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Chapter 1

Introduction

1.1 Motivation
Chow–Witt groups were introduced by Barge and Morel in [BM00]. The motivat-
ing question when a projective A-module is isomorphic to the direct sum Q ⊕ A
for some projective A-module Q led to the construction of the Euler class c̃n(E)
of a vector bundle E. It is a refinement of the top Chern class cn(E) in the theory
of Chow groups, see e.g. [Ful98]. To answer the above question, one first asks
whether this Euler class is 0, see [BM00, Fas08].

Let X be a regular scheme. The refinement from Chow groups CH(X) to
Chow–Witt groups C̃H(X) includes replacing Milnor K-groups at certain points
of the construction with Minor–Witt K-groups. In degree zero, this is equivalent
to replacing K0-groups by Grothendieck–Witt groups GW.

We apply the idea of such refinements, i.e. of “decorating with tilde”, to the
construction of tensor triangular Chow groups CH∆(T ) introduced in [Bal13] to
define tensor triangular Chow–Witt groups C̃H∆(T ), where T is a sufficiently
“nice” tensor triangulated category. This way, we obtain a generalization of tensor
triangular Chow groups, but, on the other hand, these groups generalize the def-
inition of classical Chow–Witt groups of a scheme as introduced in [BM00]. This
refinement clears the way for new areas apart from algebraic geometry. Thus, it
is only natural to ask what Chow–Witt groups of tensor triangulated categories
such as the stable module category kG- stab might be for initial cases of k and G.
In future work, a refinement of the Euler class would be an interesting direction.
For this, the notion of a vector bundle would have to be generalized to the tensor
triangular setting first.

In [BC+22], Bachmann, Calmès, Déglise, Fasel, and Østvær refine Voevod-
sky’s derived category of motives DM(k;R) (see [MVW06, Voe00]) and construct
the derived category of Milnor–Witt motives D̃M(k;R). In a first attempt to
understand the structure of this category, restriction to Milnor–Witt motives of
0-dimensional schemes – the Artin Milnor–Witt motives – will already yield inter-
esting results that are motivated by the non-oriented results from [BG23a]. These
results then serve as a basis to compute first Balmer spectra of subcategories of
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Chapter 1. Introduction

D̃M(k;R), in this case of the subcategory of Artin Milnor–Witt motives. Other
subcategories are promising topics for future work. For instance, first steps in the
direction of Tate Milnor–Witt motives are taken in [FY23].

1.2 Outline
We provide an outline of this work.

To begin with, Chapter 2 introduces the reader to Balmer’s tensor triangular
geometry ([Bal02, Bal05b, Bal07]). Basic concepts of rigid tensor triangulated
categories, such as the Balmer spectrum and filtration by dimension of support,
are recalled. In particular, we prove that certain constructions such as shifted
dualities, restriction to filtration components, idempotent completion, and a de-
composition statement behave well with duality (e.g. Lemma 2.3.5, Lemma 2.3.7).
Moreover, we recall that a rigid tensor triangulated category can be turned into
a triangulated category with duality (Example 2.2.6 (i)).

In Chapter 3, the theory of (Grothendieck–)Witt groups in the setting of tri-
angulated categories with duality ([Bal00, Wal03, Sch17]) and of exact categories
with duality (and weak equivalences, respectively) ([Sch10a, Sch10b, FS09]) is re-
called. We focus on the various localization statements by Balmer and Walter,
as well as by Schlichting, Fasel, and Srinivas, where the latter two proved these
sequences of the different settings to be equivalent (Theorem 3.3.4).

Building the core of this work’s first part, Chapter 4 gives the central con-
struction of tensor triangular Chow–Witt groups after tensor triangular Chow
groups ([Bal13, Kl16a]) and classical Chow–Witt groups ([BM00, Fas08]) are re-
called. In Section 4.3, tensor triangular oriented cocycles, coboundaries, and fi-
nally Chow–Witt groups C̃H∆ are defined (Definition 4.3.3, Definition 4.3.5) using
the localization sequence of (Grothendieck–)Witt groups of triangulated categories
with duality. The central theorem (Theorem 4.4.5) then follows mandatorily in
Section 4.4: We show that for the rigid tensor triangulated category Dperf(X), X
being a regular scheme, its tensor triangular Chow–Witt group coincides with the
classical Chow–Witt group of X introduced by Barge and Morel. The main tool
here will be the comparison between the filtration by dimension of support in the
tensor triangular setting and the filtration by codimension of homological support
in the algebro-geometric setting. After presenting a computation for X = Spec(k)
by hand, we prove functorial properties of the given construction in Section 4.5.
Dropping some assumptions on the tensor triangulated category, one can obtain
a more general definition of tensor triangular Chow–Witt groups, but at the price
of introducing models. We sketch this idea in Section 4.6.

Tensor triangular geometry grants, in particular, access to the field of repre-
sentation theory. Hence, Chapter 5 discusses the application of tensor triangular
Chow–Witt groups to the stable module category kG- stab for a field k dividing
the order of G. At first, basic notions and results are recalled. In Section 5.2,
the most prominent result is the computation of the Grothendieck Witt group of
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kG- stab as GW(kG-mod) divided by the subgroup generated by projective kG-
modules (Theorem 5.2.3). Deriving a dévissage result from various results in the
literature (Proposition 5.2.6), we will moreover be able to reduce the calculation
to a quotient of the Grothendieck–Witt group of the base field. We prove the
same results for Witt groups.

Let p ̸= 2 and k of characteristic p. The first concrete example of C̃H∆(kG- stab)
treats the cyclic group G = Z/pnZ. Using previous results, we show that the
0-th tensor triangular Chow–Witt group of kG- stab is Z/pnZ and vanishes in
all other degrees if k is finite or algebraically closed (Example 5.3.3, Exam-
ple 5.3.4). In particular, in these cases, Chow and Chow–Witt groups coincide.
For G = Z/pZ× Z/pZ, the 0-th Chow–Witt group is Z/p2Z and all degrees ̸= 1
vanish if k is algebraically closed or finite (Example 5.5.2, Example 5.5.3), just as
in the case of Chow groups. For degree 1, we give partial results.

From Chapter 6 on, we dive into the world of motives. First, Section 6.1
reviews the construction of Voevodsky’s derived category of motives DM(k;R)
following [MVW06, Voe00]. Then, we recall the main results and tools of [BG23a]
in Section 6.2, which essentially breaks down to the equivalence of the derived
categories of Artin motives DAM(k;R), of permutation modules DPerm(Γ;R),
and of cohomological Mackey functors D(MackcohR (Γ)) (Corollary 6.2.12).

