the quotient of L̃ by the relations obtained by imposing
the conditions of a commutative formal group law to F̃ . Then we denote by

FL =
∑
i,j

ai,ju
ivj ∈ L[[u, v]]

the image of F̃ under the projection map p : L̃→ L where we define ai,j to be the image
p(Ai,j). We would like the Lazard Ring to be a commutative graded ring and therefore,
we assign the degree 1 − i − j to the corresponding coefficient ai,j . We denote this
commutative graded ring by L∗. We could have also assigned the degree i+ j− 1 to the
corresponding coefficient ai,j . The resulting commutative graded ring will be denoted
by L∗.

Lemma 2.9. [37, Lemma 1.1.3] Let A∗ be an oriented cohomology theory on Smk.
Then there is a unique power series

FA(u, v) =
∑
i,j

ai,ju
ivj ∈ A∗(k)[[u, v]]

with ai,j ∈ A1−i−j(k) such that for any X ∈ Smk and any pair of line bundles L and M
on X, we have

FA(c1(L), c1(M)) = c1(L⊗M).

Furthermore, the pair (A∗(k), FA) is a commutative formal group law of rank one.

Lazard proved in [36] that a universal commutative formal group law of rank one
exists and also showed that it is a polynomial ring with integer coefficients in countably
many variables. The above construction leads to the following proposition.

Proposition 2.10. The pair (L, FL) is the universal commutative formal group law of
rank one. Furthermore, for every formal group law of rank one (F,A), there exists a
unique ring homomorphism ΦF : L→ A such that Φ(FL) = F holds.

Example 2.11. Fulton shows in [13] that the Chow ring CH∗(X) is an example of an
oriented cohomology theory on Smk. Additionally, he shows the additivity of the Chern
classes which leads to the additive formal group law FCH(u, v) = u+ v on Z = CH∗(k)
by Lemma 2.9.

Remark 2.12. In this thesis we will be mainly concerned with Chow rings and algebraic
cobordism, their equivariant theories and the comparison between them. Therefore, the
preceding example is essential for this thesis and the underlying theory.
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2.2 Algebraic cobordism

In this section, we describe the construction and the main properties of algebraic
cobordism following Levine and Morel (cf. [37]). The main goal of this section is to
give a reminder of the most important characteristics of algebraic cobordism for the
convenience of the reader.

Definition 2.13. Let X be a k-scheme.

(i) A cobordism cycle over X is a family (f : Y → X,L1, ..., Lr) consisting of

(i’) a projective morphism f : Y → X where Y ∈ Smk is integral and
(ii’) a finite sequence (L1, ..., Lr) of r line bundles over Y (this might be empty).

The dimension of this cobordism cycle is dimk(Y )− r ∈ Z.

(ii) An isomorphism Φ of cobordism cycles

(Y → X,L1, ..., Lr) ∼= (Y ′ → X,L′1, ..., L
′
r′)

is a triple

Φ = (φ : Y → Y ′, σ, (ψ1, ..., ψr))

consisting of

(i”) an isomorphism φ : Y → Y ′ of X-schemes,
(ii”) a bijection σ : {1, ..., r} ∼= {1, ..., r′} and
(iii”) an isomorphism of line bundles over Y , i.e. ψi : Li ∼= φ∗(L′σ(i)) for each

i ∈ {1, ..., r}.

(iii) Let Z(X) be the free abelian group generated by the isomorphism classes of cobor-
dism cycles over X. The dimension of the cobordism cycles makes Z(X) into a
graded abelian group Z∗(X). The image of a cobordism cycle (f : Y → X,L1, ..., Lr)
in this group is denoted by [f : Y → X,L1, ..., Lr].

Remark 2.14. Given Y =
∐
j Yj in Smk with line bundles L1, ..., Lr on Y and a

projective morphism f : Y → X in Schk, we write [f : Y → X,L1, ..., Lr] for the sum∑
j [fj : Yj → X,Lj1, ..., Ljr] in Z∗(X), where fj and Lji are the restrictions of f and Li

to Yj .

Now, we want to describe pullbacks, pushforwards and first Chern class homomor-
phisms for the graded abelian group Z∗(X).

Definition 2.15. Let X and X ′ be smooth k-schemes.

(i) Let g : X → X ′ be a projective morphism. The pushforward along g is defined
as the map

g∗ : Z∗(X)→ Z∗(X ′)
[f : Y → X,L1, ..., Lr] 7→ [g ◦ f : Y → X ′, L1, ..., Lr]

of graded abelian groups.
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(ii) Let g : X → X ′ be a smooth equi-dimensional morphism of relative dimension d.
The pullback along g is defined as the map

g∗ : Z∗(X ′)→ Z∗+d(X)
[f : Y → X ′, L1, ..., Lr] 7→ [p2 : (Y ×X′ X)→ X, p∗1(L1), ..., p∗1(Lr)]

of graded abelian groups where pi denote the corresponding projections.

(iii) Let L be a line bundle on X. Then the first Chern class homomorphism of
L is defined as the map

c̃1(L) : Z∗(X)→ Z∗−1(X)
[f : Y → X,L1, ..., Lr] 7→ [f : Y → X,L1, ..., Lr, f

∗(L)]

of graded abelian groups.

Lastly, we define the external product on the graded abelian group Z∗(X) before we
are able to begin the construction of algebraic cobordism explicitly.

Definition 2.16. Let α = [f : X ′ → X,L1, ..., Lr] and β = [g : Y ′ → Y,M1, ...,Ms]
denote two cobordism cycles. Then the external product is defined as

× : Z∗(X)×Z∗(Y )→ Z∗(X ×k Y )
(α, β) 7→ [f × g : X ′ × Y ′ → X × Y, p∗1(L1), ..., p∗1(Lr), p∗2(M1), ..., p∗2(Ms)].

In addition, × is associative and commutative.

Remark 2.17. This definition implies that Z∗(k) has the structure of a commutative
graded ring with unit 1 := [Idk] ∈ Z0(k). Therefore, for each X ∈ Smk, the group
Z∗(X) has the structure of a graded Z∗(k)-module.

Now, we want to construct algebraic cobordism Ω∗(X) by successively imposing three
relations on Z∗(X). As a graded abelian group, we build the appropriate quotient by
the corresponding subgroups. In fact, these relations will not affect any of the above
mentioned structures of the functor Z∗. This can be verified using [37, Section 2.1.5]
where this procedure is described in detail.

Construction 2.18. The construction begins by imposing that every composition of
n Chern class homomorphisms vanishes if n exceeds the dimension of the base scheme.
Precisely, this means that algebraic cobordism satisfies the following axiom

(Dim) For any X ∈ Smk and any family (L1, ..., Ln) of line bundles on X with
n > dimk(X), one has

c̃1(L1) ◦ · · · ◦ c̃1(Ln)(1X) = 0 ∈ Ω∗(X),

where 1X = [IdX : X → X] which is also known as the fundamental class of X.
For any irreducible X ∈ Smk this is imposed by denoting RDim

∗ (X) ⊆ Z∗(X) the
subset consisting of all elements of the form

[Y → X,L1, ..., Lr],

28



Henry July

where dimk(Y ) < r is satisfied. We denote by Z∗(X) the corresponding quotient
Z∗(X)/RDim

∗ (X).
After having imposed axiom (Dim), we want to impose the second axiom which gives

a relation between the first Chern class homomorphism associated to a line bundle and
the fundamental class of the zero-subscheme of its sections. Expressed differently, this
means

(Sect) For anyX ∈ Smk, any line bundle L onX and any section s which is transverse
to the zero section of L, one has

c̃1(L)(1X) = i∗(1Z),

where i : Z → X is the closed immersion of the zero-subscheme of s.
Now, one repeats the procedure of imposing relations which, for each irreducible

X ∈ Smk, leads to the subset RSect
∗ (X) ⊆ Z∗(X) consisting of all elements of the form

c̃1(L)(1X)− [Z → X],

where L is a line bundle over X, s : X → L a section transverse to the zero section
and Z → X the closed zero-subscheme of s which is smooth by the assumption that
s is transverse to the zero section. We denote by Ω∗(X) the corresponding quotient
Z∗(X)/RSect

∗ (X) which we refer to as algebraic pre-cobordism.
Lastly, we want to obain algebraic cobordism Ω∗(X) as a quotient of L∗⊗Ω∗(X) which

implies the existence of a homomorphism Φ : L∗ → Ω∗(k), being the given composite
L∗ → L∗⊗Ω∗(k)→ Ω∗(k). This will be in fact the ring homomorphism from Proposition
2.10 for which it can be checked that it is a graded ring homomorphism. After we will
have defined Ω∗(X), we want it to satisfy the axiom (FGL) given by

(FGL) Let Φ : L∗ → Ω∗(k) be the ring homomorphism giving the L∗-structure and
let FΩ ∈ Ω∗(k)[[u, v]] be the image of the universal formal group law FL ∈ L∗[[u, v]]
under Φ. Then for any X ∈ Smk and any pair (L,M) of line bundles on X, one has

FΩ(c̃1(L), c̃1(M))(1X) = c̃1(L⊗M)(1X) ∈ Ω∗(X).

Here we remark that the order of imposing these relations matters as the left-hand side
of the axiom (FGL) only makes sense if the axiom (Dim) has already been imposed.

The axiom (FGL) is imposed by taking for any irreducible X ∈ Smk the subset
RFGL
∗ (X) ⊆ L∗ ⊗ Ω∗(X) consisting of elements of the form

FL(c̃1(L), c̃1(M))(1X)− c̃1(L⊗M)(1X),

where L and M are line bundles over X and FL is the universal formal group law.
Unfortunately, this extension of scalars is necessary as we need a ring homomorphism
from L∗ to the corresponding coefficient ring and since we want to keep the universal
property which we will point out later. Furthermore, we have to consider the subset
L∗RFGL

∗ (X) ⊆ L∗ ⊗ Ω∗(X) of elements of the form a⊗ ρ for a ∈ L∗ and ρ ∈ RFGL
∗ (X).

This is necessary since the procedure of taking the quotient of these functors only works
in this case if the corresponding L∗-module structure is given. Finally, building the
quotient yields algebraic cobordism

Ω∗(X) := L∗ ⊗ Ω∗(X)/L∗RFGL
∗ (X).
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2.3 Some computations for toric varieties

Remark 2.19. For the formal group law (L, FΩ) there exists a unique power series
χ(u) ∈ L[[u]] with leading term −u which satisfies the equality FΩ(u, χ(u)) = 0 (cf.
[37]). We introduce the following notations:

u+FΩ v := FΩ(u, v) ∈ L[[u, v]],
[−1]FΩu := χ(u) ∈ L[[u]],
u−FΩ v := FΩ(u, χ(v)) ∈ L[[u, v]].

We will use the same notations when we will be considering equivariant algebraic cobor-
dism in the sequel.

Remark 2.20. In fact, Ω∗ is an oriented Borel-Moore homology theory on Smk and
using [37, Proposition 5.2.1] it is possible to construct a functor Ω∗ : Smk

op → R∗ which
is an oriented cohomology theory. Furthermore, for an equi-dimensional X ∈ Smk of
dimension d, one has Ωi(X) ∼= Ωd−i(X) for all i ∈ Z.

The following results describe the main properties of algebraic cobordism and its
relevance.

Proposition 2.21. [37, Theorem 1.2.6] The functor X 7→ Ω∗(X) is the universal ori-
ented cohomology theory on Smk. Thus, given an oriented cohomology theory A∗ on
Smk, there is a unique morphism

θ : Ω∗ → A∗

of oriented cohomlogy theories.

Proposition 2.22. [37, Theorem 1.2.7] The canonical homomorphism Ψ : L∗ → Ω∗(k)
is an isomorphism.

Proposition 2.23. [37, Theorem 3.2.7] Let i : Z → X be a closed immersion in Schk
and j : U → X the open immersion of the complement of Z. Then the localisation
sequence

Ω∗(Z) i∗−→ Ω∗(X) j∗−→ Ω∗(U)→ 0

is exact.

Now, we want to give another result which relates Chow rings with algebraic cobor-
dism. This gives rise to the motivation of generalising known results about Chow rings
to algebraic cobordism as these two theories behave similarly in several situations.

Proposition 2.24. [37, Theorem 1.2.19] The canonical morphism Ω∗ → CH∗ induces
an isomorphism Ω∗ ⊗L∗ Z

∼=−→ CH∗.

2.3 Some computations for toric varieties

In this section, we want to illustrate and motivate the study of wider classes of
varieties in order to obtain new computations of algebraic cobordism. First, we have a
look at toric varieties for which Chow groups and algebraic cobordism are known (cf.
[14, 34]). Nevertheless, this class of varieties already gives us a lot of information about
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the behaviour of Chow rings and algebraic cobordism. Therefore, we have a look at
some examples. The theory of toric varieties is assumed to be known throughout the
whole thesis. For further details, we refer to [14] where the theory is explained in detail.
Nevertheless, we recap some essential results which will be relevant for our examples.

Proposition 2.25. [14, Proposition, p. 29] A toric variety X is smooth if and only if
the corresponding fan ∆ consists of cones which are each generated by a part of a basis
for the lattice N .

Definition 2.26. A cone is called simplicial if it is generated by linearly independent
generators.

Remark 2.27. The most known results of computations of Chow rings concern the
theory of smooth toric varieties. In fact, in the simplicial case one can obtain similar
results with rational coefficients ([14]).

Now, we want to establish the key assumption which is used by Fulton (cf. [14]) in
order to describe the Chow ring of toric varieties.

Definition 2.28. For any ordering σ1, ..., σm of the top-dimensional cones in a fan
corresponding to a complete, smooth (or simplicial) toric variety, we define a subsequence
of subcones τi ⊆ σi, 1 ≤ i ≤ m, by letting τi be the intersection of σi with all those σj that
come after σi, i.e. j > i, and that meet σi in a cone of dimension n− 1. In particular,
τ1 = {0} and τm = σm. This sequence has to satisfy the following condition.

(∗) If τi is contained in σj, then i ≤ j.

Lemma 2.29. [14, Lemma, p. 101] If X is projective and the corresponding fan ∆
simplicial, then the top-dimensional cones of ∆ can be ordered so that condition (∗)
holds.

Remark 2.30. Fulton computes the Chow ring for smooth (or simplicial) projective
toric varieties X in [14, Proposition, p. 106]. It is remarked that this computation
can be generalised to complete smooth (or simplicial) toric varieties. Our motivating
example is not complete and therefore, we cannot use Fulton’s result. Thus, we will
compute the Chow ring using localisation sequences for Chow rings.

Example 2.31. Let ∆ be the following two-dimensional fan in N = Z2.

σ1

σ2

The corresponding toric variety is X∆ = P1 × P1 \ {(0,∞), (∞, 0)}. Fulton describes
the Chow ring of toric varieties under certain conditions. He considers complete toric
varieties that are non-singular or at least simplicial and furthermore satisfy the ordering
condition (∗). Our example is not complete and therefore, condition (∗) is not defined.
Thus, we will compute the Chow ring of this variety using localisation sequences for
Chow rings. This leads to the exact sequences

CH0({(0,∞), (∞, 0)}) i∗−→ CH2(P1 × P1) j∗−→ CH2(X∆)→ 0,
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CH−1({(0,∞), (∞, 0)}) i∗−→ CH1(P1 × P1) j∗−→ CH1(X∆)→ 0,

CH−2({(0,∞), (∞, 0)}) i∗−→ CH0(P1 × P1) j∗−→ CH0(X∆)→ 0.

The reader recognises immediately that the only difference between CH∗(P1 × P1) and
CH∗(X∆) is described by the first sequence. We know by the Künneth formula that
CH∗(P1×P1) ∼= Z[c, d]/(c2, d2) holds, where c and d are the classes of the corresponding
one-dimensional subspaces. Furthermore, it is known that CH0({(0,∞), (∞, 0)}) ∼= Z2

holds. The remaining question is to which element the class of a point is being mapped
under the pushforward i∗. Because of the equality CH2(P1 × P1) = CH0(P1 × P1), the
only candidate for the image of the class of the point under i∗ is c · d by degree reasons.
This can be seen, as the image has to be a class of a zero-dimensional subspace which
corresponds to the element c · d in CH∗(P1 × P1) ∼= Z[c, d]/(c2, d2). Finally, we see by
the exactness of the first sequence that cd has to vanish inside CH∗(X∆) which leads to
the result CH∗(X∆) = Z[c, d]/(c2, cd, d2).

Next, we want to compare this result with the algebraic cobordism of the same toric
variety. Therefore, we state the main result of [34]. We remark that the problematic
localisation sequence for equivariant algebraic cobordism (cf. discussion before Propo-
sition 2.43) was used in order to obtain this result and it is not clear whether it can be
proved without using the equivariant localisation sequence. We will nevertheless assume
for now that the main result of [34] holds. This assumption will only affect the remaining
part of this section and none of the main results of this thesis.

First, we have to introduce the main notions. For a smooth toric variety associated
to a fan ∆ in the lattice MR, we denote by ∆r the set of r-dimensional cones in ∆. For
any ρ ∈ ∆1, let vρ denote the generator of the monoid ρ ∩M . Furthermore, if S is
a subset of ∆1 which is not contained in any maximal cone of ∆, then we denote the
union of such subsets of ∆1 by ∆0

1. Let L∗[tρ] = L∗[tρ, ρ ∈ ∆1] be the graded polynomial
ring over L∗ with each tρ homogeneous of degree one. Let I∆ denote the graded ideal
generated by the set of monomials {

∏
ρ∈S tρ|S ∈ ∆0

1}
⋃
{tn+1
ρ |ρ ∈ ∆1}.

Proposition 2.32. [34, Theorem 8.2] Let X∆ be a smooth toric variety associated to a
fan ∆ in the lattice MR. Then there is an L∗-algebra isomorphism

ΨX : L∗[tρ, ρ ∈ ∆1](
I∆,

∑
ρ∈∆1 [< χ, vρ >]F tρ

) → Ω∗(X∆),

where χ runs over all elements in the character group M∨.

Remark 2.33. We want to remark here that this result holds for all smooth toric
varieties. Compared to the result of Fulton which is discussed above, we do not need the
assumption of completeness or projectivity. Since algebraic cobordism is the universal
oriented cohomology theory, this implies in particular the more general result for Chow
rings.

Now, we are able to compute the algebraic cobordism of the toric variety X∆ which
has already been discussed above.

Example 2.34. Firstly, we mention that vρi = pi for p1 = (1, 0), p2 = (0, 1), p3 = (−1, 0)
and p4 = (0,−1). The ideal I∆ is generated by

{tρ1tρ3 , tρ1tρ4 , tρ2tρ3 , tρ2tρ4}
⋃
{t3ρ1 , t

3
ρ2 , t

3
ρ3 , t

3
ρ4}
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and the sums in the quotient are given by

[< (1, 0), (1, 0) >]F tρ1 + [< (1, 0), (0, 1) >]F tρ2

+ [< (1, 0), (−1, 0) >]F tρ3 + [< (1, 0), (0,−1) >]F tρ4

= tρ1 − u1tρ3

for an invertible element u1 of degree zero. Similarly, we obtain tρ2 − u2tρ4 . Therefore,
we conclude that tρ1 = tρ3 and tρ2 = tρ4 hold in the quotient. This gives rise to

Ω∗(X∆) ∼=
L∗[tρ1 , tρ2 , tρ3 , tρ4 ](

I∆, tρ1 − tρ3 , tρ2 − tρ4

) ∼= L∗[tρ1 , tρ2 ]
I∆

.

Now, we see that I∆ is generated by {t2ρ1 , tρ1tρ2 , t
2
ρ2} which leads to the result

Ω∗(X) ∼=
L∗[tρ1 , tρ2 ](
t2ρ1 , tρ1tρ2 , t

2
ρ2

) .
Remark 2.35. The preceding examples illustrate the relation between Chow rings and
algebraic cobordism and confirm Proposition 2.24.

2.4 Equivariant algebraic cobordism

The current method of computing algebraic cobordism is introducing the notion of
equivariant algebraic cobordism and then deducing the results for algebraic cobordism.
Therefore, equivariant Chow groups will also be important for our studies as well as
their comparison with equivariant algebraic cobordism. In order to be able to define
equivariant algebraic cobordism, we have to define the niveau filtration on algebraic
cobordism which will lead to a refined version of the localisation sequence. The latter
will be crucial in the further applications of equivariant algebraic cobordism.

Following the conventions in [32], let X be k-scheme of dimension d. For j ∈ Z, let
Zj be the set of all closed subschemes Z ⊆ X such that dimk(Z) ≤ j holds where the
empty scheme is assumed to have infinite negative dimension. Then Zj is ordered by
inclusion and we define

Ωi(Zj) = lim−→
Z∈Zj

Ωi(Z) and Ω∗(Zj) =
⊕
i≥0

Ωi(Zj).

We see immediately that the latter is a graded L∗-module and that there is a graded
L∗-linear map Ω∗(Zj)→ Ω∗(X).

Definition 2.36. We define FjΩ∗(X) to be the image of the natural L∗-linear map
Ω∗(Zj)→ Ω∗(X). Expressed differently, FjΩ∗(X) is the image of all Ω∗(W )→ Ω∗(X),
whereW → X is a projective map such that dim(Im(W )) ≤ j. This leads to the canonical
niveau filtration

0 = F−1Ω∗(X) ⊆ F0Ω∗(X) ⊆ · · · ⊆ Fd−1Ω∗(X) ⊆ FdΩ∗(X) = Ω∗(X).
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Proposition 2.37. [32, Theorem 3.5] (Refined localisation sequence) Let X be a scheme
over k and let Z be a closed subscheme of X with complement U . Then for every j ∈ Z,
there is an exact sequence

Ω∗(Z)
FjΩ∗(Z) →

Ω∗(X)
FjΩ∗(X) →

Ω∗(U)
FjΩ∗(U) → 0.

For this section, let G be a linear algebraic group of dimension g over k. Furthermore,
all representations of G will be finite dimensional. The definition of equivariant algebraic
cobordism considers a certain kind of mixed spaces which may not be a scheme even if
the original space is a scheme. From [32, Lemma 4.1] we know that this problem does
not occur in any of the situations described in this work.

Now, we consider for any integer j ≥ 0 a corresponding pair (Vj , Uj) where Vj is an
lj-dimensional representation of G and Uj is a G-stable open subset of Vj such that the
codimension of the complement (Vj \ Uj) in Vj is at least j. Furthermore, G acts freely
on Uj such that the quotient Uj/G is a quasi-projective scheme. Such a pair will be
called a good pair for the G-action corresponding to j. It is well known that such a
good pair always exists (cf. [12, Lemma 9]).

Let X ×G Uj denote the mixed quotient of the product X × Uj by the free diagonal
action of G which exists as a scheme because the G-action on X is linear. For a k-scheme
X of dimension d with a G-action and an integer j ≥ 0, let (Vj , Uj) be an lj-dimensional
good pair corresponding to j. For all i ∈ Z, we set

ΩG
i (X)j =

Ωi+lj−g
(
X ×G Uj

)
Fd+lj−g−jΩi+lj−g

(
X ×G Uj

) . (2.1)

Lemma 2.38. ([32, Lemma 4.2]) For a fixed j ≥ 0, the group ΩG
i (X)j is independent

of the choice of the good pair (Vj , Uj).

Corollary 2.39. ([32, Lemma 4.3]) For j′ ≥ j ≥ 0 there is a natural surjective map
ΩG
i (X)j′ � ΩG

i (X)j.

Definition 2.40. Let X be a k-scheme of dimension d with a G-action. For any i ∈ Z,
we define the equivariant algebraic cobordism of X to be

ΩG
i (X) := lim←−

j

ΩG
i (X)j .

Remark 2.41. One should note that the equivariant algebraic cobordism can be non-
zero for any i ∈ Z unlike the ordinary algebraic cobordism Ω∗. Furthermore, we set

ΩG
∗ (X) :=

⊕
i∈Z

ΩG
i (X).

If in additionX is an equi-dimensional k-scheme withG-action, we let Ωi
G(X) = ΩG

d−i(X)
and analogously Ω∗G(X) :=

⊕
i∈Z Ωi

G(X). We denote the equivariant cobordism Ω∗G(k)
of the underlying base field by S(G). This is also called the algebraic cobordism of
the classifying space of G which is denoted by Ω∗(BG). Furthermore, if G is the trivial
group, equivariant algebraic cobordism reduces to ordinary algebraic cobordism. Besides
that, equivariant algebraic cobordism with rational coefficients is defined by the graded
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topological tensor product Ω∗G(X)Q := Ω∗G(X)⊗̂ZQ which will be discussed in more
detail in the sequel (cf. Section 3.5).

Secondly, for any X ∈ G− Schk and a projective morphism f : Y → X in G− Schk
where Y is smooth of dimension d we obtain for any j ≥ 0 and any lj-dimensional good
pair (Vj , Uj) an ordinary cobordism cycle [Y ×G Uj → X ×G Uj ] of dimension d+ lj − g
by [32, Lemma 5.1]. Hence, this defines an element αj ∈ ΩG

d (X)j . Since the image
of αj′ is αj for all j′ ≥ j we obtain a unique element α ∈ ΩG

d (X) which we call the
G-equivariant fundamental class of the cobordism cycle [f : Y → X].

Remark 2.42. For a closed subgroup H ≤ G of dimension h, any lj-dimensional good
pair (Vj , Uj) for the G-action is also a good pair for the induced H-action. With some
further arguments this induces the natural restriction map

rGH,X : ΩG
∗ (X)→ ΩH

∗ (X)

for any X ∈ G−Schk via taking the inverse limit of the corresponding pullback maps of
X×HUj → X×GUj . TakingH = {1} we obtain the forgetful map rGX : ΩG

∗ (X)→ Ω∗(X)
from equivariant algebraic cobordism to ordinary algebraic cobordism.

In the following, we want to establish the main properties of equivariant algebraic
cobordism which will be useful and necessary for our further purposes. Firstly, we remark
that there is a gap in the proof of the localisation theorem given by Heller and Malagón-
López (cf. [20, Theorem 20]) which is described in more detail in the work of Khan and
Ravi (cf. [27, Example 12.18]). Nevertheless, we obtain a slightly weaker result. Later
on, we will present a case where the localisation in equivariant cobordism still works
under milder assumptions (cf. Corollary 3.48).

Proposition 2.43. [32, Theorem 5.3] Let X be a G-scheme over k of dimension d and
f : U → X a G-stable open subscheme. Then the restriction map f∗ : ΩG

∗ (X)→ ΩG
∗ (U)

is surjective.

Proposition 2.44. [32, Theorem 5.2] The equivariant algebraic cobordism satisfies the
following properties.

(i) Functoriality: The assignment X 7→ ΩG
∗ (X) is covariant for projective maps and

contravariant for smooth (and even l.c.i.) morphisms in G− Schk. Moreover, for
the diagram

X ′ X

Y ′ Y

g′

f ′ f

g

in G− Schk with f projective and g smooth, one has g∗ ◦ f∗ = f ′∗ ◦ g′∗.

(ii) Homotopy invariance: If f : E → X is a G-equivariant vector bundle over some
X ∈ G− Schk, then f∗ is an isomorphism.

(iii) Chern classes: For any G-equivariant vector bundle f : E → X of rank r, there
are equivariant Chern class operators cGm(E) : ΩG

∗ (X) → ΩG
∗−m(X) for 0 ≤ m ≤ r

with cG0 (E) = 1. These Chern classes have the same functorial properties as in the
non-equivariant case. Moreover, they satisfy the Whitney sum formula.
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(iv) Free action: If G acts freely on X with quotient Y , then ΩG
∗ (X)

∼=−→ Ω∗(Y ).

(v) Exterior Product: There is a natural product map

ΩG
i (X)⊗Z ΩG

i′ (X ′)→ ΩG
i+i′(X ×X ′).

In particular, ΩG
∗ (k) is a graded algebra and ΩG

∗ (X) is a graded ΩG
∗ (k)-module for

every X ∈ G − Schk. Furthermore, for X smooth, the pullback of the diagonal
morphism X → X ×X turns Ω∗G(X) into an S(G)-algebra.

(vi) Projection formula: For a projective map f : X ′ → X in G − Smk, one has
f∗(x′ · f∗(x)) = f∗(x′) · x for any x ∈ Ω∗(X) and x′ ∈ ΩG

∗ (X ′).

Remark 2.45. [31, Section 2.5] If X is smooth, we identify the commutative subalgebra
of EndL(Ω∗G(X)) generated by the Chern classes of vector bundles with a subalgebra of
the equivariant cobordism ring Ω∗G(X) via cGi (E) 7→ cGi (E) ([Id : X → X]). Therefore,
we will also denote this image by cGi (E). Since we pass freely between vector bundles
E and their corresponding locally free coherent sheaves we will also write cG1 (E) for a
locally free coherent sheaf E .

To finish this section, we present one of the main results concerning actual com-
putations of equivariant algebraic cobordism. Since taking the quotient by the niveau
filtration is very hard to be computed in general, one can make use of the following result
by Krishna [32].

Proposition 2.46. [32, Theorem 6.1] Let {(Vj , Uj)}j≥0 be a sequence of lj-dimensional
good pairs such that

(i) Vj+1 = Vj ⊕Wj as representations of G with dim(Wj) > 0.

(ii) Uj ⊕Wj ⊆ Uj+1 as G-stable open subsets.

(iii) codimVj+1(Vj+1 \ Uj+1) > codimVj (Vj \ Uj).

Then for any scheme X ∈ G− Schk of dimension d and any i ∈ Z, one has

ΩG
i (X)

∼=−→ lim←−
j

Ωi+lj−g
(
X ×G Uj

)
.

Moreover, such a sequence of good pairs always exists.

2.5 Spherical and horospherical varieties

In this section, we want to summarise the main properties of spherical varieties for
convenience of the reader which are mainly taken from [41, 42, 47].

For the remaining part of this chapter, let G be a connected reductive algebraic group
over an algebraically closed field k of characteristic zero, B ⊆ G a Borel subgroup, T ⊆ B
a maximal torus, W the Weyl group of G corresponding to the maximal torus of B and
U the unipotent radical of B.

Definition 2.47. Let X be a normal G-variety.

(i) We call a closed subgroup H ⊆ G containing U horospherical. In this case, the
homogeneous space G/H is said to be horospherical.
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(ii) A G/H-embedding for a homogeneous space G/H is a couple (X,x) for x ∈ X
such that the orbit G · x is open and isomorphic to G/H.

(iii) We call X horospherical if it contains an open orbit isomorphic to a horospherical
homogeneous space.

(iv) A homogeneous space G/H is said to be spherical if it contains an open orbit
under the action of the Borel subgroup of G.

(v) We call X spherical if it contains an open orbit isomorphic to a spherical homo-
geneous space.

Remark 2.48. A horospherical homogenous spaceG/H can be equivalently described as
a torus bundle over a flag variety G/P with fibre P/H. In this case we have P = NG(H)
by [42, Proposition 2.2]. Furthermore, using this description one also has P = TH = BH
for all Borel subgroups B of G contained in P and for all maximal tori T of B.

Remark 2.49. Two G/H-embeddings (X,x) and (X ′, x′) are isomorphic if there exists
a G-equivariant isomorphim between X and X ′ mapping x to x′.

Definition 2.50. For a horospherical homogeneous space G/H, we call the dimension
of the fibre P/H the rank of G/H. Furthermore, for a horospherical variety X, the
rank of X is defined as the rank of its open G-orbit.

Proposition 2.51. [4, Thereom 14.12] The Bruhat decomposition of G is the de-
composition

G =
∐
w∈W

BwB

of G as a disjoint union of double cosets of B.

Remark 2.52. In fact, by [4, Remark 14.16] we can also write G as the disjoint union
of double cosets

G =
∐

w∈W/WI

BwPI

where I ⊆ S is a subset of the simple roots,WI the subgroup ofW generated by the sim-
ple reflections sα for α ∈ I and PI the parabolic subgroup given by PI =

∐
w∈WI

BwB.

Remark 2.53. There are several equivalent definitions of spherical varieties which will
also be used here. Namely, the following conditions for a normal G-variety X are equiv-
alent ([47, Theorem 2.1.2]).

(i) X contains an open B-orbit.

(ii) X has finitely many B-orbits.

(iii) X is spherical.

Example 2.54. We want to point out some easy examples of spherical and horospherical
varieties.

(i) Normal toric varieties are spherical.
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(ii) Flag varieties of the form G/P for a parabolic subgroup P are spherical by the
Bruhat decomposition which gives us the Schubert cells of the flag G/P .

(iii) Normal toric varieties and flag varieties are horospherical.

(iv) Horospherical varieties are spherical. This is true because if we have a horospherical
variety X, it contains an open orbit isomorphic to a homogeneous horospherical
space G/H, i.e. H contains U . We consider the open dense orbit BwB ⊆ G coming
from the Bruhat decomposition. Since B = TU in G, we have that BwTU = BwU
is dense in G. Consequently, we know that also BwH is dense in G sinceH contains
U by definition and thus, we conclude that BwH/H is dense in G/H. Therefore,
G/H has a dense B-orbit, namely B(wH), which implies the sphericity.

(v) There are more classes of spherical varieties which are not necessarily horospherical.
One example is the class of wonderful varieties for which it was proved by Luna
[39] that they are spherical, but in the sequel we will be mainly interested in
horospherical varieties and therefore, we do not introduce further details.

Definition 2.55. Let G/H be a spherical homogeneous space. We denote by D the set
of the irreducible divisors of G/H which are B-stable, but not stable under the G-action.
Furthermore, we call the elements of D the colors.

Remark 2.56. Let X be a G/H-embedding for a spherical homogeneous space G/H.
We denote by X1, ..., Xm the irreducible G-stable divisors of X. We can furthermore
identify D with the set of the irreducible divisors of X which are B-stable, but again not
stable under the G-action. In fact, the latter divisors are the closures of the colors in X.
Therefore, we have D ∪ {X1, ..., Xm} as the union of the irreducible B-stable divisors of
X.

Definition 2.57. We call a color containing a closed G-orbit a color of X in the
setting of the previous remark.

Example 2.58. Next, we present the colors of two common classes of horospherical
varieties.

(i) We know about toric varieties that they do not have any colors since G = B = T
holds and therefore, any B-stable divisor will be also G-stable.

(ii) Secondly, flag varieties do not have G-stable divisors since they only have one
G-orbit and furthermore, the closures of the B-orbits in G/P coming from the
Bruhat-decomposition are the Schubert varieties. Therefore, the colors of G/P are
the codimension one Schubert varieties.

Remark 2.59. Following Pasquier [42], the union of the B-orbits of codimension one of
a horospherical homogeneous space G/H are the inverse images of the codimension one
Schubert varieties of G/P where G/H is given by the torus fibration G/H → G/P which
is the natural map coming from the fact that P = NG(H), as described in Remark 2.48.
Since we have a well known 1-to-1 correspondence of subsets I ⊆ S of the simple roots S
and the parabolic subgroups PI containing B from above (cf. [49, Theorem 8.4.3]), the
horospherical homogeneous space is in fact given by the torus fibration G/H → G/PI .
Therefore, the B-orbits of codimension one in G/H are given by Bw0sαPI/H for some
α ∈ S \ I, its associated simple reflection sα and the longest element in w0 ∈ W/WI .
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The colors of G/H are thus the closures Dα of the B-orbits Bw0sαPI/H which leads to
a bijection of D and S \ I.

Definition 2.60. A spherical variety X is simple if it contains only one closed orbit.

Remark 2.61. [47, Section 3.1] If G/H is a spherical homogeneous space, then all
G/H-embeddings X are recovered by the simple G/H-embeddings which are contained
in X. Indeed, let Y be a G-orbit in X for a G/H-embedding X. Then the subset
XY,G = {x ∈ X | Y ⊆ Gx} is G-stable and open in X. Let Gx for x ∈ XY,G be a closed
G-orbit in XY,G, then Gx = XY,G∩Gx is the closure of Gx in XY,G. Since Y is contained
in XY,G and Gx, we conclude Y = Gx and therefore, the unique closed G-orbit in XY,G

is Y . In particular, this implies that X can be covered by finitely many G-stable open
subsets with a unique closed G-orbit.

Definition 2.62. A spherical variety X is called toroidal if it does not have any color.

In the following, we want to recap the main results of the Luna-Vust theory for horo-
spherical varieties and consider some easy examples at the end of this section. Therefore,
we introduce some further notations.

From now, we fix a horospherical homogeneous space G/H and keep the notations as
above. Additionally, we denote by M the characters of P = PI whose restrictions to H
are trivial. This determines a sublattice of the characters of T or B since P = TH = BH
for B, T contained in P . Further, we define N to be the dual of M , MR := M ⊗Z R,
and NR := N ⊗Z R. Lastly, we denote by k(G/H)(B) the set of rational functions f on
G/H such that there exists a character χf of B such that f(bgH) = χf (b)f(gH) holds
for all b ∈ B and g ∈ G. It is known that the map k(G/H)(B)/k∗ → M,f 7→ χf is an
isomorphism (cf. [42]).

Now, let X be a G/H-embedding. We define a map

σ : D ∪ {X1, ..., Xm} → N

by the following: Let D be a B-stable divisor of X which leads to the natural B-stable
valuation vD, i.e. vD(b · f) = vD(f) for all b ∈ B, on the function field k(G/H) = k(X).
Therefore, we obtain a homomorphism k(G/H)(B)/k∗ → Z which is in fact the restriction
of vD to k(G/H)(B)/k∗. Using the above isomorphism, we get an element in N which
we denote by σ(D).

Lastly, when we restrict σ to D we sometimes denote the image of the color Dα

associated to α ∈ S \ I by α∨M instead of σ(Dα) since it is the restriction of α∨ to M by
[42]. We remark that σ may not be injective, e.g. in the case H = P we have N = 0.

Definition 2.63. Let G/H be a horospherical homogeneous space of rank n with the
associated data containing the parabolic subgroup P = PI , the subset I ⊆ S of simple
roots and the lattice N of rank n with the associated map σ : D → N .

(i) Then we define a colored cone to be a pair (C,F) with C ⊆ NR and F ⊆ D with
the following properties.

(i’) C is a convex cone generated by finitely many elements of N containing σ(F).
(ii’) C does not contain lines and σ(F ) 6= 0 for all F ∈ F .

(ii) A colored face of a colored cone (C,F) is a pair (C′,F ′) such that C′ is a face of
C and F ′ is a subset of F such that σ(F ′) ∈ C′ for all F ′ ∈ F ′.
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2.5 Spherical and horospherical varieties

(iii) A colored fan is a finite set F with the following properties.

(i’) Every colored face of a colored cone of F is also in F.
(ii’) For each element u ∈ NR, there exists at most one colored cone (C,F) ∈ F

such that u is contained in the relative interior of C.

(iv) The support of a colored fan F is the set of elements of N contained in the cone
of any colored cone of F.

(v) We say that the fan F is complete if for any element x ∈ NR there exists a colored
cone (C,F) in F such that x is contained in C.

(vi) A color of a colored cone of F is an element of D ∈ D such that there exists a
colored cone (C,F) ∈ F such that D ∈ F .

Remark 2.64. For G = T there are no colors and therefore, we obtain the definition of
a fan which is used to describe the geometry of toric varieties.

Let X be a simple G/H-embedding and Y be the unique closed G-orbit in X. Then
we set F to be the union of the colors containing Y . Furthermore, let C be the cone
generated by σ(F) and σ(D) for any irreducible G-stable divisor D of X. The described
cone (C,F) is the colored cone associated to the simple G/H-embedding X. For any
G/H-embedding X, the colored fan is described by the colored cones associated to
the simple G/H-embeddings which are contained in X and will be denoted by FX .
Furthermore, the colors of X coincide with the colors of the associated colored fan FX .

Now, we want to recap an important result in the theory of horospherical varieties
which classifies G/H-embeddings using their associated colored fans. The following
proposition is a special case of [29, Theorem 4.3] in which the statement is formulated
with G/H spherical.

Proposition 2.65. [42, Theorem 2.5] Let G/H be a horospherical homogeneous space.
The above construction of the colored fan FX defines a bijection X 7→ FX between the
isomorphism classes of G/H-embeddings and the set of colored fans in NR. Furthermore,
complete G/H-embeddings correspond to complete colored fans.

Remark 2.66. For G/H a torus, we obtain the classification of toric varieties associated
to fans which is described in [14].

Example 2.67. [41, Example 1.13] Let G = SL2 and H = U be the unipotent radical
of SL2. Then SL2 /U is clearly a horospherical homogeneous space and thus a torus
bundle over SL2 /P . In this example we have P = B where we choose B to be the upper
triangular matrices. Therefore, the rank of SL2 /U is equal to one where the dimension of
SL2 /U is two. Using the notation as above we have S = {α} and I = ∅ and furthermore,
we observe that SL2 /U is isomorphic to k2 \ {0} by sending gU to (g11, g21) where g is

given by g =
(
g11 g12
g21 g22

)
. One may also observe that SL2 /B is isomorphic to P1 and

therefore, we can identify SL2 /U → SL2 /B by the projection from k2 \ {0} to P1.
Next, we consider the natural SL2-action on k2 which induces an action on the pro-

jective plane P2 ∼= P(k⊕ k2). Further, we denote the homogeneous coordinates of P2 by
x0, x1, x2 and we see that SL2 ·[1 : 1 : 0] is isomorphic to k2 \{0} which implies that P2 is
an SL2 /U -embedding. Additionally, it may be observed that SL2 /U corresponds to the
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open subset {[1 : x1 : x2] | (x1, x2) ∈ k2 \ {0}} ⊆ P2. We denote by 0 the SL2-fixed point
[1 : 0 : 0] ∈ P2, by D the line {[x0 : x1 : x2] ∈ P2 | x0 = 0} which implies P2 \D = k2

and by E the exceptional divisor of the blow up of 0 in P2. Then we have the following
non-trivial SL2 /U -embeddings.

SL2 /U -embedding SL2-stable closed color
X divisors SL2-orbits of X

1 k2 ∅ {0} Dα

2 P2 \ {0} D D ∅

3 P2 D D and {0} Dα

4 Bl{0} k2 E E ∅

5 Bl{0} P2 D and E D and E ∅

For the homogeneous horospherical space SL2 /U the only color Dα is given by the
set {[1 : x1 : 0] | x1 ∈ k∗}. Since the embeddings 1, 2 and 4 contain only one closed
SL2-orbit, they are simple horospherical varieties. We see that the embeddings 2, 4 and
5 do not have any color since Dα does not contain any closed SL2-orbit. Therefore,
by Definition 2.62 these varieties are toroidal. We remark that Bl{0} P2 is covered by
P2 \ {0} and Bl{0} k2 whereas P2 is covered by P2 \ {0} and k2. Furthermore, in our
particular example we have that M = N = Z since the characters of P = TU which
become trivial after the restriction to U , correspond to the characters of T .

Now, we draw the line NR with the images under σ of the B-stable divisors of Bl{0} P2

which will be used later on to construct the corresponding colored fans. The images
can be obtained by considering the subset of rational functions k(SL2 /U)(B)/k∗ which
consists of rational functions of the form f(x1/x0, x2/x0) = (x2/x0)n for n ∈ Z with the
corresponding coordinates on SL2 /U . The valuations which are induced by the divisors
lead to the images of σ.

NR
0

σ(D) σ(Dα) = σ(E)

Using the procedure described above to obtain colored fans from their corresponding
SL2 /U -embeddings, we obtain the following five non-trivial colored fans. Hereby, the
black points represent the origin, the white points the colors and the gray annuli around
the white points the colors of a fan. Furthermore, the colored cones of the colored fan
are given by the black half-lines starting from the origin.

4 2 1

5 3

Using Proposition 2.65, we can also verify that there are only five non-trivial SL2 /U -
embeddings since there are no more non-trivial colored fans in the given example. Lastly,
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we remark that the trivial colored fan {({0}, ∅)} corresponds to the trivial SL2 /U -
embedding SL2 /U .

Remark 2.68. We have seen that for our example of rank 1 there were finitely many
non-trivial colored fans, but as soon as the rank of G/H is larger or equal to two,
there will be infinitely many colored fans. This behaviour is equal to the one of the
fans corresponding to toric varieties even though there are more colored fans than fans
coming from toric varieties.

Now, we want to recall the smoothness criterion for horospherical varieties which was
first described by Pasquier (cf. [41]). In order to be able to state it, we need some more
notation which we take from [41].

Proposition 2.69. [41, Proposition 2.2] Let X be a G/H-embedding for a horospherical
homogeneous space G/H defined by the colored fan FX . Then X is locally factorial if
and only if for every colored cone (C,F) of FX

(i) the elements F ∈ F have pairwise distinct images under σ and

(ii) C is generated by a part of a basis of N containing σ(F).

Definition 2.70. Let I and J be two disjoint subsets of the set of simple roots S. We
denote by ΓS the corresponding Dynkin diagram of G and by ΓI∪J the subgraph of ΓS
containing the nodes of I and J and the edges of ΓS joining two elements of I ∪ J . We
say (I, J) is smooth if every connected component Γ of ΓI∪J satisfies one of the following
conditions.