In Chapter 7, we begin to set up the stage to refine the results from [BG23a]
to the oriented setting. For this, Section 7.1 recalls the construction of the de-
rived category of Milnor–Witt motives D̃M(k;R) from [BC+22] before investi-
gating the special case of finite Milnor–Witt correspondences generated by 0-
dimensional schemes C̃or

0

k in Section 7.2. Then, Section 7.3 establishes a first
refinement of [BG23a], namely the equivalence between the tensor triangulated
categories D̃AM

gm

(k;R) and Kb((C̃or
0

k)
♮) (Proposition 7.3.3). The general ver-

sion for non-geometric motives is shown in the case that Conjecture 7.3.10 holds
(Corollary 7.3.12).

The remaining equivalence fitting into the diagram

D̃AM(k;R) D(ShNis(C̃or
0

k,R))
≃oo

≃
��

D(M̃ack
coh

R (k))

is established in Chapter 8. First, Section 8.1 introduces the category Ω̃R(k),
which is closely related to classical span categories (Construction 8.1.2). Using
the construction of Ω̃R(k), the category of (cohomological) Milnor–Witt Mackey

functors in the algebro-geometric setting M̃ack
coh

R (k) is defined (Definition 8.2.1)
and the vertical equivalence (Remark 8.2.4) is shown in Section 8.2 under the
assumption that a certain factorization is unique (Conjecture 8.2.2).
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Chapter 1. Introduction

In Chapter 9, examples of the Balmer spectrum of D̃AM
gm

(k;R) are com-
puted. If k is an algebraically closed field, the spectrum is shown to coincide
with the spectrum of DAMgm(k;R), which is merely a point (Corollary 9.1.2).
In Section 9.2, we then present first steps in the computation of the spectrum
of D̃AM

gm

(k;K) for k = R and K a field of characteristic 2. In particular, we
show that it contains the tensor prime ideal ⟨M̃(C)⟩, which denotes the thick
tensor ideal generated by the complex given by Spec(C) concentrated in degree 0
(Lemma 9.2.8).
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my work and/or always having had the patience to listen. Moreover, I would like
to thank my former colleague Thomas Hudson for uplifting chats and teaching
advice.
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Chapter 2

Tensor Triangular Geometry and
Dualities

In this chapter, we first review Balmer’s tensor triangular geometry before ex-
plaining how the concept of dualities can be included. The main references for
most of the contents of this chapter are [Bal02, Bal05b, Bal07, Bal10b]. We refer
to [GN03] for the concept of a dualizing pairing. For readers interested in the
foundations of triangulated categories, see for example [Wei95], whereas readers
who would like to read more about monoidal structures are referred to [MacL71,
Chapter VII].

Convention 2.0.1. Categories we consider in this work will always assumed to
be essentially small.

2.1 Foundations

First, we define the objects of study, namely the tensor triangulated categories
and functors between them.

Definition 2.1.1. (i) A tensor triangulated category T = (T ,⊗,1) is a trian-
gulated category together with a symmetric monoidal structure ⊗ : T ×T →
T with unit object 1 such that ⊗ is triangulated in both variables. We usu-
ally denote the translation functor of T by T .

In particular, for every a, b in T , we have natural isomorphisms T (a)⊗ b ∼=
T (a ⊗ b) and a ⊗ T (b) ∼= T (a ⊗ b) such that T (a) ⊗ T (b) ∼= T (T (a) ⊗ b) ∼=
T 2(a⊗ b) and T (a)⊗ T (b) ∼= T (a⊗ T (b)) ∼= T 2(a⊗ b) only differ by sign.

(ii) A triangulated functor F : T → S between tensor triangulated categories T
and S is called a tensor triangulated functor if it commutes with the tensor
product up to isomorphism and fulfills F (1T ) = 1S .

Remark 2.1.2. In [May01, Chapter 4], May gives a different definition of a tensor
triangulated category under the name closed monoidal category with “compatible”

13
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triangulation; also, Hovey, Palmieri, and Strickland give a different definition in
[HPS97, Definition A.2.1]. The equivalence of the latter to May’s axioms (TC1)
and (TC2) is shown in [May01, Remark 4.3], but he established additional axioms
(T3)-(T5) to carry more information about the product. The axioms (TC1) and
(TC2) also suffice for our purposes and are equivalent to Balmer’s definition above,
see [Bal10b, Remark 4].

We now explain how to endow triangulated categories with a duality structure.
For this, we need the following type of functors.

Definition 2.1.3. Let δ = ±1 and C,D be triangulated categories. A contravari-
ant δ-triangulated functor F : C → D is a contravariant additive functor satisfying
FT−1

C = TDF such that if

A
u→ B

v−→ C
w−→ TC(A)

is an exact triangle in C, then

FC
Fv−→ FB

Fu−→ FA
δ·TD(Fw)

−−−−−→ TD(FC)

is an exact triangle in D.

Now, we can define triangulated categories with duality and specify functors
between such.

Definition 2.1.4. (i) Let δ = ±1. A triangulated category with δ-duality
(T , ∗, δ, η) is a triangulated category T together with a δ-triangulated func-
tor ∗ : T op → T and an isomorphism of triangulated functors η : idT

∼=→ ∗◦∗
such that η∗A ◦ ηA∗ = idA∗ and ηT (A) = T (ηA) for all objects A of T . Here, ∗
is called the duality functor and η is called the double dual identification.

(ii) A duality-preserving functor between triangulated categories with dualities
(T , ∗, δ, η) and (T ′, ∗′, δ′, η′) is a pair (F, µ) with F : T → T ′ a triangulated
functor and µ : F ◦ ∗ → ∗′ ◦F an isomorphism of triangulated functors such
that the diagram

FA
FηA //

η′FA

��

F (A∗∗)

µA∗

��

(FA)∗
′∗′ µ∗

′
A // F (A∗)∗

′

commutes for all objects A in T .

Notation 2.1.5. We will sometimes write (T , ∗, η) or even (T , ∗) instead of
(T , ∗, δ, η) when δ and η are clear from the context (or δ = 1). Often we will
say triangulated category with duality and omit δ from the name.

Remark 2.1.6. The notion of the unit element 1 is defined in detail in [MacL71]
as an element together with natural isomorphisms α, β such that, for every object
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2.1. Foundations

a, we have a ⊗ 1
α∼= a and 1 ⊗ a

β∼= a. Here, a unit element is unique up to (not
necessarily unique) isomorphism: Suppose there is another unit 1′ together with

isomorphisms α′ and β′ as above. Then, 1
α′
∼= 1⊗ 1′

β∼= 1′ and 1
β′
∼= 1′ ⊗ 1

α∼= 1′.
Remark 2.1.7. There are also related notions such as abelian categories with duality
or exact categories with duality which we will encounter later. In general, the
concept of duality includes a duality functor compatible in a certain sense with
the given structure and a double dual identification, see [Sch10a, Definition 3.1]
for the definition of a category with duality.

Example 2.1.8. (i) In many cases, the duality we consider on triangulated
categories will be (derived from) Hom(−,1), such as in the derived category
of finitely generated R-modules for 1 = R, the derived category of perfect
complexes with 1 = OX , whereX is a regular scheme (see [Sch10a, Examples
2.2 and 2.3], compare Remark 2.1.19), or the category of kG-modules with
1 = k. More details on these particular triangulated categories with duality
will follow in Section 2.2.

(ii) Note that HomR(−, R) does, in general, not equip the category R-Mod of
R-modules with a duality since we do not have a double dual identification
in general. For instance, if R = k is a field, the cardinality of the dual (and
therefore also the double dual) of an infinite-dimensional vector space V is
higher than its own cardinality. Hence, (V ∗)∗ ≇ V .

Neither does HomR(−, R) equip the category of finite length R-modules with
a duality in general. Let R = Z and n > 1. Then, HomZ(Z/nZ,Z) contains
only the zero morphism. To see this, take a Z-module homomorphism f :
Z/nZ→ Z. We have

0 = f(0) = f(n) = n · f(1),

and, since Z is an integral domain, f(1) = 0. As a consequence, ((Z/nZ)∗)∗ =
({0})∗ = {0} ≇ Z/nZ.

(iii) If A is a local 0-dimensional ring that is a finite dimensional k-algebra for
some field k, HomA(HomA(M,A), A)) ≇ M in general, which can be fixed
by choosing the duality Homk(−, k); for more details see [Eis95, Chapter
21].

Remark 2.1.9. Note that [CH09] denotes a strong duality a duality such that η
from Definition 2.1.4 is an isomorphism, but we assume all triangulated categories
to be equipped with such a strong duality. To understand the difference between
Definition 2.1.4 and [CH09, Definition 2.1.1] in detail, the reader is referred to
[CH09, Remark 2.1.2].

The following lemma is straightforward.

Lemma 2.1.10. Let F : (T , ∗)→ (L, ∗′) be a duality-preserving functor between
triangulated categories with duality. Let J be a triangulated subcategory of T that
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we consider a triangulated category with duality when equipped with the restricted
duality. Let F (J ) ⊂ K for some triangulated subcategory of L, considered a
triangulated category with restricted duality. Then,

(i) The restriction F |J : J → L is duality-preserving.

(ii) The induced duality turns the Verdier quotient T /J into a triangulated cat-
egory with duality.

(iii) The functor on the quotients T /J → L/K is duality-preserving.

Now, we want to introduce tensor triangulated categories with duality. For
this, we use the following notion from [GN03].

Definition 2.1.11. A product between triangulated categories K and L with
codomainM is a bi-covariant functor ⊗ : K × L →M such that

(i) the functor ⊗ is 1-triangulated in both variables and

(ii) the following diagram is skew-commutative for A in K and B in L, i.e.
TM(rA,B) ◦ lA,T (B) = −TM(lA,B) ◦ rT (A),B

TK(A)⊗ TL(B)
lA,T (B)

//

rT (A),B

��

TM(A⊗ TL(B))

TM(rA,B)

��

TM(TK(A)⊗B)
TM(lA,B)

// T 2
M(A⊗B),

where rA,B : A⊗TL(B)
∼=→ TM(A⊗B) and lA,B : TK(A)⊗B

∼=→ TM(A⊗B).

Definition 2.1.12. Let K,L, and M be triangulated categories with dualities
and ⊗ : K × L →M a product between their underlying triangulated categories
in the sense of Definition 2.1.11. It is called a dualizing pairing between K,L, and
M if for all objects A in K and B in L there are isomorphisms µA,B : A∗K⊗B∗L

∼=→
(A⊗B)∗M functorial in A and B which make the following diagrams

A⊗B
ηKA⊗ηLB //

ηMA⊗B

��

A∗K∗K ⊗B∗L∗L

µA∗,B∗

��

(A⊗B)∗M∗M
(µA,B)∗M

// (A∗M ⊗B∗L)∗M

and

TM(TK(A)
∗K ⊗B∗L)

TM(µT (A),B)

��

A∗K ⊗B∗Loo

µA,B

��

// TM(A∗K ⊗ TL(B)∗L)

T (µA,T (B))

��

TM((TK(A)⊗B)∗M) (A⊗B)∗Moo // TM((A⊗ TL(B))∗M)

commute, where η denotes the double dual identification.
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2.1. Foundations

Definition 2.1.13. Let δ = ±1. The tuple (T ,⊗,1, ∗, η) is called a tensor trian-
gulated category with δ-duality if

(i) (T ,⊗,1) is a tensor triangulated category as in Definition 2.1.1,

(ii) (T , ∗, η, δ) is a triangulated category with δ-duality as in Definition 2.1.4,

(iii) ⊗ : (T , ∗, η) × (T , ∗, η) → (T , ∗, η) is a dualizing pairing as in Defini-
tion 2.1.12.

Remark 2.1.14. This definition is more than we actually need later. In Subsec-
tion 4.3.2, we will merely need rigid tensor triangulated categories that can be
considered triangulated categories with dualities without assuming a compatibil-
ity in the sense of a dualizing pairing.

Definition 2.1.15. A duality-preserving functor between tensor triangulated cat-
egories with dualities is a functor that is

(i) a tensor functor as in Definition 2.1.1 (ii) when considered a functor between
the underlying tensor categories, and

(ii) a duality-preserving functor as in Definition 2.1.4 (ii) when considered a
functor between the underlying triangulated categories with duality (thus,
in particular, triangulated).

With the definition of tensor triangulated categories with duality at hand, we
now turn to the main construction in the setting of tensor triangular geometry: the
Balmer spectrum ([Bal05b, Definition 2.1]). The idea behind it is to generalize the
notion of (prime) ideals of a ring to the categorical setting; this way, well-known
methods from the algebro-geometric setting can be imitated.

Definition 2.1.16. Let (T ,⊗,1) be a tensor triangulated category. A thick
triangulated subcategory J ⊂ T is called a tensor ideal if T ⊗J ⊂ J . It is called
prime if J ̸= T and

A⊗B ∈ J ⇒ ((A ∈ J ) or (B ∈ J )).

Definition-Lemma 2.1.17. For an essentially small tensor triangulated category
T = (T ,⊗,1) we define its (Balmer) spectrum as the set

Spc(T ) := {P ⊂ T | P is a tensor prime ideal}.

It is a topological space by defining the basic closed subsets as the sets of the form

supp(A) := {P ∈ Spc(T ) | A /∈ P} ⊂ Spc(T ),

for every object A in T .