(i) Γ is a Dynkin diagram of type An for which every knot is in I except the first or
the last one which is in J .

(ii) Γ is a Dynkin diagram of type Cn for which every knot is in I except the first one
(connected with a simple edge) which is in J .

(iii) Γ is any Dynkin diagram for which every knot is in I.

Example 2.71. Let ΓS be a Dynkin diagram of type C6 where we denote the nodes by
αi for 1 ≤ i ≤ n.

(i) Furthermore, let I1 = {α2, α5, α6} and J1 = {α1, α4}. In this case (I1, J1) is smooth
since the connected component containing {α1, α2} satisfies condition (i) and the
connected component {α4, α5, α6} satisfies condition (ii).

(ii) Now, let I2 = {α1, α3} and J2 = {α2}. In this case we see that there is only one
connected component which does not satisfy any of the conditions since the first
and the last knot are contained in I. Therefore, (I2, J2) is not smooth.

Now, we can state the smoothness criterion for horospherical varieties.

Proposition 2.72. [41, Theorem 2.6] Let G/H be a horospherical homogeneous space.
As above, I ⊆ S denotes the subset of the simple roots associated to H (cf. Remark
2.59). A G/H-embedding X defined by a colored fan FX is smooth if and only if the
following two conditions are satisfied.

(i) X is locally factorial, i.e. the colored cones satisfy the conditions of Proposition
2.69.
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(ii) For each maximal colored cone (C,F) in FX , we denote by JF the union of the
α ∈ S \ I such that Dα is in F . Then (I, JF ) is smooth.

Next, we want to have a look at another horospherical homogeneous space of rank
one which we will need in the sequel of this work and for which we want to apply the
previous smoothness criterion.

Example 2.73. We consider the horospherical homogeneous space SL2 /µnU where µn
is a finite group of order n ≥ 1 which is given by diagonal matrices with entries (ξ, ξ−1)
where ξ is an n-th root of unity. In this case we have again P = NG(µnU) = B and
I = ∅ as in Example 2.67. The rank of SL2 /µnU is again one and S = {α}. Now, we
want to have a look at M which are the characters of P , i.e. the characters of T in this
case, whose restrictions to µnU are trivial. We see that a character

φ : T → C∗,
(
t 0
0 t−1

)
7→ tm

restricts trivially to µnU if and only if m = a · n for a ∈ Z. Therefore, M = nZ and
N = HomZ(nZ,Z) = Z is the dual lattice. Now, we want to determine the possible fans
of the SL2 /µnU -embeddings. Therefore, we do not need to know the varieties, but only
the image of the color Dα under the map σ which was already used frequently above.
As mentioned above, the image of the color Dα under σ is given by the restriction of the
coroot α∨ to the sublattice M . In this case the coroot is given by

α∨ : Hom(T,C∗)→ Z,
((

t 0
0 t−1

)
7→ tm

)
7→ m

since (α, α∨) = 2 has to hold for the corresponding pairing by the definition of the coroot.
If we restrict this map to M , we see that the generator n ∈ nZ is mapped to n which
corresponds to the vector n ∈ N via the identification HomZ(nZ,Z)

∼=−→ Z, (n 7→ k) 7→ k
for k ∈ Z. Therefore, we obtain the image of the color σ(Dα) = α∨M = n.

Later on, we will be interested in the complete SL2 /µnU -embeddings and therefore,
we consider the complete colored fans in this example. It is clear that there are only two
complete colored fans in this case, one containing the color Dα and the other one not
containing the color as in Example 2.67. Now, we want to know which ones are smooth
and therefore, we use the smoothness criterion described above. We have already seen
in Example 2.67 that for n = 1 both complete SL2 /µnU -embeddings are smooth. For
n > 1 we need to verify the criterion. First, we consider the colored fan not containing
the color. It contains the colored cones (−1, ∅) and (1, ∅) for both of which the pair
(I, JF ) = (∅, ∅) is trivial and therefore smooth. Furthermore, this SL2 /µnU -embedding
is locally factorial because the conditions of Proposition 2.69 are satisfied.

Next, we take the complete fan containing the color which changes only the colored
cone (1, ∅) to (1, Dα). This leads to the pair (∅, α) which is smooth by Definition 2.70
(i). Lastly, we need to verify the local factoriality, but here we see that σ(Dα) = n
and therefore, the generators of the cone C do not contain σ(Dα). This implies that
the complete SL2 /µnU -embedding containing the color is not smooth. The upshot is
that there exists only one smooth complete SL2 /µnU -embedding and therefore, only
one smooth equivariant completion of SL2 /µnU .
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3 Computations of equivariant algebraic cobordism

3.1 Filtrable schemes

We recap some basic notation from Krishna [33] which was introduced following
Brion’s work [7] on Chow groups of torus actions. Therefore, let G be a linear algebraic
group over k and let X ∈ G − Schk. We say that X is G-filtrable if the fixed point
subscheme XG is smooth and projective, there is an ordering XG =

∐n
m=0 Zm of the

connected components Zm of the fixed point subscheme such that there is a filtration of
X by G-stable closed subschemes

∅ = X−1 ( X0 ( ... ( Xn = X (3.1)

with Zm ⊆ Wm := Xm \Xm−1 and maps φm : Wm → Zm for all 0 ≤ m ≤ n which are
all G-equivariant vector bundles such that the inclusions Zm ↪→ Wm are the 0-section
embeddings. One should note that if X is G-filtrable then so is every closed subscheme
Xm.

We say furthermore that a k-scheme X is filtrable if there are closed, connected,
smooth and projective subschemes Z0, ..., Zm of X and a filtration of X by closed sub-
schemes

∅ = X−1 ( X0 ( ... ( Xn = X

with Zm ⊆ Wm := Xm \ Xm−1 and maps φm : Wm → Zm for all 0 ≤ m ≤ n which
are vector bundles such that the inclusions Zm ↪→ Wm are the corresponding 0-section
embeddings. Clearly each G-filtrable scheme is also filtrable. Furthermore, one observes
that any smooth and projective k-scheme X is filtrable by choosing Zi = Wi to be the
connected components of X. Lastly, we remark that any smooth projective k-scheme X
is also {e}-fitrable by the same choice as above.

3.2 T -filtrable schemes

In this section, we will discuss the specific case G = T where T is a torus which acts
on a scheme X. For the rest of this chapter we will only consider algebraically closed
fields k of characteristic zero. First, we recap the Bialynicki-Birula decomposition (cf.
[7, Section 3]) in order to be able to discuss known results for Chow groups ([7]) which
we would like to generalise to algebraic cobordism.

Definition 3.1. For X ∈ T − Schk, we denote by XT its fixed point subscheme. For
any one-parameter subgroup λ of T , we have Xλ ⊇ XT where Xλ = Xλ(k) is being used
as an abbreviation. We call λ generic if XT = Xλ holds.

Remark 3.2. It is known [7, Section 3] that such a generic one-parameter group always
exists due to the linearity of the actions.

Construction 3.3. For a subvariety Y ⊆ Xλ, we define

X+(Y, λ) = {x ∈ X | lim
t→0

λ(t)x exists and is in Y } and

X−(Y, λ) = {x ∈ X | lim
t→0

λ(t−1)x exists and is in Y }.
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Furthermore, we define the maps p± : X±(Y, λ)→ Y, x 7→ limt→0 λ(t±)x. Then follow-
ing [7] X+(Y, λ) and X−(Y, λ) are locally closed T -stable subvarieties of X and p+, p−
are T -equivariant morphisms. It is a fact that any complete T -variety X is the disjoint
union of locally closed subvarieties X+(Y, λ) where λ is a fixed generic one-parameter
subgroup and where Y runs over all connected components of XT .

Proposition 3.4. [2, 3] Let X be a complete non-singular T -variety with finitely many
T -fixed points and let λ be a generic one-parameter subgroup. Then for any fixed point xi
of XT , the maps p± : X±(xi, λ)→ xi make X±(xi, λ) into an equivariant vector bundle
over xi.

Definition 3.5. A scheme X ∈ T−Schk is called T -filtrable if it satisfies the following
conditions.

(i) X is the disjoint union of its plus strata X+(Y, λ) for some generic one-parameter
subgroup λ of T .

(ii) There is an indexing Σ0, ...,Σn of the set of strata such that the closure Σi is
contained in the union

⋃
j≥i Σj.

Remark 3.6. The preceding definition directly implies that there exists a closed stratum
Σn = X+(Y, λ) for some connected component Y of XT .

The following proposition was formulated in [31, Theorem 4.5] without the assump-
tion of finitely many T -fixed points and a similar result was stated in [7, Theorem 3.1].
Without the assumption on the T -fixed points, the term “vector bundle” in the definition
of T -filtrable has to be replaced by the more general notion of an affine space bundle.
In fact, there is a counterexample to the assertion that X+(Y, λ)→ Y is a vector bundle
which is described in [25].

Proposition 3.7. [2, 3] Let X be a smooth projective T -variety with finitely many T -
fixed points. Then X is T -filtrable.

Remark 3.8. In the case of T -filtrable schemes we will be mostly interested in the
examples given by the preceding proposition, i.e. smooth and projective T -varieties with
finitely many T -fixed points. Therefore, let X be a smooth and projective T -variety with
finitely many T -fixed points.

Definition 3.5 following [7] differs from our definition of G-filtrable schemes in Section
3.1 at first sight, but if we choose X0 := Σn where Σn is the closed stratum we mentioned
above and Xi :=

⋃
j≥n−i Σj =

⋃
j≥n−i Σj coming from condition (ii) of Definition 3.5,

this leads to the inclusion Xi ( Xi+1. One is left with the condition that Xi+1\Xi needs
to be an equivariant vector bundle. Therefore, one verifies Xi+1 \Xi = Σn−i−1 which is
a T -equivariant vector bundle over the corresponding T -fixed point by Proposition 3.4.

Conversely, starting with the filtration of Section 3.1, we obtain the Σi similarly
and furthermore, it is clear that an appropriate generic one-parameter subgroup λ has
to exist because of the fact that any complete T -variety is the disjoint union of the
X+(xi, λ) for any generic one-parameter subgroup λ and the fact that those X+(xi, λ)
are T -equivariant vector bundles over xi by Proposition 3.4.

We conclude that these two definitions coincide for the class of smooth and projective
T -varieties with finitely many T -fixed points.
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Example 3.9. Now, we want to discuss some very elementary examples of T -filtrable
varieties.

(i) We consider X = P1
C with maximal torus T = Gm and trivial group action. In

this case we can choose λ : Gm → Gm, t 7→ t to be the identity on Gm. This is a
generic one-parameter subgroup. Therefore, we have XT = Xλ = A1 ∪{∞}. Now,
we compute

X+(P1, λ) = {x ∈ P1 | lim
t→0

t · x ∈ P1} = P1.

We see that the Bialynicki-Birula cells do not necessarily coincide with the cellular
decomposition of P1. We remark that this is an example of a smooth projective
variety with infinitely many T -fixed points.

(ii) Now, we want to have a look at the same variety X = P1 with a different group
action. Therefore, let P1

C = {[x : 1] | x ∈ C} ∪ [1 : 0] and the torus T = Gm acts
on X by t · [x : 1] := [tx : 1] and t · [1 : 0] = [t1 : 0] = [1 : 0]. Again we can choose
λ to be the identity on Gm. This time we have XT = {0} ∪ {∞} and for these we
compute the Bialynicki-Birula cells

X+({0}, λ) = {x ∈ P1 | lim
t→0

t · x = 0} = A1 and

X+({∞}, λ) = {x ∈ P1 | lim
t→0

t · x =∞} = {∞}.

Contrary to the previous example, we see that we obtain the cellular decomposition
of the projective line with the natural group action. Therefore, the decomposition
into Bialynicki-Birula cells depends on the group action.

(iii) Next, we consider an example whose decomposition into Bialynicki-Birula cells will
be needed later on. Let V = Sym0(k2) ⊕ Sym1(k2) = k ⊕ k2 and X = P(V ) = P2

be the projectivisation of V where Symn denotes the space of symmetric tensors
of order n. Furthermore, let G = SL2(k) be the special linear group with torus T
being the diagonal matrices in SL2(k). By reordering of the basis elements we have
the following group action(

t 0
0 t−1

)
· [x′ : y′ : z′] = [tx′ : y′ : t−1z′]

for all t ∈ Gm and [x′ : y′ : z′] ∈ P2. Now, we are interested in the fixed point
subscheme which is given by XT = {[1 : 0 : 0]} ∪ {[0 : 1 : 0]} ∪ {[0 : 0 : 1]}. Before
we are able to compute the Bialynicki-Birula cells we need a generic one-parameter
subgroup of T . Therefore, we choose

λ : Gm → T, t 7→
(
t−1 0
0 t

)

to be the given map. First, we compute the limits

lim
t→0

λ(t) · [1 : y′ : z′] = lim
t→0

[t−1 : y′ : tz′] = lim
t→0

[1 : ty′ : t2z′] = [1 : 0 : 0],

lim
t→0

λ(t) · [0 : 1 : z′] = lim
t→0

[0 : 1 : tz′] = [0 : 1 : 0],
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lim
t→0

λ(t) · [0 : 0 : z′] = lim
t→0

[0 : 0 : tz′] = [0 : 0 : 1].

Thus, we have

X+({[1 : 0 : 0]}, λ) = {[1 : y′ : z′] ∈ P2 | y′, z′ ∈ k} = A2,

X+({[0 : 1 : 0]}, λ) = {[0 : 1 : z′] ∈ P2 | z′ ∈ k} = A1,

X+({[0 : 0 : 1]}, λ) = {[0 : 0 : 1] ∈ P2} = A0.

This leads to the Bialynicki-Birula decomposition P2 = A2 ∪ A1 ∪ A0. For later
use we remark that the closures of the Bialynicki-Birula cells are the T -fixed point
z := [0 : 0 : 1], the line connecting y = [0 : 1 : 0] and z which we denote by
(yz), and the whole space X = P(V ). In this case, the indexing of the strata in
Definition 3.5 is obviously given by Σ2 := A0,Σ1 := A1 and Σ0 := A2.

(iv) In the following, we consider an example which is similar to the previous example.
Therefore, let V = sl2 be the Lie algebra of SL2 which is a non-trivial SL2-module
of dimension three and let X = P(V ) as above. First, we have a look at the action
of SL2 on sl2:(

t 0
0 t−1

)
·
(
a b
c −a

)
:=
(
t 0
0 t−1

)(
a b
c −a

)(
t−1 0
0 t

)
=
(

a t2b
t−2c −a

)
.

We deduce again by reordering of the basis elements the torus action on X which
is then given by (

t 0
0 t−1

)
· [x : y : z] = [t2x : y : t−2z].

With the same generic one-parameter subgroup and the same calculations as in the
previous example, we obtain the Bialynicki-Birula decomposition of X. Later on,
we will come back to this example and show that the different induced actions on
P2 will lead to different results in computations we are going to need in the sequel.

(v) Lastly, for any positive integer n we will analyse the example of the rational ruled
surfaces Fn = P(OP1 ⊕ OP1(n)) which are also known as Hirzebruch surfaces. We
know by [7] that Fn can be obtained as the smooth equivariant completion of
SL2 /µnU . The fans for the corresponding SL2 /µnU -embeddings have been de-
scribed in Example 2.73. Alternatively, we want to realise the surface Fn as a closed
subvariety of the projectivisation of an SL2-module. Let Vn+1 := Symn+1(k2)
be the space of symmetric tensors of order n + 1. We consider the SL2-module
V := V1 ⊕ Vn+1. At this point, we remark that each element P ∈ Vn+1 is a homo-
geneous polynomial of degree n+ 1 in two variables z1 := (1, 0)t and z2 := (0, 1)t,
i.e.

P = a0z
n+1
1 + a1z

n
1 z2 + ...+ anz1z

n
2 + an+1z

n+1
2 .

Next, we consider the SL2-action on Vn+1 for A :=
(
a b
c d

)
which can be described
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by the componentwise action of A on the space of symmetric tensors.

We want to show that the Hirzebruch surface Fn, n ≥ 1, is the closure of the
SL2-orbit SL2 ·[1 : 0 : 1 : 0 : ... : 0] where the given vector

v = v1 + vn+1 = [1 : 0 : 1 : 0 : ... : 0] ∈ P(V )

is the sum of the two highest weight vectors in v1 ∈ V1 and vn+1 ∈ Vn+1, respec-
tively. The torus action of SL2 on P(V ) is given by

t · [x′ : y′ : a0 : ... : an+1] = [tx′ : t−1y′ : tn+1a0 : tn−1a1 : ... : t−n−1an+1]

for t =
(
t 0
0 t−1

)
. In order to be able to determine the T -fixed points of Fn we

consider the above mentioned SL2-orbit(
a b
c d

)
· [1 : 0 : 1 : 0 : ... : 0] = [a : c : an+1 : anc : ... : acn : cn+1].

We remark that the stabiliser of v = [1 : 0 : 1 : 0 : ... : 0] is given by µnU which
shows that SL2[v] ∼= SL2 /µnU holds. Now, we consider the closure X := SL2[v] of
SL2[v] in P(V ) for which we want to know the T -fixed points. If we choose a = t
and c = ta, we obtain

[t : ta : tn+1 : tnta : ... : t(ta)n : (ta)n+1] = [1 : a : tn : ... : tnan+1].

Then we let t and a go to zero and we see that the point [v1] is in X. Similar
choices for a and c lead to four T -fixed points

[1 : 0 : ... : 0] , [0 : 1 : 0 : ... : 0] , [0 : 0 : 1 : 0 : ... : 0] and [0 : ... : 0 : 1].

These four points are the only T -fixed points in the closure of this orbit and there-
fore, we are left to show that X ⊆ P(V ) coincides with the smooth equivariant
completion of SL2 /µnU .

By the construction as an SL2 /µnU -embedding we know that there are at most
two G-stable divisors in X. This leads to the SL2-stable divisor SL2[v1] which is
given by elements of the form [x′ : y′ : 0 : ... : 0] as it is closed and SL2-stable.
Similarly, the point [vn+1] leads to the second SL2-stable divisor SL2[vn+1]. Recall,
that a color of X is a B-stable divisor which is not G-stable and contains a closed
G-orbit. Therefore, in our example a color would have to contain an SL2-stable
divisor which implies that there is no color in X. We conclude that X is the smooth
equivariant completion of SL2 /µnU whose fan has been described in Example 2.73.
Consequently, X describes the n-th Hirzebruch surface Fn.

Now, we want to compute the Bialynicki-Birula decompostion for Fn. Therefore,
we choose again the identity as generic one-parameter subgroup and for later use
we name the T -fixed points by

w := [0 : 0 : 1 : 0 : ... : 0],
x := [1 : 0 : 0 : ... : 0 : 0],
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y := [0 : 1 : 0 : ... : 0 : 0],
z := [0 : 0 : 0 : ... : 0 : 1].

This leads to

lim
t→0

λ(t)
[

a

cn+1 : 1
cn

:
(
a

c

)n+1
: ... : 1

]
= lim

t→0
t ·
[

a

cn+1 : 1
cn

:
(
a

c

)n+1
: ... : 1

]

= lim
t→0

[
ta

cn+1 : t
−1

cn
:
(
ta

c

)n+1
: ... : t−n−1

]
= z,

and

lim
t→0

λ(t)
[
0 : 0 :

(
a

c

)n+1
:
(
a

c

)n
: ... : 1

]
= lim

t→0
t ·
[
0 : 0 :

(
a

c

)n+1
:
(
a

c

)n
: ... : 1

]

= lim
t→0

[
0 : 0 :

(
ta

c

)n+1
: ... : t−n−1

]
= z,

as well as

lim
t→0

λ(t)[1 : 0 : an : 0 : ... : 0] = lim
t→0

[t : 0 : tn+1an : ... : 0] = x,

lim
t→0

λ(t)[a : 1 : 0 : 0 : ... : 0] = lim
t→0

[ta : t−1 : 0 : 0 : ... : 0] = y,

lim
t→0

λ(t)[0 : 0 : 1 : 0 : ... : 0] = lim
t→0

[0 : 0 : tn+1 : 0 : ... : 0] = w.

We set

M :=
{[
a : c : an+1 : ... : cn+1

] ∣∣∣ a ∈ k, c 6= 0 ∈ k
}

= A2 \ A1,

N :=
{[

0 : 0 :
(
a

c

)n+1
: ... : 1

] ∣∣∣∣∣ ac ∈ k
}

= A1.

By the geometry of the Hirzebruch surface Fn, we obtain

X+(z, λ) = M ∪N = A2.

Further, we get

X+(x, λ) = {[1 : 0 : an : 0... : 0] | a ∈ k} = A1,

X+(y, λ) = {[a : 1 : 0 : ... : 0] | a ∈ k} = A1,

X+(w, λ) = {[0 : 0 : 1 : 0 : ... : 0]} = A0.

Therefore, the Bialynicki-Birula decomposition of the n-th Hirzebruch surface Fn
is given by Fn = A2 ∪A1 ∪A1 ∪A0. The closures of the Bialynicki-Birula cells are
the point w, the lines (xy) and (wx), and the whole surface Fn.
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(vi) The case n = 0 is an exception since F0 = P1 × P1 and therefore, the four T -fixed
points are w := ([1 : 0], [1 : 0]), x := ([1 : 0], [0 : 1]), y := ([0 : 1], [1 : 0]) and
z := ([0 : 1], [0 : 1]) for the natural SL2-action on P1. We compute the Bialynicki-
Birula decomposition in this case now. As above we need to choose a generic
one-parameter subgroup which in this case will be the map

λ : Gm → T, t 7→
(
t 0
0 t−1

)
.

We compute the limits

lim
t→0

λ(t) · ([a : 0], [c : 0]) = lim
t→0

([ta : 0], [tc : 0]) = ([1 : 0], [1 : 0]),

lim
t→0

λ(t) · ([a : 0], [c : 1]) = lim
t→0

([ta : 0], [tc : t−1]) = ([1 : 0], [0 : 1]),

lim
t→0

λ(t) · ([a : 1], [c : 0]) = lim
t→0

([ta : t−1], [tc : 0]) = ([0 : 1], [1 : 0]),

lim
t→0

λ(t) · ([a : 1], [c : 1]) = lim
t→0

([ta : t−1], [tc : t−1]) = ([0 : 1], [0 : 1]).

This leads to the Bialynicki-Birula decomposition F0 = A2 ∪ A1 ∪ A1 ∪ A0. In
this example, the indexing of the strata according to Definition 3.5 is given by
Σ3 := A0,Σ2 := A1,Σ1 := A1 and Σ0 := A2 where the two different affine lines
come from the above computation. For later use we remark that the closures of
the Bialynicki-Birula cells are the point w := ([1 : 0], [1 : 0]), the lines (wx) and
(wy), and the whole space P1 × P1.

(vii) Finally, we will again compute the Bialynicki-Birula decomposition with a different
description of the Hirzebruch surfaces Fn, n ≥ 1. We will not show that these
descriptions are T -isomorphic, but we will nevertheless compute the Bialynicki-
Birula decomposition by using its corresponding torus action.
Therefore, we consider first the case n = 1 and the fact that the above description
of F1 is isomorphic to the blow up of P2 at a point. Therefore, it is well known (cf.
[24, p. 97]) that the first Hirzebruch surface F1 can be described as

F1 = {([x′ : y′ : z′], [u : v]) ∈ P2 × P1 | uy′ − vz′ = 0}.

Now, we consider the action(
t 0
0 t−1

)
· ([x′ : y′ : z′], [u : v]) = ([x′ : t−1y′ : tz′], [tu : t−1v])

of the torus of SL2 on F1 which clearly preserves the given relation for F1. This
action has six T -fixed points in P2 × P1, but the points ([0 : 0 : 1], [0 : 1]) and
([0 : 1 : 0], [1 : 0]) are not in F1 and therefore, F1 has exactly four T -fixed points

w := ([0 : 0 : 1], [1 : 0]),
x := ([1 : 0 : 0], [1 : 0]),
y := ([1 : 0 : 0], [0 : 1]),
z := ([0 : 1 : 0], [0 : 1]).
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In order to compute the Bialynicki-Birula decomposition of F1 we take the same
generic one-parameter subgroup as above and obtain

lim
t→0

λ(t) · ([x′ : 1 : z′], [u : 1]) = lim
t→0

([x′ : t−1 : tz′], [tu : t−1]) = z,

lim
t→0

λ(t) · ([1 : 0 : z′], [1 : 0]) = lim
t→0

([1 : 0 : tz′], [t : 0]) = x,

lim
t→0

λ(t) · ([1 : 0 : z′], [u : 1]) = lim
t→0

([1 : 0 : tz′], [tu : t−1]) = y,

lim
t→0

λ(t) · ([0 : 0 : 1], [1 : 0]) = lim
t→0

([0 : 0 : t], [t : 0]) = w.

where in the third computation the variable z′ has to vanish in F1. Thus, we have

X+(z, λ) = {([x′ : 1 : z′], [u : 1]) ∈ F1 | x′, z′, u ∈ k} = A2,

X+(x, λ) = {([1 : 0 : z′], [1 : 0]) ∈ F1 | z′ ∈ k} = A1,

X+(y, λ) = {([1 : 0 : 0], [u : 1]) ∈ F1 | u ∈ k} = A1,

X+(w, λ) = {([0 : 0 : 1], [1 : 0]) ∈ F1} = A0.

These components again cover the Hirzebruch surface F1. The other components
of P2 × P1 do not satisfy the relation uy′ − vz′ = 0 and therefore, we obtain the
exact same Bialynicki-Birula decomposition F1 = A2 ∪ A1 ∪ A1 ∪ A0. Again, we
remark that the closures of the Bialynicki-Birula cells are the point w, the lines
(xy) and (wx) and the whole space F1.
Finally, we will tackle the general case Fn, n ≥ 1, for which we choose the same
generic one-parameter subgroup as above. Besides that, we again use the isomor-
phic description

Fn = {([x′ : y′ : z′], [u : v]) ∈ P2 × P1 | uny′ − vnz′ = 0}.

In this case the T -action on Fn is given by(
t 0
0 t−1

)
· ([x′ : y′ : z′], [u : v]) = ([x′ : t−ny′ : tnz′], [tu : t−1v])

which preserves the given relation for Fn. The T -fixed points have already been
described and therefore, we compute again the Bialynicki-Birula cells as for F1 and
thus, we obtain the Bialynicki-Birula decomposition Fn = A2 ∪ A1 ∪ A1 ∪ A0.

3.3 Equivariant Chow groups for torus actions

In this section, we want to recap the most important results of equivariant Chow
groups for torus actions following [7]. Later on, we want to compare these results to the
known results of equivariant cobordism for torus actions (cf .[31]) whereas Brion proves
his results for algebraically closed fields of arbitrary characteristic. First, we recall the
definition of equivariant Chow groups.

Definition 3.10. A rational G-module is a vector space V equipped with a linear
action of G such that every v ∈ V is contained in a finite-dimensional G-stable subspace
on which G acts algebraically.
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Definition 3.11. [7, Section 2.1] Let X be a scheme with an action of a linear algebraic
group G. Let V be a finite-dimensional rational G-module and U ⊆ V a G-stable open
subset such that the quotient U → U/G exists and is a principal G-bundle. Then the
quotient for the diagonal action on X × U exists and is a principal G-bundle. For
n := dim(X), l := dim(V ) and d := dim(G) we define the i-th equivariant Chow
group CHG

i (X) := CHi+l−d((X × U)/G) if codim(V \ U) > n − i. As above for the
equivariant algebraic cobordism, the pair (V,U) will be called good pair for the G-action
corresponding to i. Following [12], such a good pair (V,U) always exists and CHG

i (X) is
independent of the choice of the good pair. Further, we set CHG

∗ (X) :=
⊕

i≥0 CHG
i (X).

Lastly, each closed G-stable subvariety Y ⊆ X defines a class [Y ] in CHG
∗ (X) by setting

[Y ] := [(Y × U)/G].

Remark 3.12. It is known that there is an intersection product on equivariant Chow
groups which makes CHG

∗ (X) into a graded ring for a smooth scheme X which we
denote by CH∗G(X). If X is a smooth equi-dimensional scheme with n := dimX, then
CHi

G(X) ∼= CHG
n−i(X) holds for all i ∈ Z. Furthermore, it is worth a remark that

CHG
n (X) = 0 for all n > dimX, but CHG

n may be also non-trivial for n < 0 by definition
as opposed to ordinary Chow groups which vanish in negative degrees. Lastly, we will
often consider rational equivariant Chow groups by which we mean the tensor product
CHG
∗ (X)⊗Z Q.

Construction 3.13. Now, we present a general construction which is going to be used
to describe the equivariant Chow groups for torus actions. Therefore, let G = T be a
torus, X a scheme with a T -action and M be the character group of T . Let the further
notations be as above. In this case, the graded abelian group CHT

∗ (X) has the structure
of an S-module where S denotes the character ring of T . This was firstly introduced by
Edidin and Graham [12] who also give an explicit good pair (V,U) for the torus case [12,
Section 3.1]. To define the S-action it suffices to understand the action of a character
χ ∈ M on CHT

∗ (X). First of all, we define (V,U) to be the good pair described in [12]
and let Lχ be the bundle which is defined by the one-dimensional representation where
T acts via weight −χ. This defines another line bundle U × Lχ → U which descends to
the line bundle (U × Lχ)/T → U/T . Finally, for any closed T -stable subvariety Y ⊆ X
we define multiplication by χ as the first equivariant Chern class of the pullback of the
line bundle Lχ to X, i.e. χ · [Y ] = cT1 (p∗Lχ)[Y ] for the map p : X → Spec k. As shown by
[7, Theorem 2.1] the S-module CHT

∗ (X) is generated by the elements [Y ] where Y ⊆ X
is a closed stable subvariety. This implies that the action above determines the action
on the whole S-module CHT

∗ (X). For a G-equivariant vector bundle E on X we will
furthermore denote the mixed space (U × E)/G by EG as in [12].

Lemma 3.14. Let X be a T -variety, Y a closed T -stable subvariety and f ∈ k(Y ) a
T -eigenfunction with weight χ. Then the relation

[divY (f)] = χ · [Y ]

holds in CHT
∗ (X) where divY (f) :=

∑
Z ordZ(f)Z with ordZ(f) describing the order of

vanishing along the prime divisor Z for the rational eigenfunction f on Y for weight χ
and the sum running over all prime divisors contained in Y .

Proof. Let f be a rational function on Y which is an eigenfunction of T of some weight
χ, i.e. (t · f)(y) = χ(t) · f(y) for all t ∈ T and some weight χ ∈ M . We observe that
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the support of divY (f) is T -stable because we have either f(z) = 0 or f(z) = ∞ for
z ∈ Supp(divY (f)). In both cases one can see that

f(t · z) = (t−1 · f)(z) = χ(t−1) · f(z) = f(z)

holds since f is an eigenfunction of T of weight χ and because of the linear T -action on
rational functions. Therefore, [divY (f)] defines a class in CHT

∗ (X). Now, we want to
show that the relation [divY (f)] = χ · [Y ] holds in the S-module CHT

∗ (X). In order to
show this, we consider f as a rational section of (p∗Lχ)T = (X×U ×Lχ)/T restricted to
(Y ×U)/T given by s : (Y ×U)/T → (Y ×U×Lχ)/T, (y, u) 7→ (y, u, f(y)). Furthermore,

s(t(y, u)) = (ty, tu, f(ty)) = (ty, tu, (t−1f)(y)) = (ty, tu, χ−1(t)f(y)) = t(y, u, f(y))

holds because Lχ is defined by the one-dimensional T -module of weight −χ. Thus, s is
a rational section of the line bundle (p∗Lχ)T restricted to (Y ×U)/T . Let the divisor C
be given by C = div((Y×U)/T )(s). Therefore, the restriction of the line bundle (p∗Lχ)T
to (Y × U)/T is isomorphic to O(Y×U)/T (C). By definition (cf. [13, Section 2.5]), this
leads to cT1 (p∗Lχ)[Y ] = c1((p∗Lχ)T )[(Y ×U)/T ] = [C]. Lastly, C is the same as divY (f)
by the definition of the rational section s. This implies the desired relation

[divY (f)] = χ · [Y ].

For equivariant Chow groups the above relations generate all relations as explained
in the following result of Brion.

Theorem 3.15. [7, Theorem 2.1] Let X be a variety with an action of a torus T . The
CHT
∗ (k)-module CHT

∗ (X) is defined by generators [Y ], where Y ⊆ X is a closed T -stable
subvariety, and by relations [divY (f)] = χ · [Y ], where f is a non-constant rational
function on Y which is an eigenvector of T of weight χ.

In the following, we will be mainly interested in equivariant Chow groups and equiv-
ariant algebraic cobordism groups with rational coefficients which we will denote by
an appropriate subscript. The main reason for this is that we want to cover a wider
range of examples for which we can compute the equivariant Chow groups and by taking
this extension of scalars we can also consider examples where the Chow groups of the
connected components of XT have torsion elements. For example [7, Proposition 3.2]
holds for Q-coefficients, but also for integral coefficients if CH∗(Y ) is torsion-free for one
specifically determined connected component Y ⊆ XT . It is known that we can have
torsion in the Chow groups (see e.g. [14, p.65]) and therefore, we would have to exclude
many cases, if we did not take rational coefficients in order to compute the (equivariant)
Chow groups.

Proposition 3.16. [7, Corollary 3.2] Let X be a smooth T -filtrable variety with a group
action of a torus T . Then the inclusion of the fixed point scheme i : XT ↪→ X induces
an injective S-algebra homomorphism

i∗ : CH∗T (X)Q → CH∗T (XT )Q

which is surjective over the quotient field of S where S denotes the character ring of T .

54



Henry July

Proposition 3.17. [7, Theorem 3.3] Let X be a smooth T -filtrable variety with an
action of a torus T . Then the image of the pullback i∗ of the inclusion i : XT ↪→ X is
the intersection of the images of

i∗T ′ : CH∗T (XT ′)Q → CH∗T (XT )Q

where T ′ runs over all subtori of codimension one in T .

Remark 3.18. Following [12, Section 3.2], we know that CH∗T ({∗}) ∼= Z[t1, ..., tn] holds,
where n denotes the dimension of the torus T . In this case, the character ring S of T
is isomorphic to the polynomial ring Z[t1, ..., tn]. Therefore, we have the isomorphism
CH∗T ({∗}) ∼= S.

Remark 3.19. The T -action on the fixed point subscheme XT ′ , where T ′ is a subtorus
of codimension one in T , is the induced T -action. We remark here that XT ′ is T -stable
since tx = tt′x = t′tx holds for all t ∈ T, t′ ∈ T ′ and x ∈ XT ′ .

Now, we present the last important statement which is proved using Propositions 3.16
and 3.17. The following proposition is being used in order to compute equivariant Chow
groups for torus actions. But before we state the proposition we recall one important
definition which will be frequently used in the sequel.

Definition 3.20. Let G be a group. An element g ∈ G is called primitive if, whenever
h ∈ G satisfies hk = g for some k > 0, it follows that k = 1 and h = g.

Proposition 3.21. [7, Theorem 3.4] Let X be a smooth T -filtrable variety with finitely
many fixed points x1, ..., xs and finitely many stable curves under the action of the torus
T . Let i : XT ↪→ X be the inclusion of the fixed point scheme. Then the image of the
pullback i∗ is the set of all (f1, ..., fs) ∈ SsQ such that fi ≡ fj mod χ whenever xi and
xj are connected by a stable curve where T acts through the weight χ. If moreover all
such characters χ are primitive in the character group, then the statement holds over
the integers.

Remark 3.22. In the preceding proposition we can identify CH∗T (XT )Q with SsQ by
Remark 3.18 because of the assumption that the fixed point scheme only consists of the
fixed points x1, ..., xs.

Next, we want to come to a more general example as in Example 3.9 (iii) for which
we will compute the equivariant Chow groups in the sequel.

Example 3.23. [12, Section 3.3] We consider one of the T -filtrable varieties above and
compute the equivariant Chow groups in a greater generality. LetX = Pnk where T = Gm

acts diagonally with weights a0, ..., an via t · [x0 : ... : xn] = [ta0x0 : ... : tanxn]. From this
example we can deduce some of the equivariant Chow groups for the examples discussed
in Example 3.9 (iii). Firstly, we need to explicitly choose a good pair which will be given
by (V,U) = (Al,Al \ {0}) as described in [12, Section 3.1] where V has all weights equal
to -1. Then we have codim(V \U) = l and U/T = Pl−1. Therefore, (Pn ×U)/T → Pl−1

defines a Pn-bundle, namely P(O(a0)⊕ ...⊕O(an))→ Pl−1. Using the projective bundle
formula for oriented cohomology theories [37, Definition 1.1.2], we obtain

CH∗((Pn × U)/T ) ∼= CH∗ (P(O(a0)⊕ ...⊕O(an))) = CH∗(P(E))

∼=
CH∗(Pl−1)

[
ξ
]

(ξn+1 − c1(E)ξn + ...+ (−1)n+1cn+1(E))
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where E := O(a0)⊕...⊕O(an), ξ := c1(OP(E)(1)) and ci(E) denotes the i-th Chern class of
E . One can compute ci(E) using theWhitney sum formula (cf. Section 2) whereas one has
the additive formal group law in Chow groups. By defining t := c1(O(1)) ∈ CH1(Pl−1)
we may reduce the last expression to

CH∗(P(E)) ∼= CH∗(Pl−1)[ξ]/(P (ξ, t))

with

P (ξ, t) =
n+1∑
i=0

(−1)iξn+1−iei(a0t, ..., ant),

where ei denotes the i-th elementary symmetric polynomial in the variables a0t, ..., ant.
This fact can be used since E is a direct sum of line bundles. Letting the dimension of
the representation V go to infinity we obtain

CH∗T (Pn) = CH∗((Pn × U)/T ) = CH∗(P(E)) ∼= Z[ξ, t]/(P (ξ, t)).

We remark here that this direct computation is completely done with integral coefficients
and does not use the above results which will be used later on for different computations.

Remark 3.24. The reader may have seen a slightly different result for this computation
where the polynomial P (ξ, t) does not contain the alternating signs for the theory of
Chow groups. This comes from the different definitions of a projective bundle in the
literature since for example in [13] a projective bundle is defined as P(E) = Proj(Sym E∨)
via the dual sheaf of E . Using this definition, we would end up without having the
alternating signs because of the identity ci(E∨) = (−1)ici(E) which holds in Chow groups
due to the fact that we have the additive formal group law.

3.4 Cobordism ring of classifying spaces

In this section, we discuss the cobordism ring of classifying spaces, i.e. the equivariant
cobordism ring of a point. The main constructions given here mainly refer to Krishna’s
paper [32] where the whole equivariant cobordism theory for arbitrary k-schemes with a
G-action was introduced for a linear algebraic group G.

Construction 3.25. Following [32], let R be a noetherian ring and A =
⊕
j∈ZAj be a

Z-graded R-algebra with R ⊆ A0. In this case, we consider the graded power series
ring S(n) =

⊕
i∈Z Si which is a graded ring where Si is the set of formal power series

f(t) =
∑
m(t)∈C am(t)m(t) such that am(t) is a homogeneous element of A of degree |am(t)|

with |am(t)|+ |m(t)| = i. Moreover, C denotes the set of all monomials in t = (t1, ..., tn)
and |m(t)| = i1 + ... + in the degree of the monomial m(t) = ti11 · · · tinn . We denote
this graded power series ring by A[[t]]gr to make it easier to distinguish between the
graded formal power series ring and the usual formal power series ring A[[t]]. From this
follows immediately that if A is only non-negatively graded, then S(n) is the standard
polynomial ring A[t1, ..., tn] over A. We will later see an example where this particular
case happens. We remark here as well that S(n) is a graded ring which is a subring of
the formal power series ring A[[t1, ..., tn]].

Now, we want to summarise the most important properties of the graded power series
ring.
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Lemma 3.26. [32, Lemma 6.5] Let the notations be as above.

(i) There are inclusions of rings A[t1, ..., tn] ⊆ S(n) ⊆ A[[t1, ..., tn]], where the first
inclusion is an inclusion of graded rings.

(ii) S(n−1)[[tn]]gr
∼=→ S(n).

(iii) S(n)

(ti1 ,...,tir )
∼=→ S(n−r) for any n ≥ r ≥ 1, where S(0) = A.

(iv) The sequence {t1, ..., tn} is a regular sequence in S(n).

(v) If A = R[x1, x2, ...] is a polynomial ring with negative degree of the variables xi and
limi→∞ |xi| = −∞, then

S(n) ∼=→ lim←−
i

R[x1, ..., xi][[t]]gr

holds.

In the following, we will give some examples of the cobordism ring of classifying
spaces which have been already computed.

Proposition 3.27. [32, Proposition 6.7] Let {χ1, ..., χn} be a basis of the character group
of a torus T of rank n. Then the assignment ti 7→ cT1 (Lχi) yields a graded L-algebra
isomorphism

L[[t1, ..., tn]]gr
∼=→ Ω∗(BT) = Ω∗T (k),

where Lχi is the one-dimensional representation of T on which T acts via the weight
−χi and cT1 (Lχi) are the equivariant Chern classes defined in Remark 2.45.

In the sequel, let S(T ) denote the cobordism ring Ω∗T (k) of the classifying space of T .

Remark 3.28. In [32] the previous proposition is stated with the one-dimensional rep-
resentation Lχi of T on which T acts via weight χi. For our purposes, we will use the
convention described above because it will not change the results in [32], but it will
be useful later on in this work. The explicit construction in the proof of the previous
proposition involves a specific choice of good pairs (Vj , Uj) such that the quotient of
Uj/T is a product of projective spaces. Then one uses the projective bundle formula for
the ordinary algebraic cobordism to conclude the result. This construction can be seen
in [32, Section 6.3].

Remark 3.29. For the case G = GLn we can take the good pairs (Vj , Uj) described in
[50, Remark 1.4] in order to obtain Grassmannians as the corresponding mixed quotients.
Then Krishna [32] argues that one can compute the cobordism ring of this mixed quotient
using the projective bundle formula again which leads to the isomorphism

Ω∗(BGLn)
∼=→ L[[γ1, ..., γn]]gr

of graded L-algebras where the γi are the elementary symmetric polynomials in the
variables t1, ..., tn.
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3.5 Equivariant algebraic cobordism for torus actions

In this section, we want to compare Section 3.3 with the results of Krishna [31] which
we will later use to compute some equivariant algebraic cobordism groups, but firstly we
introduce the notion of the topological tensor product which we will need in the sequel.
Furthermore, this contruction will be compared to the regular tensor product. The main
parts of this section are taken from [32] and [31].

Construction 3.30. Following the notations in [32], let A be a commutative ring with
unit and let {Ln} and {Mn} be two inverse systems of A-modules with inverse limits L
and M respectively. We define the topological tensor product of L and M by

L⊗̂AM := lim←−
n

(Ln ⊗AMn).

Following [32], if D is an integral domain with quotient field F and if {An} is an inverse
system of D-modules with inverse limit A, one has

A⊗̂DF = lim←−
n

(An ⊗D F ).

In order to simplify the notations we denote A⊗̂DF in the sequel by AF .
If R is a Z-graded ring andM and N are graded R-modules, thenM⊗RN is a graded

R-module given as the quotient of M ⊗R0 N modulo the graded submodule generated
by the homogeneous elements of type ax⊗ y−x⊗ay where a, x and y are homogeneous
elements of R,M and N , respectively, and R0 denotes the degree zero part of the ring
R. If furthermore the graded parts Mi and Ni are limits of inverse systems {Mλ

i }
and {Nλ

i } of R0-modules, then we define the graded topological tensor product as
M⊗̂RN =

⊕
i∈Z(M⊗̂RN)i, where

(M⊗̂RN)i = lim←−
λ

 ⊕
j+j′=i

Mλ
j ⊗R0 N

λ
j′

(ax⊗ y − x⊗ ay)

 .
The reader may observe that this graded topological tensor product reduces to the
ordinary graded tensor product if the underlying inverse systems are trivial.

Similarly to Remark 2.19 we recall the existence of a unique formal graded power
series χ(ui) ∈ L[[u1, ..., un]]gr which satisfies FΩ(ui, χ(ui)) = 0. For any positive integer
b ∈ Z≥1 we establish the following notations.

ui +FΩ uj := FΩ(ui, uj) ∈ L[[ui, uj ]]gr,

[−1]FΩui := χ(ui) ∈ L[[ui]]gr,

ui −FΩ uj := FΩ(ui, χ(uj)) ∈ L[[ui, uj ]]gr,

[0]FΩui := 0,
[b]FΩui := FΩ(ui, [b− 1]FΩui) ∈ L[[ui]]gr.

We remark that the final relation is an inductive definition of [b]FΩui. Further, it is clear
that [b]FΩu is divisible by u for any u ∈ L[[u1, ..., un]]gr of degree 1.