We now introduce the category Dperf(X) (see [TT90, Section 2]), which will
serve as our running example and is of vital importance when comparing classical
Chow–Witt groups to the new construction of tensor triangular Chow–Witt groups
in Section 4.3.
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Chapter 2. Tensor Triangular Geometry and Dualities

Definition 2.1.18. ([SGA6, Définition 2.1]) Let X be a scheme. A perfect com-
plex of OX-modules is a complex locally quasi-isomorphic to a bounded complex
of algebraic vector bundles.

We denote by Dperf(X) the derived category of perfect complexes equipped
with the derived tensor product ⊗OX

, which is a tensor triangulated category by
[Tho97, Theorem 3.15].

Remark 2.1.19. Recall that, if we have a regular noetherian scheme X, there is
a categorical equivalence between Dperf(X) and the bounded derived category
Db(Coh(X)) =: Db(X) of coherent sheaves on X.

Moreover, these categories are equivalent to Db(Vect(X)) if X is regular, where
Vect(X) is the exact category of algebraic vector bundles, i.e., of locally free
sheaves, on X.

The category P (X) of coherent locally free sheaves on X is contained in
Vect(X). From [Bal99], we know that for regular X there is a categorical equiv-
alence Db(Coh(X)) ≃ Db(P (X)). (Here, regular means that every coherent OX-
module has a finite resolution by locally free coherent OX-modules, see [Bal99,
Remark 2.8]). In conclusion, there are equivalences

Dperf(X) ≃ Db(Coh(X)) ≃ Db(Vect(X)) ≃ Db(P (X))

when X is regular.

Example 2.1.20. ([Bal05b, Corollary 5.6]) Let X be a topologically noetherian
scheme. There is a homeomorphism X ∼= Spc(Dperf(X)) of the underlying topo-
logical space of X and the Balmer spectrum of Dperf(X), given explicitly by

σ : X → Spc(Dperf(X))

x 7→ {A• ∈ Dperf(X) | A•
x
∼= 0 in Dperf(OX,x)} ⊂ Dperf(X).

Under this homemorphism, the support supp(A•) corresponds to the homological
support supph(A•), see Definition 4.2.5.

Remark 2.1.21. Tensor triangular geometry is a relatively new topic. It is a
difficult problem to compute Balmer spectra, which is why there is still a wide
range of open questions.

Ahead of time, before the language of tensor triangular geometry was intro-
duced, Hopkins and Smith already determined the spectrum of the topological
stable homotopy category of finite spectra SHfin in [HS98] (compare [Bal10a,
Corollary 9.5]).

Many results in this direction are due to Paul Balmer. For example, the spec-
trum of the bounded derived category of kG-modules was shown to be equivalent
to the homogeneous spectrum of the cohomology ring H•(G, k) in [Bal05b, Corol-
lary 5.10]. An overview of open problems is given in [Bal10b], where Balmer
describes, for example, the computation of Spc(SHA1

gm(S)) as a “long-term chal-
lenge” ([Bal10b, p. 18]). A first step is given in [HO18, Theorem 1.1].
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2.2. Rigid Tensor Triangulated Categories

Recent progress in the field of motivic homotopy theory includes the compu-
tations of the spectra of the derived category of Artin-Tate motives over R with
integral coefficients in [BG22a] by Balmer and Gallauer or the triangulated cat-
egory of Tate motives with integral coefficients over certain algebraically closed
base fields by Gallauer in [Gal19, Theorem 8.6]. In [BG22b] and [BG23b], a de-
scription of the spectrum of the derived category of permutation modules over
a finite group with coefficients in a field of positive characteristic is given. The
extension to profinite groups has recently been published in the preprint [BG24].
In [Pe13], Peter proved that the spectrum of mixed Tate motives with rational
coefficients DTM(k,Q) is a point.

Further results and progress in computing Balmer spectra in the field of alge-
braic geometry are, for example, [DS14, Theorem 4.7], [Ste14, Theorem 7.7], and
[Hal16, Theorem 1.2]. In modular representation theory, examples are the spec-
trum of the stable module category in [BCR97]. For more examples, the reader is
referred to [Bal19].

Having recalled the basic concepts of tensor triangular geometry, we can direct
ourselves in more detail toward the matter of duality in the following subsection.

2.2 Rigid Tensor Triangulated Categories

In Definition 2.1.13, we introduced triangulated categories with duality. We men-
tioned that, in most cases, the duality we are interested in is inherited from some
Hom-functor. This idea is captured by the notion of rigid tensor triangulated
categories. These will be our main object of study and are introduced in this
subsection.

Our overall goal of defining tensor triangular Chow–Witt groups is inspired by
the construction of tensor triangular Chow groups by Balmer and Klein [Bal13],
[Kl16a]. This idea is led by the concept of a filtration of the given tensor triangu-
lated category by dimension of support (cf. Section 2.3)

T(−∞) ⊂ ... ⊂ T(n−1) ⊂ T(n) ⊂ ... ⊂ T(∞),

where we define T(n) := {a ∈ T | dim(supp(a)) ≤ n} for a dimension function dim
in the sense of Definition 2.3.1 and n ∈ Z.

We would like to use the same approach, but, in general, supports do not
behave well with duality, i.e. the support of an object might differ from the support
of its dual. Balmer shows that the assumption of the tensor triangulated category
being rigid (Definition 2.2.1) fixes this problem. He proves that, in this case, the
support of an object equals the support of its dual, which is one of the reasons
why we introduce this notion (see [Bal07, Chapter 2]).

Definition 2.2.1. A tensor triangulated category (T ,⊗,1) is called rigid if there
is a bi-triangulated functor hom : T op × T → T such that
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(i) there are natural isomorphisms

HomT (a⊗ b, c) ∼= HomT (a, hom(b, c))

for all objects a, b, and c in T , and

(ii) every object a is rigid, that is, the natural morphism

hom(a,1)⊗ b→ hom(a, b)

is an isomorphism for all objects b of T .

The functor hom is often called the internal Hom. We denote the rigid tensor
triangulated category by (T ,⊗,1, hom).

Remark 2.2.2. In [PS14, Definition 2.1], another description of rigid (or (strongly)
dualizable) objects in tensor triangulated (or closed symmetric monoidal) cate-
gories is given: An object a in (T ,⊗,1) is rigid if there exists a dual a∗ together
with evaluation and coevaluation maps

η : 1→ a⊗ a∗ and ε : a∗ ⊗ a→ 1

satisfying

(ida⊗ε)(η ⊗ ida) = ida and (ε⊗ ida∗)(ida∗ ⊗η) = ida∗ .

The definitions are equivalent (see [PS14, p.7]) in the following sense: An object
a is rigid with dual hom(a,1) in the sense of [PS14, Definition 2.1] if and only if
the map

hom(a,1)⊗ a→ hom(a, a)

is an isomorphism.