Lemma 3.31. Let u ∈ L[[u1, ..., un]]gr be a homogeneous element of degree 1. Then
there exists an element g ∈ LQ[[x]] such that u = g([b]FΩu) for any b ∈ Z≥1.
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Proof. Fix b ∈ Z≥1 and write

[b]FΩu = b1u+ b2a11u
2 + b3a21u

3 + b4a12u
3 + b5a

2
11u

3 + ....

for bi ∈ Z≥0 for all i ≥ 1. Now, we construct an element ρ of degree 0 such that
ρ · [b]FΩu = u holds. By comparison of coefficients, we observe that ρ is given by

ρ = 1
b1
− b2

a11
b21
u+

(
−b3
b21
a21 −

b4
b21
a12 +

(
−b5
b21

+ b22
b31

)
a2

11

)
u2 + ...

Successively replacing u with ρ · [b]FΩu implies the claim.

Definition 3.32. Let u ∈ L[[u1, ..., un]]gr be a homogeneous element of degree 1. Then
for n ∈ Z≥1 we define

[−n]FΩu := [−1]FΩ ([n]FΩu) .

Furthermore, if there exists a homogeneous element u′ ∈ (L[[u1, ..., un]]gr)Q of degree 1
such that [m]FΩu

′ = u holds for m ∈ Z≥1, then we define[ 1
m

]
FΩ

u := u′.

Definition 3.33. In the setting of the above definition we define the operator ρn/m by

ρn/mu :=
[n]FΩ

([
1
m

]
FΩ
u

)
u

in (L[[u1, ..., un]]gr)Q for any n ∈ Z \ {0} and m ∈ Z≥1.

Remark 3.34. The quotient ρn/mu is indeed in (L[[u1, ..., un]]gr)Q for any n ∈ Z \ {0}
and m ∈ Z≥1 because

[
1
m

]
FΩ
u ∈ (L[[u1, ..., un]]gr)Q is homogeneous of degree 1 and

therefore,
[

1
m

]
FΩ
u = g(u) holds for some g ∈ LQ[[x]] by Lemma 3.31. Further, g(u) is

divisible by u by construction and thus, [n]FΩ

([
1
m

]
FΩ
u

)
is divisible by u.

Remark 3.35. LetM be the character group of a torus T of finite rank. Using Definition
3.33 one observes that

ρn/mc
T
1 (Lχ) =

cT1 (Lnχ/m)
cT1 (Lχ)

holds in S(T )Q for any character χ ∈ M , n ∈ Z \ {0} and m ∈ Z≥1 if nχ
m is also a

character in M .

Now, we will prove a lemma which will be of great importance in the sequel for
comparing the equivariant algebraic cobordism with respect to a torus T and its quotient
T/F by a finite subgroup F .
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Lemma 3.36. Let T be a torus of rank n and F be a finite subgroup. Then we have a
graded L-algebra isomorphism

Ω∗T (k)Q ∼= Ω∗T/F (k)Q.

Proof. Let {χ1, ..., χn} be a basis of the character group of T such that the basis of
the character group of T/F is then given by {a1χ1, ..., anχn} for some positive inte-
gers a1|a2| · · · |an. Using Proposition 3.27 we know that there is an L-algebra isomor-
phism Ω∗T (k) ∼= L[[t1, ..., tn]]gr mapping cT1 (Lχi) 7→ ti where Lχi is the one-dimensional
representation of weight −χi. Furthermore, we have Ω∗T/F (k) ∼= L[[t′1, ..., t′n]]gr for
c
T/F
1 (Laiχi) 7→ t′i. Since we consider the Lχi as the one-dimensional representations
of T and similarly those of T/F , we know that

cT1 (Laiχi) = cT1 (Lχi+...+χi) = cT1 (Lχi ⊗ ...⊗ Lχi) = [ai]FΩc
T
1 (Lχi)

holds in Ω∗T (k) where FΩ denotes again the universal formal group law in cobordism.
On the other hand, we know that we can take cT1 (Laiχi) as generators of Ω∗T (k)Q instead
of cT1 (Lχi) as soon as we consider rational coefficients by Lemma 3.31. This leads to the
desired isomorphism.

Remark 3.37. The preceding lemma implies the same statement for equivariant Chow
groups and furthermore we remark that the finite subgroup F has order a1 · · · an. Lastly,
the statement also holds if we only take coefficients in Z[ 1

p1
, ..., 1

p`
] where p1, .., p` are the

primes occuring in the prime factorisation of an. Therefore, we only have to invert a
finite number of primes in order to obtain the isomorphism of Lemma 3.36.

The next step for the computations in this article is to describe a result in equivariant
cobordism which is similar to the following one in Chow groups. Recall that for any T -
scheme X, any closed T -stable subvariety Y ⊆ X and any rational function f on Y
which is an eigenvector of T for weight χ, we have χ · [Y ] = divY (f) in the CH∗T (k)-
module CH∗T (X) (cf. [7, Theorem 2.1]). We would like to have such a relation for smooth
schemes X in equivariant cobordism and therefore, we need to understand properly the
S(T )-action on ΩT

∗ (X) for X ∈ Smk.

Construction 3.38. Now, we present a similar construction to the one introduced to
prove the above relation in Chow groups in [7, Theorem 2.1]. By Proposition 3.27 we
know that for any basis {χ1, ..., χn} of the character group of T we have the isomor-
phism L[[t1, ..., tn]]gr ∼= S(T ), ti 7→ cT1 (Lχi), where in this case we set Lχi to be the one-
dimensional representation of T on which T acts via weight −χi. Hereby, cT1 (Lχi) means
cT1 (Lχi)[Spec k → Spec k] where [Spec k → Spec k] is by abuse of notation the equivariant
fundamental class of the ordinary cobordism cycle [Spec k → Spec k]. For any character
χ and an lj-dimensional good pair (Vj , Uj) we have the line bundle (Lχ×Uj)/T → Uj/T
which we denote by (Lχ)T . Since equivariant cobordism is defined via an inverse limit
construction we consider the elements

cT1 (Lχ)[Spec k → Spec k] = lim←−
j

c̃1((Lχ)T )[Uj/T → Uj/T ].

We take one of the ordinary cobordism cycles [h : Y → X] and consider the ordinary
cobordism cycle [(Y × Uj)/T → (X × Uj)/T ] in the j-th component of the equivariant
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fundamental class which we denote by [Y → X]j for some good pair (Vj , Uj). For the
morphism g : (X × Uj × Uj)/T → Uj/T , that is induced by the second projection
p2 : Uj × Uj → Uj , we use the exterior product on equivariant cobordism which was
described in the proof of [32, Theorem 5.2] and thus, we obtain

cT1 (Lχ) · [Y → X] = lim←−
j

(c̃1((Lχ)T )[Uj/T → Uj/T ] · [(Y × Uj)/T → (X × Uj)/T ])

= lim←−
j

c̃1(g∗(Lχ)T )[(Y × Uj × Uj)/T → (X × Uj × Uj)/T ]

in ΩT
∗ (X). We observe that in this case the line bundle g∗(Lχ)T is obtained by the good

pair (Vj × Vj , Uj × Uj) of dimension 2lj for j ≥ 0.

Theorem 3.39. Let X be a smooth T -variety, [h : Y → X] the equivariant fundamental
class of a T -stable cobordism cycle and f ∈ k(Y ) a rational T -eigenfunction with weight
χ. Denote by Z0 and Z∞ the zeros and poles of f , respectively, and assume that they
are smooth. Then the relation

cT1 (Lχ) · [Y → X] = h∗FΩ ([Z0 → Y ], [−1]FΩ [Z∞ → Y ])

holds in ΩT
∗ (X) where FΩ denotes the universal formal group law and [−1]FΩ is the

inverse in the universal formal group law.

Proof. We consider the rational function f on Y . One may observe that

s : (Y × Uj × Uj)/T → (Y × Uj × Uj × Lχ)/T, (y, u1, u2) 7→ (y, u1, u2, f(y))

is a rational section of the line bundle h∗g∗(Lχ)T . For this line bundle with the given
rational section, we can also write

h∗g∗(Lχ)T = O(Y×Uj×Uj)/T (Z0 − Z∞) ∼= O(Y×Uj×Uj)/T (Z0)⊗O(Y×Uj×Uj)/T (Z∞)∨

by the known correspondence between Cartier divisors and pairs (L, s) consisting of
a line bundle and a rational section. We simplify by setting L0 = O(Y×Uj×Uj)/T (Z0)
and similarly L∞ = O(Y×Uj×Uj)/T (Z∞). By the smoothness assumption we know that
the corresponding sections of L0 and L∞ coming from the rational section s are trans-
verse to the zero sections of L0 and L∞, respectively. Furthermore, the zero-subschemes
of these sections are T -stable and hence, they define cobordism cycles whose equivari-
ant fundamental classes are in ΩT

∗ (Y ). In the following computation we will use [37,
Definition 2.1.2] axiom (A3) and [37, Definition 2.2.1] axiom (Sect). By [37, Proposi-
tion 5.2.4], we know further that the Chern class operator c̃1(L) on a smooth scheme
X is given by c̃1(L)(η) = c1(L) · η for η ∈ Ω∗(X). Lastly, we have the embeddings
of the zero-subschemes i0 : (Z0 × Uj × Uj)/T → (Y × Uj × Uj)/T and similarly
i∞ : (Z∞ × Uj × Uj)/T → (Y × Uj × Uj)/T . Using all those properties, we obtain

c̃1(g∗(Lχ)T )[(Y × Uj × Uj)/T → (X × Uj × Uj)/T ]
=c̃1(g∗(Lχ)T )h∗[1(Y×Uj×Uj)/T ]
=h∗c̃1(h∗g∗(Lχ)T )[1(Y×Uj×Uj)/T ]
=h∗c̃1(L0 ⊗ L∨∞)[1(Y×Uj×Uj)/T ]
=h∗FΩ(c̃1(L0), c̃1(L∨∞))[1(Y×Uj×Uj)/T ]
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3.5 Equivariant algebraic cobordism for torus actions

=h∗
(
c̃1(L0)[1(Y×Uj×Uj)/T ] + [−1]FΩ c̃1(L∞)[1(Y×Uj×Uj)/T ]

)
+ h∗

∑
i,k≥1

aik c̃1(L0)i ◦ c̃1(L∨∞)k[1(Y×Uj×Uj)/T ]


=h∗

(
c̃1(L0)[1(Y×Uj×Uj)/T ] + [−1]FΩ c̃1(L∞)[1(Y×Uj×Uj)/T ]

)
+ h∗

∑
i,k≥1

aikc1(L0)i · c1(L∨∞)k


=h∗
(
i0∗(1(Z0×Uj×Uj)/T ) + [−1]FΩi∞∗(1(Z∞×Uj×Uj)/T )

)
+ h∗

∑
i,k≥1

aiki0∗
(
1(Z0×Uj×Uj)/T

)i
·
(
[−1]FΩi∞∗(1(Z∞×Uj×Uj)/T )

)k
=h∗

[Z0 → Y ]j + [−1]FΩ [Z∞ → Y ]j +
∑
i,k≥1

aik[Z0 → Y ]ij · ([−1]FΩ [Z∞ → Y ]j)k


and furthermore, the sum is finite since the ordinary first Chern classes are nilpotent.
We conclude the claim because taking the limit on these elements commutes with the
pushforward h∗ by the definition of the equivariant pushforward maps.

We recall the morphism g : (X × Uj × Uj)/T → Uj/T and the given line bundle
(Lχ × Uj)/T → Uj/T which we denote by (Lχ)T (cf. Construction 3.38). In the sequel,
we will only consider the cases in which there exists a global section of the line bundle
h∗g∗(Lχ)T which is transverse to the zero section. In this particular case, the terms
containing Z∞ disappear and one obtains the following statement.

Corollary 3.40. Assume there exists a global section s of the line bundle h∗g∗(Lχ)T
which is transverse to the zero section. In this case, the relation

cT1 (Lχ) · [Y → X] = [Z0 → X]

holds in ΩT
∗ (X) where Z0 is the zero-subscheme of s on Y .

Remark 3.41. Similarly to Theorem 3.15, we know that ΩT
∗ (X) is generated by the

equivariant fundamental classes of the T -stable cobordism cycles in Ω∗(X) by [31, Corol-
lary 4.8] for a smooth projective variety X with an action of a torus and finitely many
T -fixed points. At present the author does not know whether the equivariant cobordism
modules ΩT

∗ (X) are given by the equivariant fundamental classes of T -stable cobordism
cycles in Ω∗(X) modulo the previously described relations from Proposition 3.39, but it
might be enough for smooth projective varieties X with an action of a torus and finitely
many T -fixed points.

Remark 3.42. Now, we want to restrict the previously described relation in equivariant
algebraic cobordism to equivariant Chow groups by using the natural transformation
ϑ : Ω∗(X) → CH∗(X). Therefore, we consider the relation from Theorem 3.39. Firstly,
we define

n := [K(Y ) : K(h(Y ))],
n0 := [K(Z0) : K(h(Z0))],
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n∞ := [K(Z∞) : K(h(Z∞))],

where n0 = n∞ by construction since [Z0] = [Z∞] ∈ CH∗(Y ) and therefore, their images
under the pushforward must coincide. We compute the left-hand side of the relation
which leads to

ϑ(cT1 (Lχ) · [Y → X]) = cT1 (Lχ)h∗ϑ([1Y ])
= cT1 (Lχ)h∗[Y ]
= cT1 (Lχ)n[h(Y )].

On the other hand, we have

ϑ(h∗FΩ ([Z0 → Y ], [−1]FΩ [Z∞ → Y ])

= h∗ϑ

[Z0 → Y ] + [−1]FΩ [Z∞ → Y ] +
∑
i,k≥1

aik[Z0 → Y ]i · ([−1]FΩ [Z∞ → Y ])k


= h∗i0∗ϑ([1Z0 ])− h∗i∞∗ϑ([1Z∞ ])
= h∗[Z0]− h∗[Z∞]
= n0[h(Z0)]− n0[h(Z∞)]

since the aik and all the summands of [−1]FΩ [Z∞ → Y ] except the first one vanish
in CH∗T (X) because they are in L<0. Furthermore, i0 and i∞ are the inclusions of
the corresponding zero-subschemes and therefore, the degree of the extension of the
corresponding function fields is one. This leads to

χ · n · [h(Y )] = n0([h(Z0)]− [h(Z∞)])

which describes the relation in Lemma 3.14 for equivariant Chow groups. Let X be a
smooth projective T -variety X with finitely many T -fixed points. By [31, Corollary 4.8]
we know that the S(T )-module ΩT

∗ (X) is generated by the fundamental classes of the
T -stable cobordism cycles [X̃m → X] where X̃m denotes a T -equivariant resolution of
singularities of Xm, the latter coming from the filtration of X. Therefore, the map h is
a closed immersion up to the exceptional divisor which implies n = n0 = n∞ = 1 and
hence

χi · [h(Y )] = [h(Z0)]− [h(Z∞)].

Next, we want to state analogous versions of the results for equivariant Chow groups
in equivariant algebraic cobordism, but in order to be able to formulate them, we have
to introduce some further notation which we recall from [31, Section 6].

Construction 3.43. Let T be a torus of rank n and let {χ1, ..., χn} be a basis for
the character group M . We recall the isomorphism S(T ) = Ω∗T (k) ∼= L[[t1, ..., tn]]gr by
Proposition 3.27 where tj = cT1 (Lχj ) for all 1 ≤ j ≤ n. From the formal group law for
equivariant cobordism (cf. [32, Section 6.2]), i.e. cT1 (L1 ⊗ L2) = cT1 (L1) +FΩ c

T
1 (L2), we

obtain

cT1 (Lmχj ) = mtj + t2j
∑
i≥0

ait
i
j .
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Furthermore, for a character χ =
∑n
j=1mjχj we have

cT1 (Lχ) =
n∑
j=1

[mj ]FΩtj =
n∑
j=1

mjtj +
∑

|m(t)|≥2
am(t)m(t)

where we use the notation from Construction 3.25. Let S(T )[M−1] denote the ring
obtained by inverting all non-zero linear forms

∑n
j=1mjtj in S(T ). Then S(T )[M−1] is

a graded ring and for f =
∑n
j=1mjtj we can write

cT1 (Lχ) = f

1 + f−1 ∑
|m(t)|≥2

am(t)m(t)


in S(T )[M−1]. By construction, the element inside the parenthesis is homogeneous of
degree zero in S(T )[M−1] and also invertible because the constant term is 1. This implies
that cT1 (Lχ) is invertible in S(T )[M−1]. For a smooth k-scheme X with a torus action,
we denote Ω∗T (X)⊗S(T ) S(T )[M−1] by Ω∗T (X)[M−1].

We recall that in general we only know that the restriction map is surjective (cf.
2.43), but now we present some results which suffice to prove [31, Theorem 7.1].

Lemma 3.44. [31, Lemma 4.6] Let X be a T -filtrable variety with a T -action and a
filtration (3.1). Then for every 0 ≤ m ≤ n, there is a canonical split exact sequence

0→ ΩT
∗ (Xm−1)

i(m−1)∗−−−−−→ ΩT
∗ (Xm) j∗m−→ ΩT

∗ (Um)→ 0.

Remark 3.45. The proof of the previous lemma does not rely on the localisation se-
quence claimed by Heller and Malagón-López, but instead uses arguments via the Motivic
Borel-Moore cobordism theory MGL and the refined localisation sequence (cf. Proposi-
tion 2.37).

Corollary 3.46. [31, Corollary 4.8] Let T be a torus of rank r acting on a T -filtrable
variety X such that XT is the finite set of smooth closed points {x0, ..., xn}. For any
0 ≤ m ≤ n, let fm : X̃m → Xm be a T -equivariant resolution of singularities and let x̃m
be the fundamental class of the T -stable cobordism cycle [X̃m → X] in ΩT

∗ (X). Then
ΩT
∗ (X) is a free S(T )-module with basis {x̃0, ..., x̃n}.

It is not clear to the author whether [31, Theorem 3.4] still holds in its generality
because the proof uses the unknown localisation result [20, Theorem 20]. Therefore, we
formulate a weaker version of [31, Theorem 3.4] which is relevant for our setting.

Proposition 3.47. Let X be a T -filtrable variety with a T -action and finitely many
T -fixed points. Then the forgetful map rTX : ΩT

∗ (X) → Ω∗(X) induces an isomorphism
of L-modules

rTX : ΩT
∗ (X)⊗S(T ) L

∼=→ Ω∗(X).

If X is smooth, this is an L-algebra isomorphism.

Proof. This statement can be obtained immediately from Corollary 3.46 and [21, The-
orem 2.5] once one observes that T -filtrable varieties with finitely many T -fixed points
are indeed cellular (cf. [21, Definition 2.4]).
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Using the previous two results, we can deduce the following corollary.
Corollary 3.48. Let X be a T -filtrable variety with a T -action and finitely many T -fixed
points. For any 0 ≤ m ≤ n, the inclusions i : Xm → Xn and j : Xn \Xm → Xn induce
the short exact sequence

0→ ΩT
∗ (Xm) i∗−→ ΩT

∗ (Xn) j∗−→ ΩT
∗ (Xn \Xm)→ 0.

Proof. Using Proposition 2.43 and Lemma 3.44 repetitively, we know that j∗ is surjective
and that i∗ is injective. Thus, we only need to show exactness at the middle term in
order to obtain the statement. Since Xm is T -filtrable, we may use Corollary 3.46 which
implies that a general element a ∈ ΩT

∗ (Xm) is of the form

a = a0[X̃0 → Xm] + ...+ am[X̃m → Xm]

for ai ∈ S(T ) for all 0 ≤ i ≤ m. Hence, we have

j∗i∗a = a0j
∗[X̃0 → Xn] + ...+ amj

∗[X̃m → Xn] = 0

where j∗[X̃i → Xn] vanish for all 0 ≤ i ≤ m. This implies Im(i∗) ⊆ Ker(j∗). Now, let
b ∈ Ker(j∗). Again by Corollary 3.46, we have

b = b0[X̃0 → Xn] + ...+ bn[X̃n → Xn]

for bi ∈ S(T ) for all 0 ≤ i ≤ n. As above we know that j∗[X̃i → Xn] = 0 if and only if
0 ≤ i ≤ m. Since j∗b = 0 we have

0 = bm+1j
∗[X̃m+1 → Xn] + ...+ bnj

∗[X̃n → Xn]

and therefore, we conclude bi = 0 for allm+1 ≤ i ≤ n because the pullbacks j∗[X̃i → Xn]
do not vanish for m + 1 ≤ i ≤ n. This implies Ker(j∗) ⊆ Im(i∗) which finishes the
proof.

Now, we will state the analogous version of Proposition 3.16 for equivariant algebraic
cobordism. The upcoming statement was originally formulated for smooth T -filtrable
schemes using the definition in Section 3.1, but in this thesis we will be mainly interested
in smooth projective schemes with finitely many T -fixed points and thus, we state it only
for this specific subclass of T -schemes.

The proof of the following proposition (cf. [31, Theorem 7.1]) relies heavily on the
possibly incorrect localisation sequence (cf. discussion before Proposition 2.43). Never-
theless, we are able to use the following three propositions since one can simply replace
[31, Proposition 4.1 (i)] with Corollary 3.48 in the proofs of the given statements in our
setting with finitely many T -fixed points. The above mentioned fact will become even
clearer in the proof of the refined localisation theorem (cf. Proposition 3.59).
Proposition 3.49. [31, Theorem 7.1] Let X be a smooth projective T -scheme with
finitely many T -fixed points. For the inclusion i : XT ↪→ X of the fixed point subscheme
the S(T )Q-algebra map

i∗ : Ω∗T (X)Q → Ω∗T (XT )Q

is injective. Furthermore, i∗ is an isomorphism over S(T )Q[M−1].
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Remark 3.50. The preceding proposition slightly differs from Proposition 3.16 because
inverting all non-zero linear forms as described in Construction 3.43 does not lead to the
quotient field of S(T )Q.

The following proposition will be crucial for the upcoming computations and results.
This is the analogue of Proposition 3.17 in equivariant algebraic cobordism, but in
this case Krishna needed the assumption that the fixed point scheme consists only of
finitely many isolated points which was not needed in the original result from Brion for
equivariant Chow groups.

Proposition 3.51. [31, Theorem 7.6] Let X be a smooth projective scheme with an
action of a torus T . Further, let XT consist of finitely many fixed points x1, ..., xp and
let i : XT ↪→ X denote the inclusion of the fixed point subscheme. Then the image of
i∗ : Ω∗T (X)Q → Ω∗T (XT )Q is the intersection of the images of

i∗T ′ : Ω∗T (XT ′)Q → Ω∗T (XT )Q

where T ′ runs over all subtori of codimension one in T .

Lastly, we present the analogous result of Proposition 3.21.

Proposition 3.52. [31, Theorem 7.8] Let X be a smooth projective scheme where a
torus T acts with finitely many fixed points x1, ..., xp and finitely many stable curves.
Then the image of

i∗ : Ω∗T (X)Q → Ω∗T (XT )Q

is the set of (f1, ..., fp) ∈ S(T )pQ such that fi ≡ fj mod χ whenever xi and xj are
connected by a stable irreducible curve where T acts through the weight χ.

Remark 3.53. In the preceding two propositions we can identify Ω∗T (XT )Q with the
ring S(T )pQ ∼= (L[[t1, ..., tn]]gr)pQ because of Proposition 3.27 and the assumption that the
fixed point subscheme only consists of finitely many fixed points x1, ..., xp.

Before we discuss the above introduced theories for spherical varieties, we come back
to the intensively described example of the projective space.

Example 3.54. [20, Example 3.2.2] As in the Chow group case, we will compute the
equivariant algebraic cobordism for the projective space Pn with the weighted Gm-action,
i.e. the action described in Example 3.23. We choose {(Vj , Uj)} = {(Aj ,Aj \{0})}j≥0 to
be the sequence of j-dimensional good pairs which satisfies the conditions of Proposition
2.46 for the given {(Vj , Uj)}j≥0 and Wj = A1. Therefore, we do not have to take the
quotient by the niveau filtration in order to compute the equivariant algebraic cobordism
for the given Gm-action. First of all, we have again as in Example 3.23 that (Pn×Uj)/T
is the Pn-bundle P(O(a0)⊕ ...⊕O(an)) over Pj−1 and therefore, we obtain

Ω∗ ((Pn × Uj)/T ) ∼= Ω∗ (P(O(a0)⊕ ...⊕O(an)))
= Ω∗(P(E))

∼=
Ω∗(Pj−1)[ξ]

(ξn+1 − c1(E)ξn + ...+ (−1)n+1cn+1(E)
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where E := O(a0)⊕ ...⊕O(an), ξ := c1(OP(E)(1)) and ci(E) denotes the i-th Chern class
of E . Furthermore, we let t := c1(O(1)) ∈ Ω1(Pj−1) which implies c1(O(ak)) = [ak]Ωt
where [ak]Ωt is defined inductively by FΩ(t, [ak − 1]Ωt). By using the Whitney sum
formula we can simplify this to

Ω∗(P(E)) ∼= Ω∗(Pj−1)[ξ]/(PΩ(ξ, t))

with

PΩ(ξ, t) =
n+1∑
i=0

(−1)iξn+1−iei([a0]Ωt, ..., [an]Ωt)

where ei denotes the i-th elementary symmetric polynomial which is given in the variables
[a0]Ωt, ..., [an]Ωt. As above we obtain this because of the structure of the vector bundle
E . By using Proposition 2.46 we conclude

Ω∗T (Pn) ∼= lim←−
j

Ω∗((Pn × Uj)/T )

= lim←−
j

Ω∗(Pj−1)[ξ]/(PΩ(ξ, t))

∼= lim←−
j

Ω∗(k)[t][ξ]
(PΩ(ξ, t), tj)

∼=
L[[t]]gr[ξ]
(PΩ(ξ, t)) .

Hereby we remark that here one has to take the colimit in the category of graded rings.
Furthermore, in this example we computed the equivariant algebraic cobordism with
integral coefficients as in the Chow group case.

3.6 Refinement of coefficients in the localisation theorem

In this section, we want to generalise Proposition 3.51 such that we do not need
rational coefficients and instead only need to invert finitely many primes in order to
obtain the result. Throughout the thesis, we will often consider the question whether
one can refine the statements which are proved with rational coefficients.

Remark 3.55. Let T be a torus of rank n acting trivially on a smooth variety X and E
be a T -equivariant vector bundle of rank d on X which is a direct sum of non-equivariant
line bundles. Further, assume that in the eigenspace decomposition of E with respect
to T , the submodule corresponding to the trivial character is zero. For the structure
morphism p : X → Spec k and following the proof of [31, Lemma 6.3] we have a unique
direct sum decomposition

E =
m⊕
i=1

Ei ⊗ p∗(Lχi) (3.2)

where each Ei is an ordinary vector bundle on X. Further, we can rearrange the terms
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by writing

E =
s⊕
j=1

⊕
q∈Z

Ejq ⊗ p∗(Lψqj ) (3.3)

where the ψj are primitive characters for all 1 ≤ j ≤ s.

Definition 3.56. Let T be a torus of rank n acting trivially on a smooth variety X and E
be a T -equivariant vector bundle of rank d on X which is a direct sum of non-equivariant
line bundles. Further, assume that in the eigenspace decomposition of E with respect to
T , the submodule corresponding to the trivial character is zero. We define SE ⊆ Z to be
the smallest multiplicative set associated to the T -equivariant vector bundle E such that

(i) each χi occurring in the decomposition (3.2), 1 ≤ i ≤ m, can be extended to a basis
of M [S−1

E ] = M ⊗Z Z[S−1
E ] where M is the character group of T and Z[S−1

E ] the
localisation of Z by SE.

(ii) each pair of primitive characters {ψj , ψj′} in the decomposition (3.3) is a part of
a basis of M [S−1

E ] for all 1 ≤ j 6= j′ ≤ s.

Lemma 3.57. Let T be a torus of rank n acting trivially on a smooth variety X and
let E be a T -equivariant vector bundle of rank d on X which is a direct sum of non-
equivariant line bundles. Assume that in the eigenspace decomposition of E with respect
to T , the submodule corresponding to the trivial character is zero. Then cTd (E) is a
non-zero divisor in Ω∗T (X)Z[S−1

E ].

Proof. The proof can be simply taken from [31, Lemma 6.3] with the adaption of taking
the ring Z[S−1

E ] as coefficients instead of Q.

Definition 3.58. Let X be a smooth projective variety where a torus T of rank n acts
with finitely many isolated fixed points x0, ..., xp. Let Ni := Nxi/X be the normal bundle
of xi in X for 0 ≤ i ≤ p. We define the multiplicative set SX :=

⋃p
i=0 SNi in Z. In this

case, Z[S−1
X ] is the localisation of Z by SX .

The following statement is a refinement of Proposition 3.51. In order to prove it,
we mainly use the technique from [31, Theorem 7.6] (cf. Proposition 3.51) which was
already used in the proof of a similar result for equivariant Chow groups in [7, Theorem
3.3] (cf. Proposition 3.17).

Theorem 3.59. Let X be a smooth projective variety where a torus T of rank n acts
with finitely many isolated fixed points x0, ..., xp. Let i : XT → X be the inclusion of the
fixed point locus. Then the image of i∗ : Ω∗T (X)Z[S−1

X ] → Ω∗T (XT )Z[S−1
X ] is the intersection

of the images of the restriction maps

i∗T ′ : Ω∗T (XT ′)Z[S−1
X ] → Ω∗T (XT )Z[S−1

X ]

where T ′ runs over all subtori of codimension one in T .

Proof. We prove the statement by induction over the length of the filtration (3.1). If
n = 0 in the filtration (3.1), then X is a T -equivariant vector bundle over XT . In that
case, the map i∗ is surjective by homotopy invariance and therefore also i∗T ′ . In the
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general case let X0 ⊆ X be given as in the filtration (3.1) and let U0 be its complement.
Then U0 is a smooth T -filtrable variety with a shorter filtration where T acts with finitely
many isolated fixed points. Further, let x0 be the T -fixed point such that X0 → x0 is
the vector bundle coming from the definition of T -filtrable varieties. We recall that the
normal bundle of x0 in X is given by Nx0/X = Tx0X/(Tx0x0). We know (cf. [7, Theorem
3.1]) that Tx0x0 is the weight zero subspace (Tx0X)0 of the tangent space Tx0X. It
follows that in the eigenspace decomposition of the T -equivariant vector bundle Nx0/X ,
the submodule corresponding to the trivial character is zero. Since Nx0/X

∼= Tx0X is a
direct sum of line bundles we can apply Lemma 3.57 and thus, the top Chern class of the
normal bundle of x0 in X is a non-zero divisor in Ω∗T (x0)Z[S−1

N0
]. By homotopy invariance

for the vector bundle X0 → x0 we know that c0 := cTtop(NX0/X) is also a non-zero divisor
in Ω∗T (X0)Z[S−1

X ]. Using Corollary 3.48, we have the short exact sequence

0→ Ω∗T (X0)Z[S−1
X ]

i∗−→ Ω∗T (X)Z[S−1
X ]

j∗−→ Ω∗T (U0)Z[S−1
X ] → 0

and using the proof of [31, Proposition 4.1 (ii)], we obtain another short exact sequence

0→ Ω∗T (X)Z[S−1
X ]

(i∗,j∗)−−−−→ Ω∗T (X0)Z[S−1
X ] × Ω∗T (U0)Z[S−1

X ] →
Ω∗T (X0)Z[S−1

X ]

(c0) → 0.

We identify Ω∗T (X0)Z[S−1
X ] with Ω∗T (x0)Z[S−1

X ] by homotopy invariance which in turn is
identified with Ω∗(x0)Z[S−1

X ][[t1, ..., tn]]gr. In particular, we can pull back c0 to an element
in Ω∗T (x0)Z[S−1

X ] along the isomorphism given by the zero-section. Using this pullback,
we obtain

Nx0/X
∼= Tx0X =

m⊕
k=1

Lχk

because TxiX splits into equivariant line bundles for every 0 ≤ i ≤ p. We form the
direct sum of Lχk and Lχ′k whenever the characters χk and χ

′
k are multiples of a common

primitive character of T . This leads to

Nx0/X =
s⊕
j=1

Ej

where each Ej is of the form

Ej =
⊕
q

Lψqj

for a primitive character ψj . Additionally, we remark that the sum runs over a finite set
of potentially repetitive integers. Using the Whitney sum formula, we obtain

c0 =
s∏
j=1

cTtop(Ej) =:
s∏
j=1

cψj .

Following the proof of [7, Theorem 3.3], the identity component of the kernel of χ is a
subtorus of codimension one in T for any primitive character χ. Furthermore, cχ is the
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top equivariant Chern class of the normal bundle of XKer(χ)0

0 in XKer(χ)0 . Conversely,
recall from the proof of [7, Theorem 3.3] that any subtorus of codimension one in T can
be written as Ker(χ)0 for some primitive character χ of T , uniquely determined up to
sign.

Now, let γ ∈ Ω∗T (XT )Z[S−1
X ] be in the image of all i∗T ′ and jUT0

: UT0 → XT the
inclusion. By the induction hypothesis and a small diagram chase the class j∗

UT0
γ is in

the image of

Ω∗T (U0)Z[S−1
X ] → Ω∗T (UT0 )Z[S−1

X ].

Because j∗U0
: Ω∗T (X)Z[S−1

X ] → Ω∗T (U0)Z[S−1
X ] is surjective and since j∗

UT0
is just the pro-

jection onto all but one factor, we may conclude that there exist α ∈ Ω∗T (x0)Z[S−1
X ] and

β ∈ Ω∗T (X)Z[S−1
X ] such that γ = α + i∗β holds. Let ψj be a primitive character of T .

Then α = γ − i∗β is in the image of i∗Ker(ψj)0 because γ and i∗β are. Now, we want to
use Corollary 3.48 and the proof of [31, Proposition 4.1 (ii)] for XKer(ψj)0 which we can
do due to the fact that cψj is a non-zero divisor in Ω∗T

(
X

Ker(ψj)0

0

)
Z[S−1

X ]
which comes

from the fact that N
x0/X

Ker(ψj)0 is a subbundle of Nx0/X . This leads to the short exact
sequence

0→ Ω∗T
(
XKer(ψj)0)

Z[S−1
X ]

(i∗T0,j
∗
T0)

−−−−−→ Ω∗T
(
X

Ker(ψj)0

0

)
Z[S−1

X ]
× Ω∗T

(
U

Ker(ψj)0

0

)
Z[S−1

X ]

−→
Ω∗T

(
X

Ker(ψj)0

0

)
Z[S−1

X ]

(cψj )
→ 0.

We remark that XKer(ψj)0

0 is a vector bundle over x0. Next, we want to show that α
is divisible by cψj in Ω∗T

(
X

Ker(ψj)0

0

)
Z[S−1

X ]
= Ω∗T (x0)Z[S−1

X ] and therefore, it suffices to

show that α is in the image of i∗T0. But this is clear because α ∈ Ω∗T (x0)Z[S−1
X ] is in the

image of i∗Ker(ψj)0 and since i∗T0 is just the map in the first component of i∗Ker(ψj)0 . We

conclude that α is divisible by cψj in Ω∗T
(
X

Ker(ψj)0

0

)
Z[S−1

X ]
. We now use the equality

(c0) =
s⋂
j=1

(cψj ) (3.4)

as ideals in Ω∗(x0)Z[S−1
X ][[t1, ..., tn]]gr which will be shown further below. Thus, we know

that α is also divisible by c0. For ix0 : x0 → X0 and using the self-intersection formula
[31, Proposition 3.1], we have

α ∈ c0Ω∗T (x0)Z[S−1
X ] = i∗x0ix0∗Ω

∗
T (x0)Z[S−1

X ].

We can identify ix0∗Ω∗T (x0)Z[S−1
X ] as a subset of Ω∗T (X)Z[S−1

X ] because i∗ is injective.
Furthermore, we remark that i∗x0 and i∗ are the same map for elements of the form
ix0∗Ω∗T (x0)Z[S−1

X ] and the identified elements in Ω∗T (X)Z[S−1
X ], respectively. Thus, the
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elements α and i∗β both are in i∗Ω∗T (X)Z[S−1
X ] and therefore, one can conclude that

γ ∈ i∗Ω∗T (X)Z[S−1
X ].

Lastly, we need to prove the equality (3.4) in order to finish the proof. Let dj ≥ 1
be the rank of Ej for all 1 ≤ j ≤ s. The statement [31, Lemma 6.4] also holds over
Z[S−1

X ] using the same proof even though it was only proved rationally and thus, we have
cTdj (Ej) = uj(cT1 (Lψj ))dj where uj is invertible in Ω∗T (x0)Z[S−1

X ] for all 1 ≤ j ≤ s because
all vector bundles on x0 are trivial. By assumption, the {ψ1, ..., ψs} are pairwise a part
of a basis of the character group M [S−1

X ] because we consider coefficients in Z[S−1
X ].

Setting γi = (cT1 (Lψj ))dj leads to

(γ1 · · · γs) =
s⋂
j=1

(γj)

by [31, Lemma 5.4]. Since uj , 1 ≤ j ≤ s, are units in Ω∗T (x0)Z[S−1
X ], the equality (3.4)

follows. This completes the proof of the theorem.

Using the same proof as [31, Theorem 7.8] with the refined localisation theorem (cf.
Theorem 3.59) one may deduce the following proposition.

Proposition 3.60. Let X be a smooth projective scheme where a torus T acts with
finitely many fixed points x1, ..., xp and finitely many T -stable curves. Then the image
of

i∗ : Ω∗T (X)Z[S−1
X ] → Ω∗T (XT )Z[S−1

X ]

is the set of (f1, ..., fp) ∈ S(T )pZ[S−1
X ] such that fi ≡ fj mod χ whenever xi and xj are

connected by a stable irreducible curve where T acts through the weight χ.

Remark 3.61. In Chapter 6, we will see examples where we actually compute the
coefficient ring Z[S−1

X ].

Remark 3.62. The refined localisation theorem (cf. Theorem 3.59) of course also
generalises the localisation theorem with rational coefficients for Chow groups (cf. [7,
Theorem 3.3]) in the setting of finitely many fixed points in some smooth projective
variety.

3.7 Künneth formula for T -equivariant cobordism

In this section, we will denote by G a connected reductive algebraic group over an
algebraically closed field k of characteristic zero. Further, denote by T a maximal torus
of G.

Proposition 3.63. (Künneth formula) Let X,Y be smooth projective G-varieties such
that X × Y has finitely many T -fixed points with respect to the diagonal action. Then
there exists an isomorphism

Ω∗T (X)⊗Ω∗T (k) Ω∗T (Y ) ∼= Ω∗T (X × Y ).
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Proof. By assumption, we know that X and Y must have finitely many T -fixed points.
Hence, X and Y are T -filtrable and cellular (cf. [21, Definition 2.4]). Let

∅ = X−1 ( X0 ( X1 ( · · · ( Xn = X

and

∅ = Y−1 ( Y0 ( Y1 ( · · · ( Y` = Y

be filtrations of X and Y , respectively, such that Xm \ Xm−1 and Yi \ Yi−1 are affine
spaces for all 0 ≤ m ≤ n and 0 ≤ i ≤ `. We show by induction on m that the morphism

Ω∗T (Xm)⊗Ω∗T (k) Ω∗T (Y )→ Ω∗T (Xm × Y )

induced by the external product is an isomorphism. We remark that X0 is closed in
X and an affine space so that X0 must be a point. Thus, the isomorphism holds for
X0 = Spec k. Let Um+1 := Xm+1 \ Xm be the corresponding affine space. We remark
that the variety X × Y is T -filtrable. One filtration of X × Y is given by

∅ = X−1 ( X0 × Y0 ( X0 × Y1 ( · · · ( X0 × Y` ( X0 × Y` ∪X1 × Y0

( X0 × Y` ∪X1 × Y1 ( · · · ( X1 × Y` ( · · · ( Xm × Y`
( · · · ( Xm+1 × Y` ( · · · ( Xn × Y` = X × Y.

We verify that the complement

Xm × Y` \ ((Xm−1 × Y`) ∪ (Xm × Y`−1)) = ((Xm \Xm−1)× Y`) ∩ (Xm × (Y` \ Y`−1))
= (Xm \Xm−1)× (Y` \ Y`−1)

is an affine space for all 1 ≤ m ≤ n and so is the complement

((Xm × Y ) ∪ (Xm+1 × Yi+1)) \ ((Xm × Y ) ∪ (Xm+1 × Yi))
= ∅ ∪ (Xm+1 × Yi+1) \ ((Xm × Y ) ∪ (Xm+1 × Yi))
= ((Xm+1 × Yi+1) \ (Xm × Y )) ∩ ((Xm+1 × Yi+1) \ (Xm+1 × Yi))
= ((Xm+1 \Xm)× Yi+1) ∩ (Xm+1 × (Yi+1 \ Yi))
= (Xm+1 \Xm)× (Yi+1 \ Yi)

for all 0 ≤ m ≤ n− 1 and 0 ≤ i ≤ `− 1.
Using Corollary 3.48, we obtain the following diagram of short exact sequences where

all tensor products are over Ω∗T (k)

0 Ω∗T (Xm)⊗ Ω∗T (Y ) Ω∗T (Xm+1)⊗ Ω∗T (Y ) Ω∗T (Um+1)⊗ Ω∗T (Y ) 0

0 Ω∗T (Xm × Y ) Ω∗T (Xm+1 × Y ) Ω∗T (Um+1 × Y ) 0.

We remark that tensoring with Ω∗T (Y ) is exact because the latter is a free Ω∗T (k)-module
by Corollary 3.46. The right vertical arrow is an isomorphism by homotopy invariance
and the left vertical arrow is an isomorphism by the induction hypothesis. By five lemma
we conclude the statement.
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3.8 Comparison of equivariant cohomology theories

In the following, we want to relate the theory of algebraic cobordism with the one of
Chow groups and therefore, we state the known results in the ordinary and equivariant
case.

Proposition 3.64. [37, Theorem 1.2.19] The canonical morphism Ω∗ → CH∗ coming
from the universality of ordinary algebraic cobordism induces an isomorphism

Ω∗(X)⊗L Z
∼=→ CH∗(X)

of abelian groups. Furthermore, this is a graded L-algebra isomorphism if X is smooth.

Remark 3.65. By the constructions of equivariant Chow groups and equivariant alge-
braic cobordism, one obtains a map of graded L-modules

ΦX : ΩG
∗ (X)→ CHG

∗ (X)

for a k-scheme X of with a G-action.

Now, we will consider the example we care most about in the sequel of this chapter.

Example 3.66. Let T be a torus of rank n over k. From Proposition 3.27 we know
that Ω∗(BT) ∼= L[[t1, ..., tn]]gr. Furthermore, as discuseed in Remark 3.18 we know that
CH∗(BT) is isomorphic to the polynomial ring Z[t1, ..., tn]. In this case, we obtain the
map

Φk : Ω∗(BT)→ CH∗(BT), i.e. Φk : L[[t1, ..., tn]]gr → Z[t1, ..., tn]

which is given by killing the ideal L<0.

One of the main results obtained by Krishna [32] concerning the relation of equivariant
Chow groups and equivariant algebraic cobordism is the following proposition.

Proposition 3.67. [32, Proposition 7.2] The map ΦX induces an isomorphism of graded
L-modules

ΦX : ΩG
∗ (X)⊗̂LZ

∼=→ CHG
∗ (X).

Remark 3.68. The proof of the above result shows that the map ΩG
∗ (X)→ CHG

∗ (X) is
surjective. This is the map originally coming from the universality of ordinary algebraic
cobordism and below, we will illustrate the difference between equivariant algebraic
cobordism and equivariant Chow groups in some more detail.

Corollary 3.69. [32, Corollary 7.3] For a k-scheme X with a G-action, the map

ΩG
∗ (X)⊗S(G) CHG

∗ (k)→ CHG
∗ (X)

is an isomorphism of CHG
∗ (k)-modules. If X is smooth, then this map is a ring isomor-

phism.

Example 3.70. In the case

CHT
∗ (k) ∼= ΩT

∗ (k)⊗̂LZ ∼= L[[t1, ..., tn]]gr⊗̂LZ ∼= Z[t1, ..., tn]
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we see that the graded topological tensor product reduces to the ordinary graded tensor
product. This shows that one can also deduce the Chow group of the classifying space
BT from Proposition 3.67.

Example 3.71. Finally, we come back to Example 3.54 and Example 3.23 which we
shortly recall. Above we computed CH∗T (Pn) and Ω∗T (Pn) for T = Gm and the weighted
Gm-action on Pn. We made the remark that one has to take the colimit in the category
of graded rings which implies

CH∗T (Pn) ∼= Ω∗T (Pn)⊗̂LZ ∼=
L[[t]]gr[ξ]
(PΩ(ξ, t))⊗̂LZ ∼= Z[ξ, t]/(P (ξ, t)).

This example well illustrates the powerful statement of Proposition 3.67.
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4 Equivariant cobordism of spherical varieties

4.1 Equivariant Chow groups of spherical varieties

For this section, let G be a connected reductive algebraic group over an algebraically
closed field k of characteristic zero, B ⊆ G a Borel subgroup and T ⊆ B a maximal
torus. Furthermore, let X be a smooth projective G-variety. This section is based on
[7].