Remark 2.2.3. Definition 2.2.1 (i) states that (⊗, hom) is an adjoint couple, and
we call Definition 2.2.1 (i) the adjunction isomorphism.

As an important example, we will now show how rigid tensor triangulated
categories yield triangulated categories with duality. As a first step, we recall
some notions on objects L that twist dualities.

Definition 2.2.4. An object L of a tensor triangulated category (T ,⊗,1) is called
⊗-invertible if there exists an object M of T and an isomorphism L⊗M

∼=−→ 1.

These objects satisfy some nice technical properties.

Lemma 2.2.5. Let (T ,⊗,1, hom) be a rigid tensor triangulated category.

(i) If K and L are ⊗-invertible objects, then so is K ⊗ L.

(ii) For a ⊗-invertible object L in a (not necessarily rigid) tensor triangulated
category we have supp(L) = Spc(T ).
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Proof. Part (i) can be seen as follows: For ⊗-invertible objects K and L there
exist objects M and M ′ such that K⊗M ∼= 1 resp. L⊗M ′ ∼= 1. It then follows by
associativity of ⊗ that (K⊗L)⊗ (M ′⊗M) ∼= K⊗ (L⊗M ′)⊗M ∼= K⊗1⊗M ∼=
K ⊗M ∼= 1.

For part (ii), assume that supp(L) ̸= Spc(T ), which is equivalent to {P ∈
Spc(T )|L ∈ P} being nonempty, i.e., there exists a tensor prime ideal P ∈ Spc(T )
such that L ∈ P . Since P is a thick tensor ideal we have that, in particular,
L⊗M ∈ P for its ⊗-inverse M . But since L⊗M ∼= 1, P is not proper and thus
cannot be a tensor prime ideal.

Example 2.2.6. This example shows how to turn rigid tensor triangulated cate-
gories into triangulated categories with dualities.

(i) Let (T ,⊗,1, hom) be a rigid tensor triangulated category. We can turn it
into a triangulated category with 1-duality as follows: Set ∗ : T op → T
as ∗ := hom(−,1), which is 1-triangulated by Definition 2.2.1. The double
dual identification η : idT

∼=→ ∗ ◦ ∗ is defined as the image of the evaluation
map

ev : A⊗ hom(A,1)→ 1

under the adjunction isomorphism Definition 2.2.1 (i). The natural trans-
formation η is indeed an isomorphism, see [HPS97, Theorem A.2.5 (b)]. The
fact that (T , hom(−,1)) is a triangulated category with duality follows from
[CH09, Corollary 3.2.4].

(ii) Let L be a fixed ⊗-invertible object. More generally, we can turn the
rigid tensor triangulated category (T ,⊗,1, hom) into a triangulated cate-
gory with duality by choosing the duality DL := hom(−, L), which amounts
to tensoring hom(−,1) with L in the setting above since hom(−,1)⊗ L ∼=
hom(−, L) by rigidity. The reader is referred to [CH09, Corollary 3.2.4] for
more details.

(iii) Let X be a quasi-compact, quasi-separated scheme (e.g. noetherian). The
category Dperf(X) is a rigid tensor triangulated category with the left derived
tensor product ⊗LOX

and the right derived Hom-sheaf RHom =: hom as
internal Hom, see [Bal07, Proposition 4.1]. In particular, it can be turned
into a triangulated category with duality as above. For a regular scheme X,
Dperf(X) is equivalent to Db(X) as stated in Remark 2.1.19.

(iv) Let k be a field of positive characteristic and G a finite group whose order
is divisible by char(k). Then, the stable category kG- stab is a rigid tensor
triangulated category with tensor product ⊗k and internal Hom hom :=
Homk, see [Bal07, Proposition 4.2]. A detailed construction of the category
kG- stab will follow in Section 5.1.

(v) As stated in [Bal07, Remark 2.2], rigid tensor triangulated categories often
arise as subcategories of compact objects of some bigger tensor triangulated
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category. For example, if X is quasi-compact and quasi-separated, Dperf(X)
is the subcategory of compact objects in the derived category D+

Qcoh(X) of
cohomologically bounded below complexes with quasi-coherent cohomology.
The latter is an example of a tensor triangulated category that is not rigid.

Given a triangulated category with duality, we can construct shifted dualities.
We first recall Balmer’s definition of this notion.

Definition 2.2.7. Let (T , ∗, η, δ) be a triangulated category with duality. We
define the associated triangulated category with shifted duality as

T (T , ∗, η, δ) := (T , T ◦ ∗,−δ · η,−δ),

where T is the shift functor of T . Moreover, we set

T−1(T , ∗, η, δ) := (T , T−1 ◦ ∗, δ · η, δ).

Remark 2.2.8. For example, if δ = 1, then

T n(T , ∗, η, δ) := (T , T n ◦ ∗, (−1)
n(n+1)

2 η, (−1)n · δ)

is a triangulated category with (−1)nδ-duality for n ∈ Z by [Bal00, Remark and
Definition 2.9].

So, for each n ∈ Z, we obtain a triangulated category with duality associated
to (T , ∗, η, δ). In particular, if (T ,⊗, hom) is a rigid tensor triangulated category,
T n(T , DL, ηL) is a triangulated category with duality for a fixed ⊗-invertible ob-
ject L in T .

This subsection has introduced the notion of rigid tensor triangulated cate-
gories which embodies the idea of allowing mainly Hom-dualities when talking
about triangulated categories with duality. We have seen examples and further
notions as a preparation to talk about filtrations by dimension of support in the
next section.

2.3 Dimension Functions and Filtrations
The reason why we introduced rigid tensor triangulated categories above was
that we wanted the dualities to behave well with the support, in particular, with
the filtration of our tensor triangulated category we are about to construct. In
order to show this, we first introduce notions of dimension before constructing
the filtration components.

Definition 2.3.1. A dimension function on a tensor triangulated category T =
(T ,⊗,1) is a map

dim : Spc(T )→ Z ∪ {±∞}
satisfying the following properties:

(i) For tensor prime ideals Q ⊂ P of T , we have dim(Q) ≤ dim(P).
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(ii) If Q ⊂ P and dim(Q) = dim(P), it follows that Q = P .

Convention 2.3.2. All categories are essentially small as in Convention 2.0.1.
Moreover, let the Balmer spectrum be noetherian for any tensor triangulated
category. Tensor triangulated categories will be equipped with a dimension func-
tion dim. Given a rigid tensor triangulated category (T ,⊗,1, hom), we fix a
⊗-invertible object L. When considered a triangulated category with duality, T
will be equipped with the duality DL := hom(−, L) as in Example 2.2.6 (ii).