Definition 4.1. A subtorus T ′ ⊆ T is regular if its centraliser

CG(T ′) = {g ∈ G | gt′ = t′g for all t′ ∈ T ′}

is equal to the torus T . If this is not the case, we call the subtorus T ′ singular.

Remark 4.2. Following [22, Corollary B, Section 26.2], a subtorus T ′ of codimension
one is singular if and only if it is the identity component of the kernel of some positive
root α of (G,T ). In this case we will write T ′ = Ker(α)0. Then α is unique and the
group CG(T ′) is the product of T ′ with a subgroup S(α) ⊆ G isomorphic to SL2 or PSL2.
Moreover, the fixed point locus XT ′ is equipped with an action of

CG(T ′)/T ′ = T ′S(α)/T ′ = S(α)/(S(α) ∩ T ′) = SL2 or PSL2

since S(α) ∩ T ′ is either of order one or two. Furthermore, we have T = T ′Sm(α) for a
maximal subtorus Sm(α) of S(α), the image of the coroot of α. As above, T ′ ∩ Sm(α)
is a finite group F (α) of order one or two. Clearly, F (α) acts trivially on XT ′ and
hence, the T -action on XT ′ factors through an action of the corresponding quotient
T/F (α) ∼= (T ′ × Sm(α))/(F (α)× F (α)).

In the following proposition, we will analyse the components of the fixed point sub-
schemes XT ′ for regular and singular codimension one subtori T ′ ⊆ T . Recall that the
surface Fn = P(OP1 ⊕OP1(n)) is called the n-th Hirzebruch surface.

Proposition 4.3. [7, Proposition 7.1] Let X be a spherical G-variety and let T ′ ⊆ T be
a subtorus of codimension one.

(i) Each irreducible component of XT ′ is a spherical CG(T ′)-variety.

(ii) If T ′ is regular, then XT ′ is at most one-dimensional.

(iii) If T ′ is singular, then XT ′ is at most two-dimensional. Furthermore, any two-
dimensional connected component of XT ′ is either a rational ruled surface

Fn = P(OP1 ⊕OP1(n))

where CG(T ′) acts through the natural action of SL2, or the projective plane where
CG(T ′) acts through the projectivisation of a non-trivial SL2-module of dimension
three.

Now, let D be the torus of the diagonal matrices in SL2 and α be the character of D
given by

α

(
t 0
0 t−1

)
= t2.
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Further, let β be the square root of α and therefore, we could identify the rational
character ring of D with Q[β] where we again denote the former by SQ. For later use
and because of the rational coefficients, we rather identify the rational character ring of
D with Q[α] using Lemma 3.36 for Chow groups. Nevertheless, we will keep the square
root β in mind since it will be needed in the sequel when we compare the equivariant
Chow groups for the tori of SL2 and PSL2.

Definition 4.4. [49, Definition 7.1.1] Let T be a torus and p : T → GL(V ) a rational
representation of T . Then V is a direct sum of one-dimensional subspaces in each of
which an element t ∈ T acts as multiplication by χ(t) where χ is a character of T . The
characters obtained in this manner are called weights of T in V .

Remark 4.5. Proposition 4.3 is a very strong result which gives us the opportunity to
compute the images in Proposition 3.17 using the action given by Proposition 4.3 since
T ⊆ CG(T ′) holds. Therefore, we only have to consider the cases from Proposition 4.3
in order to get a result for the image of the pullback of i : XT ↪→ X.

Now, we want to compute the equivariant Chow rings for projective planes and Hirze-
bruch surfaces. Therefore, we describe the irreducible components of XT ′ for singular
codimension one subtori T ′ coming from Proposition 4.3 in some more detail.

First, we want to consider the two cases of P(V ) for a non-trivial SL2-module V
of dimension three arising from the previous theorem. Set Vn+1 := Symn+1(k2). Let
V = V0 ⊕ V1 be one of the non-trivial SL2-modules of dimension three. The weights
of D in V are α/2, 0 and −α/2 by Definition 4.4 and the given group action of D on
V from Example 3.9 (iii). We denote by x, y and z the corresponding fixed points of
D in P(V ) which we have already seen in Example 3.9 (iii). To be more explicit, the
corresponding fixed points to the weights α/2, 0,−α/2 are x = [1 : 0 : 0], y = [0 : 1 : 0]
and z = [0 : 0 : 1], respectively. Therefore, we identify CH∗D(P(V )D)Q ∼= S3

Q with Q[α]3.
Similarly, for the other non-trivial SL2-module V = V2 = sl2 of dimension three, the

corresponding weights are α, 0 and −α whereas the corresponding fixed points are again
x = [1 : 0 : 0], y = [0 : 1 : 0] and z = [0 : 0 : 1], respectively.

Next, we consider the case F0 = P1 × P1 with D-action given by

d · ([a : b], [u : v]) = ([da : d−1b], [du : d−1v]).

We denote by w and z the D-fixed points ([1 : 0], [1 : 0]) and ([0 : 1], [0 : 1]), respectively.
Further, we denote the remaining two D-fixed points ([1 : 0], [0 : 1]) and ([0 : 1], [1 : 0])
by x and y, respectively.

Lastly, we have a look at the rational ruled surface Fn, n ≥ 1, which has been
described in large detail in Example 3.9 (v). The open SL2-orbit cannot contain any
D-fixed points. Since the two closed SL2-orbits are given by SL2 ·[v1] and SL2 ·[vn+1],
which are both projective lines, we observe that Fn has four D-fixed points w, x, y and
z with corresponding weights (n + 1)α/2, α/2,−α/2 and −(n + 1)α/2, respectively, by
the induced D-action on Fn. Therefore, we can identify CH∗D(FDn )Q ∼= S4

Q with Q[α]4.
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Proposition 4.6. [7, Proposition 7.2] Notations being as above, the image of

i∗ : CH∗D(Fn)Q → S4
Q

consists of all (fw, fx, fy, fz) ∈ S4
Q such that

fw ≡ fx ≡ fy ≡ fz mod α and
fw − fx − fy + fz ≡ 0 mod α2

hold. Moreover, the image of

i∗ : CH∗D(P(V ))Q → S3
Q

consists of all (fx, fy, fz) such that

fx ≡ fy ≡ fz mod α and
fx − 2fy + fz ≡ 0 mod α2

hold.

Remark 4.7. We state one more equation in each of the cases in order to obtain the
statement symmetric in its arguments although one could prove the proposition with
one equation less in each of the cases. Furthermore, the last equation follows from the
other ones and therefore, we will keep the statement as it was formulated by Brion.

Proof. First, we consider the case of P(V ) for V = V0 ⊕ V1. By Example 3.9 (iii), the
closures of the Bialynicki-Birula cells are the point z, the line connecting y and z, and
the whole P(V ). We obtain

CH∗D(P(V )D)Q ∼= Q[t]3 ∼= Q[α]3 ∼= S3
Q

where c1(Lα) 7→ t and t 7→ α ∈ S are the corresponding isomorphisms. Since [P(V )] is the
identity in CH∗D(P(V ))Q and i∗ is a ring homomorphism, this class maps onto (1, 1, 1).
Now, we consider the images of the closures of the remaining two Bialynicki-Birula
cells because these images generate the equivariant Chow ring of P(V ) as a subalgebra
of S3

Q (cf. [7, Corollary 3.2 (iii)]). Therefore, we will have a look at the pullbacks
i∗[Y ] = (i∗x[Y ], i∗y[Y ], i∗z[Y ]) separately where i∗x[Y ] denotes the pullback of any class [Y ]
under the inclusion ix of the corresponding fixed point in P(V ). First, we can consider the
composition z

j
↪→ Uz

k
↪→ P(V ) where Uz is any open D-stable neighbourhood of z. This is

possible since z ↪→ P(V ) factors through the above composition and (k◦j)∗ = j∗◦k∗ = i∗z
holds. This implies that it is enough to replace P(V ) by Uz.

In our particular case, we choose Uz to be the affine chart of P(V ) in which the coordi-
nate associated with z does not vanish. Therefore, we first introduce the coordinates a, b
and c for V in order to be able to describe the coordinates on the affine space Uz = A2.
By our choice for Uz, we get a/c and b/c as coordinates for Uz. The induced action
implies now t · [x : y : z] = [tx : y : t−1z] which maps to (tx/t−1z, y/t−1z) = (t2x/z, ty/z)
in Uz. Thus, D acts linearly on Uz with weights α and α/2.

Now, we come to the closure (yz) of one of the other Bialynicki-Birula cells. Every
line in the projective plane can be defined by an equation a1a + a2b + a3c = 0. Here
we want y and z to be on the line. Since y = [0 : 1 : 0] and z = [0 : 0 : 1] we have
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a2 = 0 and a3 = 0 and we are left with a1a = 0 but in projective space this is the same
as a = 0. We choose f to be an eigenfunction of D with respect to weight −α, i.e.
(t · f)(a/c, b/c) = −α(t)f(a/c, b/c) must hold. This leads to the following equation

(t · f)(a/c, b/c) = f(t−1 · (a/c, b/c)) = f(t−2a/c, t−1b/c) = t−2f(a/c, b/c).

Now, we choose f(a/c, b/c) = (a/c) explicitly which leads to f(t−2a/c, tb/c) = t−2a/c.
This implies that f is an eigenfunction of D with respect to weight −α. Furthermore,
one has to compute div(f) in order to be able to apply [7, Theorem 2.1]. For the line
(yz) ∩ Uz which is described by a = 0 it is clear that the order of vanishing of the line
described by a = 0 is one and the other prime divisors have order of vanishing zero since
c does not vanish on Uz. Therefore, we conclude div(f) = (yz) ∩ Uz. By [7, Theorem
2.1] we know that [(yz) ∩ Uz] = [div(f)] = −α[Uz] holds in CH∗D(Uz)Q. Pulling back
this relation to CH∗D(z)Q yields i∗z[(yz) ∩ Uz] = −α. We can apply the same argument
for the pullback i∗y[(yz)] by choosing Uy to be the open affine neighbourhood of y such
that the coordinate associated to y does not vanish. This leads to weights α/2 and
−α/2. Then we take the same eigenfunction as above for the weight −α/2. Therefore,
i∗y[(yz) ∩ Uy] = −α/2 by the same argument as given above.

Now, we consider the last closure of the Bialynicki-Birula cells, i.e. the point z.
Clearly, this point is the complete intersection of the two lines (xz) and (yz). Therefore,
we want to compute the pullback of the class [(xz) ∩ (yz) ∩ Uz] = [z]. In this case, we
choose g(a/c, b/c) = b/c to be the eigenfunction of D with respect to weight −α/2, i.e.
(t · g)(a/c, b/c) = g(t−2a/c, t−1b/c) = t−1b/c = −α/2(t)g(a/c, b/c) holds for all t ∈ D.
Since div(yz)∩Uz(g) = (xz) ∩ (yz) ∩ Uz = z by the same argument as above, we obtain
again by [7, Theorem 2.1] that [z] = [(xz) ∩ (yz) ∩ Uz] = −α/2[(yz) ∩ Uz] holds in
CH∗D(Uz)Q. Inserting the identity [(yz) ∩ Uz] = −α[Uz], we obtain

[z] = −α/2[(yz) ∩ Uz] = −α/2 · (−α)[Uz]

in CH∗D(Uz)Q. Pulling back this relation yields i∗z[z] = −α/2 · (−α) = α2/2.
Since the remaining pullbacks i∗x[z] = i∗y[z] = i∗x[(yz)] vanish we conclude that

i∗ : CH∗D(P(V ))Q → S3
Q maps

[P(V )] 7→ (1, 1, 1)
[(yz)] 7→ (0,−α/2,−α)

[z] 7→ (0, 0, α2/2).

We observe that these images satisfy the given equations and that the closures of the
Bialynicki-Birula cells generate the equivariant Chow group by [7, Corollary 3.1]. Con-
versely, there cannot be more elements (fx, fy, fz) ∈ S3

Q satisfying the equations than
linear combinations of the given images of the Bialynicki-Birula cells. The latter can be
seen by taking (fx, fy, fz) ∈ S3

Q satisfying the equations which can be written as

(fx, fy, fz) = fx(1, 1, 1) + (0, fy − fx, fz − fx)

= fx(1, 1, 1) + 2(fy − fx)
−α

(0,−α/2,−α) + (0, 0, fx − 2fy + fz)

= fx(1, 1, 1) + 2(fy − fx)
−α

(0,−α/2,−α) + 2(fx − 2fy + fz)
α2 (0, 0, α2/2)
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where 2(fy−fx)
−α and 2(fx−2fy+fz)

α2 are well-defined elements in S3
Q because of the given

equations. This completes the proof in the case V = V0 ⊕ V1.
Now, we consider the case of V = V2 = sl2 in which we choose the same Uz as above

with the same coordinates. The computation will be almost the same as in the case
above, but nevertheless we will write it down in order to have complete computations
for all the cases. The induced action results in the element (t4x/z, t2y/z) in Uz implying
that D acts linearly on Uz with weights α and 2α where we denote the weights again
additively. Since the class of [P(V )] ∈ CH∗D(P(V ))Q is mapped to (1, 1, 1) we need to
compute the remaining two images of the closures of the Bialynicki-Birula cells. Luckily,
we have computed in Example 3.9 (iv) that the Bialynicki-Birula cells are the same as
in the previous case.

Therefore, we take the closure (yz) of one of the remaining Bialynicki-Birula cells.
This time, we choose f to be an eigenfunction of D with respect to weight −2α which
leads again to f(a/c, b/c) = a/c. As above we know that div(f) = (yz)∩Uz holds. Thus,
again by [7, Theorem 2.1] we obtain [(yz) ∩ Uz] = [div(f)] = −2α[Uz] in CHD

∗ (Uz)Q.
Pulling back this relation to CH∗D(z)Q yields i∗z[(yz)∩Uz] = −2α. By the same argument
as above, we conclude i∗y[(yz) ∩ Uy] = −α.

Lastly, we take the point z which leads to the computation of the pullback of the class
of the intersection [(xz)∩ (yz)∩Uz] = [z]. Therefore, we apply the same argument as in
the previous case and obtain div(yz)∩Uz(g) = (xz)∩ (yz)∩Uz = z. Now, we apply again
[7, Theorem 2.1] and get [z] = [div(yz)∩Uz(g)] = −α[(yz) ∩ Uz] in CH∗D(Uz)Q. Inserting
[(yz) ∩ Uz] = −2α[Uz], we obtain

[z] = −α[(yz) ∩ Uz] = α · 2α[Uz]

in CH∗D(Uz)Q. Pulling back this relation yields i∗z[z] = α · 2α. The remaining pullbacks
vanish again and thus, we summarise

i∗ : CH∗D(P(V ))Q → S3
Q maps

[P(V )] 7→ (1, 1, 1)
[(yz)] 7→ (0,−α,−2α)

[z] 7→ (0, 0, 2α2).

A similar computation to the one above completes the proof in the case V = sl2.
Next, we take care of the case F0 = P1×P1 from Example 3.9 (vi) in which we choose

Uw to be an open D-stable neighbourhood of w = ([1 : 0], [1 : 0]). Therefore, we obtain
(t−2b/a, t−2v/u) for coordinates ([a : b], [u : v]) which implies that D acts linearly on Uw
with weight −α. The class [F0] ∈ CH∗D(F0)Q is again mapped to (1, 1, 1, 1) and we need
to compute the remaining images of the closures of the Bialynicki-Birula cells.

Therefore, we take the closure (wx) of one of the remaining Bialynicki-Birula cells.
We choose f(b/a, v/u) = b/a to be an eigenfunction of D with respect to weight α. By
the same argument as above, we obtain div(f) = (wx) ∩ Uw and by [7, Theorem 2.1]
we get [(wx) ∩ Uw] = [div(f)] = α[Uw] in CH∗D(Uw)Q. Pulling back this relation to
CH∗D(w)Q yields i∗w[(wx) ∩ Uw] = α. With the eigenfunction f(b/a, u/v) = b/a and a
neighbourhood Ux of the fixed point x we obtain i∗x[(wx) ∩ Ux] = α.

For the computations of the pullbacks of (wy) let Uw be as above and consider
the eigenfunction f(b/a, v/u) = v/u of D with respect to weight α, but here we have
div(f) = (wy) ∩ Uw and therefore, [(wy) ∩ Uw] = [div(f)] = α ∈ CH∗D(Uw)Q. Pulling
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back this relation yields i∗w[(wy) ∩ Uw] = α. Similarly, we obtain i∗y[(wy) ∩ Uy] = α.
Lastly, we consider the pullback of the point w which is the complete intersection of

the lines (wy) and (wx) for which we have already computed the corresponding pullbacks.
Therefore, we obtain

i∗w[w] = i∗w[(wy) ∩ Uw] · i∗w[(wx) ∩ Uw] = α · α = α2

whereas the other pullbacks of the class of the point w vanish. Thus, we summarise

i∗ : CH∗D(F0)Q → S4
Q maps

[F0] 7→ (1, 1, 1, 1)
[(wx)] 7→ (α, α, 0, 0)
[(wy)] 7→ (α, 0, α, 0)

[w] 7→ (α2, 0, 0, 0).

As above, we see immediately that these images satisfy the given equations. Conversely,
let (fw, fx, fy, fz) ∈ S4

Q satisfy the equations. This leads to

(fw, fx, fy, fz) =fz(1, 1, 1, 1) + (fw − fz, fx − fz, fy − fz, 0)

=fz(1, 1, 1, 1) + fy − fz
α

(α, 0, α, 0) + (fw − fy, fx − fz, 0, 0)

=fz(1, 1, 1, 1) + fy − fz
α

(α, 0, α, 0) + fx − fz
α

(α, α, 0, 0)

+ (fw − fx − fy + fz, 0, 0, 0)

=fz(1, 1, 1, 1) + fy − fz
α

(α, 0, α, 0) + fx − fz
α

(α, α, 0, 0)

+ fw − fx − fy + fz
α2 (α2, 0, 0, 0)

which completes the case of F0.
We continue with the case Fn from Example 3.9 (v). The class [Fn] ∈ CH∗D(Fn)Q is

again mapped to (1, 1, 1, 1).
Next, we compute the remaining pullbacks of the closures of the Bialynicki-Birula

cells. For chosen coordinates [x0 : x1 : y0 : ... : yn+1] we choose the open affine D-stable
neighbourhood Uw = {y0 6= 0} of the point

w = vn+1 = [0 : 0 : 1 : 0 : ... : 0] ∈ P(V1 ⊕ Vn+1)

in the surface Fn. The induced D-action on Uw is given by (t−nx0/y0, t
−2y1/y0) and

therefore, D acts linearly on Uw with weights −nα/2 and −α. Hence, we choose
f(x0/y0, y1/y0) = y1/y0 to be an eigenfunction of D with respect to weight α. By
the relations of the coordinates in Fn we obtain div(f) = (wx) ∩ Uw with the notations
of the D-fixed points from Example 3.9 (v). As above, we get i∗w[(wx) ∩ Uw] = α. We
remark here that one could have chosen different coordinates for the D-stable affine
neighbourhood Uw and would obtain the same pullback since the div(f) would contain
multiplicities due to the relations in the coordinates of Fn. For the point x = [1 : 0 : ... : 0]
and a D-stable neighbourhood Ux we choose the eigenfunction f(x1/x0, y0/x0) = x1/x0
of D with respect to weight α which leads to i∗x[(wx) ∩ Ux] = α.
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For the pullback of (xy) let Ux be given by coordinates (y0/x0, x1/x0) and take the
eigenfunction f(y0/x0, x1/x0) = y0/x0 of weight−nα/2 which leads to div(f) = (xy)∩Ux
and therefore to i∗x[(xy) ∩ Ux] = −nα/2. For the coordinates (x0/x1, yn+1/x1) for Uy
and the eigenfunction f(x0/x1, yn+1/x1) = yn+1/x1 we get div(f) = (xy)∩Uy and hence
i∗y[(xy) ∩ Uy] = nα/2.

Now, we consider the pullback of the point w again by introducing an eigenfunction
on (wx)∩Uw. Therefore, we choose g(x0/y0, y1/y0) = x0/y0 which is an eigenfunction of
weight nα/2. This leads to div(wx)∩Uw(g) = (wz) ∩ (wx) ∩ Uw = w and thus, we obtain
[w] = nα/2[(wx)∩Uw] in CH∗D(Uw)Q again by [7, Theorem 2.1]. As above, we conclude
[w] = nα/2 · α[Uw] and therefore also i∗w[w] = nα/2 · α = nα2/2. We obtain the images

i∗ : CH∗D(Fn)Q → S4
Q maps

[Fn] 7→ (1, 1, 1, 1)
[(wx)] 7→ (α, α, 0, 0)
[(xy)] 7→ (0,−nα/2, nα/2, 0)

[w] 7→ (nα2/2, 0, 0, 0).

which satisfy the given equations and generate the whole image of i∗. Conversely, let
(fw, fx, fy, fz) ∈ S4

Q be an element fulfulling the conditions. This leads to

(fw, fx, fy, fz) =fz(1, 1, 1, 1) + (fy − fz)
nα/2 (0,−nα/2, nα/2, 0)

+ fy − 2fz + fx
α

(α, α, 0, 0)

+ fw − fx − fy + fz
nα2/2 (nα2/2, 0, 0, 0)

which completes the proof.

Now, we present a well known fact for which a reference could not be found.

Lemma 4.8. Let X be a spherical G-variety where T is a maximal torus. Then X has
only finitely many T -fixed points.

Proof. It is known that any spherical G-variety has only finitely many G-orbits. There-
fore, X =

⋃
G · x for finitely many x ∈ X. If there is a T -fixed point x0 ∈ X, then

G ·x0 has finitely many T -fixed points by [10, Lemma 2.2]. So if there is a T -fixed point
in any of the G-orbits G · x, this implies that there are finitely many T -fixed points in
this given orbit. Otherwise, the G-orbit G · x does not have any T -fixed point. There-
fore, any G-orbit G · x can have at most finitely many T -fixed points which implies the
statement.

Remark 4.9. By the Borel fixed point theorem [4, Theorem 10.4] we know that the
fixed point subscheme XT must be non-empty in case X is complete.
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Proposition 4.10. [7, Theorem 7.3] For any smooth projective spherical G-variety X,
the pullback map

i∗ : CH∗T (X)Q → CH∗T (XT )Q

is injective. Moreover, the image of i∗ consists of all families (fx)x∈XT such that

(i) fx ≡ fy mod χ whenever x and y are connected by a T -stable curve where T acts
through the weight χ.

(ii) fx − 2fy + fz ≡ 0 mod α2 whenever α is a positive root of G relative to T , x, y
and z lie in a connected component of XKer(α)0 isomorphic to P2 and x ≥ y ≥ z
are ordered by their corresponding weights.

(iii) fw − fx − fy + fz ≡ 0 mod α2 whenever α is a positive root of G relative to T ,
w, x, y and z lie in a connected component of XKer(α)0 isomorphic to a rational
ruled surface and w ≥ x ≥ y ≥ z are ordered by their corresponding weights.

Proof. This result is an immediate consequence of Propositions 3.17, 3.16, 4.3 and 4.6.
Concretely, Proposition 3.16 ensures injectivity whereas Proposition 4.3 classifies the
components of fixed point subschemes XT ′ for subtori T ′ of codimension one in T .
Furthermore, the results of Proposition 3.21 and Proposition 4.6 describe how these
components behave under the pullback map i∗ which is needed in order to apply Propo-
sition 3.17. Since we compute the pullbacks with rational coefficients the proof of the
latter result can be adapted to any positive root α of G relative to T which leads to
a singular codimension one subtorus T ′ = Ker(α)0. For a regular subtorus we know
from Proposition 4.3 that dimXT ′ ≤ 1 holds and each irreducible component of XT ′

is a spherical T -variety and therefore, each irreducible component of XT ′ contains only
finitely many one-dimensional T -orbits and consequently, only finitely many T -stable
curves. The fixed point subscheme XT ′ is noetherian as a finite type scheme over a
noetherian base scheme which implies that it has only finitely many irreducible com-
ponents. We can now conclude that XT ′ contains only finitely many T -stable curves.
Furthermore, XT ′ has only finitely many T -fixed points by Lemma 4.8. Thus, since XT ′

is smooth by [7, Theorem 3.1], we can apply Proposition 3.21 to XT ′ in order to obtain
the image of i∗T ′ : CH∗T (XT ′)Q → CH∗T (XT )Q which coincides with condition (i) of the
proposition.

For the cases (ii) and (iii) which cover the singular subtori T ′ of codimension one
in T we use Remark 4.2 in order to compute CH∗T (XT ′)Q which we need by Propo-
sition 3.17. More precisely, we consider the module CH∗T (XT ′)Q which is isomorphic
to CH∗T/F (α)(XT ′)Q by [7, Theorem 2.1] which gives us the corresponding generators
and relations with the notations from Remark 4.2. In this case, one has to take into
consideration that we consider rational coefficients and therefore, both modules are in
fact modules over the same polynomial ring Q[α1, ..., αn] ∼= Q[β1, ..., βn] by Lemma 3.36
where

αi


t1

t2
. . .

tn

 = t2i

and 2βi = αi are given as above. Thus, we conclude CH∗T (XT ′)Q ∼= CH∗T/F (α)(XT ′)Q.
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This leads to

CH∗T (XT ′)Q ∼= CH∗T/F (α)(X
T ′)Q

∼= CH∗(T ′×Sm(α))/(F (α)×F (α))(X
T ′)Q

∼= CH∗T ′×Sm(α)(X
T ′)Q

∼= CH∗((Spec k × U2 ×XT ′ × U1)/(T ′ × Sm(α)))Q
∼= CH∗((Spec k × U2)/T ′ × (XT ′ × U1)/(Sm(α)))Q
∼= CH∗T ′(Spec k)Q ⊗Q CH∗Sm(α)(X

T ′)Q

by a special case of the Künneth formula for Chow groups where U1 and U2 are the
corresponding parts of the good pairs (V1, U1) and (V2, U2) for Sm(α) and T ′ respectively.
This reduces the computations to the setting of Proposition 4.6 by the construction of
the subtorus T ′ and the corresponding Sm(α) in Remark 4.2. Lastly, it is enough to
reduce to the setting of SL2 as in Proposition 4.6 because the rational equivariant Chow
group of X for the torus of PSL2 is the same as the one for the torus of SL2 by [7,
Theorem 2.1] since the generators and relations are the same in both cases.

Remark 4.11. As already used in the above proof, [7, Theorem 2.1] implies that when-
ever a torus T acts on a variety X and the action factors through a quotient T/F where
F acts trivially on X we obtain the same rational equivariant Chow groups. The same
holds of course if we extend the action from T/F to T with a trivial action of F . The
latter occurs for the group PSL2 as we can extend the action to SL2 where {Id,− Id} act
trivially on X. Using [12, Proposition 6], this implies for example that for those actions
the rational equivariant Chow groups CH∗SL2(X)Q ∼= CH∗PSL2(X)Q are isomorphic since
SL2 and PSL2 have the same Weyl group with respect to their maximal tori.

Remark 4.12. If one computes the rational Chow ring of the smooth projective horo-
spherical G2-variety X of Picard number one (cf. Proposition 5.15) using Proposition
4.10 and the forgetful map to ordinary rational Chow rings, there is no obvious isomor-
phism to the description of the rational Chow ring of X which was recently presented
in [45, Section 3]. The latter gives an explicit description of CH∗(X)Q in terms of two
generators and two relations.

4.2 Equivariant cobordism of spherical varieties

In this section, we let G be a connected reductive algebraic group, T a maximal torus
and X a smooth projective spherical G-variety. The goal of this section is to generalise
the presentations of the rational equivariant Chow rings of smooth projective spherical
G-varieties (cf. [7, Theorem 7.3]) to rational equivariant algebraic cobordism. In order
to be able to generalise those, we need to compute the equivariant algebraic cobordism
of the projective plane and the Hirzebruch surfaces as required by Proposition 4.3 and
Proposition 3.51. Using notation as in Proposition 3.52, we can now formulate the main
result of this section which is the analogue of [7, Theorem 7.3] and which will be proved
later on in this section. We remark that the ordering of the T -fixed points in P2 and Fn,
n ≥ 0, which is used in the upcoming theorem, is discussed in Section 4.1.
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Theorem 4.13. For any smooth projective and spherical G-variety X, the pullback map

i∗ : Ω∗T (X)Q → Ω∗T (XT )Q

is injective. Moreover, the image of i∗ consists of all families (fx)x∈XT such that

(i) fx ≡ fy mod cT1 (Lχ) whenever x and y are connected by a T -stable curve where T
acts through the weight χ.

(ii) (fx− fy) + ρ1/2c
T
1 (Lα)(fz − fx) ≡ 0 mod cT1 (Lα)2 whenever α is a positive root of

G relative to T , x, y and z lie in a connected component of XKer(α)0 isomorphic to
a projective plane P2 and x ≥ y ≥ z are ordered by their corresponding weights.

(iii) fw − fx − fy + fz ≡ 0 mod cT1 (Lα)2 whenever α is a positive root of G relative
to T , w, x, y and z lie in a connected component of XKer(α)0 isomorphic to F0 and
w ≥ x, y ≥ z are ordered by their corresponding weights.

(iv) ρ−n/2cT1 (Lα)(fy − fz) + ρn/2c
T
1 (Lα)(fw − fx) ≡ 0 mod cT1 (Lα)2 whenever α is a

positive root of G relative to T , w, x, y and z lie in a connected component of
XKer(α)0 isomorphic to a rational ruled surface Fn, n ≥ 1, and w ≥ x ≥ y ≥ z are
ordered by their corresponding weights.

Remark 4.14. We will see later in the proof that condition (i) in the preceding theorem
comes from Proposition 3.52. Further, the formulation of the equations in the conditions
(ii) and (iv) slightly differs from the one in Brion’s description. We need to introduce the
terms ρn/2, n ∈ Z\{0}, from Definition 3.35 because of the universal formal group law in
cobordism. Moreover, we have to distinguish between the cases F0 and Fn, n ≥ 1, again
due to the universal formal group law. In the case of a smooth projective spherical G-
variety X, the theorem is a generalisation of Proposition 3.52 because the cases (ii)-(iv)
do not occur if the variety has only finitely many T -stable curves.

In the sequel, we will show that information concerning the formal group law gets
lost if one tries to generalise the known results regarding rational T -equivariant Chow
groups from Section 4.1 to a finer theory in a primitive way.

Construction 4.15. In the preceding section, we described the relation between equiv-
ariant Chow groups and equivariant algebraic cobordism and we have seen that the map
Ω∗T (X)→ CH∗T (X) coming from the universality of ordinary algebraic cobordism is sur-
jective for any k-scheme X with a T -action. With the results of Section 3.5 and Section
4.1 and the notations from these sections we are left with computing the image of the
two pullbacks

i∗ : Ω∗T (Fn)Q → S(T )4
Q

and

i∗ : Ω∗T (P(V ))Q → S(T )3
Q.

This observation mainly relies on the Proposition 4.3 and 3.51. Here we remark that the
assumption in Proposition 3.51 of having finitely many T -fixed points will not affect our
result since we only consider spherical varieties which always have finitely many T -fixed
points by Lemma 4.8.
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First, one could think of the following commutative diagram for the case P(V ) for
V = k3 and i : P(V )T → P(V )

Ω∗T (P(V ))Q Ω∗T (P(V )T )Q ∼= (L[[t1, ..., tn]]gr)3
Q

CH∗T (P(V ))Q CH∗T (P(V )T )Q ∼= Z[t1, ..., tn]3Q

i∗

ΦP(V ) ΦP(V )T

i∗

where ΦX are the induced maps coming from the morphism of oriented cohomology
theories θ : Ω∗ → CH∗ as in Proposition 3.67. As we know that Ω∗T (P(V )) is generated by
the T -stable cobordism cycles in Ω∗(P(V )) by [31, Corollary 4.8], we need to compute the
images of the fundamental classes of the cobordism cycles [P(V )→ P(V )], [(yz)→ P(V )],
and [z → P(V )] where we keep the same notation as in Section 4.1. Furthermore,
we know that the map ΦP(V )T is given by killing the ideal L<0. Therefore, the class
α := i∗[(yz)] ∈ CH∗T (P(V )T )Q comes from an element α + l where l ∈ L<0. Thus, the
fundamental class of the cobordism cycle [(yz)→ P(V )] in Ω∗T (P(V ))Q must be mapped
to α+ l for some l ∈ L<0. Now, we see that we can determine the image of i∗ up to an
element l ∈ L<0, but unfortunately this element contains all the information about the
formal group law and therefore, we lose a lot of information if we can only determine the
image up to this element l. In order to be able to determine the image of i∗ properly, we
need a different approach, but nevertheless this construction gives us an intuitive way of
thinking about the difference between the two given equivariant cohomology theories.

Now, we want to prove Proposition 4.6 for equivariant algebraic cobordism. There-
fore, we use the notations from Section 4.1. Recall that we consider the two cases P(V )
for a non-trivial SL2-module V of dimension three which have three D-fixed points where
D denotes the maximal torus of SL2 with positive root α. Furthermore, we consider the
Hirzebruch surfaces Fn containing four D-fixed points which have been described pre-
cisely in Example 3.9 (v).

Proposition 4.16. Let X be a Hirzebruch surface Fn or a projective plane P(V ).

(i) The image of the pullback

i∗ : Ω∗D(Fn)Q → S(D)4
Q

consists of all (fw, fx, fy, fz) ∈ S(D)4
Q such that

fw ≡ fx ≡ fy ≡ fz mod cD1 (Lα) and (4.1)
fw − fx − fy + fz ≡ 0 mod cD1 (Lα)2 (4.2)

hold for n = 0 and of all (fw, fx, fy, fz) ∈ S(D)4
Q such that

fw ≡ fx ≡ fy ≡ fz mod cD1 (Lα) and (4.3)
ρ−n/2c

D
1 (Lα)(fy − fz) + ρn/2c

D
1 (Lα)(fw − fx) ≡ 0 mod cD1 (Lα)2 (4.4)

hold for n ≥ 1.
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4.2 Equivariant cobordism of spherical varieties

(ii) The image of the pullback

i∗ : Ω∗D(P(V ))Q → S(D)3
Q

consists of all (fx, fy, fz) such that

fx ≡ fy ≡ fz mod cD1 (Lα) and (4.5)
(fx − fy) + ρ1/2c

D
1 (Lα)(fz − fx) ≡ 0 mod cD1 (Lα)2 (4.6)

hold.
Remark 4.17. Following the Chow group case, we state one more equation than we will
need for the proof in each of the cases because of the symmetry in the arguments which
makes the proposition comparable to the Chow group case. For example, in the Fn case
we could remove the equation fw ≡ fx mod cD1 (Lα). As above, the last equation follows
from the other ones in each of the cases.
Proof. We first consider the case of P(V ) for V = V0 ⊕ V1. Since i∗ is a ring homomor-
phism, the class [P(V ) → P(V )] maps to (1, 1, 1). We remark that the closures of the
Bialynicki-Birula cells are smooth in the case of the projective plane and the Hirzebruch
surfaces. Now, we compute the images of the closures of the Bialynicki-Birula cells,
i.e. the images of the equivariant fundamental classes of the D-stable cobordism cycles
[(yz)→ P(V )] and [z → P(V )] because these images generate the equivariant cobordism
ring of P(V ) as a subalgebra of S(D)3

Q (cf. [31, Corollary 4.8]). We have a look at the
pullback

i∗[Y → P(V )] = (i∗x[Y → P(V )], i∗y[Y → P(V )], i∗z[Y → P(V )])

where i∗x[Y → P(V )] denotes the pullback of any class [Y → P(V )] under the inclusion ix
of the corresponding fixed point in P(V ). To compute i∗z[Y → P(V )] we can replace P(V )
by any open D-stable neighbourhood Uz of z. In this case we choose Uz to be the affine
chart of P(V ) in which the coordinate associated to z does not vanish. We introduce
the coordinates a, b and c for V such that our coordinates for Uz become a/c and b/c.
Therefore, D acts linearly on Uz with weights α and α/2. We choose f(a/c, b/c) = a/c
which is an eigenfunction of D with respect to weight −α. In this situation, we can
apply Corollary 3.40 because f gives rise to the global section

s : (Uz × Uj × Uj)/T → (Uz × Uj × Uj × L−α)/T,
(a/c, b/c, u1, u2) 7→ (a/c, b/c, u1, u2, f(a/c, b/c))

which is transverse to the zero section with zero-subscheme Z0 = (yz) ∩ Uz. Thus, we
know that

[(yz) ∩ Uz → Uz] = cD1 (L−α)[Spec k → Spec k] · [Uz → Uz]

holds in Ω∗D(Uz)Q. Pulling back to Ω∗D(z)Q yields i∗z[(yz) ∩ Uz → Uz] = cD1 (L−α). We
can apply the same argument for the pullback i∗y[(yz)→ P(V )] by choosing Uy to be the
open affine neighbourhood of y such that the coordinate associated to y does not vanish.
Thus, D acts linearly on Uy with weights α/2 and −α/2. We take f(a/b, c/b) = a/b
which is an eigenfunction of D with respect to weight −α/2. Therefore, we conclude
i∗y[(yz) ∩ Uy] = cD1 (L−α/2) by the same argument as above.
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Finally, we consider the last closure of the Bialynicki-Birula cells, i.e. the point z.
Clearly, z is the complete intersection of the two lines (yz) and (xz). Therefore, we want
to compute the pullback of [(xz) ∩ (yz) ∩ Uz → Uz] = [z → Uz]. We want to apply the
same argument again using the relation

cD1 (L−α/2) · [(yz) ∩ Uz → Uz] = [(xz) ∩ (yz) ∩ Uz → Uz] = [z → Uz]

from Corollary 3.40 where z = (xz) ∩ (yz) ∩ Uz is the zero-subscheme of the section
defined by the eigenfunction g(a/c, b/c) = b/c of D with respect to weight −α/2 on
(yz) ∩ Uz. Using the equality i∗z[(yz) ∩ Uz → Uz] = cD1 (L−α), we obtain the pullback

i∗z[z → Uz] = cD1 (L−α/2) · i∗z[(yz) ∩ Uz → Uz] = cD1 (L−α/2) · cD1 (L−α)

in Ω∗D(z)Q. The images of the D-stable cobordism cycles coming from the closures of the
Bialynicki-Birula decomposition generate the equivariant cobordism ring by [31, Corol-
lary 4.8]. Therefore, the image of the pullback i∗ : Ω∗D(P(V ))Q → S(D)3

Q is generated
by the images

[P(V )→ P(V )] 7→ (1, 1, 1)
[(yz)→ P(V )] 7→ (0, cD1 (L−α/2), cD1 (L−α))

[z → P(V )] 7→ (0, 0, cD1 (L−α/2)cD1 (L−α)).

These images satisfy the equations (4.5) and (4.6) which can be seen by expressing
cD1 (Lα/2) as a formal power series in the variable cD1 (Lα) with rational coefficients. For
the following computation and similar ones upcoming in the sequel of this proof, we
remark that any element which is divisible by cD1 (Lα) will also be divisible by cD1 (Lnα/m)
for n ∈ Z \ {0} and m ∈ Z≥1 because we can again express the former Chern class in
terms of the latter one and factor out. Therefore, for an element (fx, fy, fz) ∈ S(T )3

Q
satisfying the given equations we have

(fx, fy, fz) =fx(1, 1, 1) + (0, fy − fx, fz − fx)

=fx(1, 1, 1) + fy − fx
cD1 (L−α/2)

(
0, cD1 (L−α/2), cD1 (L−α)

)
+
(

0, 0, (fx − fy)
cD1 (L−α)
cD1 (L−α/2)

+ fz − fx

)

=fx(1, 1, 1) + fy − fx
cD1 (L−α/2)

(
0, cD1 (L−α/2), cD1 (L−α)

)
+
(

0, 0, cD1 (L−α/2)cD1 (L−α)
(

(fx − fy)cD1 (L−α) + cD1 (L−α/2)(fz − fx)
cD1 (L−α/2)2cD1 (L−α)

))

=fx(1, 1, 1) + fy − fx
cD1 (L−α/2)

(
0, cD1 (L−α/2), cD1 (L−α)

)
+

(fx − fy)cD1 (L−α) + cD1 (L−α/2)(fz − fx)
cD1 (L−α/2)2cD1 (L−α)

(
0, 0, cD1 (L−α/2)cD1 (L−α)

)
which completes the proof in the case V = V0 ⊕ V1.
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The computation for V = V2 can be done similarly. We get

i∗ : Ω∗D(P(V ))Q → S(D)3
Q

[P(V )→ P(V )] 7→ (1, 1, 1)

[(yz)→ P(V )] 7→
(
0, cD1 (L−α), cD1 (L−2α)

)
[z → P(V )] 7→

(
0, 0, cD1 (L−α)cD1 (L−2α)

)
which satisfy the given equations using the properties of the formal group law. Again,
we obtain

(fx, fy, fz) =fx(1, 1, 1) + (0, fy − fx, fz − fx)

=fx(1, 1, 1) + fy − fx
cD1 (L−α)

(
0, cD1 (L−α), cD1 (L−2α)

)
+
(

0, 0, (fx − fy)
cD1 (L−2α)
cD1 (L−α)

+ fz − fx

)

=fx(1, 1, 1) + fy − fx
cD1 (L−α)

(
0, cD1 (L−α), cD1 (L−2α)

)
+
(

0, 0, cD1 (L−α)cD1 (L−2α)
(

(fx − fy)cD1 (L−2α) + cD1 (L−α)(fz − fx)
cD1 (L−α)2cD1 (L−2α)

))

=fx(1, 1, 1) + fy − fx
cD1 (L−α)

(
0, cD1 (L−α), cD1 (L−2α)

)
+ (fx − fy)cD1 (L−2α) + cD1 (L−α)(fz − fx)

cD1 (L−α)2cD1 (L−2α)

(
0, 0, cD1 (L−α)cD1 (L−2α)

)
which completes the proof for V = V2 since the last coefficient is well-defined using the
properties of the formal group law and the equations (4.5) and (4.6). More precisely,
the quotient cD1 (L−α)/cD1 (L−2α) has the same coefficients as ρ1/2c

D
1 (Lα) and the only

difference will be the variable cD1 (L−2α) in the first quotient as opposed to cD1 (Lα) in
the second one. As we consider the reduction modulo cD1 (Lα)2, we only need to take the
first two summands of cD1 (L−α)/cD1 (L−2α) into account. Therefore, cD1 (L−α)/cD1 (L−2α)
differs from ρ1/2c

D
1 (Lα) only by a factor of −2 in the second summand. We consider the

difference

cD1 (L−α)
cD1 (L−2α)

(fz − fx)− ρ1/2c
D
1 (Lα)(fz − fx)

which is a product containing a factor cD1 (Lα)(fz − fx). This implies that the above
difference vanishes modulo cD1 (Lα)2 because of the equation (4.5) and thus, we reduced
the coefficient to the known equation (fx− fy) + ρ1/2c

D
1 (Lα)(fz − fx) which finishes the

argument.
Next, we consider the case F0 = P1 × P1 for which we choose Uw to be an open

D-stable neighbourhood of w = ([1 : 0], [1 : 0]). We get (t−2b/a, t−2v/u) for coordinates
([a : b], [u : v]) which implies that D acts linearly on Uw with weight −α. The class
[F0] ∈ Ω∗D(F0)Q again maps to (1, 1, 1, 1) and we want to compute the remaining images
of the closures of the Bialynicki-Birula cells.

Therefore, we take the closure (wx) of one of the remaining Bialynicki-Birula cells.
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We choose f(b/a, v/u) = b/a to be an eigenfunction of D with respect to weight α. By
Corollary 3.40 we obtain

[(wx) ∩ Uw → Uw] = cD1 (Lα)[Spec k → Spec k] · [Uw → Uw]

in Ω∗D(Uw)Q. Pulling this relation back yields i∗w[(wx) ∩ Uw → Uw] = cD1 (Lα). With
the eigenfunction f(b/a, u/v) = b/a and an open D-stable neighbourhood Ux of the
fixed point x we obtain i∗x[(wx) ∩ Ux → Ux] = cD1 (Lα). For the pullbacks of (wy) we
take the eigenfunction f(b/a, v/u) = v/u of D with respect to weight α on the open
D-stable Uw from above, but in this case we have V (f) = (wy) ∩ Uw and therefore,
i∗w[(wy) ∩ Uw → Uw] = cD1 (Lα). Similarly, we obtain i∗y[(wy) ∩ Uy → Uy] = cD1 (Lα).

Lastly, we consider the pullback of the point w which is again the complete intersec-
tion of (wy) and (wx). By the same argument as in the above cases, we get

i∗w[w → Uw] = i∗w[(wx) ∩ (wy) ∩ Uw → Uw]
= cD1 (Lα) · i∗w[(wy) ∩ Uw → Uw]
= cD1 (Lα)2

whereas the other pullbacks of the class of the point w vanish. We summarise that the
image of i∗ is determined by the image of the basis, displayed below

i∗ : Ω∗D(F0)Q → S(D)4
Q

[F0 → F0] 7→ (1, 1, 1, 1)
[(wx)→ F0] 7→ (cD1 (Lα), cD1 (Lα), 0, 0)
[(wy)→ F0] 7→ (cD1 (Lα), 0, cD1 (Lα), 0)

[w → F0] 7→ (cD1 (Lα)2, 0, 0, 0).

which satisfies the equations (4.1) and (4.2).

Conversely, for an element (fw, fx, fy, fz) ∈ S(T )4
Q fulfilling the conditions, we have

(fw, fx, fy, fz) =fz(1, 1, 1, 1) + (fw − fz, fx − fz, fy − fz, 0)

=fz(1, 1, 1, 1) + fy − fz
cD1 (Lα)

(
cD1 (Lα), 0, cD1 (Lα), 0

)
+ (fw − fy, fx − fz, 0, 0)

=fz(1, 1, 1, 1) + fy − fz
cD1 (Lα)

(
cD1 (Lα), 0, cD1 (Lα), 0

)
+ fx − fz
cD1 (Lα)

(
cD1 (Lα), cD1 (Lα), 0, 0

)
+ (fw − fx − fy + fz, 0, 0, 0)

=fz(1, 1, 1, 1) + fy − fz
cD1 (Lα)

(
cD1 (Lα), 0, cD1 (Lα), 0

)
+ fx − fz
cD1 (Lα)

(
cD1 (Lα), cD1 (Lα), 0, 0

)
+ fw − fx − fy + fz

cD1 (Lα)2

(
cD1 (Lα)2, 0, 0, 0

)
which completes the proof for the case of F0.
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In the following, we consider the case Fn for n ≥ 1. The class [Fn] ∈ Ω∗D(Fn)Q is
again mapped to (1, 1, 1, 1).

Now, we compute the remaining pullbacks of the closures of the Bialynicki-Birula
cells. Following the strategy from above, we choose again an open D-stable neighbour-
hood Uw of the D-fixed point w = [0 : 0 : 1 : 0 : ... : 0]. The induced D-action on Uw is
given by (t−nx0/y0, t

−2y1/y0) for coordinates [x0 : x1 : y0 : y1 : ... : yn+1] and therefore,
D acts linearly on Uw with weights −nα/2 and −α. We choose f(x0/y0, y1/y0) = y1/y0
to be an eigenfunction of D with respect to weight α. By the relations on the coordinates
in Fn we obtain V (f) = (wx) ∩ Uw with the given notations of the D-fixed points. As
above, we get i∗w[(wx) ∩ Uw → Uw] = cD1 (Lα). One may observe that the pullback does
not depend on the choice of coordinates for Uw. For the point x = [1 : 0 : ... : 0] and a
D-stable neighbourhood Ux we choose the eigenfunction f(x1/x0, y1/x0) = x1/x0 of D
with respect to weight α which leads to i∗x[(wx) ∩ Ux → Ux] = cD1 (Lα).

For the pullback of (xy) let Ux be given by coordinates (y0/x0, x1/x0) and take the
eigenfunction f(y0/x0, x1/x0) = y0/x0 of weight −nα/2 which leads to V (f) = (xy)∩Ux
and therefore to i∗x[(xy)∩Ux → Ux] = cD1 (L−nα/2). For the coordinates (y0/x1, yn+1/x1)
for Uy and the eigenfunction f(y0/x1, yn+1/x1) = yn+1/x1 we get V (f) = (xy)∩Uy and
hence i∗y[(xy) ∩ Uy → Uy] = cD1 (Lnα/2).

Finally, we consider the pullback of the point w by introducing an eigenfunction on
(wx)∩Uw. We choose g(x0/y0, y1/y0) = x0/y0 which is an eigenfunction of weight nα/2.
This leads to V (g) = (wz) ∩ (wx) ∩ Uw = w and thus, we obtain

[w → Uw] = cD1 (Lnα/2)[(wx) ∩ Uw → Uw]

in Ω∗D(Uw)Q, again by Corollary 3.40.
We conclude i∗w[w → Uw] = cD1 (Lnα/2)cD1 (Lα) and obtain the image

i∗ : Ω∗D(Fn)Q → S(D)4
Q

[Fn → Fn] 7→ (1, 1, 1, 1)

[(wx)→ Fn] 7→
(
cD1 (Lα), cD1 (Lα), 0, 0

)
[(xy)→ Fn] 7→

(
0, cD1 (L−nα/2), cD1 (Lnα/2), 0

)
[w → Fn] 7→

(
cD1 (Lα)cD1 (Lnα/2), 0, 0, 0

)
which satisfies the equations (4.3) and (4.4).

Conversely, let (fw, fx, fy, fz) ∈ S(T )4
Q be an element fulfilling these equations. This

leads to

(fw, fx, fy, fz) = fz(1, 1, 1, 1) + (fw − fz, fx − fz, fy − fz, 0)

=fz(1, 1, 1, 1) + fy − fz
cD1 (Lnα/2)

(
0, cD1 (L−nα/2), cD1 (Lnα/2), 0

)
+
(
fw − fz,

(fz − fy)cD1 (L−nα/2)
cD1 (Lnα/2)

+ fx − fz, 0, 0
)

=fz(1, 1, 1, 1) + fy − fz
cD1 (Lnα/2)

(
0, cD1 (L−nα/2), cD1 (Lnα/2), 0

)
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+
(

(fz − fy)cD1 (L−nα/2) + (fx − fz)cD1 (Lnα/2)
cD1 (Lnα/2)cD1 (Lα)

)(
cD1 (Lα), cD1 (Lα), 0, 0

)
+
(

(fy − fz)cD1 (L−nα/2) + (fw − fx)cD1 (Lnα/2)
cD1 (Lnα/2)

, 0, 0, 0
)

=fz(1, 1, 1, 1) + fy − fz
cD1 (Lnα/2)

(
0, cD1 (L−nα/2), cD1 (Lnα/2), 0

)
+
(

(fz − fy)cD1 (L−nα/2) + (fx − fz)cD1 (Lnα/2)
cD1 (Lnα/2)cD1 (Lα)

)(
cD1 (Lα), cD1 (Lα), 0, 0

)
+
(

(fy − fz)cD1 (L−nα/2) + cD1 (Lnα/2)(fw − fx)
cD1 (Lnα/2)2cD1 (Lα)

)(
cD1 (Lα)cD1 (Lnα/2), 0, 0, 0

)
which completes the proof in the case Fn because of the equations (4.3) and (4.4), and the
above mentioned fact that an element which is divisible by cD1 (Lα) will also be divisible
by cD1 (Lnα/m) for n ∈ Z \ {0} and m ∈ Z≥1 since we consider rational coefficients.

Remark 4.18. The equations given in Proposition 4.16 reduce to the equations given
in Proposition 4.6 for rational equivariant Chow rings. In order to be able to compute
rational equivariant cobordism rings one has to consider the universal formal group law
and not the additive formal group law which simplifies the computations in the Chow
group case.

Lemma 4.19. The product of projective spaces is cellular.

Proof. The product of projective spaces is projective by the Segre embedding and smooth
since the product of smooth schemes is smooth. By Proposition 3.7 any smooth pro-
jective scheme is T -filtrable. By Lemma 4.8 the product of projective spaces has only
finitely many T -fixed points. Therefore, by Definition 3.5, we know that it is the union
of its plus strata which in this case are affine spaces.

Next, we want to prove Theorem 4.13 from the beginning of this section which is
a refinement of [7, Theorem 7.3]. One way to prove it would be to use an analogue
of [7, Theorem 2.1] for equivariant algebraic cobordism which is not known at present.
Luckily, we do not need such a deep result in order to be able to prove Theorem 4.13.
In our situation it will be enough to use some known results on T -filtrable varieties and
their equivariant algebraic cobordism rings.

Proof of Theorem 4.13. In order to compute the ring structure of Ω∗T (X)Q we need to
apply Proposition 3.51 to the given variety X. Due to Proposition 4.3 we know which
fixed point subschemesXT ′ can occur and therefore, we distinguish between codimension
one subtori T ′ with dimXT ′ ≤ 1 and those with dimXT ′ = 2.

Recall that for a subtorus T ′ with dimXT ′ ≤ 1 there are only finitely many T -stable
curves in XT ′ and furthermore, in the setting of a smooth projective spherical G-variety
X, we have only finitely many T -fixed points by [10, Lemma 2.2]. This implies that the
assumptions of Proposition 3.52 are fulfilled and thus, we can apply Proposition 3.52 to
XT ′ which leads to case (i).

Now, we consider the case where dimXT ′ = 2 for which we know that XT ′ is either
a projective plane or a Hirzebruch surface Fn. The T -orbits in XT ′ are always at most
one-dimensional and thus, the surfaces occurring in (ii)-(iv) must consist of infinitely
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many T -stable curves. For these cases we need some different results. We claim that
there is an isomorphism ΩT

∗ (XT ′)Q ∼= ΩT/F (α)
∗ (XT ′)Q where F (α) is given as in Remark

4.2. We will use [31, Theorem 4.7] in order to prove our claim. This theorem states that
we have an isomorphism of S(T )-modules ΩT

∗ (XT ′) ∼= Ω∗(XT ′)[[t1, ..., tr]]gr where r is
the rank of T and ti corresponds to cT1 (Lχi) for a chosen basis of the character group
of T . We remark that XT ′ is also a T/F (α)-filtrable variety as F (α) acts trivially on
XT ′ and therefore, the T -action factors through a T/F (α)-action. As above, we obtain
the isomorphism ΩT/F (α)

∗ (XT ′) ∼= Ω∗(XT ′)[[t1, ..., tr]]gr of S(T/F (α))-modules where ti
here corresponds to c

T/F (α)
1 (Laiχi), but as we are considering rational coefficients we

have S(T )Q ∼= S(T/F (α))Q by Lemma 3.36. This implies the claim and using the same
argument for the torus T ′ × Sm(α), we obtain

ΩT
∗ (XT ′)Q ∼= Ω(T ′×Sm(α))/(F (α)×F (α))

∗ (XT ′)Q
∼=
⊕
i∈Z

ΩT ′×Sm(α)
i (XT ′)Q

∼=
⊕
i∈Z

lim←−
j

Ωi((Spec k × U2
j ×XT ′ × U1

j )/(T ′ × Sm(α)))Q

∼=
⊕
i∈Z

lim←−
j

Ωi((Spec k × U2
j )/T ′ × (XT ′ × U1

j )/Sm(α))Q

∼=
⊕
i∈Z

lim←−
j

⊕
i1+i2=i

Ωi1((Spec k × U2
j )/T ′)Q ⊗LQ Ωi2((XT ′ × U1

j )/Sm(α))Q

∼=
⊕
i∈Z

⊕
i1+i2=i

lim←−
j

Ωi1((Spec k × U2
j )/T ′)Q ⊗LQ Ωi2((XT ′ × U1

j )/Sm(α))Q

∼=
⊕
i∈Z

⊕
i1+i2=i

ΩT ′
i1 (Spec k)Q ⊗LQ ΩSm(α)

i2
(XT ′)Q

∼= ΩT ′
∗ (Spec k)Q ⊗LQ ΩSm(α)

∗ (XT ′)Q

where U1
j and U2

j are the parts of the sequences of good pairs {(V 1
j , U

1
j )}j≥0 and

{(V 2
j , U

2
j )}j≥0 for Sm(α) and T ′, respectively. In this case we know that U2

j /T
′ are

products of projective spaces by the choice of good pairs in the proof of [31, Lemma 6.1].
As a product of projective spaces, the U2

j /T
′ are cellular which means that we can use

a special version of a Künneth formula (cf. [20, Proposition 7]) from line 4 to 5. The
ordinary cobordism vanishes for negative degrees and therefore, the inverse limit and
the finite sum commute in our setting. We conclude the proof by Proposition 4.16.

Remark 4.20. Proposition 3.47 leads to an abstract description of the rational ordinary
algebraic cobordism ring of any smooth projective and spherical G-variety X. Using this
result, we would be able to describe Ω∗(X)Q explicitly if we could compute all the classes
in Ω∗T (X)Q. We will come back to this problem in Section 6.

In the remark below, we discuss a result which illustrates the relation between the
rational Chow module and the rational cobordism module. Therefore, we first state a
well known fact about Chow groups.
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Lemma 4.21. [7, Corollary 2.3] Let T be a torus acting on a k-variety X. Then the
forgetful map for Chow groups rTX induces an isomorphism

rTX : CHT
∗ (X)⊗CHT∗ (k) Z

∼=−→ CH∗(X).

If X is smooth, this is an Z-algebra isomorphism.

Remark 4.22. Using the notations from chapter four in [37], we know that there is an
isomorphism (Ω∗)Q ∼= CH∗⊗ZQ[t](t) of oriented Borel-Moore weak homology theories by
[37, Theorem 4.1.28 and Theorem 4.5.1]. We remark that we have A∗(X) = A

(t)
∗ (X) by

[37, Section 4.1.9] for any Borel-Moore weak homology theory A∗. Therefore, we consider
the following diagram for any T -filtrable variety with finitely many T -fixed points

CH∗(X)⊗Z Q⊗Z Z[t] Ω∗(X)⊗Z Q

CHT
∗ (X)⊗CHT∗ (k) Z⊗Z Q[t] ΩT

∗ (X)⊗S(T ) LQ

∼=

∼= ∼=
∼=

which leads to CHT
∗ (X)⊗CHT∗ (k)Q[t] ∼= ΩT

∗ (X)⊗S(T )LQ by Corollary 4.21 and Proposition
3.47.

On the other hand, one has

ΩT
n (X)Q = lim←−

j

(Ωn((X × Uj)/T )Q)

∼= lim←−
j

(CHn((X × Uj)/T )⊗Z Q⊗Z Z[t])

∼= lim←−
j

(CHn((X × Uj)/T )[t]⊗Z Q)

∼= lim←−
j

(CHn((X × Uj)/T )[t])⊗Z Q

∼= CHT
n (X)[t]⊗Z Q

using the above isomorphism and the property that the above limit stabilises for some j.
Therefore, we can omit the limit in the last step. The above shows that one can obtain
the rational T -equivariant cobordism module using some information of the rational T -
equivariant Chow groups via extension of scalars by Z[t]. More details regarding the
precise constructions can be found in [37, Chapter 4].

Remark 4.23. By now we have computed (equivariant) algebraic cobordism with ra-
tional coefficients whereas the group structure is already known by [37, Theorem 4.1.28],
but the latter result does not imply the description of the (equivariant) cobordism rings
with rational coefficients using the one of the (equivariant) Chow rings. We remark that
the results in this section could be proved with the coefficient ring Z[S−1

X ] using the
refined localisation result (cf. Theorem 3.59). This is not quite true because we would
need to possibly invert p = 2 additionally, due to the fact that we use Lemma 3.36 for
a subgroup F which could be of order 2.
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4.3 Equivariant cobordism of odd symplectic Grassmannians

4.3 Equivariant cobordism of odd symplectic Grassmannians

In this section, we will compute several smaller examples in order to be able to
generalise the results for the most general case of the odd symplectic Grassmannians.
We will start with the usual Grassmannian Gr(2, 4).

Example 4.24. Let X = Gr(2, 4) be the Grassmannian of 2-dimensional planes in k4

for an algebraically closed field k of characteristic zero. This is certainly smooth, pro-
jective and spherical and therefore, Theorem 4.13 can be used to describe the structure
of the rational equivariant cobordism ring Ω∗T (Gr(2, 4))Q. As we will see, there are only
finitely many T -stable curves contained in Gr(2, 4) which implies that we will only need
the description given by Proposition 3.52, but nevertheless it will give an intuitive un-
derstanding of how computations can be done using the given result. First, we consider
the natural GL4-action on X induced by the one on k4 which induces the following torus
action 

t1 0 0 0
0 t2 0 0
0 0 t3 0
0 0 0 t4

 ·

a11 a12
a21 a22
a31 a32
a41 a42

 =


t1a11 t1a12
t2a21 t2a22
t3a31 t3a32
t4a41 t4a42

 .
We see that this action has six T -fixed points, namely

x12 = (e1, e2), x13 = (e1, e3), x14 = (e1, e4),
x23 = (e2, e3), x24 = (e2, e4), x34 = (e3, e4)

where ei denotes the i-th basis vector of k4. In order to obtain the singular subtori of
codimension one we need to consider the positive roots of (GLn, T ) which are given by

(εi − εj)


t1 0 0 0
0 t2 0 0
0 0 t3 0
0 0 0 t4

 = tit
−1
j for i < j.

The identity components of the kernels of the εi − εj lead to the singular subtori of
codimension one (cf. Remark 4.2). Next, we consider the fixed point subschemes for
T ′ij := Ker(εi − εj)0. Exemplarily, we analyse it for XT ′12 = XKer(ε1−ε2)0 . We obtain

t2 0 0 0
0 t2 0 0
0 0 t3 0
0 0 0 t4

 ·

a11 a12
a21 a22
a31 a32
a41 a42

 =


t2a11 t2a12
t2a21 t2a22
t3a31 t3a32
t4a41 t4a42


as the induced T ′12-action. Clearly, the six T -fixed points are contained in XT ′12 and
furthermore, the points 

0 a12
0 a22
1 0
0 0

 ,


0 a12
0 a22
0 0
1 0


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in Gr(2, 4). We see that these are 2 T -stable curves and therefore, summarise that XT ′12

consists of these two T -stable curves and the two remaining isolated fixed points. One
can verify that there are 12 T -stable curves of the form as above and two different of
those are each contained in some XKer(εi−εj)0 such that every T -stable curve is contained
in some XKer(εi−εj)0 .

We remark that the regular subtori T ′ are obtained as T ′ = Ker(χ)0 for some primitive
character χ which is not a root (see e.g. [7]). In this particular case one can verify that
we have XT ′ = XT (see also [8, Section 2]) whereas in the general case it might happen
that XT ′ 6= XT , but only for finitely many subtori T ′ = ker(χ)0 which has been proved
by Brion [9, Theorem 1.2]. One also observes that for the singular subtori and their
fixed point subschemes, the kernel of the T -action on the T -stable curves contained in
XKer(εi−εj)0 coincides with the kernel of the positive root εi − εj .

Now, we can apply the localisation theorem and compute the images of the pullback
maps

i∗T ′ij
: Ω∗T (XKer(εi−εj)0)Q → Ω∗T (XT )Q

and take their intersection. As example we consider

i∗T ′12
: Ω∗T (XKer(ε1−ε2)0)Q → Ω∗T (XT )Q

[x12 → XKer(ε1−ε2)0 ] 7→ (1, 0, 0, 0, 0, 0)

[x13 → XKer(ε1−ε2)0 ] 7→ (0, cT1 (Lε1−ε2), 0, 0, 0, 0)

[x14 → XKer(ε1−ε2)0 ] 7→ (0, 0, cT1 (Lε1−ε2), 0, 0, 0)

[x23 → XKer(ε1−ε2)0 ] 7→ (0, 0, 0, cT1 (Lε2−ε1), 0, 0)

[x24 → XKer(ε1−ε2)0 ] 7→ (0, 0, 0, 0, cT1 (Lε2−ε1), 0)

[x34 → XKer(ε1−ε2)0 ] 7→ (0, 0, 0, 0, 0, 1)

[C1323 → XKer(ε1−ε2)0 ] 7→ (0, 1, 0, 1, 0, 0)

[C1424 → XKer(ε1−ε2)0 ] 7→ (0, 0, 1, 0, 1, 0)

using the same technique as in the proof of Proposition 4.16 for Cijkl being the T -stable
curves connecting xij and xkl.

By Proposition 3.52 the intersection of these images and thus, the tuples (f12, ..., f34)
contained in the image of i∗ : Ω∗T (X)Q → Ω∗T (XT )Q can be described by the equations

f13 ≡ f23 mod cT1 (Lε1−ε2), f14 ≡ f24 mod cT1 (Lε1−ε2),
f12 ≡ f23 mod cT1 (Lε1−ε3), f14 ≡ f34 mod cT1 (Lε1−ε3),
f12 ≡ f24 mod cT1 (Lε1−ε4), f13 ≡ f34 mod cT1 (Lε1−ε4),
f12 ≡ f13 mod cT1 (Lε2−ε3), f24 ≡ f34 mod cT1 (Lε2−ε3),
f12 ≡ f14 mod cT1 (Lε2−ε4), f23 ≡ f34 mod cT1 (Lε2−ε4),
f13 ≡ f14 mod cT1 (Lε3−ε4), f23 ≡ f24 mod cT1 (Lε3−ε4).

From these equations it can easily be seen that the image of the fixed point x12 under
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i∗ must be given by

(a · cT1 (Lε1−ε3)cT1 (Lε1−ε4)cT1 (Lε2−ε3)cT1 (Lε2−ε4), 0, ..., 0)

for some a ∈ S(T )Q of degree zero and similarly for the other T -fixed points. Further-
more, the image under i∗ of the T -stable curve C1213 connecting x12 and x13 must be
given by

(acT1 (Lε1−ε3)cT1 (Lε1−ε4)cT1 (Lε2−ε4), bcT1 (Lε1−ε2)cT1 (Lε1−ε4)cT1 (Lε3−ε4), 0, ..., 0)

for some a, b ∈ S(T )Q of degree zero. This method gives the equivariant algebraic
cobordism ring, but we cannot determine in general which class corresponds to which
element in Ω∗T (XT )Q. This gives some constraint on the coefficients, but as mentioned
above, they cannot be determined uniquely by the localisation method. Therefore, we
can obtain certain elements in the subring given by the above equations corresponding
to the geometric elements in Gr(2, 4) up to coefficients. In Section 6, we will come back
to the problem of determining these coefficients precisely.

For the next example we want to recall some definitions which will be necessary in
this specific computation. Therefore, let V be a k-vector space of dimension 2n+ 1 for
n ≥ 2 and ω an antisymmetric form of maximal rank on V .

Definition 4.25. Let ω : V × V → k be an antisymmetric form. We call a subspace
W ⊆ V isotropic if ω(w1, w2) = 0 holds for all w1, w2 ∈W .

Remark 4.26. Every antisymmetric form is represented by an antisymmetric matrix
A via ω(v1, v2) = vT1 Av2. Furthermore, the rank of an antisymmetric matrix of odd
dimension 2n+ 1 is at most 2n.

Definition 4.27. With the notations above, let 2 ≤ m ≤ n be an integer. Then the odd
symplectic Grassmannian with respect to ω is defined by

IGω(m,V ) := {Σ ∈ Gr(m,V ) | Σ is isotropic for ω}.

Remark 4.28. It is well known by [16] that it has an action of the symplectic group

Sp(W ) := {g ∈ GL(W ) | ω(gu, gv) = ω(u, v) ∀u, v ∈W}

where W denotes the complement of the kernel K of the form ω in V . Therefore, ω|W is
a symplectic form. Furthermore, up to isomorphism the odd symplectic Grassmannian
IGω(m,V ) does not depend on the (2n + 1)-dimensional vector space V nor the anti-
symmetric form ω by [46]. Therefore, we denote the odd symplectic Grassmannian by
IG(m, 2n + 1) and similarly, the symplectic group by Sp2n. We know that IG(m,V ) is
horospherical by [43, Proposition 1.12] for the Sp2n-action and corresponds to the triple
(Cn, ωm, ωm−1), i.e. the case (3) of Pasquier’s classification of horospherical varieties
which is described in [43].

Now, we want to have a look at the specific example of IG(2, 5) for which we can use
Theorem 4.13 in order to compute its rational equivariant cobordism ring.
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Example 4.29. Let V = C5 and X = IG(2, 5) be the odd symplectic Grassmannian.
Since X does not depend on the antisymmetric form we consider the one given by

ω : V × V → C,




a1
a2
a3
a4
a5

 ,

b1
b2
b3
b4
b5



 7→

a1
a2
a3
a4
a5


T 

0 0 0 0 −1
0 0 0 −1 0
0 0 0 0 0
0 1 0 0 0
1 0 0 0 0




b1
b2
b3
b4
b5

 .

Therefore, we have

ω




a1
a2
a3
a4
a5

 ,

b1
b2
b3
b4
b5



 = a5b1 + a4b2 − a2b4 − a1b5.

Using the condition

a5b1 + a4b2 − a2b4 − a1b5 = 0,

we can easily verify whether an element in Gr(2, 5) also lies in IG(2, 5).

Next, we will consider the group action of Sp4 on IG(2, 5). First, we determine the
torus of Sp4. In order to do so, we consider the torus action induced by the GL5-action
which is given by 

t1 0 0 0 0
0 t2 0 0 0
0 0 1 0 0
0 0 0 t4 0
0 0 0 0 t5




a1 b1
a2 b2
a3 b3
a4 b4
a5 b5

 =


t1a1 t1b1
t2a2 t2b2
a3 b3
t4a4 t4b4
t5a5 t5b5

 .

In order to be an action on IG(2, 5), we need

t5t1a5b1 + t4t2a4b2 − t2t4a2b4 − t1t5a1b5 = 0

to hold. This implies t5t1 = t2t4 = 1 in Sp4 and therefore, elements of the torus of Sp4
are of the form 

t1 0 0 0 0
0 t2 0 0 0
0 0 1 0 0
0 0 0 t−1

2 0
0 0 0 0 t−1

1

 .
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This leads to the torus action
t1 0 0 0 0
0 t2 0 0 0
0 0 1 0 0
0 0 0 t−1

2 0
0 0 0 0 t−1

1




a1 b1
a2 b2
a3 b3
a4 b4
a5 b5

 =


t1a1 t1b1
t2a2 t2b2
a3 b3

t−1
2 a4 t−1

2 b4
t−1
1 a5 t−1

1 b5


of Sp4 for which we denote the given torus by T . Let ei denote again the i-th basis
vector of C5. The T -fixed points in IG(2, 5) are then given by

x12 = (e1, e2), x13 = (e1, e3), x14 = (e1, e4), x23 = (e2, e3)
x25 = (e2, e5), x34 = (e3, e4), x35 = (e3, e5), x45 = (e4, e5)

whereas the points x15 = (e1, e5) and x24 = (e2, e4) are not in IG(2, 5).
The positive roots of (Sp4, T ) are given by ε1−ε2, ε1+ε2, 2ε1 and 2ε2 for the characters

εi


t1 0 0 0 0
0 t2 0 0 0
0 0 1 0 0
0 0 0 t−1

2 0
0 0 0 0 t−1

1

 = ti

which we will denote by ε12, ε1(−2), ε1(−1) and ε2(−2), respectively, for later use.
For T ′12 = Ker(ε12)0, the subtorus action is given by

t1 0 0 0 0
0 t1 0 0 0
0 0 1 0 0
0 0 0 t−1

1 0
0 0 0 0 t−1

1




a1 b1
a2 b2
a3 b3
a4 b4
a5 b5

 =


t1a1 t1b1
t1a2 t1b2
a3 b3

t−1
1 a4 t−1

1 b4
t−1
1 a5 t−1

1 b5

 .

Therefore, XT ′12 consists of the points
a1 0
a2 0
0 1
0 0
0 0

 ,


0 0
0 0
1 0
0 b4
0 b5

 ,

a1 0
a2 0
0 0
0 b4
0 b5


where the equation −a1b5 − a2b4 = 0 has to hold for the third kind of points. These
are three T -stable curves which are contained in XT ′12 in addition to two isolated fixed
points x12 and x45.

For the subtorus T ′1(−2) = Ker(ε1(−2))0 we obtain the action


t1 0 0 0 0
0 t−1

1 0 0 0
0 0 1 0 0
0 0 0 t1 0
0 0 0 0 t−1

1




a1 b1
a2 b2
a3 b3
a4 b4
a5 b5

 =


t1a1 t1b1
t−1
1 a2 t−1

1 b2
a3 b3
t1a4 t1b4
t−1
1 a5 t−1

1 b5

 .
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The fixed point subscheme XT ′1(−2) consists of the points of the form
a1 0
0 0
0 1
a4 0
0 0

 ,


0 0
0 b2
1 0
0 0
0 b5

 ,

a1 0
0 b2
0 0
a4 0
0 b5


where the equation −a1b5 + a4b2 = 0 has to hold for the third kind of points. These are
again three T -stable curves which are contained in XT ′1(−2) in addition to the two other
isolated fixed points x14 and x25.

Next, we consider the subtorus T ′1(−1) = Ker(ε1(−1))0 and its fixed point subscheme.
The subtorus action is given by

1 0 0 0 0
0 t2 0 0 0
0 0 1 0 0
0 0 0 t−1

2 0
0 0 0 0 1




a1 b1
a2 b2
a3 b3
a4 b4
a5 b5

 =


a1 b1
t2a2 t2b2
a3 b3

t−1
2 a4 t−1

2 b4
a5 b5


since t1 = 1 as T ′1(−1) is by definition the identity component of the kernel of ε1(−1).
This leads to the fixed point subscheme XT ′1(−1) which consists of points of the form

a1 0
0 1
a3 0
0 0
a5 0

 ,

a1 0
0 0
a3 0
0 1
a5 0

 ,

a1 b1
0 0
a3 b3
0 0
a5 b5


where the first two components are a projective plane P2 and the last one is the set of
two dimensional subspaces in a three dimensional subspace of C5. Therefore, the last
component is isomorphic to the Grassmannian Gr(2, 3) with the condition a5b1−a1b5 = 0
which leads to a T -stable curve connecting x13 and x35.

The computations for the positive root ε2(−2) are similar. They lead to the points
0 1
a2 0
a3 0
a4 0
0 0

 ,


0 0
a2 0
a3 0
a4 0
0 1

 ,


0 0
a2 b2
a3 b3
a4 b4
0 0


in the fixed point subscheme XT ′2(−2) . Again, we obtain two projective planes and one
T -stable curve connecting x23 and x34.

The other codimension one subtori are regular. Those are given by T ′ = Ker(χ)0 for
some primitive character χ of T which is not a multiple of a root and further, they will
not contribute to the computations of cobordism since one may verify that XT ′ = XT

holds for those T ′.
These precise descriptions of the fixed point subschemes lead to the equations de-

scribing the image of i∗ : Ω∗T (IG(2, 5))Q → Ω∗T ((IG(2, 5))T )Q.
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Using Theorem 4.13, the equations are given by

f13 ≡ f23 mod cT1 (Lε12), f34 ≡ f35 mod cT1 (Lε12),
f14 ≡ f25 mod cT1 (Lε12), f13 ≡ f34 mod cT1 (Lε1(−2)),

f23 ≡ f35 mod cT1 (Lε1(−2)), f12 ≡ f45 mod cT1 (Lε1(−2)),

f13 ≡ f35 mod cT1 (Lε1(−1)), f23 ≡ f34 mod cT1 (Lε2(−2)),

f12 ≡ f23 ≡ f25 mod cT1 (Lε1(−1)), f14 ≡ f34 ≡ f45 mod cT1 (Lε1(−1)),

f25 ≡ f35 ≡ f45 mod cT1 (Lε2(−2)), f12 ≡ f13 ≡ f14 mod cT1 (Lε2(−2)),

(f12 − f23) + ρ1/2c
T
1 (Lε1(−1))(f25 − f12) ≡ 0 mod cT1 (Lε1(−1))

2,

(f14 − f34) + ρ1/2c
T
1 (Lε1(−1))(f45 − f14) ≡ 0 mod cT1 (Lε1(−1))

2,

(f25 − f35) + ρ1/2c
T
1 (Lε2(−2))(f45 − f25) ≡ 0 mod cT1 (Lε2(−2))

2,

(f12 − f13) + ρ1/2c
T
1 (Lε2(−2))(f14 − f12) ≡ 0 mod cT1 (Lε2(−2))

2.

These equations give a complete description of the rational equivariant algebraic cobor-
dism ring of IG(2, 5). As above, we want to know which elements correspond to the
pullback of which T -stable classes. Therefore, we remark that the procedure for points
and T -stable curves is similar to the one described in the previous example. Thus, we
consider the pullback of the T -stable class given by the points

a1 0
0 0
a3 0
0 1
a5 0


which is some projective plane P2

14,34,45 in IG(2, 5). It contains the fixed points x14, x34
and x45 and therefore, the corresponding entries in the tuple will be non-zero. First we
determine the first Chern classes which have to be in each of the entries coming from
the equations above. This leads to

i∗x14 [P2
14,34,45 → IG(2, 5)] = n1c

T
1 (Lε12)cT1 (Lε2(−2))

2,

i∗x34 [P2
14,34,45 → IG(2, 5)] = n2c

T
1 (Lε12)cT1 (Lε1(−2))c

T
1 (Lε2(−2)),

i∗x45 [P2
14,34,45 → IG(2, 5)] = n3c

T
1 (Lε1(−2))c

T
1 (Lε2(−2))

2

for some n1, n2, n3 ∈ S(T )Q of degree zero. As mentioned above, we do not know at
present which particular choice of the ni determines the pullback of [P2

14,34,45 → IG(2, 5)],
but one of those tuples is certainly its image under the pullback map i∗. We will come
back to this problem in Section 6.

Example 4.30. Now, we consider a more general example for which we want to de-
scribe the rational equivariant cobordism ring. Therefore, we let V = C2n+1 and
X = IG(2, 2n+ 1) be again the odd symplectic Grassmannian for n ≥ 2.
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As above, we consider the antisymmetric form ω : V × V → C given by


a1
...

a2n+1

 ,


b1
...

b2n+1


 7→


a1
...

a2n+1


T 0 0 −J

0 0 0
J 0 0




b1
...

b2n+1


for the (n× n)-matrix

J :=


0 · · · 0 1
... . .

.
0

0 . .
. ...

1 0 · · · 0

 .

Similar to the above, we obtain the equation

a2n+1b1 + ...+ an+2bn − anbn+2 − ...− a1b2n+1 = 0.

The torus action of Sp2n on IG(2, 2n+ 1) is given by

t1 0 · · · · · · 0

0
. . .

. . .
...

...
. . . tn

1

t−1
n

. . .
...

...
. . .

. . . 0
0 0 t−1

1





a1 b1
...

...
an bn
an+1 bn+1
an+2 bn+2
...

...
a2n+1 b2n+1


=



t1a1 t1b1
...

...
tnan tnbn
an+1 bn+1

t−1
n an+2 t−1

n bn+2
...

...

t−1
1 a2n+1 t−1

1 b2n+1


.

There are (
2n+ 1

2

)
= (2n+ 1)n = 2n2 + n

T -fixed points in Gr(2, 2n + 1) since the fixed points in Gr(2, 2n + 1) are generated by
two distinct basis vectors ei and ej of C2n+1. We denote from now on e2n+1−(i−1) by
e−i for 1 ≤ i ≤ n since it will give us the opportunity to realise similar equations as in
the previous example in order to describe the rational equivariant cobordism. Because
of the above equation we need to subtract n of those 2n2 + n fixed points in order to
obtain the T -fixed points of IG(2, 2n+1). More precisely, the two-dimensional subspaces
generated by ei and e−i are not in IG(2, 2n + 1) and therefore, there are 2n2 T -fixed
points in IG(2, 2n+ 1) which we denote by xij = xji = (ei, ej) as above.

With the notations from the previous example, the positive roots of (Sp2n, T ) are
given by εi ± εj = εi(∓j) for i < j and 2εi = εi(−i) for 1 ≤ i ≤ n which results in

2 ·
(
n

2

)
+ n = 2n!

(n− 2)!2! + n = n(n− 1) + n = n2

positive roots of (Sp2n, T ).
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For the subtori T ′ij = Ker(εij)0, one can observe that the fixed point subschemes
XT ′ij contain 4n− 5 T -stable curves which are of the same form as the curves occurring
in Example 4.29. The same holds for the fixed point subschemes XT ′

i(−j) coming from
the subtori T ′i(−j) = Ker(εi(−j))0. This describes the n2 − n fixed point subschemes
corresponding to the positive roots εi(∓j) for i < j.

Lastly, we consider the positive roots εi(−i), 1 ≤ i ≤ n, for which we obtain the subtori
T ′i(−i) = Ker(εi(−i))0 and the fixed point subschemes XT ′

i(−i) each containing 2n − 2
projective planes P2 and one T -stable curve which can easily be seen by generalising the
computations from Example 4.29. As above, XT ′ = XT holds for the other codimension
subtori T ′ = Ker(χ)0 for a primitive character χ which is not a root.

One obtains the equations coming from Theorem 4.13 describing the image of the
injective pullback map

i∗ : Ω∗T (IG(2, 2n+ 1))Q → Ω∗T ((IG(2, 2n+ 1))T )Q = S(T )2n2
Q

and therefore the rational equivariant cobordism ring Ω∗T (IG(2, 2n+ 1))Q.
More precisely, for any positive short root εst with −n ≤ t ≤ n, 1 ≤ s ≤ n and

t 6= 0,±s we obtain the equations

fsk ≡ ftk mod cT1 (Lεst)
f−sk ≡ f−tk mod cT1 (Lεst)
fs(−t) ≡ ft(−s) mod cT1 (Lεst)

for −n ≤ k ≤ n + 1 and k 6= 0,±s,±t. These 4n − 5 equations describe the T -stable
curves in XT ′st .

Lastly, the equations coming from the positive long roots εi(−i) with 1 ≤ i ≤ n are
given by

fik ≡ f(n+1)k ≡ f−ik mod cT1 (Lεi(−i))

(fik − f(n+1)k) + ρ1/2c
T
1 (Lεi(−i))(f−ik − fik) ≡ 0 mod cT1 (Lεi(−i))

2

fi(n+1) ≡ f−i(n+1) mod cT1 (Lεi(−i))

for −n ≤ k ≤ n and k 6= 0,±i coming from the projective planes and the T -stable curve
in XT ′

i(−i) .
These equations together determine precisely the image of i∗ and therefore the ratio-

nal equivariant cobordism ring Ω∗T (IG(2, 2n+ 1))Q.

To finish the examples of type (3) in Pasquier’s classification of horospherical varieties
[43], we consider the general case IG(k, 2n+ 1) for n ≥ 2 and k ∈ [2, n].

Example 4.31. Let V = C2n+1 and the antisymmetric form ω be given as in the
previous example. Similarly, the torus action of Sp2n on IG(k, 2n + 1) will be given
as above. Next, we need to count the possible T -fixed points in IG(k, 2n + 1). We
reformulate this combinatorial question as follows. We need to choose k different vectors
which have one non-zero entry each where we do not allow to choose two vectors within
these k vectors for which the i-th and the (2n+1−i+1)-st entry are non-zero, respectively.
Furthermore, it is enough to consider the first n entries in the given vectors because we
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can multiply those possibilities by two for each vector in order to obtain the T -fixed
points in IG(k, 2n+ 1) which are isotropic subspaces for ω.

First, we consider the possibilities for which the (n + 1)-st entry in each of the k
vectors is always zero. Therefore, we have

(n
k

)
possibilities to choose the ones in the k

vectors. This results in 2k
(n
k

)
possibilities for the first case.

Secondly, we count the possibilities where one of the k vectors has a non-zero entry
at the (n+ 1)-st position. In this case, we can only choose (k − 1) elements within the
first n entries which leads to

( n
k−1
)
possibilities which we need to multiply by 2k−1 this

time since the vector with a non-zero entry at the middle position cannot be chosen
differently. Therefore, we have 2k−1( n

k−1
)
possibilities for the second case.

This leads to

2k
(
n

k

)
+ 2k−1

(
n

k − 1

)

T -fixed points in IG(k, 2n+ 1) which we denote by xi1...ik = (ei1 , ..., eik) where we define
e−i to be e2n+1−(i−1) as above for all 1 ≤ i ≤ n.

With the notations from the previous example, we consider XT ′ij which contains

2
((

n− 2
k − 1

)
2k−1 +

(
n− 2
k − 2

)
2k−2

)
+
(
n− 2
k − 2

)
2k−2 +

(
n− 2
k − 3

)
2k−3

T -stable curves by applying the same counting method as described above. Similarly,
we obtain the fixed point subschemes XT ′

i(−j) .
Lastly, we consider the positive long roots εi(−i), 1 ≤ i ≤ n, for which we obtain

X
T ′
i(−i) consisting of (

n− 1
k − 1

)
2k−1

projective planes P2 and (
n− 1
k − 2

)
2k−2

T -stable curves which can be seen by using the same combinatorial arguments as above.
Again, the equality XKer(χ)0 = XT holds for every other codimension one subtorus being
the identity component of the kernel of a primitive character χ which is not a root.

One then obtains the equations coming from Theorem 4.13 describing the image of
the injective pullback map

i∗ : Ω∗T (IG(k, 2n+ 1))Q → Ω∗T ((IG(k, 2n+ 1))T )Q = S(T )
2k(nk)+2k−1( n

k−1)
Q

and therefore the rational equivariant cobordism ring Ω∗T (IG(k, 2n+ 1))Q.
More precisely, for any positive short root εst with −n ≤ t ≤ n, 1 ≤ s ≤ n and

t 6= 0,±s, we obtain the equations

fsi2...ik ≡ fti2...ik mod cT1 (Lεst)
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f−si2...ik ≡ f−ti2...ik mod cT1 (Lεst)
fs(−t)i3...ik ≡ ft(−s)i3...ik mod cT1 (Lεst)

with −n ≤ im ≤ n+ 1, im 6= 0,±s,±t and im 6= ±im′ for all m 6= m′ ∈ {2, ..., k}. These
equations describe the T -stable curves in XT ′st .

Lastly, the equations coming from the positive long roots εi(−i) for 1 ≤ i ≤ n are
given by

fii2...ik ≡ f(n+1)i2...ik ≡ f−ii2...ik mod cT1 (Lεi(−i))

(fii2...ik − f(n+1)i2...ik) + ρ1/2c
T
1 (Lεi(−i))(f−ii2...ik − fii2...ik) ≡ 0 mod cT1 (Lεi(−i))

2

fi(n+1)i3...ik ≡ f−i(n+1)i3...ik mod cT1 (Lεi(−i))

with −n ≤ im ≤ n, im 6= 0,±i and im 6= ±im′ for all m 6= m′ ∈ {2, ..., k} coming from
the projective planes and T -stable curves in XT ′

i(−i) .
These equations determine the image of i∗ and therefore the rational equivariant

cobordism ring Ω∗T (IG(k, 2n+ 1))Q.

Remark 4.32. Using Proposition 3.47, one immediately obtains an expression for the
ordinary rational cobordism rings in any of the examples discussed above.
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5 Equivariant cobordism of horospherical varieties

In this chapter, we let G be a complex connected reductive algebraic group, B a
fixed Borel subgroup with maximal torus T and W = N(T )/T the Weyl group. The
ground field must be restricted to the complex numbers C because the results in [43] were
only proved in this setting. We want to compute the equivariant algebraic cobordism of
smooth projective horospherical varieties of Picard number one. We begin this section by
recalling the description of the T -stable curves in flag varieties which will be important
in order to describe the geometry of horospherical varieties. After that, we will recall
some basic properties of horospherical varieties as well as their geometry. Excellent
references for the geometry of horospherical varieties are for example [16, 43]. Using
these descriptions, we will be able to describe the rational equivariant cobordism ring of
horospherical varieties of Picard number one in terms of Theorem 4.13.

5.1 T -stable curves in flag varieties

In this section, we will recall the main notions and results on T -stable curves in flag
varieties G/P from [15, Section 3]. We denote by R = R+∪R− the positive and negative
roots, and by S the simple roots. Furthermore, we denote by sα the reflections in W
which are indexed by positive roots α. These are simple reflections if α is in S. For a
subset I ⊆ S, let WI be the subgroup of W which is generated by the reflections sα for
α in I. In addition, let PI =

∐
w∈WI

BwB and R+
PI

be the set of positive roots that
can be written as sums of roots in I. This is the well known correspondence between
parabolic subgroups PI of G containing B and subsets I ⊆ S. The length `(w) of an
element w ∈W is the minimum number of simple reflections whose product is w.

For any u ∈ W/WI , we let X(u) = BuPI/PI be the corresponding Schubert variety
which is of dimension `(u) where `(u) denotes the unique minimum length of a represen-
tative of u in W . We denote its cohomology class [X(u)] by σ(u) ∈ H∗(G/PI). Further,
for any u ∈ W/WI , we denote by x(u) := uPI/PI the corresponding T -fixed point in
G/PI . The Schubert classes of dimension one have the form σ(sβ) as β varies over S \ I.
We define a degree d to be a nonnegative integral combination d =

∑
dβσ(sβ). The

degrees are the classes of curves on G/PI . For any positive root α, we write α =
∑
nαββ

as the positive integral combination of simple roots β. Then we define the degree d(α)
of α by

d(α) :=
∑
β∈S\I

nαβ
(β, β)
(α, α) σ(sβ).

Remark 5.1. If hα = 2α/(α, α) and ωβ is the fundamental weight corresponding to β,
then hα(ωβ) = nαβ(β, β)/(α, α) which implies

d(α) =
∑
β∈S\I

hα(ωβ)σ(sβ).

Lemma 5.2. [15, Lemma 3.1] If w is in WI , then we have d(w(α)) = d(α).