Remark 2.3.3. We will see later that the most important examples for us will be,
on the one hand, the opposite of the Krull-codimension − codimKrull, equipping
Example 2.2.6 (iii), i.e. Dperf(X) for X quasi-compact and quasi-separated, with
a dimension function, see [Bal07, Example 3.3]

On the other hand, the Krull dimension dimKrull will be our choice of a dimen-
sion function for kG- stab from Example 2.2.6 (iv), see Definition 5.1.24

For further details, the reader is referred to [Bal07, Examples 3.2 and 3.3].

Definition 2.3.4. For a tensor triangulated category T = (T ,⊗,1) with a di-
mension function dim, we define the dimension of a subset V ⊂ Spc(T ) as
dim(V ) := sup{dim(P) | P ∈ V }. For any n ∈ Z ∪ {±∞}, we set

T(n) := {A ∈ T | dim(supp(A)) ≤ n}

yielding a thick tensor ideal in T by the properties of support ([Bal07, Proposition
1.3]) and dimension function (Definition 2.3.1).

We often call T(n) the n-th filtration component of the tensor triangulated
category T . Moreover, we define Spc(T )n as the set of points Q in Spc(T ) with
dim(Q) = n.

Lemma 2.3.5. Let (T ,⊗,1, hom, dim) be a rigid tensor triangulated category
with dimension function that we consider a triangulated category with the duality
DL := hom(−, L) for a fixed ⊗-invertible object L in T following Example 2.2.6
(i)/(ii). Let n ∈ Z ∪ {±∞}.

Then, the thick tensor ideal T(n) is a triangulated category with duality when
equipped with the duality induced by DL.

Proof. Since T(n) is a tensor prime ideal, it is in particular a full triangulated
subcategory. It follows from [Bal07, Proposition 2.7] that for any object a in
T , we have supp(a) ∼= supp(hom(a,1)), and thus especially dim(supp(a)) =
dim(supp(hom(a,1))), which means that if a is in T(n), then so is hom(a,1). More
generally, by [Bal07, Proposition 2.7] and Lemma 2.2.5, we have supp(hom(a, L)) =
supp(a) ∩ supp(L) and supp(L) = Spc(T ) as subspaces of Spc(T ), yielding that
for a in T(n) and L ⊗-invertible in T ,

dim(supp(hom(a, L))) = dim(supp(a) ∩ supp(L))

=dim(supp(a) ∩ Spc(T )) = dim(supp(a)).

That is, if a is in T(n), so is hom(a, L). The duality functor hom(−, L) and the
double dual identification from Example 2.2.6 therefore restrict to T(n), equipping
it with a duality structure.
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Remark 2.3.6. The above lemma states that for a rigid tensor triangulated cate-
gory (T ,⊗,1, hom), we obtain triangulated categories with duality T(n) equipped
with the restricted duality of DL := hom(−, L), allowing us to define Witt groups
and Grothendieck–Witt groups of the filtration components T(n) later.

Apart from the filtration by dimension of support, we will also need the tech-
nique of idempotent completion of a (tensor) triangulated category later since the
quotients of the filtration components are not necessarily idempotent complete
even if the category T is in the first place, see [Bal07, Remark 1.14].

We know from [BS01] and [Bal07, Proposition 2.15] that applying the usual
idempotent completion (−)♮ of an additive category to a (tensor) triangulated
category naturally yields a (tensor) triangulated category again. In our setting,
we need the idempotent completion to moreover behave well with dualities.

Lemma 2.3.7. The idempotent completion T ♮ of a triangulated category with
duality T = (T ,⊗,1, ∗, η) is again a triangulated category with duality.

Proof. Recall that (T )♮ is naturally already a triangulated category by [BS01]. It
inherits a duality structure

∼∗ : ((T )♮)op → (T )♮

given by

(A, a) 7→ (A∗, a∗), f : [(A, a)→ (B, b)] 7→ [f
∼∗ : (B∗, b∗)→ (A∗, a∗)],

where f
∼∗ = f ∗. Note that the dual of an idempotent morphism is still idempotent

since we have a∗ ◦ a∗ = (a ◦ a)∗ = a∗. Also, f
∼∗ actually is a morphism in the

idempotent completion since we have b ◦ f = f = f ◦ a by definition of the
idempotence of f and thus obtain the desired idempotence of f

∼∗ by applying the
duality functor ∗.

Moreover, η induces a natural transformation

∼
ω : 1T ♮ → ∼∗ ◦ ∼∗

defined elementwise as ∼
ω(A,a) := ηA × ηa. Hence, T ♮ is a triangulated category

with duality.

Moreover, we need idempotent completion to behave well with the structure
of a rigid tensor triangulated category as well as with Verdier localization.

Lemma 2.3.8. ([Bal07, Proposition 2.15])

(i) The idempotent completion of a rigid tensor triangulated category is again
a rigid tensor triangulated category. The idempotent completion functor
is a duality-preserving functor when regarding the rigid tensor triangulated
category a triangulated category with duality (see Example 2.2.6 (i) and (ii)).
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(ii) The Verdier localization of a rigid tensor triangulated category at a thick
tensor ideal is again a rigid tensor triangulated category. The localization
functor is a duality-preserving functor when regarding the rigid tensor tri-
angulated category a triangulated category with duality (see Example 2.2.6
(i) and (ii)).

Recall from Definition 2.3.4 that, for a rigid tensor triangulated category with
a dimension function (T ,⊗,1, hom, dim), we defined filtration components

T(n) := {A ∈ T | dim(supp(A)) ≤ n}

for n ∈ Z ∪ {±∞}, which yield a filtration by thick tensor ideals

T(−∞) ⊂ ... ⊂ T(n−1) ⊂ T(n) ⊂ ... ⊂ T(∞) = T .

It lifts to a filtration of T when considered a triangulated category with dual-
ity with each component being a triangulated category with duality again (cf.
Lemma 2.3.5):

T(−∞) ⊂ ... ⊂ (T(n−1), DL|T(n−1)
, η) ⊂ (T(n), DL|T(n)

, η) ⊂ ... ⊂ T(∞).

The inclusion functors are duality-preserving functors since all the dualities
are induced by hom(−, L).

For a tensor prime ideal P ∈ Spc(T ), let TP := (T /P)♮ and let FL(TP) :=
{a ∈ TP | supp(a) ⊂ ∗}, where ∗ is the unique closed point of Spc(TP). See [Bal07,
Definition 3.7] for more details.

For future reference, we recall the following important decomposition state-
ment.

Theorem 2.3.9. ([Bal07, Theorem 3.24]) Let (T ,⊗,1, hom, dim) be an essen-
tially small, rigid tensor triangulated category equipped with a dimension function
such that Spc(T ) is noetherian. Then, for all n ∈ Z, we have a triangulated
equivalence

(T(n)/T(n−1))
♮ →

⊕
P∈Spc(T )
dim(P)=n

FL(TP).