For any positive root α which is not in R+
PI
, there is a unique T -stable curve Cα in

G/PI that contains the points x(1) and x(sα). We know that Cα = S(α) · PI/PI where
S(α) is the 3-dimensional subgroup of G whose Lie algebra is gα ⊕ g−α ⊕ [gα, g−α].
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Lemma 5.3. [15, Lemma 3.4] The degree [Cα] of Cα is d(α).

Definition 5.4. We say that two unequal elements u and v in W/WI are adjacent if
there is a reflection s in W such that v = s · u. In this case we define d(u, v) to be the
degree d(α) where sα is a reflection relating them.

Remark 5.5. If u and v are adjacent, then for any w ∈ W , the elements wu and wv
are also adjacent and d(wu,wv) = d(u, v) holds.

Lemma 5.6. [15, Lemma 4.2] Elements u and v in W/WI are adjacent if and only if
x(u) 6= x(v) and there is a T -stable curve C connecting x(u) and x(v). In this case, the
curve C is unique, isomorphic to P1, and its degree is equal to d(u, v).

Remark 5.7. A general T -stable curve inG/PI has the form w·Cα for some α ∈ R+\R+
PI

and w ∈ W . This curve is the unique T -stable curve connecting x(w) = w · x(1) and
x(w · sα) = w · x(sα).

Example 5.8. We consider the flag variety G2/Pα where α and β denote the simple
roots of G2, β being the long root. The flag variety G2/Pα is a 5-dimensional quadric
whose geometry was also studied in [16]. The positive roots are given by

R+ = {α, β, α+ β, 2α+ β, 3α+ β, 3α+ 2β}.

The geometric picture of the roots of G2 is given by the following figure.

5π/6 α

β

Figure 1: Root system of G2.

In this case, we have W (G2) ∼= D6 where the counterclockwise rotation r by an angle
of π/3 and the reflection s at the y-axis denote the generators of the dihedral group D6
of order 12. Furthermore, we know that the closed orbits in this horospherical variety
are given by G2/Pα and G2/Pβ. Therefore, we obtain that Wα is generated by sα which
has order 2. Thus, we have 6 T -fixed points in G2/Pα and they are indexed by the
elements of W/Wα. From the above we know that for any γ ∈ R+ \ R+

Pα
there exists

a unique T -stable curve connecting x(1) and x(sγ). We identify sα with the element
s ∈ D6 and therefore, one can check that sβ corresponds to sr ∈ D6. We write

W/Wα = {r0, r1, r2, r3, r4, r5}

where ri denotes the class riWα = {ris, ri} as representatives in the quotient W/Wα.
Using Figure 1 or the formulas for reflections, one may check that pairwise different
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reflections sγ correspond to pairwise different ris for 1 ≤ i ≤ 5. Therefore, all the
reflections are given by ris for 0 ≤ i ≤ 5. Now, we need to check which elements
rk, rj ∈ W/Wα are adjacent for 0 ≤ k 6= j ≤ 5. By Definition 5.4 we need to find a
reflection ris in W , 0 ≤ i ≤ 5, such that ris · rk = rj holds. By the relations in D6 we
have risrk = ri−ks and thus, we can find a reflection ris inW for any two fixed elements
0 ≤ k 6= j ≤ 5 such that rj and rk are adjacent. This implies that there is a T -stable
curve connecting any two of the T -fixed points in G2/Pα which leads to a total of 15
T -stable curves in the flag variety G2/Pα. Similar computations can be done for the flag
variety G2/Pβ.

Later on, we will be interested in the weight of a T -stable curve C and also its degree.
To obtain those one can use the following lemma.

Lemma 5.9. [15, Lemma 2.1] Let a torus T act on a curve C ∼= P1 with two different
T -fixed points p and q and let L be a T -equivariant line bundle on C. Let χp and χq
be the weights of T acting on the fibres Lp and Lq, respectively, and ψp the weight of T
acting on the tangent space of C at p. Then we have

χp − χq = nψp

where n is the degree of L.

Remark 5.10. In our case, and more specifically in the previous Example 5.8, the
degree can also be obtained by the formulas in Section 5.1. These computations (cf.
Section A.1) lead to 6 T -stable curves of degree 1, 6 T -stable curves of degree 3 and 3
T -stable curves of degree 2 in the flag variety G2/Pα in Example 5.8.

5.2 Geometry of horospherical varieties of Picard number one

In this section, we want to consider the geometry of smooth projective horospherical
varieties of Picard number one. First, we will recall some basic notions of horospherical
varieties. Excellent references are for example [16, 41, 42, 43].

Definition 5.11. [19, II. Remark 6.10.3] Let X be a smooth projective variety of di-
mension ≥ 2. Then we define the Néron-Severi group N1(X) as the divisor class
group modulo algebraic equivalence. Its rank is called the Picard number of X.

Remark 5.12. [41, Remark 4.5ff.] Let S \ I be the set of simple roots corresponding to
the horospherical variety X as described in Remark 2.59. Then the Picard number ρ of
a smooth G/H-embedding X satisfies

ρX = rX + #(S \ I)−#(DX)

where rX is the number of rays in the colored fan of X minus the rank n (cf. Definition
2.50) and DX denotes the set of simple roots in S \ I which correspond to colors in the
colored fan FX .

Remark 5.13. [43, Section 1.2] Since we will be mainly interested in smooth projective
horospherical varieties X, we remark that the colored fan associated to X is complete
and therefore, rX ≥ 1 holds. Moreover, ρX = 1 if and only if rX = 1 and DX = S \ I.
In particular, the colored fan of X has exactly n+ 1 rays.

107



5.2 Geometry of horospherical varieties of Picard number one

Remark 5.14. Let X be any smooth projective spherical G-variety. Then algebraic
equivalence coincides with rational equivalence (cf. [6, Section 1.3]). Since X is nor-
mal by definition, rational equivalence of codimension one cycles coincides with linear
equivalence of Weil divisors (cf. [19, Appendix A Section 1]). The divisor class group
coincides with the Picard group because X is assumed to be smooth and thus, the Néron-
Severi group is isomorphic to the Picard group. The Néron-Severi group is known to
be finitely generated (cf. [35]) and the Picard group Pic(X) of X is torsion-free by [47,
Corollary 3.2.6]. Thus, we know that Pic(X) is free. We will be mainly interested in
smooth projective horospherical G-varieties X of Picard number one and resulting from
the previous discussion we know that this is equivalent to Pic(X) ∼= Z.

We will consider smooth projective horospherical varieties of Picard number one.
These varieties were classified by Pasquier [43] and the classification is given by the
following theorem.

Proposition 5.15. [43, Theorem 0.1] Let G be a connected reductive algebraic group.
Let X be a smooth projective horospherical G-variety with Picard number one. Then one
of the following cases can occur.

(i) X is homogeneous.

(ii) X is horospherical of rank 1. Its automorphism group is a connected non-reductive
linear algebraic group, acting with exactly two orbits.

Moreover, in the second case X is uniquely determined by its two closed G-orbits Y and
Z, isomorphic to G/PY and G/PZ , respectively, and (G,PY , PZ) is one of the triples of
the following list.

(1) (Bn, P (ωn−1), P (ωn)) for n ≥ 3

(2) (B3, P (ω1), P (ω3))

(3) (Cn, P (ωm), P (ωm−1)) for n ≥ 2 and m ∈ [2, n]

(4) (F4, P (ω2), P (ω3))

(5) (G2, P (ω1), P (ω2)

Here we denote by P (ωi) the maximal parabolic subgroup of G corresponding to the
dominant weight ωi using the notations from Bourbaki [5].

Remark 5.16. In our notation P (ωi) denotes the maximal parabolic subgroup PS\αi
for the simple root αi associated to the fundamental weight ωi.

Lemma 5.17. [43, Lemma 1.2] Let G/H be a horospherical homogeneous space. Up
to G-equivariant isomorphism of varieties, there exists at most one smooth projective
G/H-embedding with Picard number one.

In the sequel, we are only interested in the cases which are not homogeneous because
the rational T -equivariant cobordism for the homogeneous varieties can be described
using [31, Theorem 7.8]. Therefore, we recall the construction from [16, Section 1.3].

Let X be a smooth projective horospherical but non homogeneous variety of Picard
number one with associated triple (G,PY , PZ). In this case, we denote the previous
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triple also by (G,P (ωY ), P (ωZ)) for the corresponding fundamental weights ωY and ωZ .
Furthermore, the dense orbit is given by G/H = G · [vY + vZ ] ⊆ P(VY ⊕ VZ) where VY
and VZ are the irreducible G-representations with highest weights ωY and ωZ and the
corresponding highest weight vectors vY and vZ . By construction, we conclude that PY
and PZ are the stabilisers of [vY ] and [vZ ] in P(VY ) and P(VZ), and that Y and Z are
the G-orbits of [vY ] and [vZ ] in P(VY ) and P(VZ), respectively. Lastly, we have that
X = G · [vY + vZ ] ⊆ P(VY ⊕VZ) is the closure of the G-orbit G · [vY +vZ ] in P(VY ⊕VZ).

The T -fixed points of X are given by the T -fixed points of the two closed G-orbits.
Now, we analyse the T -stable curves and the fixed point subschemes XT ′ for some
given X in order to be able to use Theorem 4.13 with the aim of obtaining the rational
T -equivariant cobordism of X. In the previous section, we have already seen how to
determine the T -stable curves in the closed orbits G/PY and G/PZ which are flag va-
rieties. Next, we investigate the T -stable curves meeting the dense open orbit G/H for
any smooth projective horospherical variety X of Picard number one. We will use the
diagram

G/H

G/(PY ∩ PZ)

G/PY G/PZ

π

pY pZ

(5.1)

where π is the corresponding C∗-bundle.

Definition 5.18. Let C be a T -stable irreducible curve in the dense open orbit G/H.
Then we define S := π−1(π(C)) to be the preimage of π(C).

Lemma 5.19. Let C be a T -stable irreducible curve in the dense open orbit G/H. Then
S is given by one of the following cases.

(i) S is the curve C itself.

(ii) S is an irreducible surface containing C.

Proof. Let C be a given T -stable irreducible curve in the dense open orbit G/H. Then
π(C) is also T -stable. The following two cases can occur for π(C).

(i) π(C) = {∗} is a point. Without loss of generality, we can choose this point to
be the B-fixed point in G/P := G/(PY ∩ PZ) where PY ∩ PZ is the same as the
normaliser NG(H) which was mentioned in Remark 2.48. The B-fixed point is
1 · P/P and therefore, the closure C ⊆ X of the fibre π−1(1 · P/P ) = C is the
line joining the B-fixed points 1 · PY /PY = [vY ] ∈ Y and 1 · PZ/PZ = [vZ ] ∈ Z
because π is a C∗-bundle and B-fixed points are mapped to B-fixed points via the
projections pY and pZ . The other lines will be obtained by the Weyl group action.
Those lines are T -stable by assumption.

(ii) π(C) is a T -stable irreducible curve. Without loss of generality, we can choose
π(C) = S(α) · P/P for some positive root α which is not in R+

P where S(α) is the
3-dimensional subgroup of G whose Lie algebra is gα⊕ g−α⊕ [gα, g−α]. This curve
joins the B-fixed point x(1) and x(sα) = sα · P/P . Then we obtain an irreducible
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surface S := π−1(π(C)) because π is a C∗-bundle. This surface S contains C and
is T -stable since π is equivariant. The other curves are obtained by the Weyl group
action.

Lemma 5.20. Any surface in a connected component of XT ′ for a singular codimension
one subtorus T ′ = Ker(α)0 for some positive root α is of the form S ⊆ X for some T -
stable curve C and S = π−1(π(C)).

Proof. Let A be a surface in XT ′ . This is itself a connected component of XT ′ and A is
a spherical CG(T ′)-variety by Proposition 4.3. We know that A∩G/H 6= ∅ because the
two closed orbits Y ∼= G/PY and Z ∼= G/PZ contain only finitely many T -stable curves.
Now, let a ∈ A. Then we have ta = tt′a = t′ta for all t, t′ ∈ T which implies that A is
T -stable. We have A ∩ G/H ⊆ π−1π(A ∩ G/H) and the reversed inclusion is also true
because A is T -stable and T acts transitively on the fibres of π as P/H is a quotient of T .
Therefore, the whole fibre must be in A∩G/H. Furthermore, A has only zero- and one-
dimensional T -orbits since T/T ′ is one-dimensional. The image under π of those orbits
is either a T -fixed point or the T -stable irreducible curve π(A∩G/H). We conclude that
there must be a T -stable curve C ⊆ A∩G/H such that A∩G/H = π−1π(C) because if
the T -orbits were only the fibres then there would be infinitely many T -fixed points in
G/P .

Remark 5.21. Let a connected component of XT ′ be given for some codimension one
subtorus T ′. As mentioned already in the previous proof these are T -stable with only
zero- and one-dimensional T -orbits since T/T ′ is one-dimensional. To be more precise,
either an orbit is a T -fixed point or a one-dimensional T -orbit T/T ′ ·x for some x ∈ XT ′ .
Therefore, the stabilisers of x in T are subtori of codimension one or zero.

Definition 5.22. Let X be a smooth projective horospherical G-variety of Picard number
one of the form (G,P (ωY ), P (ωZ)). Then we denote by χ := ωY − ωZ the difference of
the two fundamental weights ωY and ωZ .

In the following, we want to analyse which surfaces S are a connected component in
some XT ′ for some codimension one subtorus T ′. Therefore, we formulate the following
lemma.

Lemma 5.23. For any smooth projective horospherical variety X of Picard number one
we have the following properties.

(1) The only T -stable curves in X meeting the open orbit G/H occurring as a connected
component of XT ′ for some codimension one subtorus T ′ are of the form π−1(z)
where z ∈ G/(PY ∩ PZ) is a T -fixed point.

(2) The surfaces occurring in XT ′ only arise from codimension one subtori of the form
T ′ = Ker(wα)0 = Ker(wχ)0 for some positive root α which is a non-zero multiple of
χ and some w ∈W .

Proof. As above, we have the B-fixed point 1 ·P/P in G/P := G/(PY ∩PZ). We need to
consider the previously discussed case from Lemma 5.19 (ii). Therefore, we assume that
there exists a T -stable curve C ⊆ G/H such that a general point in the T -stable curve
π(C) has the form w · u−α(x) ·P/P where u−α(x) denotes the corresponding element in
the root subgroup U−α. A general point in S = π−1π(C) has the form

w · u−α(x)tH = u−wα(x′)wtH = u−wα(x′)wtw−1wH = u−wα(x′)t′wH
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for t ∈ P/H = C∗.
Now, we consider the T -action on those points for z ∈ T :

zu−wα(x′)t′wH = u−wα((wα)(z)−1x′)zt′wH
= u−wα((wα)(z)−1x′)t′zwH
= u−wα((wα)(z)−1x′)t′ww−1zwH.

This implies that a point z acts trivially if and only if w−1zw ∈ H = Ker(χ) and
z ∈ Ker(wα) hold. This implies by the Weyl group action on the character group that
this is equivalent to z ∈ Ker(wχ) ∩Ker(wα).

If Ker(wχ)0 6= Ker(wα)0 holds, then Ker(wχ)0 ∩ Ker(wα)0 has codimension two in
T . Therefore, we obtain a T -stable surface S or a T -stable curve in π−1π(C). It remains
to check whether those are fixed by some codimension one subtorus. If one of those
was a connected component of XT ′ , then the stabiliser of any point in XT ′ would have
at most codimension one in T , but as we computed above, the stabiliser of a general
point in S and therefore, also in every potential T -stable curve in π−1π(C) is precisely
Ker(wχ)∩Ker(wα). Therefore, the stabiliser of a general point would be of codimension
two in T and thus, the T -stable surface S is not a connected component of XT ′ and
there exists no T -stable curve in π−1π(C) which is a connected component of XT ′ .

If Ker(wα) = Ker(wχ) holds, then we have Ker(wχ)0 = Ker(wα)0 = T ′ and S is
some connected component of XT ′ because z acts trivially on a general point of S. This
implies property (2) because in this case α must be a non-zero multiple of χ.

Now, let C be a T -stable curve in XT ′ meeting the open orbit G/H for some codi-
mension one subtorus T ′ ⊆ T . The curve C meets the open orbit G/H along a T -stable
curve C. By Lemma 5.19, C is either a fiber of π or C is contained in the T -stable
surface S = π−1π(C). In the latter case, we distinguish whether α is non-zero multiple
of χ or not. As discussed above, there exists no T -stable curve in S whose closure is
a connected component of XT ′ if α is not a non-zero multiple of χ. We also showed
above that the closure of S is itself a connected component of XT ′ containing C if α is
a non-zero multiple of χ. We conclude that C is never a connected component of XT ′ if
C is contained in the T -stable surface S. This implies property (1).

Algorithm: We analyse the occuring surfaces in the connected components of XT ′ .
As we have seen above, we need to consider roots α which are multiples of the difference
χ of the two fundamental weights ωY and ωZ up to the Weyl group action. After that,
we look at the curves in the closed orbits Y and Z. Up to Weyl group action these
are given by S(α)[vωY ] which connect sα[vωY ] and [vωY ] in Y and similarly in Z. Thus,
we need to compute sα(ωY ) = ωY − (α∨, ωY )α and similarly for ωZ . Then we will
know how many T -fixed points we have in the relevant connected component of XT ′ and
in which orbits they occur. If we obtain 3 T -fixed points then we obtain a projective
plane and if we obtain 4 T -fixed points, then we will have a Hirzebruch surface Fn. We
remark that sα(ωY ) = ωY holds if and only if (α∨, ωY ) vanishes. Now, it remains to
be checked which Hirzebruch surface Fn we obtain in the case of 4 T -fixed points. For
details concerning the geometry of Hirzebruch surfaces as ruled surfaces we refer the
reader to [19, Chapter V]. So let S be some surface of type Fn with T -stable curves of
degrees x and y with x ≤ y where the T -stable curves are the two closed SL2-orbits in
Fn. Now, we want to determine the non-negative integer n and the embedding of S.
Let p : S → P1 be the ruling. Then p has a section C0 such that the self-intersection is
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5.2 Geometry of horospherical varieties of Picard number one

C2
0 = −n. It is furthermore well known that this is the only section of p with negative

(non-positive) self-intersection for n > 0 (n = 0). Let f be a fibre of p. We know that
the Picard group of S is generated by C0 and f . Furthermore, we have f.C0 = 0 and
f2 = 0. Geometrically, the morphism p describes the projection to one of the closed
SL2-orbits. Thus, we may choose f to be the line [λv + µv′] ⊆ P(V ⊕ V ′) where v ∈ V
and v′ ∈ V ′ are the highest weights vectors. So let L = aC0 + bf be the line bundle
defining the embedding of S. Following [19, Chapter V, Corollary 2.18], we know that L
is very ample if and only if a > 0 and b > an. In addition, we have two special sections
of p which are the two closed SL2-orbits, i.e. the curves C and C ′ of degrees x and y,
respectively. As they are sections of p, the intersection with f is 1 and therefore, they
are of the form C = C0 + cf and C ′ = C0 + c′f . For the embedding φ : S → P(V ⊕ V ′)
we know that L = φ∗(O(1)). Further, for a general hyperplane H in P(V ⊕ V ′) we have
H.f = 1 because f is a line in P(V ⊕ V ′). We also have H.C = x and H.C ′ = y in
P(V ⊕ V ′) by the assumption on the degrees of the curves C and C ′. Considering now
the line bundle L on S, we compute (H ∩ S).f = 1 for the divisor H ∩ S whose class
corresponds to the line bundle L. This can then be also written as L.f = 1. Thus,
we have 1 = L.f = (aC0 + bf).f = a. Similarly, we can pull O(1) back to P(V ) and
P(V ′) which are the curves C and C ′, respectively. We obtain (H ∩ C).C = x and
(H ∩ C ′).C ′ = y which can be written as L.C = x and L.C ′ = y. Further, we have
C.C ′ = 0 because the two closed SL2-orbits do not meet. On the other hand, we have

x = C.L = (C0 + cf).(C0 + bf) = −n+ c+ b,

y = C ′.L = (C0 + c′f).(C0 + bf) = −n+ c′ + b,

0 = C.C ′ = (C0 + cf).(C0 + c′f) = −n+ c+ c′

which leads to

c = n+ x− y
2 ,

c′ = n− x+ y

2 .

These observations yield C2 = 2c − n = x − y ≤ 0. This leads to C = C0 because C0
is the unique irreducible curve with non-positive self-intersection (or x = y and n = 0).
We conclude c = 0 and hence, n = y − x which also holds for n = 0 and y = x. Thus,
the embedding is given by L = C0 + yf and the curve C ′ is C ′ = C0 + (y − x)f .

We consider some examples of the classification of Pasquier which are given by triples
(G,PY , PZ). We will study their geometry using the above algorithm and the classifica-
tion of Bourbaki [5].

Example 5.24. In this example we will discuss all the possible cases from Proposition
5.15.

(i) We consider type (1), i.e. (Bn, P (ωn−1), P (ωn)) for n ≥ 3. The fundamental
weights are given by

ωn−1 = ε1 + ...+ εn−1

= α1 + 2α2 + ...+ (n− 2)αn−2 + (n− 1)(αn−1 + αn) and

ωn = 1
2(ε1 + ...+ εn)
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= 1
2(α1 + 2α2 + ...+ nαn)

for αi = εi − εi+1, 1 ≤ i ≤ n− 1, and αn = εn. Therefore, we have

χ = ωn−1 − ωn

= 1
2(ε1 + ...+ εn−1 − εn)

= 1
2(α1 + 2α2 + ...+ (n− 1)αn−1 + (n− 2)αn).

The positive roots are given by εi for 1 ≤ i ≤ n and εi± εj for 1 ≤ i < j ≤ n. This
implies that they will not be any surface in XT ′ because there is no root which is
a non-zero multiple of χ.

(ii) Now, we consider type (2), i.e. the triple (B3, P (ω1), P (ω3)). The fundamental
weights are given by

ω1 = ε1

= α1 + α2 + α3 and

ω3 = 1
2(ε1 + ε2 + ε3)

= 1
2(α1 + 2α2 + 3α3)

for αi as above. Therefore, we have

χ = ω1 − ω3

= 1
2(ε1 − ε2 − ε3)

= 1
2(α1 − α3).

As above, there will not be any surface in XT ′ by the same argument.

(iii) Next, we consider type (3), i.e. (Cn, P (ωm), P (ωm−1)) with n ≥ 2 and m ∈ [2, n].
The fundamental weights are given by

ωi = ε1 + ...+ εi

= α1 + 2α2 + ...+ (i− 1)αi−1 + i

(
αi + αi+1 + ...+ αn−1 + 1

2αn
)

for 1 ≤ i ≤ n and αi = εi − εi+1, 1 ≤ i ≤ n− 1, and αn = 2εn. Therefore, we have

χ = ωm − ωm−1

= εm

= αm + ...+ αn−1 + 1
2αn.

The positive roots are given by εi ± εj for 1 ≤ i < j ≤ n and 2εi for 1 ≤ i ≤ n.
Thus, there is a positive root which is a non-zero multiple of χ, namely α := 2εm.
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Consequently, we have

α∨ = 2α
(α, α) = 2 · 2εm

(2εm, 2εm) = εm

and therefore, we obtain

(α∨, ωm) = (εm, ε1 + ...+ εm) = 1

and

(α∨, ωm−1) = (εm, ε1 + ...+ εm−1) = 0.

This implies that we have 3 T -fixed points and thus, we obtain a projective plane
in XT ′ .

(iv) Next, we consider type (4), i.e. the triple (F4, P (ω2), P (ω3)). The fundamental
weights are given by

ω2 = 2ε1 + ε2 + ε3

= 3α1 + 6α2 + 8α3 + 4α4 and

ω3 = 1
2(3ε1 + ε2 + ε3 + ε4)

= 2α1 + 4α2 + 6α3 + 3α4

for

α1 = ε2 − ε3, α2 = ε3 − ε4, α3 = ε4, α4 = 1
2(ε1 − ε2 − ε3 − ε4).

Therefore, we have

χ = ω2 − ω3

= 1
2(ε1 + ε2 + ε3 − ε4)

= α1 + 2α2 + 2α3 + α4.

The positive roots are given by εi for 1 ≤ i ≤ 4, εi ± εj for 1 ≤ i < j ≤ 4 and
1
2(ε1 ± ε2 ± ε3 ± ε4). Thus, α := χ is already a positive root and consequently, we
have

α∨ = 2α
(α, α) = ε1 + ε2 + ε3 − ε4

(1
2(ε1 + ε2 + ε3 − ε4), 1

2(ε1 + ε2 + ε3 − ε4))
= ε1 + ε2 + ε3 − ε4.

Therefore, we obtain

(α∨, ω2) = (ε1 + ε2 + ε3 − ε4, 2ε1 + ε2 + ε3) = 4

and

(α∨, ω3) = (ε1 + ε2 + ε3 − ε4,
1
2(3ε1 + ε2 + ε3 + ε4)) = 2.
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This implies that we have 4 T -fixed points and thus, we obtain a Hirzebruch surface.
Remark 5.1 ensures that (α∨, ω2) and (α∨, ω3) give us the degrees of the curves
in the two closed orbits. The only surfaces occurring in XT ′ are projective spaces
P2 and Hirzebruch surfaces Fn. Therefore, the given surface must be a Hirzebruch
surface F2 using the previous algorithm.

(v) Lastly, we consider type (5), i.e. the triple (G2, P (ω1), P (ω2)). The fundamental
weights are given by

ω1 = −ε2 + ε3

= 2α1 + α2 and
ω2 = −ε1 − ε2 + 2ε3

= 3α1 + 2α2

for α1 = ε1 − ε2 and α2 = −2ε1 + ε2 + ε3. Therefore, we have

χ = ω1 − ω2

= ε1 − ε3

= −α1 − α2.

The positive roots are given by α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2 and 3α1 + 2α2.
Thus, α := −χ is a positive root and consequently, we have

α∨ = 2α
(α, α) = 2(ε3 − ε1)

(ε3 − ε1, ε3 − ε1) = ε3 − ε1.

Therefore, we obtain

(α∨, ω1) = (ε3 − ε1,−ε2 + ε3) = 1

and

(α∨, ω2) = (ε3 − ε1,−ε1 − ε2 + 2ε3) = 3.

This implies that we have 4 T -fixed points and thus, we obtain a Hirzebruch surface.
Remark 5.1 ensures that (α∨, ω1) and (α∨, ω2) give us the degrees of the curves
in the two closed orbits Y and Z, respectively. We conclude using the previous
algorithm that XKer(α)0 contains a Hirzebruch surface F2.

After having described the T -stable points and curves on all the smooth projective
horospherical varieties of Picard number one, we can describe their equivariant algebraic
cobordism rings. This will be done by using Theorem 4.13.

Example 5.25. Here, we will give the equivariant cobordism rings of the previous 5
cases. Therefore, we will in general consider as usual the injective map

i∗ : Ω∗T (X)Q → Ω∗T (XT )Q.

(i) First, we consider the case (Bn, P (ωn−1), P (ωn)) for n ≥ 3. For any element
w′ ∈ W/WS\αn−1 we denote by y(w′) := w′P (ωn−1)/P (ωn−1) the corresponding
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T -fixed point in Y and similarly by z(w′′) := w′′P (ωn)/P (ωn) the T -fixed point in
the closed orbit Z for any w′′ ∈W/WS\αn .

The equations for the closed orbits Y and Z are given by

fy(w·sα) ≡ fy(w) mod cT1

(
Lwωn−1−wsαωn−1

)
(5.2)

fz(w·sβ) ≡ fz(w) mod cT1

(
Lwωn−wsβωn

)
(5.3)

for α ∈ R+ \R+
P (ωn−1), β ∈ R

+ \R+
P (ωn) and w ∈W which is true as the difference

of the weights associated to the T -fixed points is a multiple of the weight of the
corresponding curve and we consider rational coefficients. We have seen above that
there are no surfaces in this particular case. Therefore, the last equations are given
by the lines joining the two closed orbits. These are given by

fy(w) ≡ fz(w) mod cT1

(
Lwωn−1−wωn

)
(5.4)

for w ∈W . This completely describes the equivariant algebraic cobordism Ω∗T (X)Q
in case (1).

(ii) Case (2) can be done similarly because there are also no surfaces in any fixed point
subscheme XT ′ .

(iii) Now, we consider the case (Cn, P (ωm), P (ωm−1)) for n ≥ 2 and m ∈ [2, n]. The
equations from the curves in the closed orbits can be obtained as in (5.2) and (5.3).
Furthermore, the equations from the lines joining the closed orbits can be obtained
as in (5.4). As we have seen in Example 5.24, we need to choose α := 2εm to
be the positive root which is a non-zero multiple of χ = ωm − ωm−1 in order to
obtain a surface in XT ′ for T ′ = Ker(α)0. The reflection sα acts trivially on the
T -fixed point z(1) and therefore, we obtain the T -fixed points z(1), y(1) and y(sα)
in XT ′ . Having a look at the weights of the resulting surface P2, we see that ωm−1
acts trivially and that ωm acts with weight εm. Therefore, we can identify the
T -fixed points z(1), y(1) and y(sα) with y, x and z respectively where we consider
the T -action on P2 given by t · [x : y : z] = [tx : y : t−1z]. For any w ∈W this leads
to the equation(

fy(w) − fz(w)
)

+ ρ1/2c
T
1 (Lwα)

(
fy(w·sα) − fy(w)

)
≡ 0 mod cT1 (Lwα)2.

This completes the description of the equivariant algebraic cobordism in case (3).

(iv) Next, we consider case (4) which is given by the triple (F4, P (ω2), P (ω3)). The
equations coming from the curves can be described as above for the previous cases.
From Example 5.24 we know that we can choose the positive root α := χ = ω2−ω3
in order to obtain surfaces in XT ′ for T ′ = Ker(α)0. The T -fixed points are given
by y(1), y(sα), z(1) and z(sα) contained in a Hirzebruch surface F2 which has been
described in Example 5.24. By that example, we know that we have a T -stable
curve of degree 4 in the closed orbit Y and one of degree 2 in the closed orbit Z.
By computing

sαω2 = −ε2 − ε3 + 2ε4 and
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sαω3 = 1
2(ε1 − ε2 − ε3 + 3ε4),

we obtain ω2 − sαω2 = 4α and ω3 − sαω3 = 2α and therefore, we can identify
y(1), y(sα), z(1) and z(sα) with w, z, x and y, respectively, using the notations from
Example 3.9 (v). For any element w′ ∈W we define ζw′·sα :=

(
fz(w′sα) − fy(w′sα)

)
and ζw′ :=

(
fy(w′) − fz(w′)

)
which leads to the equations

ρ−2/2c
T
1 (Lw′α)ζw′·sα + ρ2/2c

T
1 (Lw′α)ζw′ ≡ 0 mod cT1 (Lw′α)2.

This completes the description of Ω∗T (X)Q in case (4).

(v) Lastly, we consider case (5) which is given by the triple (G2, P (ω1), P (ω2)) for
ω1 = 2α1 + α2 and ω2 = 3α1 + 2α2. The curves can be described as above for the
previous cases. In order to obtain surfaces in XT ′ we need to choose α := −χ by
Example 5.24. Therefore, we obtain the T -fixed points y(1), y(sα), z(1) and z(sα)
contained in a Hirzebruch surface F2 which has been described in Example 5.24. By
that example, we know that we have a T -stable curve of degree 1 in Y and one of
degree 3 in Z. By verifying the weights sα·ω1 = α1 and sα·ω2 = −α2 we can identify
y(1), y(sα), z(1) and z(sα) with x, y, w and z, respectively, by using the notations
from Example 3.9 (v). For any w′ ∈ W we define ξw′·sα :=

(
fy(w′·sα) − fz(w′·sα)

)
and ξw′ :=

(
fz(w′) − fy(w′)

)
which leads to the equations

ρ−2/2c
T
1 (Lw′α)ξw′·sα + ρ2/2c

T
1 (Lw′α)ξw′ ≡ 0 mod cT1 (Lw′α)2.

This completes the description of Ω∗T (X)Q in case (5).

To finish this section, we will redo the computations for the equivariant cobordism
of the symplectic Grassmannian IG(2, 5) and verify that the geometric description from
Example 4.29 leads to the same result as the previously described algebraic approach.

Example 5.26. We consider the case (C2, P (ω2), P (ω1)). The positive roots are given
by α, β, α + β and 2α + β where α = ε1 − ε2 and β = 2ε2 denote the simple roots, β
being the long root. We have W (Sp4) ∼= D4 where D4 denotes the dihedral group of
order 8. The geometric picture of the roots of C2 is given by the following figure.

3π/4 β

α

Figure 2: Root system of C2.

With the same arguments as in Example 5.8 we obtain 4 T -fixed points in G/Pα and
G/Pβ. Furthermore, every two fixed points in one of the closed orbits are connected by
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5.2 Geometry of horospherical varieties of Picard number one

some T -stable curve which leads to a total of 12 T -stable curves in the closed orbits.
The fundamental weights are given by ω1 = ε1 and ω2 = ε1 + ε2 = α + β. The T -fixed
points in G/Pα are indexed by elements of the quotient

W/Wα = {{sα, Id}, {sβsα, sβ}, {sαsβsα, sαsβ}, {(sβsα)2, sβsαsβ}}.

The B-fixed point y(1) in Y corresponds to the weight ε1 + ε2 which implies that the
T -fixed points y(sβ), y(sαsβ) and y(sβsαsβ) correspond to the weights ε1 − ε2, ε2 − ε1
and −ε1 − ε2, respectively. Now, we compute the weights acting on the T -stable curves
which are given by

(y(1)↔ y(sβ)) ↔ −2ε2

(y(1)↔ y(sαsβ)) ↔ −2ε1

(y(1)↔ y(sβsαsβ)) ↔ −2(ε1 + ε2)
(y(sβ)↔ y(sαsβ)) ↔ −2(ε1 − ε2)
(y(sβ)↔ y(sβsαsβ)) ↔ −2ε1

(y(sαsβ)↔ y(sβsαsβ)) ↔ −2ε2.

We obtain 4 T -stable curves of degree 1 and 2 T -stable curves of degree 2 in the closed
orbit Y .

Next, we will do the same computations for the closed orbit Z. The T -fixed points
in G/Pβ are indexed by elements of the quotient

W/Wβ = {{sβ, Id}, {sαsβ, sα}, {sβsαsβ, sβsα}, {(sαsβ)2 = (sβsα)2, sαsβsα}}.

The B-fixed point z(1) in Z corresponds to the weight ε1 implying that the T -fixed points
z(sα), z(sβsα) and z(sαsβsα) correspond to the weights ε2,−ε2 and −ε1, respectively.
The weights acting on the T -stable curves are given by

(z(1)↔ z(sα)) ↔ −(ε1 − ε2)
(z(1)↔ z(sβsα)) ↔ −(ε1 + ε2)
(z(1)↔ z(sαsβsα)) ↔ −2ε1

(z(sα)↔ z(sβsα)) ↔ −2ε2

(z(sα)↔ z(sαsβsα)) ↔ −(ε1 + ε2)
(z(sβsα)↔ z(sαsβsα)) ↔ −(ε1 − ε2).

These computations for the closed orbit Z lead to 6 T -stable curves of degree 1. Lastly,
we obtain 8 T -stable curves of degree 1 meeting the dense orbit by letting the Weyl group
act on the curve connecting the two B-fixed points y(1) and z(1). The corresponding
weights are given by

Id(y(1)↔ z(1)) = (y(1)↔ z(1)) ↔ −ε2

sα(y(1)↔ z(1)) = (y(1)↔ z(sα)) ↔ −ε1

sβ(y(1)↔ z(1)) = (y(sβ)↔ z(1)) ↔ ε2
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sαsβ(y(1)↔ z(1)) = (y(sαsβ)↔ z(sα)) ↔ ε1

sβsα(y(1)↔ z(1)) = (y(sβ)↔ z(sβsα)) ↔ −ε1

sαsβsα(y(1)↔ z(1)) = (y(sαsβ)↔ z(sαsβsα)) ↔ −ε2

sβsαsβ(y(1)↔ z(1)) = (y(sβsαsβ)↔ z(sβsα)) ↔ ε1

(sβsα)2(y(1)↔ z(1)) = (y(sβsαsβ)↔ z(sαsβsα)) ↔ ε2.

In accordance to Example 5.25 there will be projective planes P2 in XKer(β)0 and to be
even more precise, there will be 2 projective planes inXT ′ containing y(1), y(sβ), z(1) and
y(sαsβ), y(sβsαsβ), z(sαsβsα), respectively. Therefore, using the notation from Example
4.29, we may identify the B-fixed point z(1) with the T -fixed point x13 by choosing the
Borel subgroup to be the subgroup of upper triangular matrices in Sp4. This implies
y(1) = x12 because of the degree 2 curve in Y containing y(1) and therefore, we have
y(sβ) = x14. Furthermore, we can then identify z(sαsβsα) = x35, y(sαsβ) = x25 and
y(sβsαsβ) = x45. Lastly, we obtain z(sβsα) = x34 and z(sα) = x23. In conclusion, we
obtain the same description as in Example 4.29 which will lead to the same equations
describing the equivariant cobordism ring Ω∗T (IG(2, 5))Q.

Remark 5.27. The previous example can be generalised to all the examples of type (3),
i.e. to all odd symplectic Grassmannians IG(k, 2n + 1) for n ≥ 2 and k ∈ [2, n] which
have been described in Example 4.31. We conclude that computation of the equivariant
cobordism rings using the geometric interpretation coincides with the algebraic one for
all the examples occurring in case (3).

5.3 Geometry of horospherical varieties of Picard number two

In this section, we consider the geometry of smooth projective horospherical varieties
of Picard number two. We will first recall some relevant notation which was used in
Pasquier’s classification of smooth projective horospherical varieties of Picard number
two (cf. [44]).

Let G be a complex simply connected simple algebraic group, B a Borel subgroup
of G and T a fixed maximal torus contained in B. This defines a root system and
in particular a set of simple roots. We may associate a fundamental weight ωα and a
fundamental G-module denoted by V (ωα) to each simple root α. More generally, for
any dominant weight χ we denote by V (χ) the G-module associated to χ. To be more
precise, it is the unique irreducible G-module that contains a unique B-stable line where
B acts via weight χ. A non-zero element of the B-stable line of V (χ) is called a highest
weight vector of weight χ and the stabiliser of the B-stable line of V (χ) is denoted by
P (χ) which is a parabolic subgroup of G containing B.

In this section, for G = C∗ we call the identity automorphism of C∗ the simple root
of G, we denote it by α and set ωα = α. The natural C∗-module C is denoted by V (ωα)
where α is the simple root of C∗. Further, for any n ∈ Z, we denote by V (nωα) the
C∗-module C where C∗ acts with weight nωα. Moreover, if G = {1}, we call the trivial
morphism from G to C∗ the simple root of G which we denote by α and we set ωα = 0.
We remark that in both cases any non-zero vector is a highest weight vector.

Assume now that G is a product G0 × · · · × Gt of simply connected simple groups,
C∗ and {1}. A simple root of G is a simple root of some Gi and it is said to be trivial
if Gi is equal to C∗ or {1}. Moreover, let χ0, ..., χt be dominant weights of G0, ..., Gt,
respectively, then the G-module associated to χ = χ0 + ... + χt is the tensor product
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5.3 Geometry of horospherical varieties of Picard number two

V (χ0) ⊗ · · · ⊗ V (χt) and a highest weight vector of this G-module is a decomposable
tensor product of highest weight vectors.

Definition 5.28. [44, Definition 3.9] Let G = G0 × · · · × Gt be a product of simply
connected simple groups, C∗ and {1} with t ≥ 0.

(1) Suppose G0 to be a simple group. Further, let β be a non-trivial simple root of G0,
let n ≥ max{1, t} and let α0, ..., αn be distinct, possibly trivial, simple roots of G
different from β and lastly, let 0 = a0 ≤ a1 ≤ · · · ≤ an be integers. Suppose also that
for any k ∈ {1, ..., t}, Gk = {1} if and only if k = 1 and α0 is the trivial root of G1.
Denote α := (α0, ..., αn) and a := (a0, ..., an). Under these assumptions, we define
X1(G, β, α, a) to be the closure of the G-orbit of a sum of highest weight vectors in

P
(

n⊕
i=0

V (ωαi + (1 + ai)ωβ

)
.

(2) Suppose now that t ≥ 1. Let n ≥ 2, let 0 = a0 ≤ a1 ≤ · · · ≤ an−1 be integers, and let
α0, ..., αn+1 be distinct, possibly trivial, simple roots of G. Suppose also that, for any
k ∈ {0, ..., t}, Gk = {1} if and only if k = 0 and α0 is the trivial root of G0, or k = t
and αn+1 is the trivial root of Gt. Denote α := (α0, ..., αn+1) and a := (a0, ..., an−1).
Under these assumptions, we define X2(G,α, a) to be the closure of the G-orbit of a
sum of highest weights vectors in

P
(
n−1⊕
i=0

1+ai⊕
b=0

V (ωαi + bωαn + (1 + ai − b)ωαn+1)
)
.

Definition 5.29. [44, Definition 4.1] Let K be a simple algebraic group over C and let
γ, δ be two simple roots of K. The triple (K, γ, δ) is said to be smooth if it is one of the
following 8 cases, up to exchanging γ and δ (with the notation of Bourbaki [5]).

(1). (Am, α1, αm) with m ≥ 2

(2). (Am, αi, αi+1) with m ≥ 3 and i ∈ {1, ...,m− 1}

(3). (Bm, αm−1, αm) with m ≥ 3

(4). (B3, α1, α3)

(5). (Cm, αi, αi+1) with m ≥ 2 and i ∈ {1, ...,m− 1}

(6). (Dm, αm−1, αm) with m ≥ 4

(7). (F4, α2, α3)

(8). (G2, α1, α2)

We say that the triple (type of K, γ, δ) is smooth of two-orbit type if it is one of the cases
3, 4, 5, 7 or 8 above.

Definition 5.30. [44, Definition 4.3] Let K be a simple algebraic group over C and let
β be a simple root of K and let R be a subset of simple roots of K, all distinct from β.
Let n be a non-negative integer. Denote by L the Levi subgroup of the maximal parabolic
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subgroup P (β) of K, then the semisimple part of L is a quotient by a finite central group
of a product of simple groups L1, ..., Lq (with q ≥ 0). The quadruple (K,β,R, n) is said
to be smooth if

(1) n = 1, R = {γ, δ} such that γ and δ are simple roots of the same Lk such that the
triple (Lk, γ, δ) is smooth;

(2) or for any k ∈ {1, ..., q}, at most one simple root of Lk is in R, and if γ ∈ R is a
simple root of Lk, then Lk is of type A or C and γ is a short extremal simple root
of Lk.

We can now define the restricted conditions that allow us to state the main theorem
of [44].

Definition 5.31. [44, Definition 4.4] Let X = X1(G, β, α, a) as in Definition 5.28. Let
R0 be the maximal subset of {α0, ..., αn} consisting of simple roots of G0. We say that X
satisfies the restricted condition (a), (b) or (c), respectively, if it satisfies all the following
properties including (a), (b) or (c), respectively.

(1) The quadruple (G0, β, R0, n) is smooth.

(2) If R0 is empty, then G0 is the universal cover of the automorphism group of G/P (ωβ).

(3) If i < j and ai = aj, then αj ∈ R0. Moreover, if αi and αj are in R0, we suppose
them to be ordered with Bourbaki’s notation as simple roots of G0.

(4) One of the three following cases occurs.

(a) We have n = t = 1, α0 and α1 are both simple roots of G1 such that the triple
(G1, α0, α1) is smooth; in particular, R0 = ∅ and a0 < a1.
In the next two cases, the map {α0, ..., αn} \ R0 → {1, ..., t} is surjective and
strictly increasing, and for any k ∈ {1, ..., t}, either Gk is isomorphic to some
SLdk and αik is the first simple root of Gk, or Gk is isomorphic to C∗ or {1}
and αik is the trivial simple root of Gk.

(b) The simple root αn is not trivial (in particular if an−1 = an).
(c) The simple root αn is trivial (and then an−1 < an).

Definition 5.32. [44, Definition 4.5] Let X = X2(G,α, a) as in Definition 5.28. We
say that X satisfies the restricted condition (a), (b) or (c), respectively, if it satisfies all
the following properties including (a), (b) or (c), respectively.

(1) We have 0 = a0 < a1 < · · · < an.

(2) The triple (Gt, αn, αn+1) is smooth of two-orbit type; in particular, αn and αn+1 are
both simple roots of Gt and α0, ..., αn−1 are simple roots of G0 ×G1 × · · · ×Gt−1.

(3) One of the three following cases occurs.

(a) We have n = 2, t = 1 and the triple (G0, α0, α1) is smooth.
In the two next cases: t = n, the map {α0, ..., αn−1} → {0, ..., t−1} is surjective
and strictly increasing; and for any i ∈ {1, ..., t}, either Gi is isomorphic to
some SLdi and αi is the first simple root of Gi, or Gi is isomorphic to C∗ or
{1} and αi is the trivial simple root of Gi.
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5.3 Geometry of horospherical varieties of Picard number two

(b) The simple root αn−1 is not trivial.
(c) The simple root αn−1 is trivial.

Now, we can finally state the classification of smooth projective horospherical varieties
of Picard rank two.

Theorem 5.33. [44, Theorem 1.1] Let X be a smooth projective horospherical variety
with Picard group Z2. Suppose that X is not the product of two varieties. Then X is
isomorphic to one of the following horospherical varieties. In all cases, G is a product
of simply connected simple groups, C∗ and {1}.

(0) G is simple and X is a homogeneous variety G/P where P is the intersection of two
maximal (proper) parabolic subgroups of G containing the same Borel subgroup.

(1) X is one of the varieties X1(G, β, α, a) as in Definition 5.28 with one of the restricted
conditions (a), (b) or (c).

(2) X is a variety X2(G,α, a) as in Definition 5.28 with one of the restricted conditions
(a), (b) or (c).

Remark 5.34. [44, Remark 4.6] In Theorem 5.33, the decomposable projective bundles
over projective spaces are the horospherical varieties X in Case (1) with restricted con-
dition (b) or (c), and such that R0 = ∅ and ωβ is the first simple root of G0 = SLd0 for
some d0 ≥ 2 (and 0 < a1 < · · · < an).

Remark 5.35. In Case (1a) one would have the product of two varieties if one allowed
a1 = 0. Here, one can compute the T -equivariant cobordism of the product using the
Künneth formula 3.63.

Recall [44, Section 4.1] that the colored fans F1 and F2 of the horospherical varieties
in Cases (1) and (2) of Theorem 5.33 are given as follows.

The colored fan F1 is the complete colored fan whose maximal colored cones are gen-
erated by all u0, ..., un except one and with all possible colors except β, where (u1, ..., un)
is a basis of N and u0 = −u1− ...−un. Recall also that the lattice N is of rank n which
is the rank of the horospherical variety X1(G, β, α, a).

The colored fan F2 is the complete colored fan whose maximal colored cones are
generated by all u0, ..., ur, v1, ..., vs+1 except one ui and one vj where (u1, ..., ur, v1, ..., vs)
is a basis of N , u0 = −u1−...−ur and vs+1 = a1u1+...+arur−v1−...−vs. Furthermore,
the maximal colored cones of the colored fan F2 contain all possible colors.

Proposition 5.36. Let X be a smooth projective horospherical G-variety with Picard
group Z2 and suppose that X is not the product of two varieties. Then the following
statements are true.

(i) All varieties X of rank one are coming from Cases (1a) and (1b).

(ii) Varieties of rank one coming from Case (1a) have finitely many T -stable curves.

(iii) Varieties of rank one coming from Case (1b) can potentially have infinitely many
T -stable curves.
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Proof. (i) There is a well known correspondence between closed G-orbits and maximal
colored cones (cf. [29]). Using the previous description of the colored fans, one may
observe that smooth projective horospherical varieties of Picard group Z2 which are of
rank one can come from Case (1a) and (1b) and have two closed G-orbits. In Case (1c)
one cannot construct an example with n = 1 and t = 0 because G0 is by assumption
neither C∗ nor {1}. Furthermore, in Case (2) we require n ≥ 2 by Definition 5.28. Thus,
the only smooth projective horospherical varieties of Picard group Z2 of rank one come
from Cases (1a) and (1b).

(ii) Let X = X1(G, β, α, a) be a smooth projective horospherical variety with Picard
group Z2 of Case (1a). In this case, the dense orbit is given by

G · [vωα0+ωβ + vωα1+(1+a1)ωβ ] ⊆ P(V (ωα0 + ωβ)⊕ V (ωα1 + (1 + a1)ωβ))

where vωα0+ωβ and vωα1+(1+a1)ωβ are the highest weight vectors of the correspoding
representations associated to the highest weights. Similarly to the Picard number one
case (cf. Section 5.2), we obtain the two closed G-orbits Y ∼= G/PY and Z ∼= G/PZ
where PY and PZ are the stabilisers of [ωα0 + ωβ] and [vωα1+(1+a1)ωβ ] in P(V (ωα0 +ωβ))
and P(V (ωα1 + (1 + a1)ωβ)), respectively.

In order to determine the T -stable curves and the fixed point subschemes XT ′ , we can
again use diagram (5.1) where T ′ is a subtorus of codimension one in T . Furthermore,
we can run the same strategy and proofs as in the case of Picard number one (cf. Section
5.2). In this case the difference of the two fundamental weights is given by

χ := ωα0 + ωβ − (ωα1 + (1 + a1)ωβ) = ωα0 − ωα1 − a1ωβ.

As we have seen in Example 5.24, we need to find a root which is a non-zero multiple of
χ in order to find surfaces in XT ′ for some singular codimension one subtorus T ′ ⊆ T .
We have a1 6= 0 in Case (1a) and therefore, we cannot find such a root because χ consists
of a part coming from G0 and another one coming from G1. Thus, we conclude that
there are only finitely many T -stable curves in Case (1a) of Theorem 5.33.

(iii) Now, we consider the smooth projective horospherical varieties of Picard group
Z2 and of rank one coming from Case (1b). In that case we have n = 1 and t = 0. After
having discussed Case (1a) we can make similar observations concerning the geometry
for the examples coming from Case (1b). Consequently, we obtain χ = ωα0−ωα1−a1ωβ,
but in this case all the roots are roots of the same group G0. Thus, one may be able to
find a positive root which is a non-zero multiple of χ. This concludes the proof.

Remark 5.37. For smooth projective horospherical varieties X of rank one with Pi-
card group Z2 coming from Case (1a), the T -equivariant cobordism Ω∗T (X)Z[S−1

X ] can
be computed using Theorem 3.60 because there are only finitely many T -stable curves.
As opposed to Case (1a), one needs to use Theorem 4.13 in order to compute the T -
equivariant cobordism for smooth projective horospherical varieties of rank one with
Picard group Z2 having infinitely many T -stable curves coming from Case (1b).

Using the algorithm from Section 5.2 which also works for smooth projective horo-
spherical varieties X of rank one with Picard group Z2, we can check whether there occur
some projective planes or Hirzebruch surfaces in the connected components of XT ′ for
codimension one subtori T ′ ⊆ T . We will see in the upcoming examples that the degrees
of the curves in the closed orbits can be way different from the ones occurring in the
smooth projective horospherical varieties of Picard group Z.
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5.3 Geometry of horospherical varieties of Picard number two

Now, we present some examples similar to the computations in Example 5.24 in
Section 5.2.

Example 5.38. Using the notation of Bourbaki [5] concerning the roots and the fun-
damental weights, we consider certain examples.

(i) First, let X = X1(Sp2n, αn, (α1, αn−1), (0, 0)) be the given smooth projective horo-
spherical variety of Picard rank two from Case (1b). Here, we have

χ = ω1 − ωn−1 = ε1 − (ε1 + ...+ εn−1)
= −ε2 − ...− εn−1.

For 3 ≤ n ≤ 4 we can find a positive root which is a non-zero multiple of χ. We
choose n = 3. Then we have α := −2χ = 2ε2. We need to compute

α∨ = 2α
(α, α) = 2 · 2ε2

(2ε2, 2ε2) = ε2

and thus, we obtain

(α∨, ω1 + ω3) = (ε2, ε1 + (ε1 + ε2 + ε3)) = 1

and

(α∨, ω2 + ω3) = (ε2, (ε1 + ε2) + (ε1 + ε2 + ε3)) = 2.

This implies that we have 4 T -fixed points and that we obtain a Hirzebruch surface
F1 in XT ′ for T ′ = Ker(α)0. For n = 4 we have

χ = ω1 − ω3 = ε1 − (ε1 + ε2 + ε3)
= −ε2 − ε3

and in this case, we choose α := −χ. We compute

α∨ = 2α
(α, α) = 2(ε2 + ε3)

(ε2 + ε3, ε2 + ε3) = ε2 + ε3

and hence, we have

(α∨, ω1 + ω4) = (ε2 + ε3, ε1 + (ε1 + ...+ ε4)) = 2

and

(α∨, ω3 + ω4) = (ε2 + ε3, 2ε1 + 2ε2 + 2ε3 + ε4) = 4.

In this case, using the algorithm from Section 5.2, we obtain a Hirzebruch surface
F2 in XT ′ for T ′ = Ker(α)0.

(ii) Let X = X1(E8, α1, (α3, α2), (0, 1)) be the given smooth projective horospherical
variety of Picard rank two from Case (1b). This leads to

χ = (ω3 + ω1)− (ω2 + 2ω1) = ω3 − ω2 − ω1
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= 1
2(−ε1 + ε2 + ...+ ε7 + 7ε8)− 1

2(ε1 + ...+ ε7 + 5ε8)− 2ε8

= −ε1 − ε8.

Thus, we can choose the positive root α := −χ = ε1 + ε8. As above, we compute

α∨ = 2α
(α, α) = 2(ε1 + ε8)

(ε1 + ε8, ε1 + ε8) = ε1 + ε8

and hence, we obtain

(α∨, ω3 + ω1) = (ε1 + ε8,
1
2(−ε1 + ε2 + ...+ ε7 + 11ε8)) = 5

and

(α∨, ω2 + 2ω1) = (ε1 + ε8,
1
2(ε1 + ...+ ε7 + 13ε8)) = 7.

Similar to the previous case, this leads to a Hirzebruch surface F2 with a different
embedding.

Remark 5.39. One can compute a plethora of examples for Case (1b) using the clas-
sification of smooth quadruples in [44, Appendix 6]. Even for a1 6= 0 one can see from
Example 5.38 (ii) that surfaces occur in the fixed point subschemes XT ′ for codimension
one subtori T ′ ⊆ T . The T -equivariant cobordism rings Ω∗T (X)Q for all of these varieties
can be described by Theorem 4.13.

Remark 5.40. A natural question to ask would be the generalisation of these com-
putations to varieties of rank ≥ 2. Therefore, one could consider a smooth projective
horospherical variety of rank two with Picard group Z2. In this case, there are three
closed G-orbits, one dense G-orbit and three other G-orbits. One might be able to de-
scribe the T -geometry in the dense G-orbit using similar strategies as for the rank one
case except that one would need to consider a fibration with fibres (C∗)2. On the other
hand, one also has to describe the T -geometry in the three G-orbits which are neither
open nor closed. These orbits are similarly given by G-orbits of a sum of weight vectors,
but in general their T -geometry is very difficult to describe. Thus, the above computa-
tions cannot be easily extended to any smooth projective horospherical variety of Picard
number two.
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6 Equivariant multiplicities at isolated fixed points

In this section, we want to generalise some results for equivariant Chow groups from
[7, Section 4] to equivariant algebraic cobordism. Furthermore, in this section we will
work with the definition of T -filtrable schemes given in Section 3.1.

6.1 Equivariant multiplicities

Definition 6.1. Let X be a scheme with a T -action. We call a T -fixed point x ∈ X
nondegenerate if the tangent space TxX contains no nonzero fixed point. Equivalently,
0 is not a weight for the T -module TxX. The weights of this module counted with their
equivariant multiplicities will be called the weights of x in X.
Remark 6.2. [7, Section 4.1] We have Tx(XT ) = (TxX)0 where (TxX)0 denotes the zero
weight space. Therefore, any T -fixed point in a nonsingular T -variety is nondegenerate if
and only if it is isolated. Thus, for the class of smooth projective and spherical varieties
all T -fixed points are nondegenerate.

Before we start to prove the main analogues of [7, Section 4] we state two important
statements which were proved by Krishna [31]. Let M be the character group of T .
Recall that S(T )[M−1] is the graded ring obtained by inverting all non-zero linear forms∑n
j=1mjtj which was described in more detail in Construction 3.43. For a smooth

k-scheme X with a torus action, we denote Ω∗T (X)⊗S(T ) S(T )[M−1] by Ω∗T (X)[M−1].
Proposition 6.3. [31, Proposition 3.1] Let G be a linear algebraic group and f : Y → X
be a regular G-equivariant embedding in G− Schk of pure codimension d and let NY/X

denote the equivariant normal bundle of Y inside X. Then one has

f∗ ◦ f∗(η) = cGd (NY/X)(η)

for every η ∈ ΩG
∗ (Y ).

Corollary 6.4. [31, Corollary 7.3] Let X be a smooth T -filtrable variety with an action
of a torus T and i : XT → X be the inclusion of the fixed point subscheme. Then the
pushforward map i∗ : Ω∗T (XT )Q → Ω∗T (X)Q becomes an isomorphism after base change
to S(T )Q[M−1].

We recall that the equivariant cobordism module of disconnected varieties is the direct
sum of the equivariant cobordism modules of the connected components.
Definition 6.5. Let X be a smooth T -filtrable variety with an action of a torus T .
Further, let [Y → X] ∈ Ω∗T (X)Q and x ∈ X be an isolated T -fixed point. We distinguish
between isolated fixed points and connected components F ⊆ XT which are not an isolated
point. For any isolated fixed point, we define the equivariant multiplicity

ex,X [Y → X] ∈ S(T )Q[M−1]

of X at x to be given by the equality

[Y → X] = i∗

 ∑
x∈XT

isolated

ex,X [Y → X][x→ x] +
∑

F⊆XT

eF [F ′ → F ]


which holds in Ω∗T (X)Q[M−1] for some eF ∈ S(T )Q[M−1] and [F ′ → F ] ∈ Ω∗T (F )Q.
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Lemma 6.6. Let X be a smooth T -filtrable variety with a T -action. Furthermore, let
Y ⊆ X be a closed smooth T -filtrable subvariety. For the class [f : Y → X] in the
S(T )Q-algebra Ω∗T (X)Q and any T -fixed point y ∈ Y which is nondegenerate in X we
have

ey,X [Y → X] = 1
cT1 (L−χ1) · · · cT1 (L−χm)

in Ω∗T (X)Q[M−1] where χ1, ..., χm are the weights of y in Y .

Proof. First, we remark that the assumption of y ∈ Y T being nondegenerate inX implies
that y lies in XT and is nondegenerate in Y . Next, we consider the equality

[Y → Y ] =
∑
y′∈Y T
isolated

ey′,Y [Y → Y ][y′ → Y ] +
∑

F⊆Y T
eF [F ′ → Y ] (6.1)

coming from Definition 6.5. For j : Y T → Y , we apply j∗ on both sides. Using
Proposition 6.3 and the Whitney sum formula, we obtain

[Y T → Y T ] =
∑
y′∈Y T
isolated

ey′,Y [Y → Y ]

 ∏
χ weights of
y′ in Y

cT1 (L−χ)

 [y′ → y′] +
∑

F⊆Y T
eF [j∗F ′ → F ]

which leads to

ey′,Y [Y → Y ] =

 ∏
χ weights of
y′ in Y

cT1 (L−χ)


−1

for all isolated y′ ∈ Y T . Now, we apply f∗ to (6.1) and thus, we have

[Y → X] =
∑
y′∈Y T
isolated

ey′,Y [Y → Y ][y′ → X] +
∑

F⊆Y T
eF [F ′ → X]. (6.2)

On the other hand, by Definition 6.5, we have the equality

[Y → X] =
∑
x∈XT

isolated

ex,X [Y → X][x→ X] +
∑

F̃⊆XT

e
F̃

[F̃ ′ → X].

Let i : y → X be the inclusion of the isolated fixed point y in X. Applying i∗ to the two
equations above implies

ey,Y [Y → Y ]i∗[y → X] = ey,X [Y → X]i∗[y → X]. (6.3)

Hence, comparing the coefficients leads to

ey,Y [Y → Y ] = ey,X [Y → X]

which implies the claim.
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Next, we consider classes [Y → X] of the S(T )Q-algebra Ω∗T (X)Q for which Y is not
necessarily a closed smooth T -filtrable subscheme of X. This generalises [7, Proposition
4.3] in the setting of smooth T -filtrable varieties with a T -action.

Proposition 6.7. Let X,Y be smooth T -filtrable varieties with a T -action such that
[f : Y → X] is a class in the S(T )Q-algebra Ω∗T (X)Q. Let x ∈ X be a nondegenerate
fixed point. Assume further that all fixed points in the fibre f−1(x) are nondegenerate.
Then we have

ex,X [Y → X] =
∑
y∈Y T
f(y)=x

ey,Y [Y → Y ].

Proof. Let j : U → X be the inclusion of some open T -stable neighbourhood of x.
By potential shrinking we may assume that x is the unique T -fixed point in X. Using
Definition 6.5 in Ω∗T (X)Q, we obtain

[Y → X] =
∑
x∈XT

isolated

ex,X [Y → X][x→ X] +
∑

F̃⊆XT

e
F̃

[F̃ ′ → X].

We have j∗[F̃ ′ → X] = 0 if Im(F̃ ′) ⊆ X does not contain x. Therefore, pulling back
along j yields

[f−1(U)→ U ] =
∑
x∈UT

ex,X [Y → X][x→ U ] = ex,X [Y → X][x→ U ].

On the other hand, we have

[Y → Y ] = i∗

 ∑
y∈Y T

isolated

ey,Y [Y → Y ][y → y] +
∑

F⊆Y T
eF [F ′ → F ]

 .
Applying the pushforward f∗ to the equation results in

[Y → X] =

 ∑
y∈Y T

isolated

ey,Y [Y → Y ][y → X] +
∑

F⊆Y T
eF [F ′ → X]

 .
Again, j∗[F ′ → X] = 0 and j∗[y′ → X] = 0 for any y′ ∈ Y T if f(y′) 6= x. Thus, applying
the pullback j∗ yields

[f−1(U)→ U ] =
∑
y∈Y T
f(y)=x

ey,Y [Y → Y ][y → U ].

Due to the fact that [x → U ] = [y → U ] holds in Ω∗T (U)Q[M−1] for any y ∈ Y T with
f(y) = x, we obtain
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ex,X [Y → X][x→ U ] =
∑
y∈Y T
f(y)=x

ey,Y [Y → Y ][y → U ]

=

 ∑
y∈Y T
f(y)=x

ey,Y [Y → Y ]

 [y → U ].

Thus, the corresponding coefficients in S(T )Q[M−1] must coincide which implies the
claim.

Remark 6.8. The results in this section can be certainly proved for the coefficient ring
Z[S−1

X ] (cf. Definition 3.58), but in fact one only needs condition (i) of Definition 3.56 in
order to prove Corollary 6.4. Therefore, it would be enough to consider only condition
(i) of Definition 3.56 for the subsequent Definition 3.58 which could then be used as the
modified coefficient ring in this section.

6.2 Classes in IG(2, 5)

Example 6.9. We want to compute the pullback of the classes of IG(2, 5) in S(T )8
Q.

Therefore, we first consider the Bialynicki-Birula decomposition coming from Brion’s
definition of T -filtrable varieties in [7, Section 3]. As a generic one-parameter subgroup
we choose λ : Gm → T, t 7→ diag(t2, t, t−1, t−2). Using the notation from Section 3.2, we
obtain the cells

X+(x45, λ) =




a1/a4 b1/b5
a2/a4 b2/b5
a3/a4 b3/b5

1 0
0 1



∣∣∣∣∣∣∣∣∣∣∣
− a1
a4

+ b2
b5

= 0


= A5

X+(x35, λ) =




a1/a3 b1/b5
a2/a3 b2/b5

1 0
0 b4/b5
0 1



∣∣∣∣∣∣∣∣∣∣∣
− a1
a3
− a2b4
a3b5

= 0


= A4

X+(x34, λ) =




a1/a3 b1/b4
a2/a3 b2/b4

1 0
0 1
0 0



∣∣∣∣∣∣∣∣∣∣∣
− a2
a3

= 0


= A3

1

X+(x25, λ) =




a1/a2 b1/b5

1 0
0 b3/b5
0 b4/b5
0 1



∣∣∣∣∣∣∣∣∣∣∣
− a1
a2
− b4
b5

= 0


= A3

2
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X+(x23, λ) =




a1/a2 b1/b3

1 0
0 1
0 0
0 0




= A2

1

X+(x14, λ) =




1 0
0 b2/b4
0 b3/b4
0 1
0 0




= A2

2

X+(x13, λ) =




1 0
0 b2/b3
0 1
0 0
0 0




= A1

X+(x12, λ) =




1 0
0 1
0 0
0 0
0 0




= A0

which lead to the filtration A0 = X0 ⊆ X1 ⊆ · · · ⊆ X7 = IG(2, 5) where each Xi is
given by attaching one more cell in reciprocal order. We recall the filtration (3.1), i.e.
the Xi are T -stable closed subschemes of IG(2, 5) for all 0 ≤ i ≤ 7. Further, we remark
that the Wm = Xm \Xm−1, 0 ≤ m ≤ 7, are precisely the Bialynicki-Birula cells which
are the given affine spaces in our situation. The generators of ΩT

∗ (IG(2, 5))Q are given
by [X̃i → IG(2, 5)] (cf. Corollary 3.46) and we need to compute the weights acting on
the tangent space of the fixed points contained in Xi which is done by finding affine
stable neighbourhoods on which we can see the weights acting. Next, we give a list of
the weights occurring for the different fixed points in their corresponding affine stable
neighbourhoods where ε1, ε2 are given as in Example 4.29.

x45 in X7 =⇒ weights: ε1 + ε2, 2ε2, ε2, 2ε1, ε1

x35 in X7 =⇒ weights: ε2,−ε2, 2ε1, ε1 + ε2, ε1 − ε2

x35 in X6 =⇒ weights: ε2, 2ε1, ε1 + ε2, ε1 − ε2

x34 in X7 =⇒ weights: ε1,−ε1, ε1 + ε2, 2ε2, ε2 − ε1

x34 in X6 =⇒ weights: ε1, ε1 + ε2, 2ε2, ε2 − ε1

x34 in X5 =⇒ weights: ε1, ε1 + ε2, 2ε2

x25 in X7 =⇒ weights: − ε2,−2ε2, 2ε1, ε1, ε1 − ε2

x25 in X6 =⇒ weights: − ε2, 2ε1, ε1, ε1 − ε2

x25 in X5 =⇒ weights: 2ε1, ε1, ε1 − ε2

x25 in X4 =⇒ weights: 2ε1, ε1, ε1 − ε2
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x23 in X7 =⇒ weights: ε1 − ε2,−2ε2,−ε1 − ε2, ε1,−ε1

x23 in X6 =⇒ singular point
x23 in X5 =⇒ singular point
x23 in X4 =⇒ weights: ε1 − ε2, ε1,−ε1

x23 in X3 =⇒ weights: ε1 − ε2, ε1

x14 in X7 =⇒ weights: ε2 − ε1,−ε1,−2ε1, 2ε2, ε2

x14 in X6 =⇒ weights: ε2 − ε1,−ε1, 2ε2, ε2

x14 in X5 =⇒ singular point
x14 in X4 =⇒ weights: ε2 − ε1, 2ε2, ε2

x14 in X3 =⇒ weights: 2ε2, ε2

x14 in X2 =⇒ weights: 2ε2, ε2

x13 in X7 =⇒ weights: ε2 − ε1,−ε1 − ε2,−2ε1, ε2,−ε2

x13 in X6 =⇒ singular point
x13 in X5 =⇒ singular point
x13 in X4 =⇒ weights: ε2 − ε1, ε2,−ε2

x13 in X3 =⇒ singular point
x13 in X2 =⇒ weights: ε2,−ε2

x13 in X1 =⇒ weights: ε2

x12 in X7 =⇒ weights: − ε1,−ε1 − ε2,−2ε1,−ε2,−2ε2

x12 in X6 =⇒ singular point
x12 in X5 =⇒ singular point
x12 in X4 =⇒ singular point
x12 in X3 =⇒ singular point
x12 in X2 =⇒ weights: − ε2,−2ε2

x12 in X1 =⇒ weights: − ε2

x12 in X0 =⇒ no weights

Besides that, we have the pullback i∗[X7 → IG(2, 5)] = (1, 1, 1, 1, 1, 1, 1, 1) for the inclu-
sion i : IG(2, 5)T → IG(2, 5). Furthermore, using Definition 6.5 and Lemma 6.6, one can
compute the pullbacks of the fixed points which are given by

i∗x45 [x45 → IG(2, 5)] = cT1 (L−ε1−ε2)cT1 (L−2ε2)cT1 (L−ε2)cT1 (L−2ε1)cT1 (L−ε1)
i∗x35 [x35 → IG(2, 5)] = cT1 (L−ε2)cT1 (Lε2)cT1 (L−2ε1)cT1 (L−ε1−ε2)cT1 (Lε2−ε1)
i∗x34 [x34 → IG(2, 5)] = cT1 (L−ε1)cT1 (Lε1)cT1 (L−ε1−ε2)cT1 (L−2ε2)cT1 (Lε1−ε2)
i∗x25 [x25 → IG(2, 5)] = cT1 (Lε2)cT1 (L2ε2)cT1 (L−2ε1)cT1 (L−ε1)cT1 (Lε2−ε1)
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i∗x23 [x23 → IG(2, 5)] = cT1 (Lε2−ε1)cT1 (L2ε2)cT1 (Lε1+ε2)cT1 (L−ε1)cT1 (Lε1)
i∗x14 [x14 → IG(2, 5)] = cT1 (Lε1−ε2)cT1 (Lε1)cT1 (L2ε1)cT1 (L−2ε2)cT1 (L−ε2)
i∗x13 [x13 → IG(2, 5)] = cT1 (Lε1−ε2)cT1 (Lε1+ε2)cT1 (L2ε1)cT1 (L−ε2)cT1 (Lε2)
i∗x12 [x12 → IG(2, 5)] = cT1 (Lε1)cT1 (Lε1+ε2)cT1 (L2ε1)cT1 (Lε2)cT1 (L2ε2)

where x45 is the most attractive fixed point, i.e. the fixed point whose Bialynicki-Birula
cell is open. Lastly, using Lemma 6.6 and by computing the weights on affine stable
neighbourhoods of the fixed points, we deduce

i∗x12 [X0 → IG(2, 5)] = cT1 (Lε1)cT1 (Lε1+ε2)cT1 (L2ε1)cT1 (Lε2)cT1 (L2ε2)
i∗x12 [X1 → IG(2, 5)] = cT1 (Lε1)cT1 (Lε1+ε2)cT1 (L2ε1)cT1 (L2ε2)
i∗x13 [X1 → IG(2, 5)] = cT1 (Lε1−ε2)cT1 (Lε1+ε2)cT1 (L2ε1)cT1 (Lε2)
i∗x12 [X2 → IG(2, 5)] = cT1 (Lε1)cT1 (Lε1+ε2)cT1 (L2ε1)
i∗x13 [X2 → IG(2, 5)] = cT1 (Lε1−ε2)cT1 (Lε1+ε2)cT1 (L2ε1)
i∗x14 [X2 → IG(2, 5)] = cT1 (Lε1−ε2)cT1 (Lε1)cT1 (L2ε1)
i∗x12 [X ′2 → IG(2, 5)] = cT1 (Lε1+ε2)cT1 (L2ε1)cT1 (L2ε2)
i∗x13 [X ′2 → IG(2, 5)] = cT1 (Lε1+ε2)cT1 (L2ε1)cT1 (Lε2)
i∗x23 [X ′2 → IG(2, 5)] = cT1 (Lε1+ε2)cT1 (Lε1)cT1 (L2ε2)

where X2 and X ′2 are the two projective planes obtained by attaching the affine planes
X2 \X1 and X3 \X2 to the projective line X1, respectively. Therefore, X3 is the union
of the projective spaces X2 and X ′2 meeting in the projective line X1. Let X̃3 be the
normalisation of X3 which is smooth. Then the pullback i∗[X̃3 → IG(2, 5)] is given by
the sum of i∗[X2 → IG(2, 5)] and i∗[X ′2 → IG(2, 5)].

In the sequel, we set Ei to be the vector space generated by the first i basis vectors
of C5. For the sake of completeness, we remark that X0, X1, X2 and X ′2 are given by

X0 = {x12},
X1 = {V2 ∈ IG(2, 5) | E1 ⊆ V2},
X2 = {V2 ∈ IG(2, 5) | E1 ⊆ V2 ⊆ E4},
X ′2 = {V2 ∈ IG(2, 5) | V2 ⊆ E3}.

Now, we will consider the singular subscheme X4 ⊆ IG(2, 5) which is obtained by
attaching the A3 = X4 \X3 containing the fixed point x25 to X3. Geometrically, X4 can
be identified with a cone over a surface with only one singular point x12. The pullback
to smooth T -fixed points in X4 works similar as in the previous cases. Therefore, we
only consider the pullback to the singular fixed point x12. One can compute the blow
up of the point x12 in X4 explicitly (cf. Section A.2) and check that there are four
T -fixed points in the exceptional divisor E. Using Proposition 6.7, we need to compute
the weights of the four T -fixed points in E ⊆ X̃4. These weights can be seen from the
computation directly.

133



6.2 Classes in IG(2, 5)

Using Proposition 6.7 and Definition 6.5 leads to

i∗x12 [X̃4 → IG(2, 5)] = ex12,IG(2,5)[X̃4 → IG(2, 5)]i∗x12 [x12 → IG(2, 5)]

=


∑
x̃∈X̃T

4
f(x̃)=x12

e
x̃,X̃4

[X̃4 → X̃4]

 i∗x12 [x12 → IG(2, 5)]

= cT1 (Lε1)cT1 (Lε1+ε2)cT1 (Lε2)cT1 (L2ε2)
cT1 (L−ε1)cT1 (Lε2−ε1)

+ cT1 (Lε1+ε2)cT1 (L2ε1)cT1 (Lε2)cT1 (L2ε2)
cT1 (Lε1)cT1 (Lε2−ε1)

+ cT1 (Lε1)cT1 (Lε1+ε2)cT1 (L2ε1)cT1 (Lε2)
cT1 (L−ε2)cT1 (Lε1−ε2)

+ cT1 (Lε1)cT1 (Lε1+ε2)cT1 (L2ε1)cT1 (L2ε2)
cT1 (Lε2)cT1 (Lε1−ε2)

.

We remark that this element reduces to the correct one in Chow rings and that the
pullback i∗x12 [X̃4 → IG(2, 5)] is an element in S(T )Q. Alternatively, one could check that
the geometric descriptions of X4 and X̃4 are given by

X4 = {V2 ∈ IG(2, 5) | E2 ∩ V2 6= 0} and
X̃4 = {(V1, V2, V3) ∈ P(C5)× IG(2, 5)×Gr(3, 5) | V1 ⊆ E2 ⊆ V3 ⊆ V ⊥1 , V1 ⊆ V2 ⊆ V3}.

Now, we consider the closed subscheme X5 ⊆ IG(2, 5) which is obtained by attaching
the cell A3 = X5 \X4 containing the fixed point x34 to X4. A short computation shows
that the planes containing x12, x13, x14 and x12, x13, x23 are singular in X5. Normalising
yields X4 and X ′4 := X3 ∪ (X5 \ X4). We remark that X ′4 is given by the equations
e4 ∧ e5 = e3 ∧ e5 = e2 ∧ e5 = 0 which implies

X ′4 = {V2 ⊆ C5 isotropic | V2 ⊆ E4}.

One may observe that any isotropic subspace V2 in E4 has to remain isotropic when
considering V2 := (V2 +E⊥4 )/E⊥4 ⊆ E4/E

⊥
4 , but since E4/E

⊥
4 = 〈e2, e4〉 holds, we obtain

X ′4 = {V2 ⊆ E4 | V2 ∩ 〈e1, e3〉 6= 0}.

We claim that a resolution X̃ ′4 of X ′4 is given by

X̃ ′4 = {(V1, V2, V3) ∈ P(E4)×X ′4 ×Gr(3, E4) | V1 ⊆ V2 ∩ 〈e1, e3〉, V3 ⊇ V2 + 〈e1, e3〉}.

This is birational to X ′4 via the second projection. Now, we consider the map

h : X̃ ′4 → {(V1, V3) | V1 ⊆ 〈e1, e3〉, V3 ⊇ 〈e1, e3〉} = P1 × P1

which is a P1-fibration over P1 × P1. Therefore, X̃ ′4 is smooth and projective. The only
singular point in X ′4 is x13 and thus, we want to compute i∗x13 [X̃ ′4 → IG(2, 5)] using
Proposition 6.7.
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The T -fixed points in the exceptional divisor are given by

(E1, 〈e1, e3〉, E3), (E1, 〈e1, e3〉, 〈e1, e3, e4〉), (e3, 〈e1, e3〉, E3), (e3, 〈e1, e3〉, 〈e1, e3, e4〉).

Exemplarily, we compute the weights for the first T -fixed point in the exceptional divisor,
i.e. for x̃1 := (E1, 〈e1, e3〉, E3). Therefore, we consider the morphism h and the tangent
space Th(x̃1)P(e1, e3) × P(e2, e4) = T[1:0],[1:0]P1 × P1 which leads to the weights −ε1 and
−2ε2. The last weight can be seen in the tangent space Tx̃1

(h−1(E1, E3)) = T[0:1]P(e2, e3).
This leads to the weight ε2. We summarise that the weights of x̃1 in X̃ ′4 are given by
−ε1, ε1 and ε2. The weights of the other T -fixed points in the exceptional divisor can
be computed similarly. Therefore, for any T -fixed point x ∈ X5 one can compute

i∗x[X̃5 → IG(2, 5)] = i∗x[X̃4 → IG(2, 5)] + i∗x[X̃ ′4 → IG(2, 5)].

Lastly, we consider the singular subscheme X6 ⊆ X which is given by

X6 = {V2 ⊆ C5 isotropic
∣∣ V2 ∩ 〈e1, e2, e3〉 6= 0}.

We claim that a resolution X̃6 of X6 is given by

X̃6 = {(V1, V2, V4) ∈ P(C5)×X6 ×Gr(4, 5) | V1 ⊆ V2 ∩ E3, V4 ⊇ V2 + E3, V4 ⊆ V ⊥1 }.

Again, this is birational to X6. Now, we want to show smoothness of X̃6. We consider
the map

f : X̃6 → {V4 ⊇ E3} = P1, (V1, V2, V4) 7→ V4

whose fibres are

f−1(V4) = {(V1, V2, V4) | V1 ⊆ E3, V1 ⊆ V2 ⊆ V4, V4 ⊆ V ⊥1 }

where V4 ⊆ V ⊥1 ⇔ V1 ⊆ V ⊥4 holds. Consider now the projection

g : f−1(V4)→ {V1 ⊆ V ⊥4 } ∼= P1, (V1, V2, V4) 7→ V1

which is a P2-bundle over P1 because V ⊥4 is two-dimensional. Thus, f−1(V4) is smooth
and therefore, X̃6 is smooth and projective.

Now, we want to apply Proposition 6.7 to obtain the pullback i∗x[X̃6 → IG(2, 5)]
for the singular T -fixed points x ∈ X6. The singular T -fixed points in X6 are x12, x13
and x23. The T -fixed points in the exceptional divisor which map to x12 are given by
(E1, E2, E4) and (e2, E2, 〈E3, e5〉). For the other two singular T -fixed points we obtain
three T -fixed points in the exceptional divisor, e.g.

(e1, 〈e1, e3〉, E4), (e3, 〈e1, e3〉, E4) and (e3, 〈e1, e3〉, 〈E3, e5〉)

are the T -fixed points in the fibre of x13. Exemplarily, we compute the weights for one
of the T -fixed points in the fibre of x12, i.e. x̃ := (E1, E2, E4). Therefore, we consider
the morphism f and the tangent space Tf(x̃)P1 = T[1:0]P(e4, e5). Thus, we obtain the
weight −ε1 + ε2. Next, we need to compute the weights in Tx̃(f−1(E4)). Therefore, we
consider the morphism g and the tangent space Tg(x̃)P1 = T[1:0]P(e1, e3) which leads to
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the weight −ε1. Lastly, we consider the tangent space Tx̃(g−1(E1)) where g−1(E1) is the
set of two-dimensional spaces containing e1 and contained in E4. Thus, we obtain the
last weights from Tx̃(g−1(E1)) = T[1:0:0]P(e2, e3, e4). This leads to the weights −ε2 and
−2ε2. We summarise that the weights of x̃ in X̃6 are given by −ε1 + ε2,−ε1,−ε2 and
−2ε2. Similarly, one can compute all the other weights and apply Proposition 6.7 to
finish the computation. This then determines the whole ring structure of Ω∗T (IG(2, 5))Q
and allows us to multiply classes.

Remark 6.10. Assuming we could determine the pullback at singular points using the
equations given in Example 4.29 and the weights of the tangent spaces at smooth points
as in T -equivariant Chow rings (cf. [7, Section 4]), we would be able to determine the
class [X̃4 → IG(2, 5)] uniquely for an arbitrary T -equivariant resolution of singularities
X̃4 ofX4. A long computation shows that one cannot even determine a unique class in T -
equivariant K-theory only using the weights of the tangent spaces at smooth fixed points
because of the multiplicative formal group law. In fact it is not even known whether these
(not uniquely determined) classes correspond to the resolutions of singularities of X4.
The fact that one cannot determine the class [X̃4 → IG(2, 5)] uniquely is natural because
two different resolutions of singularities determine two different classes in cobordism. For
example, one could also consider another resolution of singularities of X4 given by

X̃∗4 = {(V1, V2) ∈ P(C5)× IG(2, 5) | V1 ⊆ 〈e1, e2〉, V2 ⊇ V1 isotropic}

which is a P2-fibration over P1. The exceptional locus of X̃∗4 over X4 is a P1 over the
singular point x12. A computation (cf. Section A.4) shows that the given pullbacks
i∗x12 [X̃4 → IG(2, 5)] and i∗x12 [X̃∗4 → IG(2, 5)] do not coincide, although they both reduce
to the same element in T -equivariant Chow rings and in T -equivariant K-theory (cf.
Section A.4).

To finish this section, we finally want to consider some examples in which we can
use the refined coefficient ring (cf. Definition 3.58) which was already mentioned several
times throughout the thesis. Using our technique, the upcoming examples which are
not flag varieties are also new for Chow rings with the refined coefficient ring. Before
analysing all the examples in detail, we will describe an algorithm with which one can
determine all the occurring weights for the class of smooth projective horospherical
varieties of Picard rank one which are not flag varieties.

Algorithm: By [43, Section 1.2-1.4] we know that if a smooth projective horospher-
ical variety X of Picard rank one is not horospherical of rank 1, then X is homogeneous
and more precisely, it is a flag variety. First, we recall the notation from Section 5.1.
We denote by R+ and R− the positive and negative roots, respectively. For a subset
I ⊆ S of simple roots, let WI be the group which is generated by reflections sα for α in
I. In addition, let PI =

∐
w∈WI

BwB and R+
PI

(R−PI ) be the set of positive (negative)
roots that can be written as sums of roots in I. Using [23, Section 9.1] in the case where
X is a flag variety, we know that the weights of the B-fixed point in G/PI are given
by R− \ R−PI . If X is not homogeneous, then X is given by some triple (G,PY , PZ)
from Proposition 5.15. Exemplarily, we describe how to determine the weights of the
B-fixed point in G/PY . The Weyl group action leads to the weights for the other T -fixed
points in G/PY and a similar computation for G/PZ concludes the determination of the
weights of all T -fixed points in X. Now, we come to the computation of the weights of
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the B-fixed point in G/PY . First, we determine the weights coming from the flag variety
G/PY using the previously described method. Then we need to determine the weights
coming from curves connecting the B-fixed point in G/PY with T -fixed points in the
other closed orbit G/PZ . By construction (cf. Section 5.2), there is a T -stable curve
connecting the B-fixed points of G/PY and G/PZ . This implies that one weight of the
B-fixed point in G/PY is given by ωZ − ωY . Let I and J be the subsets of S associated
to the parabolic subgroups PY and PZ , respectively. Then the remaining weights are
given by sα ·(ωZ−ωY ) whenever sα ∈WI and sα /∈WJ . This is the case because exactly
for those sα, we have sα · ωY = ωY and sα · ωZ 6= ωZ . We remark that sβ · ωZ = ωZ and
sβ · ωY = ωY hold if and only if sβ ∈WI and sβ ∈WJ .

Example 6.11. In this example, we investigate all the examples occurring in the clas-
sification of Pasquier (cf. Proposition 5.15) including the homogeneous cases (cf. [43,
Section 1.3]) except the case of the projective space for which equivariant cobordism was
already computed integrally (cf. [34]).

(i) First, we consider X = IG(2, 5) of type (3) and recall the weights of the T -fixed
points in X which are given by

x45 in X7 =⇒ weights: ε1 + ε2, 2ε2, ε2, 2ε1, ε1

x35 in X7 =⇒ weights: ε2,−ε2, 2ε1, ε1 + ε2, ε1 − ε2

x34 in X7 =⇒ weights: ε1,−ε1, ε1 + ε2, 2ε2, ε2 − ε1

x25 in X7 =⇒ weights: − ε2,−2ε2, 2ε1, ε1, ε1 − ε2

x23 in X7 =⇒ weights: ε1 − ε2,−2ε2,−ε1 − ε2, ε1,−ε1

x14 in X7 =⇒ weights: ε2 − ε1,−ε1,−2ε1, 2ε2, ε2

x13 in X7 =⇒ weights: ε2 − ε1,−ε1 − ε2,−2ε1, ε2,−ε2

x12 in X7 =⇒ weights: − ε1,−ε1 − ε2,−2ε1,−ε2,−2ε2.

Next, we check conditions (i) and (ii) of Definition 3.56 for each of the occuring
normal bundles Nxi/X . We remark that our convention of taking a sign into the
representation Lχ for some weight χ does not change the computations. First, we
consider the normal bundle

Nx45/X = L−ε1−ε2 ⊕ L−2ε2 ⊕ L−ε2 ⊕ L−2ε1 ⊕ L−ε1
= (L−ε1 ⊕ L−2ε1)⊕ (L−ε2 ⊕ L−2ε2)⊕ L−ε1−ε2 .

Using the notation from Definition 3.56, we see that the χi, 1 ≤ i ≤ 5 are given by

−ε1 − ε2,−2ε2,−ε2,−2ε1,−ε1

and the ψj , 1 ≤ j ≤ 3, are given by −ε1 − ε2,−ε1 and −ε2. We see that condition
(i) is only fulfilled for all χi, 1 ≤ i ≤ 5, if we invert p = 2. Furthermore, for
condition (ii) we do not need to invert anything in this case. Similar computations
for the other normal bundles show that we do not need to invert more than the
prime p = 2. Indeed, as mentioned in Remark 6.8, it would have been enough
to consider condition (i) in order to determine the classes which were discussed in
Section 6, but in this case condition (ii) does not restrict the coefficient ring any
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further. To summarise, the multiplicative set SX from Definition 3.58 is given by
SX = 2Z for the odd symplectic Grassmannian X = IG(2, 5) which implies that
we can obtain all the results describing the rational T -equivariant cobordism ring
also for the T -equivariant cobordism ring Ω∗T (IG(2, 5))Z[ 1

2 ].

(ii) Next, we compute the refined coefficient ring for the smooth projective horospher-
ical G2-variety X of type (5) from Proposition 5.15. We again need the weights of
the T -fixed points in X. It suffices to compute the weights for the B-fixed points in
the closed orbits because the weights of the other T -fixed points can be determined
using the Weyl group action. First, we consider the first closed orbit

G2/P (ω1) = G2/PS\α1 = G2/Pα2
∼= Y

where α2 denotes the long root. We want to compute the weights of the T -fixed
point Pα2/Pα2 ∈ G2/Pα2 in X by determining the weights in the closed orbit Y and
the remaining ones using the diagram (5.1). The tangent space TPα2/Pα2

G2/Pα2 is
given by g2/pα2 where g2 and pα2 denote the corresponding Lie algebras, respec-
tively. Recall from [23, Section 9.1] that u−α2 = g2/pα2 holds where u−α2 is the Lie
algebra of the unipotent radical of the opposite parabolic subgroup of Pα2 . Using
[23, Section 9.1] again we know that the weights of TPα2/Pα2

G2/Pα2 are given by
α ∈ R− \ R−Pα2

where R− are the negative roots and R−Pα2
are the negative roots

generated by α2. Thus, the weights of TPα2/Pα2
G2/Pα2 are given by

{−α1,−α1 − α2,−2α1 − α2,−3α1 − α2,−3α1 − 2α2}.

We know that X is of dimension 7 by [16, Section 1.5]. Therefore, we need two
more weights coming from T -stable curves connecting the T -fixed point Pα2/Pα2

with another T -fixed point in the other closed orbit Z in X. We can determine
those using diagram (5.1). By construction there is a T -stable curve connecting
the T -fixed points associated to the fundamental weights and hence, one weight of
Pα2/Pα2 not coming from the closed orbit Y is given by

3α1 + 2α2 − (2α1 + α2) = α1 + α2.

Lastly, we need to find a reflection sα, α ∈ R, which leaves the T -fixed point
Pα2/Pα2 fixed and moves the T -fixed point in the second closed orbit Z. There is
only one reflection sα2 which fixes the T -fixed point Pα2/Pα2 . Thus, the last weight
of Pα2/Pα2 is given by

sα2 · (3α1 + 2α2 − (2α1 + α2)) = sα2 · (3α1 + 2α2)− sα2 · (2α1 + α2)
= 3α1 + α2 − (2α1 + α2)
= α1.