Corollary 2.3.10. The above equivalence passes to an equivalence of triangulated
categories with duality when considering the rigid tensor triangulated category
(T ,⊗,1, hom) a triangulated category with duality (T , DL, ηL) as in Example 2.2.6
(i)/(ii) for L a ⊗-invertible object of T .

Proof. It follows from Example 2.2.6 (ii) that (T , DL, ηL) is indeed a triangulated
category with duality as well as (T(n)/T(n−1))

♮ by the above considerations of this
section, see e.g. Lemma 2.3.8. The duality DL on the triangulated category on
the right-hand side is induced by the localization functors qP : T → T /P for each
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P ∈ Spc(T ). Applying [Bal07, Proposition 2.15], we see that for all objects a we
have

DL(a) = hom(qP(a), qP(L)) ∼= qP(hom(a, L)) = qP (DL(a)).

The triangulated equivalence from the statement is induced by the functor

T(n)/T(n−1) →
⊕

P∈Spc(T )
dim(P)=n

Min(T /P), a 7→ qP(a).

We can thus deduce from Lemma 2.3.8 that the equivalence is a duality-preserving
functor.

In this subsection, the central idea of tensor triangular geometry to filtrate by
dimension of support was introduced. We validated that this construction, as well
as important tools such as idempotent completion or Verdier localization, behave
well with dualities.

The whole section intended to introduce the reader to tensor triangular geom-
etry, starting with the basic definition of its objects of study, the functors between
them, and main concepts such as tensor prime ideals and the Balmer spectrum
Spc(T ) of a tensor triangulated category. After that, rigid tensor triangulated
categories were introduced and portrayed as our central way of introducing a du-
ality structure on tensor triangulated categories inherited by the internal Hom.
Examples have been given and shifted dualities have been defined. Eventually,
dimension functions embodied the last ingredient to filtrate a given tensor tri-
angulated category by dimension of support. This construction and moreover
idempotent completion and Verdier localization have been shown to be compati-
ble with our concept of duality.

The following section will start from a different point of view and introduce
Grothendieck–Witt and Witt groups as a generalization of classical algebraic K-
theory, which will be a main tool to generalize the construction of tensor triangular
Chow groups to tensor triangular Chow–Witt groups in Section 4.2.
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Chapter 3

Grothendieck–Witt and Witt
Groups

The generalization from Chow groups to Chow–Witt groups in the classical algebro-
geometric case involves, in particular, the passage from MilnorK-theory to Milnor–
Witt K-theory. In degree 0, this nails down to the passage from the Grothendieck
group K0 to the Grothendieck–Witt group GW.

We assume that the reader is familiar with the theory of Grothendieck–Witt
and Witt groups of fields and rings. As an introduction, we recommend [Lam05,
MH73, Scha85].

In this chapter, we introduce the notions of Grothendieck–Witt groups and
Witt groups of triangulated categories with duality as well as of complicial ex-
act categories with weak equivalences and duality. We introduce basic notions in
these settings and compare the definitions. In the last section, we examine the
different localization theorems that will later serve as a tool to show that the def-
inition of Chow–Witt groups of tensor triangulated categories indeed generalizes
the classical one of schemes.

In the triangulated case, we follow the references [Bal00, Wal03, Sch17], whereas
for the exact case [Sch10a, Sch10b, FS09] are our main references.

Convention 3.0.1. As stated above, all categories will be considered essentially
small if not stated otherwise. In this chapter, we assume that any triangulated
category T or exact category E contains 1

2
, i.e., the abelian group Hom(A,B) is

uniquely divisible by 2 for all objects A and B in T (or E , respectively). We also
say that T is Z[1

2
]-linear. For the example of schemes we will consider later, all

base fields k will have a characteristic ̸= 2 (compare Remark 3.1.4).

3.1 (Grothendieck–)Witt Groups of Triangulated
Categories

We start with the theory of (Grothendieck–)Witt groups of triangulated categories
with duality. The constructions of this chapter do not rely on any tensor structure.
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A rigid tensor triangulated category may be turned into a triangulated category
with duality as in Example 2.2.6 (i)/(ii), to which one can apply GW or W.
We will proceed like this in Section 4.2. Now, we begin with some conventions
before introducing the notions necessary to define (Grothendieck–)Witt groups of
triangulated categories with duality.

Witt groups and Grothendieck–Witt groups of fields and rings intend to cap-
ture the behavior of symmetric bilinear forms on vector spaces and modules,
respectively, which can be described briefly as symmetric isomorphisms to their
dual. To generalize this definition for triangulated categories, one needs to define
symmetric objects.

Definition 3.1.1. For objects A,B of a triangulated category with duality T =
(T , ∗, η), the transpose of a morphism u : A → B∗ is defined as ut := u∗ ◦ ηB. A
morphism w : A→ A∗ is symmetric if wt = w. A symmetric object of T is a pair
(A,w), where w : A

∼=−→ A∗ is a symmetric isomorphism. Two symmetric objects
(A,w) and (B, v) are isometric if there is an isomorphism r : A

∼=−→ B such that
w = r∗vr.

We denote by SymOb(T ) the free abelian group of isometry classes of symmet-
ric objects of T with the orthogonal sum as group operation, where the orthogonal
sum (A,α)⊕ (B, β) of symmetric spaces (A,α) and (B, β) is defined as

α⊕ β :=

[
α 0
0 β

]
: A⊕B → A∗ ⊕B∗.

Remark 3.1.2. The symmetric objects together with their isomorphisms form a
groupoid. Note that a duality-preserving functor (F, µ) : (A, ∗)→ (B, ∗̃) between
triangulated categories with duality induces a morphism of groupoids sending
w : A

∼=−→ A∗ to µA ◦ Fw : FA
∼=−→ F (A∗) ∼= F (A)∗̃.

Definition-Lemma 3.1.3. [[Bal00], Theorem 2.6] Let (T , ∗, η) be a triangulated
category with duality.

(i) For any morphism u : T−1(A) → A∗ that is symmetric with respect to the
(−1)-st shifted duality, there exists an exact triangle of the form

T−1(A)
u−→ A∗

ϕ−1v∗

−−−−−→ B
v−→ A.

Here, ϕ : B
∼=→ B∗ is an isomorphism with respect to the 0-th shifted duality

and (B, ϕ) is uniquely determined by (A, u) up to isomorphism. We define
cone(A, u) := (B, ϕ).

(ii) We call a symmetric object metabolic if it is isomorphic to some cone(A, u).
In the above setting, A∗ is called a Lagrangian of (B, ϕ).