Using the Weyl group action we obtain roots as weights for the other T -fixed points
in G2/Pα2 .

The computations for the second closed orbit G2/Pα1
∼= Z can be conducted simi-

larly. The weights of the B-fixed point Pα1/Pα1 ∈ G2/Pα1 coming from the closed
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orbit Z are given by

{−α2,−α1 − α2,−2α1 − α2,−3α1 − α2,−3α1 − 2α2}.

Additionally, the two remaining weights coming from the T -stable curves connect-
ing Pα1/Pα1 with another T -fixed point in Y are −α1 − α2 and −2α1 − α2.

Furthermore, we know from [5, Plate IX (VIII)] that the root lattice and the
character lattice coincide for G2 and therefore, condition (i) of Definition 3.56 is
fulfilled for all occurring normal bundles without inverting any prime because all
the roots are primitive. As opposed to the previous example concerning type (3),
we need to invert p = 2, 3 in order to fulfill condition (ii) of Definition 3.56. Thus,
the multiplicative set from Definition 3.58 is given by SX = (2, 3)Z. Using Remark
6.8 implies that we can obtain all the results from Section 6 also for the integral T -
equivariant cobordism ring Ω∗T (X)Z. Contrary to the previous example of type (3),
condition (ii) indeed restricts SX even further. Hence, our main result, Theorem
4.13, is also valid for the T -equivariant cobordism ring Ω∗T (X)Z[ 1

2 ,
1
3 ].

(iii) Let X be the smooth projective horospherical F4-variety of type (4) from Proposi-
tion 5.15. A computation in Appendix A.5 shows that using the same arguments
as in Example 6.11 (ii), one can conclude that condition (i) of Definition 3.56 is
fulfilled for any occurring normal bundle without inverting any prime. In order
to fulfill condition (ii) of Definition 3.56 for all occurring normal bundles, one has
to invert p = 2 and thus, SX = 2Z. Therefore, making use of Remark 6.8, one
can again deduce all the results from Section 6 also for the integral T -equivariant
cobordism ring Ω∗T (X)Z. Furthermore, the main result (cf. Theorem 4.13) holds
in particular for the T -equivariant cobordism ring Ω∗T (X)Z[ 1

2 ].

(iv) Let X be the smooth projective horospherical variety of type (B3, P (ω1), P (ω3))
from Proposition 5.15. From [16, Table 2] we know that

dimX = 9, dimG/P (ω1) = 5 and dimG/P (ω3) = 6

hold. As in Example 6.11 (ii) we know that the weights of the B-fixed point
P{α2,α3}/P{α2,α3} in G/P{α2,α3} are given by α ∈ R− \R−P{α2,α3}

. Thus, the weights
coming from the closed orbit Y are

{−α1 − α2 − α3,−α1,−α1 − α2,−α1 − 2α2 − 2α3,−α1 − α2 − 2α3}.

Doing similar computations to those in Appendix A.5 we obtain the remaining four
weights in X which are given by

ω3 − ω1 = 1
2(α1 + 2α2 + 3α3)− (α1 + α2 + α3) = 1

2(−ε1 + ε2 + ε3)

sα2+α3(ω3 − ω1) = 1
2(−ε1 − ε2 + ε3)

sα3(ω3 − ω1) = 1
2(−ε1 + ε2 − ε3)

sα2+2α3(ω3 − ω1) = 1
2(−ε1 − ε2 − ε3).
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Using the Weyl group action, we obtain the weights for the other T -fixed points in
G/P{α2,α3}.
Similar computations for the closed orbit G/P (ω3) ∼= Z lead to the weights

−α1 − α2 − α3,−α2 − α3,−α3,−α1 − 2α2 − 2α3,−α1 − α2 − 2α3,−α2 − 2α3

of the tangent space of P{α1,α2}/P{α1,α2} in G/P{α1,α2}. The remaining weights in
X are

ω1 − ω3 = 1
2(ε1 − ε2 − ε3)

sα1+α2(ω1 − ω3) = 1
2(−ε1 − ε2 + ε3)

sα1(ω1 − ω3) = 1
2(−ε1 + ε2 − ε3).

Again, using the Weyl group action, we obtain the weights for the other T -fixed
points in G/P{α1,α2}.
These computations imply that condition (i) of Definition 3.56 is only fulfilled if we
invert p = 2. Further, we do not need to invert anything additionally in order to
fulfill condition (ii) of Definition 3.56. Similar computations for the other normal
bundles imply that it suffices to invert p = 2 in order to obtain all our results for
Ω∗T (X)Z[ 1

2 ].

(v) The last case which is not homogeneous is given by smooth projective horospherical
varieties X(n) of type (Bn, P (ωn−1), P (ωn)), n ≥ 3, from Proposition 5.15. Using
again [16, Table 2] we know that the relevant dimensions are given by

dimX(n) = n(n+ 3)
2

dimG/P (ωn−1) = n(n+ 3)
2 − 2

dimG/P (ωn) = n(n+ 3)
2 − n.

As in the previous cases, the weights of the B-fixed point in Y are given by the
roots R− \R−P{α1,...,αn−2,αn}

. The negative roots R− are

−εi =
∑

i≤k≤n
−αk for 1 ≤ i ≤ n,

−εi + εj =
∑
i≤k<j

−αk for 1 ≤ i < j ≤ n,

−εi − εj =
∑
i≤k<j

−αk + 2
∑

j≤k≤n
−αk for 1 ≤ i < j ≤ n.

The cardinality of R− is n2 and furthermore, we will check that the cardinality
of R−P{α1,...,αn−2,αn}

is n(n−3)
2 + 2. It is obvious that there is only one root of the

first type occurring in R−P{α1,...,αn−2,αn}
which is −αn. In addition, the only roots

from the second type which do not lie in R−P{α1,...,αn−2,αn}
are given by −εi + εn
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for 1 ≤ i < n, i.e. there are
(n

2
)
− (n − 1) negative roots of the second type in

R−P{α1,...,αn−2,αn}
. Lastly, there is no root from the third type in R−P{α1,...,αn−2,αn}

.
Hence, we have

∣∣R−P{α1,...,αn−2,αn}

∣∣ = 1 +
((

n

2

)
− (n− 1)

)

= n(n− 1)
2 − n+ 2

and thus, we conclude

∣∣R− \R−P{α1,...,αn−2,αn}

∣∣ = n2 −
(
n(n− 1)

2 − n+ 2
)

= n(n+ 3)
2 − 2.

Of course, this must coincide with the dimension of Y ∼= G/P (ωn−1). Using the
same methods as in previous examples, the remaining two weights of the B-fixed
point of G/P (ωn−1) in X(n) are given by

ωn − ωn−1 = 1
2(ε1 + · · ·+ εn)− (ε1 + · · ·+ εn−1)

= 1
2(−ε1 − · · · − εn−1 + εn)

sαn(ωn − ωn−1) = 1
2(−ε1 − · · · − εn).

Next, we consider the closed orbit Z ∼= G/P (ωn). Again, the weights of the B-fixed
point in Z are given by R− \R−P{α1,...,αn−1}

. The weights in R−P{α1,...,αn−1}
are of the

form −εi + εj for 1 ≤ i < j ≤ n. Thus, we verify

∣∣R− \R−P{α1,...,αn−1}

∣∣ = n2 −
(
n

2

)
= n(n+ 3)

2 − n.

As in the previous case, we have one more weight which is given by

ωn−1 − ωn = 1
2(ε1 + · · ·+ εn−1 − εn).

One can check that the remaining n−1 weights are exactly obtained by acting with
the reflections sεi−εn for 1 ≤ i ≤ n−1 because these reflections fix the fundamental
weight ωn associated to the closed orbit Z and move the fundamental weight ωn−1
associated to the closed orbit Y . Hence, the remaining weights are

sεi−εn(ωn−1 − ωn) = 1
2(ε1 + · · ·+ εi−1 − εi + εi+1 + · · ·+ εn)

for all 1 ≤ i ≤ n− 1.

In both closed orbits, the Weyl group action leads to the weights of the other
T -fixed points.

These computations imply again that condition (i) of Definition 3.56 is only fulfilled
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if we invert p = 2. Further, we do not need to invert anything additionally in order
to fulfill condition (ii) of Definition 3.56. Similar computations for the other normal
bundles imply that it suffices to invert p = 2 in order to obtain all our results for
Ω∗T (X(n))Z[ 1

2 ].

(vi) We are left with the homogeneous varieties in the classification of Pasquier [43,
Theorem 1.7]. Case 1 of this theorem is of type (Am, α1, αm) for m ≥ 2. In this
case X is isomorphic to SO2m+2 /P (ω1) (cf. [43, Proposition 1.8]) which is again
isomorphic to the orthogonal Grassmannian OG(1, 2m + 2). This flag variety is
of type Dm+1 and thus, we will use this root system (cf. [5, Plate IV]). This
Grassmannian is of dimension 2m and the weights of the B-fixed point are again
given by R− \ R−P{α2,...,αm+1}

. This complement is given by the negative roots
{−ε1 ± εj} for 2 ≤ j ≤ m + 1. The Weyl group action leads to the weights of
the other T -fixed points. The connection index (cf. [5, Plate IV (VIII)]) is 4 and
thus, we need to invert p = 2 in order to fulfill condition (i) of Definition 3.56 for
all occurring normal bundles. Further, condition (ii) will be fulfilled for all normal
bundles of Definition 3.56 after having inverted p = 2 and hence, we obtain all our
results also for Ω∗T (SO2m+2 /P (ω1))Z[ 1

2 ] with m ≥ 2.

(vii) Case 2 of Pasquier’s [43, Theorem 1.7] is of type (Am, αi, αi+1) for m ≥ 3 and
1 ≤ i ≤ m − 1. By [43, Proposition 1.9], the resulting variety X is isomorphic
to Gr(i + 1,m + 2) ∼= SLm+2 /P (ωi+1). This flag variety is of type Am+1 and
thus, we use [5, Plate I] in order to determine the weights of the B-fixed point.
One can check that there are m + 1 − i2 + im weights which are again given by
R− \ R−P{α1,...,αi,αi+2,...,αm+1}

. The Weyl group action leads to the weights of the
other T -fixed points. Further, the connection index is m+2 (cf. [5, Plate I (VIII)])
and thus, we need to invert all primes occurring in the prime decomposition of
m + 2 = p`11 · · · p

`k
k in order to fulfill condition (i) of Definition 3.56 for all normal

bundles of the T -fixed points in Gr(i+ 1,m+ 2). In addition, condition (ii) will be
fulfilled for all normal bundles of Definition 3.56 after having inverted the primes
p1, ..., pk and hence, we obtain our results also for Ω∗T (Gr(i + 1,m + 2))Z[ 1

p1
,..., 1

pk
]

with m ≥ 3 and 1 ≤ i ≤ m− 1.

(viii) The last remaining case of [43, Theorem 1.7] is of type (Dm, αm−1, αm) for some
m ≥ 4. By [43, Proposition 1.10], the variety X is isomorphic to the spinor
variety Spin(2m+ 1)/P (ωm). This flag variety is of type Bm and the weights were
already computed in Example 6.11 (v) because the orbit Z of the smooth projective
horospherical variety of Picard number one of type (Bm, P (ωm−1), P (ωm)) coincides
with the spinor variety Spin(2m+ 1)/P (ωm) for m ≥ 4.

Remark 6.12. In the previous example, it was shown that one can refine the coefficient
ring in the main results of this thesis for the odd symplectic Grassmannian IG(2, 5).
Indeed, the computations in Example 6.11 (i) are similar for any odd symplectic Grass-
mannian IG(m, 2n + 1) with integers 2 ≤ m ≤ n such that we can also prove our
main results, Theorem 4.13 and Proposition 6.7, for the T -equivariant cobordism ring
Ω∗T (IG(m, 2n + 1))Z[ 1

2 ]. The author did not check the previously mentioned results for
IG(m, 2n+ 1) integrally which are non-trivial.
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Remark 6.13. For the computations in Example 6.11 one sometimes has to take into
account that the group Spin(n) is a two-fold covering group of SO(n) (cf. [40, Section
24 i.]) which implies that some characters in a maximal torus of Spin(n) might not be
characters in a maximal torus of SO(n). Thus, we need to invert p = 2 in all those
cases, but the computations show that this is already necessary in all the relevant cases.
Therefore, all the previous computations are correct as they are stated.
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A Appendix

In this chapter, we outsource several long computations which are not included in
the main text.

A.1 T -stable curves in the flag variety G2/Pα

Using the notation as in Example 5.8, we want to compute the degrees of the T -stable
curves in G2/Pα where α denotes the short simple root. We recall that the two generators
sα and sβ of the Weyl group of G2 correspond to s and sr = r5s in the dihedral groupD6,
respectively, where s is the reflection at the y-axis and r the counterclockwise rotation
by an angle of π/3. Further, one can verify that

s3α+β = sαsβsα

sα+β = sβsαsβ

s2α+β = sαsβsαsβsα

s3α+2β = sβsαsβsαsβ

hold in the W (G2). In this case we have R+
Pα

= {α} and thus, every class in W/Wα

corresponds to one reflection indexed by a positive root where the trivial class in W/Wα

corresponds to the root α. From Example 5.8 we know that there is a T -stable curve
between each pair of the T -fixed points in G2/Pα. Therefore, we have 15 T -stable curves.
We start with the ones connecting x(1) and x(sγ) for γ ∈ R+\{α} which have degree d(γ)
by Lemma 5.3. We compute the degree of these curves using the definition in Section
5.1. We recall that the two simple roots are given by α = ε1−ε2 and β = −2ε1 +ε2 +ε3.
This leads to the following degree

d(β) = nββ
(β, β)
(β, β)σ(sβ) = 1 · σ(sβ)

d(α+ β) = n(α+β)β
(β, β)

(α+ β, α+ β)σ(sβ) = 3 · σ(sβ)

d(2α+ β) = n(2α+β)β
(β, β)

(2α+ β, 2α+ β)σ(sβ) = 3 · σ(sβ)

d(3α+ β) = n(3α+β)β
(β, β)

(3α+ β, 3α+ β)σ(sβ) = 1 · σ(sβ)

d(3α+ 2β) = n(3α+2β)β
(β, β)

(3α+ 2β; 3α+ 2β)σ(sβ) = 2 · σ(sβ).

We remark that x(u) = x(u′) if u = u′ ∈ W/Wα. Thus, acting on some T -fixed point
x(u), u ∈ W/Wα, by the reflection sα will not change the T -fixed point. Now, we act
with sβ on the curves and obtain 4 new T -stable curves, namely the curves connecting
x(sβ) and one of the T -fixed points

x(sβsα+β) = x(sαsβ) = x(s3α+β)
x(sβs2α+β) = x(sβsαsβsαsβsα) = x(s3α+2β)
x(sβs3α+β) = x(sβsαsβsα) = x(sα+β)
x(sβs3α+2β) = x(sβsβsαsβsαsβ) = x(s2α+β)
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which have degrees 3, 3, 1 and 2, respectively, by Remark 5.5. Next, we act on the
original 5 curves with sα+β which leads to 3 new T -stable curves connecting x(sα+β)
and one of the T -fixed points

x(sα+βs2α+β) = x((sβsα)4) = x((sαsβ)2) = x(s2α+β)
x(sα+βs3α+β) = x((sβsα)3) = x(s3α+2β)
x(sα+βs3α+2β) = x(sαsβ) = x(s3α+β)

which have degrees 3, 1 and 2, respectively. Similarly, we obtain the two new T -stable
curves connecting x(s2α+β) and one of the T -fixed points

x(s2α+βsβ) = x((sαsβ)3) = x(s3α+2β)
x(s2α+βs3α+β) = x(sαsβ) = x(s3α+β)

and one last T -stable curve connecting x(s3α+β) and

x(s3α+βsα+β) = x((sαsβ)3) = x(s3α+2β).

These three curves have degrees 1, 1 and 3, respectively. We summarise that there are 6
T -stable curves of degree 1, 6 T -stable curves of degree 3 and 3 T -stable curves of degree
2 in G2/Pα.

A.2 Blow up of X4

In this section, we compute the mentioned blow up of the closed subscheme X4 in the
T -filtration of the odd symplectic Grassmannian IG(2, 5). One can see from Example
6.9 that x12 is the only singular T -fixed point and even the only singular point in the
closed subscheme X4. An intuitive way of thinking about the closed subscheme X4 is
to identify it with a cone over a surface where the latter contains four T -fixed points.
Therefore, the exceptional divisor should also contain four T -fixed points. Now, we
would like to determine the weights of the T -fixed points in the exceptional divisor of
the blow up in order to use Proposition 6.7. Intuitively, one can simply take the weights
of e.g. the smooth T -fixed point x13 in X4 and determine the weight which comes from
the line connecting it with the singular T -fixed point x12 in X4. In this case, the weights
are given by ε2− ε1, ε2 and −ε2 where the one coming from the line connecting x13 and
x12 is ε2. This weight should have the opposite sign for the corresponding T -fixed point
in the exceptional divisor and therefore, the educated guess would now be that there is
one T -fixed point in the exceptional divisor with weights ε2− ε1,−ε2 and −ε2. After we
will have done the full computation concerning the blow up, we will see that this guess
will be confirmed. This procedure can be done for all four smooth T -fixed points in X4.

We consider an affine neighbourhood of the point x12 in IG(2, 5) which is given by
1 0
0 1

a3/a1 b3/b2
a4/a1 b4/b2
a5/a1 b5/b2


where a4/a1 = b5/b2 holds because of the antisymmetric form.
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We introduce new coordinates

x1 := a3/a1

x2 := a5/a1

x3 := b3/b2

x4 := b4/b2

x5 := b5/b2

whose weights are given by −ε1,−2ε1,−ε2,−2ε2 and −ε1− ε2, respectively. Restricting
this affine neighbourhood to X4 we obtain

Y = Spec k[x1, x2, x3, x4, x5]
(x1x4 − x3x5, x1x5 − x3x2, x2

5 − x4x2)

whose Jacobian shows that (0, 0, 0, 0, 0) is the only singular point in Y . The blow up is
given by

Ỹ =

(x1, x2, x3, x4, x5), [y1 : y2 : y3 : y4 : y5] ∈ A5 × P4

∣∣∣∣∣∣∣∣∣
xiyj = xjyi ∀i, j
x2

5 − x4x2 = 0
x1x5 − x3x2 = 0
x1x4 − x3x5 = 0

 .
First, we work on the affine open y1 = 1 and away from the exceptional set, such that
x2 = x1y2, x3 = x1y3, x4 = x1y4 and x5 = x1y5 hold. For x1 6= 0 this leads to y4 = y2

3y2
and y5 = y3y2 which implies that there is only one T -fixed point in this chart, namely
(0, 0, 0, 0, 0), [1 : 0 : 0 : 0 : 0] =: x̃23 which is in the exceptional divisor. The affine
T -stable neighbourhood of x̃23 is given by

A3
x̃23

=
{

(x1, 0, 0, 0, 0);
[
1 : y2

y1
: y3
y1

: y
2
3y2
y3

1
: y3y2
y2

1

]
∈ A5 × P4

}

which leads to the weights −ε1,−ε1 and −ε2 + ε1.

Similarly, there is only one T -fixed point (0, 0, 0, 0, 0), [0 : 1 : 0 : 0 : 0] =: x̃25 for the
affine chart y2 = 1 with affine T -stable neighbourhood

A3
x̃25

=
{

(0, x2, 0, 0, 0);
[
y1
y2

: 1 : y1y5
y2

2
: y

2
5
y2

2
: y5
y1

]
∈ A5 × P4

}

which leads to the weights −2ε1, ε1 and ε1 − ε2.

Similar computations lead to the affine T -stable neighbourhood

A3
x̃13

=
{

(0, 0, x3, 0, 0);
[
y1
y3

: y
2
1y4
y3

3
: 1 : y4

y3
: y1y4
y2

3

]
∈ A5 × P4

}

of the T -fixed point x̃13 := (0, 0, 0, 0, 0), [0 : 0 : 1 : 0 : 0] in the chart y3 = 1 and for which
the weights are given by −ε2,−ε1 + ε2 and −ε2.

The last T -fixed point x̃14 := (0, 0, 0, 0, 0), [0 : 0 : 0 : 1 : 0] is in the chart given by
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y4 = 1. An affine T -stable neighbourhood is

A3
x̃14

=
{

(0, 0, 0, x4, 0);
[
y3y5
y2

4
: y

2
5
y2

4
: y3
y4

: 1 : y5
y3

]
∈ A5 × P4

}

which leads to the weights −2ε2, ε2 and −ε1 + ε2.
Lastly, there is no T -fixed point in the chart given by y5 = 1. This concludes the

computations because it is enough to consider the blow up of an open affine neighbour-
hood of the only singular point x12 in X4. We also verified that our intuitive approach
at the beginning of this section is confirmed by verifying the weights of x̃13.

A.3 Class of X̃4 in different equivariant cohomology theories

In this section, we will compare the fundamental class of [X4 → IG(2, 5)] in dif-
ferent equivariant cohomology theories. We will start by analysing the class in equiv-
ariant Chow rings using Proposition 4.10 and assuming that we could only compute
the equivariant multiplicities at smooth T -fixed points. For the given pullback map
i∗ : CH(IG(2, 5))Q → CH(IG(2, 5)T )Q, this would lead to

i∗[X̃4] = (f12, 2(ε1 + ε2)ε1, 2ε1ε1, 2ε2(ε1 + ε2), 2ε2ε2, 0, 0, 0).

The equations coming from Proposition 4.10 containing f12 are given by (cf. Example
4.29)

f12 ≡ 0 mod ε1 + ε2,

f12 ≡ f23 ≡ f25 mod 2ε1,

f12 ≡ f13 ≡ f14 mod 2ε2,

f12 − 2f23 + f25 ≡ 0 mod 2ε2
1,

f12 − 2f13 + f14 ≡ 0 mod 2ε2
2.

These equations uniquely determine f12 = (ε1 +ε2)(2ε1 +2ε2). It can be easily seen that
all equations are satisfied. Lastly, we consider the equation for i∗x12 [X̃4] from Example
6.9 being reduced to Chow rings which is given by

i∗x12 [X̃4] =ε1(ε1 + ε2)ε22ε2
(−ε1)(ε2 − ε1) + (ε1 + ε2)2ε1ε22ε2

ε1(ε2 − ε1)

+ ε1(ε1 + ε2)2ε1ε2
(−ε2)(ε1 − ε2) + ε1(ε1 + ε2)2ε12ε2

ε2(ε1 − ε2)

=(ε1 + ε2)ε22ε2
ε1 − ε2

− (ε1 + ε2)2ε22ε2
ε1 − ε2

− ε1(ε1 + ε2)2ε1
ε1 − ε2

+ 2ε1(ε1 + ε2)2ε1
ε1 − ε2

=(ε1 + ε2)(2ε2
2 − 2ε2

1)
ε1 − ε2

+ (ε1 + ε2)(4ε2
1 − 4ε2

2)
ε1 − ε2

=2(ε1 + ε2)(ε2 − ε1)(ε2 + ε1)
ε1 − ε2

+ 4(ε1 + ε2)(ε1 − ε2)(ε1 + ε2)
ε1 − ε2

=− 2(ε1 + ε2)2 + 4(ε1 + ε2)2

=2(ε1 + ε2)2

coinciding with the expression for f12 above.
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Therefore, we see that we sometimes do not need the equivariant multiplicities at
singular fixed points in order to compute classes in Chow rings. This situation will
be completely different as soon as we compute in equivariant cohomology theories with
more complicated formal group laws.

Next, we will have a look at the same situation in K-theory. Similarly, we would
have

i∗x12 [X̃4] = f12

i∗x13 [X̃4] = cT1 (Lε1+ε2)cT1 (L2ε1)
i∗x14 [X̃4] = cT1 (Lε1)cT1 (L2ε1)
i∗x23 [X̃4] = cT1 (L2ε2)cT1 (Lε1+ε2)
i∗x25 [X̃4] = cT1 (Lε2)cT1 (L2ε2)
i∗x34 [X̃4] = i∗x35 [X̃4] = i∗x45 [X̃4] = 0

for the pullback i∗ : K∗T (IG(2, 5))Q → K∗T (IG(2, 5)T )Q. In this case, we remark that
cT1 (Lε1+ε2) = cT1 (Lε1) + cT1 (Lε2) − βcT1 (Lε1)cT1 (Lε2) holds by the multiplicative formal
group law. The equations are again given by

f12 ≡ f45 mod cT1 (Lε1+ε2),
f12 ≡ f23 ≡ f25 mod cT1 (L2ε1),
f12 ≡ f13 ≡ f14 mod cT1 (L2ε2),
(f12 − f23) + ρ1/2c

T
1 (L2ε1)(f25 − f12) ≡ 0 mod cT1 (L2ε1)2,

(f12 − f13) + ρ1/2c
T
1 (L2ε2)(f14 − f12) ≡ 0 mod cT1 (L2ε2)2.

First, we need to determine ρ1/2c
T
1 (L2ε1) mod cT1 (L2ε1)2. In order to simplify the no-

tation, we set x := cT1 (Lε1), y := cT1 (Lε2), z := cT1 (L2ε1) and z′ := cT1 (L2ε2). By Remark
3.35 we have ρ1/2z = x

z and therefore, we need to express x in terms of z. By the
multiplicative formal group law we have x(2− βx) = z which leads to

x = 1
2z + β

8 z
2 + ...

which implies ρ1/2z ≡ 1
2 + β

8 z mod z2. Replacing z = x(2− βx) leads to the epxression
ρ1/2z ≡ 1

2 + β
4x mod z2 because x2 ≡ 0 mod z2. Now, we can start with the compu-

tation by considering the first equation f12 ≡ 0 mod cT1 (Lε1+ε2) from which it follows
that f12 = cT1 (Lε1+ε2) · a where deg a = 1. Next, we have

f23 = (2y − βy2)(x+ y − βxy) ≡ (2y − βy2)y mod z

since x ≡ 0 mod z due to the fact that we consider rational coefficients. We conclude
that

f12 ≡ (x+ y − βxy)a ≡ ya mod z

which implies that a ≡ (2y − βy2) mod z. This leads to a = z′ + z · b with deg b = 0.

149



A.3 Class of X̃4 in different equivariant cohomology theories

The equation f12 ≡ f25 mod z will be fulfilled for any choice of b and hence, we do not
get further restrictions on f12. Further, we have

f13 = (x+ y − βxy)(2x− βx2) ≡ xz mod z′

and

f12 = (x+ y − βxy)(z′ + z · b) ≡ xz · b mod z′

which implies that b = 1 + z′ · c with deg c = −1. By now, we know that f12 is of the
form

f12 = (x+ y − βxy))a = (x+ y − βxy)(z′ + zb) = (x+ y − βxy)(z′ + z + zz′c)

with deg c = −1. It remains to check the two surface equations. We have

f12 = (x+ y − βxy)(2y − βy2 + 2x− βx2 + (2y − βy2)(2x− βx2)c)
≡ (x+ y − βxy)(2y − βy2 + 2x+ (2y − βy2)2xc) mod z2

≡ 2y2 − βy3 + 2xy + 4xy2c− 2βxy3c+ 2xy − βxy2 − 2βxy2 + β2xy3 mod z2

which leads to the equation

(f12 − f23) + ρ1/2z(f25 − f12)
≡(2y2 − βy3 + 2xy + 4xy2c− 2βxy3c+ 2xy − βxy2 − 2βxy2 + β2xy3)

− (2y − βy2)(x+ y − βxy) +
(1

2 + β

4x
)(

y(2y − βy2)

−(2y2 − βy3 + 2xy + 4xy2c− 2βxy3c+ 2xy − βxy2 − 2βxy2 + β2xy3)
)

mod z2

≡1
2
(
(2y2 − βy3 + 2xy + 4xy2c− 2βxy3c) + (2xy − βxy2) + (−2βxy2 + β2xy3)

)
− β

2xy
2 + β2

4 xy3 − 2xy + βxy2 − 2y2 + βy3 + 2βxy2 − β2xy3

+ y2 − β

2 y
3 + β

2xy
2 − β2

4 xy3 mod z2

≡(1− 2 + 1)y2 +
(
−β2 + β − β

2

)
y3 + (1 + 1− 2)xy

+
(

2c− β

2 − β −
β

2 + β + 2β + β

2

)
xy2 +

(
−βc+ β2

2 + β2

4 − β
2 − β2

4

)
xy3 mod z2

≡
(

2c+ 3β
2

)
xy2 +

(
−β

2

2 − βc
)
xy3 mod z2

and lastly, we obtain

f12 = (x+ y − βxy)
(
2y − βy2 + 2x− βx2 + (2y − βy2)(2x− βx2)c

)
≡ 2xy − βx2y − 2βx2y + β2x3y + 2x2 − βx3 + 2xy + 4x2yc− 2βx3yc mod (z′)2
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and hence, using the identity ρ1/2z
′ =

(
1
2 + β

4 y
)
, we have

(f12 − f13) + ρ1/2z
′(f14 − f12)

≡1
2
(
2xy − βx2y − 2βx2y + β2x3y + 2x2 − βx3 + 2xy + 4x2yc− 2βx3yc

)
− (x+ y − βxy)(2x− βx2) +

(1
2 + β

4 y
)(

x(2x− βx2)
)

− β

4 y
(
2x2 − βx3

)
mod (z′)2

≡1
2
(
2xy − βx2y − 2βx2y + β2x3y + 2x2 − βx3 + 2xy + 4x2yc− 2βx3yc

)
− 2x2 − 2xy + 2βx2y + βx3 + βx2y − β2x3y + x2 − β

2x
3 + β

2x
2y − β2

4 x3y

− β

2x
2y + β2

4 x3y mod (z′)2

≡(1− 2 + 1)x2 +
(
−β2 + β − β

2

)
x3 + (1 + 1− 2)xy

+
(
−3β

2 + 2c+ 2β + β + β

2 −
β

2

)
x2y +

(
β2

2 − βc− β
2 − β2

4 + β2

4

)
x3y mod (z′)2

≡
(3β

2 + 2c
)
x2y +

(
−β

2

2 − βc
)
x3y mod (z′)2.

The previous two equations give more constraints on c, but they are far away from being
uniquely determined. Therefore, we cannot only use the equations and the equivariant
multiplicities at smooth fixed points in order to determine the class of some resolution
of singularities of X4 uniquely in rational T -equivariant K-theory.

A.4 Comparison of [X̃∗
4 ] and [X̃4] in different cohomology theories

Next, we compare the class of X̃∗4 from Remark 6.10 with the previously described
class of X̃4. Recall that X̃∗4 is given by

X̃∗4 = {(V1, V2) ∈ P(C5)× IG(2, 5) | V1 ⊆ 〈e1, e2〉, V2 ⊇ V1 isotropic}

which is a P2-fibration over P1. The exceptional locus of X̃∗4 over X4 is a P1 over the
singular point x12 and the two T -fixed points in the exceptional divisor are x1 := (e1, E2)
and x2 := (e2, E2). We consider the P2-fibration

g : X̃∗4 → {(V1) ⊆ 〈e1, e2〉} = P1

and the tangent space Tg(x1)P(e1, e2) = T[1:0]P1 which leads to the first weight ε2−ε1. The
remaining two weights can be seen in the tangent space Tx1(g−1(e1)) = T[1:0:0]P(e2, e3, e4).
This leads to the weights −ε2 and −2ε2. Similarly, we obtain the weights ε1 − ε2,−ε1
and −2ε1 for the T -fixed point x2.

Let ix12 : x12 → IG(2, 5) be the inclusion of the T -fixed point x12. First, we determine
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the class [X̃∗4 ] in rational T -equivariant Chow rings. We only need to compute

i∗x12 [X̃∗4 ] = ε1(ε1 + ε2)2ε1ε22ε2
(ε1 − ε2)ε22ε2

+ ε1(ε1 + ε2)2ε1ε22ε2
(ε2 − ε1)ε12ε1

= (ε1 + ε2)2ε2
1 − 2ε2

2
ε1 − ε2

= 2(ε1 + ε2)2

which is the same as i∗x12 [X̃4] in rational T -equivariant Chow rings.

Similarly, we want to compare the two classes [X̃4] and [X̃∗4 ] in rational T -equivariant
K-theory. We set x := cT1 (Lε1) and y := cT1 (Lε2) as in previous computations. We
remark that cT1 (Lε2−ε1) = a · cT1 (Lε1−ε2) for some infinite power series a ∈ K∗T (IG(2, 5))Q
which is invertible because the constant term is −1. This leads to the already simplified
expression

i∗x12 [X̃∗4 ] = x(2x− βx2)(x+ y − βxy)
cT1 (Lε1−ε2)

+ y(2y − βy2)(x+ y − βxy)
a · cT1 (Lε1−ε2)

= (x+ y − βxy)x(2x− βx2) + a−1y(2y − βy2)
cT1 (Lε1−ε2)

.

We remark that we obtain cT1 (L−ε1) = b · cT1 (Lε1) and cT1 (L−ε2) = c · cT1 (Lε2) for infinite
power series b, c ∈ K∗T (IG(2, 5))Q which are again invertible due to their constant terms
−1. Following [37, Section 4.2.1] we have

[−1]m(u) = −u
1− βu

where [−1]m denotes the inverse in the multiplicative formal group law. Thus, we obtain
b−1 = −1 + βx and c−1 = −1 + βy.

Next, we consider the equation for i∗x12 [X̃4] from Example 6.9 being reduced to K-
theory which is then given by

i∗x12 [X̃4] =x(x+ y − βxy)y(2y − βy2)
xb(cT1 (Lε1−ε2))a

+ (x+ y − βxy)(2x− βx2)y(2y − βy2)
xcT1 (Lε1−ε2)a

+ x(x+ y − βxy)(2x− βx2)y
yccT1 (Lε1−ε2)

+ x(x+ y − βxy)(2x− βx2)(2y − βy2)
ycT1 (Lε1−ε2)

=(x+ y − βxy)
(
a−1b−1y(2y − βy2) + (2− βx)y(2y − βy2)a−1

cT1 (Lε1−ε2)

+c−1x(2x− βx2) + x(2x− βx2)(2− βy)
cT1 (Lε1−ε2)

)

=(x+ y − βxy)
cT1 (Lε1−ε2)

(
x(2x− βx2)(−1 + βy + 2− βy)

+a−1y(2y − βy2)(−1 + βx+ 2− βx)
)

=(x+ y − βxy)
cT1 (Lε1−ε2)

(
x(2x− βx2) + a−1y(2y − βy2)

)
.
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This implies i∗x12 [X̃4] = i∗x12 [X̃∗4 ] and therefore, the classes i∗[X̃4] and i∗[X̃∗4 ] coincide in
K∗T (IG(2, 5)T )Q.

Lastly, we consider those two classes in cobordism. We set again x := cT1 (Lε1) and
y := cT1 (Lε2), but this time these are Chern classes in equivariant cobordism. Sim-
ilarly, we have cT1 (Lε2−ε1) = a · cT1 (Lε1−ε2) for some invertible infinite power series
a ∈ Ω∗T (IG(2, 5))Q. This leads to

i∗x12 [X̃∗4 ] = xFΩ(x, x)FΩ(x, y)
cT1 (Lε1−ε2)

+ yFΩ(y, y)FΩ(x, y)
a · cT1 (Lε1−ε2)

= FΩ(x, y)xFΩ(x, x) + a−1yFΩ(y, y)
FΩ(x, [−1]Ωy) .

Again, we have cT1 (L−ε1) = b · cT1 (Lε1) and cT1 (L−ε2) = c · cT1 (Lε2) for invertible infinite
power series b, c ∈ Ω∗T (IG(2, 5))Q. Following [37, Section 2.5.1] we have

[−1]Ωx = −x+ a11x
2 − a2

11x
3 + (a3

11 + a11a21 + 2a31 − a22)x4 + higher order terms

where [−1]Ω denotes the inverse in the universal formal group law. Thus, one can check
that we obtain

b−1 = −1− a11x+ (a22 − a11a21 − 2a31)x3 + higher order terms
c−1 = −1− a11y + (a22 − a11a21 − 2a31)y3 + higher order terms.

Further, we have

a−1 = −1− a11c
T
1 (Lε1−ε2) + (a22 − a11a21 − 2a31)cT1 (Lε1−ε2)3 + higher order terms

= −1− a11F (x, [−1]Ωy) + (a22 − a11a21 − 2a31)F (x, [−1]Ωy)3 + higher order terms
= −1− a11(x+ cy + a11xcy + ...) + (a22 − a11a21 − 2a31)(x+ cy + a11xcy + ...)3

+ higher order terms

Now, we consider the equation for i∗x12 [X̃4] from Example 6.9 which is given by

i∗x12 [X̃4] =xFΩ(x, y)yFΩ(y, y)
xbFΩ(x, [−1]Ωy)a + FΩ(x, y)FΩ(x, x)yFΩ(y, y)

xFΩ(x, [−1]Ωy)a

+ xFΩ(x, y)FΩ(x, x)y
ycFΩ(x, [−1]Ωy) + xFΩ(x, y)FΩ(x, x)FΩ(y, y)

yFΩ(x, [−1]Ωy)

= FΩ(x, y)
FΩ(x, [−1]Ωy)

(
xFΩ(x, x)(c−1 + (2 + a11y + 2a21y

2 + (2a31 + a22)y3 + ...))

+yFΩ(y, y)a−1(b−1 + (2 + a11x+ 2a21x
2 + (2a31 + a22)x3 + ...))

)
= FΩ(x, y)
FΩ(x, [−1]Ωy)

(
xFΩ(x, x)(1 + 2a21y

2 + (2a22 − a11a21)y3 + ...)

+ yFΩ(y, y)a−1(1 + 2a21x
2 + (2a22 − a11a21)x3 + ...)

)
.

In order to have the equality i∗x12 [X̃4] = i∗x12 [X̃∗4 ], the expression
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xFΩ(x, x)(2a21y
2 + (2a22 − a11a21)y3 + ...)

+ yFΩ(y, y)a−1(2a21x
2 + (2a22 − a11a21)x3 + ...)

=xFΩ(x, x)(2a21y
2 + (2a22 − a11a21)y3 + ...)

+ yFΩ(y, y)(−1− a11(x+ cy + a11xcy + ...)
+ (a22 − a11a21 − 2a31)(x+ cy + a11xcy + ...)3 + ...)(2a21x

2 + (2a22 − a11a21)x3 + ...)

would have to vanish. We now compare the coefficients of the monomial x2y3 and keep
in mind that

c = −1 + a11y − a2
11y

2 + higher order terms

holds. This leads to

x(2x)
(
2a22 − a11a21y

3
)

+ 2a21x
2
(
y(2y)(−a11(−1)y) + y(a11y

2)(−1)
)

= 4a22x
2

which implies that i∗x12 [X̃4] 6= i∗x12 [X̃∗4 ] holds in cobordism and therefore, the classes
i∗[X̃4] and i∗[X̃∗4 ] do not coincide in cobordism.

A.5 Refined coefficient ring for the horospherical F4-variety

In this section, we want to compute the multiplicative set SX from Definition 3.58
for the smooth projective horospherical F4-variety X of type (4) from Proposition 5.15.
A similar computation has been done in Example 6.11 (ii) for the smooth projective
horospherical G2-variety of type (5). As in the just mentioned example, we want to
compute the weights of the T -fixed points in X. Let R be the root system of F4, S the
simple roots and sα the corresponding reflection in the Weyl group for some root α ∈ R.
The simple roots of F4 are given by

α1 = ε2 − ε3, α2 = ε3 − ε4, α3 = ε4, α4 = 1
2(ε1 − ε2 − ε3 − ε4)

by [5, Plate VIII (II)]. Furthermore, recall [5, Plate VIII (II)] that the positive roots are

εi (1 ≤ i ≤ 4), εi ± εj (1 ≤ i < j ≤ 4), 1
2(ε1 ± ε2 ± ε3 ± ε4).

For later use, we need to express all the 24 positive roots in terms of the simple roots:

ε1 = α1 + 2α2 + 3α3 + 2α4

ε2 = α1 + α2 + α3

ε3 = α2 + α3

ε4 = α3

ε1 + ε2 = 2α1 + 3α2 + 4α3 + 2α4

ε1 − ε2 = α2 + 2α3 + 2α4

ε1 + ε3 = α1 + 3α2 + 4α3 + 2α4

ε1 − ε3 = α1 + α2 + 2α3 + 2α4

ε1 + ε4 = α1 + 2α2 + 4α3 + 2α4

ε1 − ε4 = α1 + 2α2 + 2α3 + 2α4
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ε2 + ε3 = α1 + 2α2 + 2α3

ε2 − ε3 = α1

ε2 + ε4 = α1 + α2 + 2α3

ε2 − ε4 = α1 + α2

ε3 + ε4 = α2 + 2α3

ε3 − ε4 = α2
1
2(ε1 + ε2 + ε3 + ε4) = α1 + 2α2 + 3α3 + α4

1
2(ε1 − ε2 + ε3 + ε4) = α2 + 2α3 + α4

1
2(ε1 + ε2 − ε3 + ε4) = α1 + α2 + 2α3 + α4

1
2(ε1 + ε2 + ε3 − ε4) = α1 + 2α2 + 2α3 + α4

1
2(ε1 + ε2 − ε3 − ε4) = α1 + α2 + α3 + α4

1
2(ε1 − ε2 + ε3 − ε4) = α2 + α3 + α4

1
2(ε1 − ε2 − ε3 + ε4) = α3 + α4

1
2(ε1 − ε2 − ε3 − ε4) = α4.

We first consider the closed orbit

F4/P (ω2) = F4/P{S\α2} = F4/P{α1,α3,α4}
∼= Y.

Using [23, Section 9.1] the weights of the B-fixed point in F4/P{α1,α3,α4} are given by
R−\R−P{α1,α3,α4}

where R− and R−P{α1,α3,α4}
are the negative roots and the negative roots

generated by {α1, α3, α4}, respectively. Thus, the weights are given by all the negative
roots except {−α1,−α3,−α4,−α3−α4}. This also implies that Y has dimension 20. As
in Example 6.11 (ii) we recall (cf. [16, Section 1.5]) that X has dimension 23. Thus, we
need 3 more weights not coming from the closed orbit Y . Using diagram (5.1) we know
that there is a T -stable curve connecting the T -fixed points P{α1,α3,α4}/P{α1,α3,α4} ∈ Y
and P{α1,α2,α4}/P{α1,α2,α4} ∈ Z. The corresponding weight for the B-fixed point in Y is
given by

ω3 − ω2 = (2α1 + 4α2 + 6α3 + 3α4)− (3α1 + 6α2 + 8α3 + 4α4)
= −α1 − 2α2 − 2α3 − α4

= 1
2(−ε1 − ε2 − ε3 + ε4)

where ω3 and ω2 are the corresponding fundamental weights. Again, we need to find
reflections sα such that the B-fixed point in Y stays fixed. The only reflections with this
property are sα1 , sα3 , sα4 and sα3+α4 . Further, the reflections sα1 and sα4 also leave the
B-fixed point in Z fixed. Thus, the only remaining weights of the B-fixed point in Y
are given by
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sα3 · (ω3 − ω2) = sα3 · (2α1 + 4α2 + 6α3 + 3α4)− (3α1 + 6α2 + 8α3 + 4α4)

= sα3 ·
(1

2(−ε1 − ε2 − ε3 + ε4)
)

= 1
2(−ε1 − ε2 − ε3 − ε4)

= −α1 − 2α2 − 3α3 − α4

and

sα3+α4 · (ω3 − ω2) = sα3+α4 · (2α1 + 4α2 + 6α3 + 3α4)− (3α1 + 6α2 + 8α3 + 4α4)

= sα3+α4 ·
(1

2(−ε1 − ε2 − ε3 + ε4)
)

= −ε1

= −α1 − 2α2 − 3α3 − 2α4.

The weights for the other T -fixed points can be obtained by the Weyl group action.
Similarly, the weights for the B-fixed point in the closed orbit Z are given by all the

negative roots except {−α1,−α2,−α4,−α1 − α2} and the weights

ω2 − ω3 = α1 + 2α2 + 2α3 + α4

sα2(ω2 − ω3) = α1 + α2 + 2α3 + α4

sα1+α2(ω2 − ω3) = α2 + 2α3 + α4

coming from the T -stable curves connecting the two closed orbits.
All the weights occurring are indeed roots and since the root lattice and the character

lattice coincide for F4 (cf. [5, Plate VIII (VIII)]), we conclude that condition (i) of
Definition 3.56 is fulfilled for all occurring normal bundles without inverting any prime.
Condition (ii) of Definition 3.56 is only fulfilled after inverting p = 2. We do not need
to invert p = 3, even though this coefficient appears in some of the roots, because for
any pair of primitive characters, one can choose the remaining two basis elements such
that one can avoid having to invert p = 3. Hence, the multiplicative set from Definition
3.58 is given by SX = 2Z.
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