(iii) A hyperbolic object is a symmetric object H(A) for some object A of the
form

H(A) := (A⊕ A∗,

[
0 1A∗

ηA 0

]
) = cone(A, 0).
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Remark 3.1.4. Note that we usually assume that char(k) ̸= 2 (or 1
2
, i.e. 2, being

invertible). If 2 is invertible, quadratic and symmetric forms coincide as well as
split-metabolic and hyperbolic objects (see [Bal05a, Remark 36]) for the category
of finitely generated projective R-modules.

However, if 2 is not invertible, this is not always the case, see [Bal05a, Example
38] for an example of a split-metabolic object that is not hyperbolic.

There has been progress for when 2 is not invertible. For example, in [Sch10a]
and [Sch10b], assumptions on the characteristic of the base field when considering
(Grothendieck–)Witt groups of exact categories are dropped already.

Definition 3.1.5. Let T = (T , ∗, η) be a triangulated category with duality.

(i) The Grothendieck–Witt group GW(T ) = GW(T , ∗, η) is the quotient of
SymOb(T ) divided by the following relations:

(a) [(A,α) ⊥ (B, β)] = [A,α] + [B, β] and

(b) [cone(Y, f)] = [H(Y )].

(ii) The Witt group W(T , ∗, η) is the quotient of GW(T ) by the subgroup H
generated by the hyperbolic classes, that is W(T ) := GW(T )/H.

(iii) For n ∈ Z, the n-th shifted Grothendieck–Witt group GW[n](T ) (and Witt
group W[n](T )) is the usual Grothendieck–Witt group (and Witt group,
respectively) equipped with the n-th shifted duality T n ◦ ∗ from Defini-
tion 2.2.7.

(iv) Let ∗ = DL for a ⊗-invertible object in T , for example in the case of Exam-
ple 2.2.6 (ii). In this special case, we denote by GW(T , L) := GW(T , DL, ηL)
and W(T , L) := W(T , DL, ηL) the Grothendieck–Witt group and Witt
group twisted by L, respectively.

Remark 3.1.6. (i) Note that symmetric objects from [Wal03] coincide with sym-
metric spaces from [Bal00]. In [Wal03, p.6], an equivalent definition of
W(T ) is given via relations that immediately shows the equivalence of Defi-
nition 3.1.5 below to Balmer’s definition of triangular Witt groups in [Bal00,
Definition 2.13]. In total, (Grothendieck–)Witt groups of triangulated cat-
egories of Walter ([Wal03]), Schlichting ([Sch17]), and Balmer ([Bal00]) co-
incide by [Sch17, Remark 3.14].

(ii) Readers familiar with the notion of higher Grothendieck–Witt groups, e.g.
of exact categories as we will use later, must not confuse these with shifted
Grothendieck–Witt groups, in this case of triangulated categories, for there
are no higher Grothendieck–Witt groups of triangulated categories. More
details on this comparison can be found in [Sch10a, Remark 4.14].

Lemma 3.1.7. Given a duality-preserving functor between triangulated categories
with duality (F, φ) : (T , ∗T ) → (S, ∗S) as in Definition 2.1.4, i.e. φ : F ◦ ∗T ≃
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Chapter 3. Grothendieck–Witt and Witt Groups

∗S ◦F is a triangulated equivalence, we obtain induced group homomorphisms for
n ∈ Z

F : GW[n](T , ∗T )→ GW(S, ∗S)

and
F : W[n](T , ∗T )→W(S, ∗S).

In particular, if ∗T = DL and ∗S = DL′ for fixed ⊗-invertible objects L and L′

of T and S, respectively, we obtain group homomorphisms F : GW[n](T , L) →
GW(S, L′) and F : W[n](T , L)→W(S, L′).

If F is moreover a triangulated equivalence, F is an isomorphism.

Proof. For symmetric objects (A, a) of GW(T , ∗T ), we define

F (A, a) = (FA,φa ◦ Fa).

The mapping preserves metabolic objects and Lagrangians. Hence, it induces
a morphism on GW. In particular, it preserves hyperbolic classes (cf. [Sch10a,
Section 3.1]) and, thus, induces morphisms on Witt groups. The “moreover”
statement follows immediately from the concrete description of F . The case of
nonzero n follows analogously.

Having seen the definition of (Grothendieck–)Witt groups of triangulated cat-
egories with duality, we will introduce the same notion for certain types of exact
categories in the next section.

3.2 (Grothendieck–)Witt Groups of Exact Cate-
gories

We are now familiar with the definition of (Grothendieck–)Witt groups of trian-
gulated categories with duality. One can also define Grothendieck–Witt and Witt
groups of exact categories with duality as in [Sch10a]. The two constructions
agree in the sense of the forthcoming Proposition 3.2.14. Note that Schlichting
uses the word symmetric space for what we call a symmetric object here.

In Section 4.2, we will need both notions to prove that our tensor triangular
Chow–Witt groups indeed generalize the classical Chow–Witt groups.

For the convenience of the reader, we briefly recall the definition of exact
categories with duality.

Definition 3.2.1. We call a triple (E , ∗, η) an exact category with duality if E is
an exact category in the sense of Quillen, ∗ : E → Eop is an exact functor, and
ηA : A

∼=−→ A∗∗ is a natural isomorphism fulfilling idA∗ = η∗A ◦ ηA∗ for all objects
A in E , called the double dual identification.

As in the case of triangulated categories, we now want to introduce symmetric
objects on exact categories with duality.
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Definition 3.2.2. Let (E , ∗, η) be an exact category with duality. A symmetric
object is a pair (M,ϕ), where M is an object of E and ϕ :M

∼=−→M∗ a symmetric
isomorphism, i.e. an isomorphism satisfying ϕ∗η = ϕ. An isometry between two
symmetric objects (M,ϕ) and (N,ψ) is an isomorphism f : M

∼=→ N such that
ϕ = f ∗ψf .

We denote the Grothendieck group of the abelian monoid of isometry classes of
symmetric objects of E with the orthogonal sum as group operation by SymOb(E).

Remark 3.2.3. In Definition 3.1.1 and Definition 3.2.2, we defined symmetric ob-
jects as objects A equipped with a symmetric isomorphism to its dual φ : A

∼=→ A∗.
In the example of vector spaces over a field K, there is moreover the notion of a
symmetric bilinear form. By definition, this is a map

B : V × V → K

satisfying the following three conditions:

(i) B(x, y) = B(y, x),

(ii) B(x+ y, z) = B(x, z) +B(y, z),

(iii) B(λx, y) = λB(x, y) for all x, y, z ∈ V and λ ∈ K.

Given a symmetric object (V, φ), we obtain a symmetric bilinear form by setting
B(x, y) := φ(x)(y). Conversely, a symmetric bilinear form B yields a symmetric
object (V, φ) with φ(x) := B(x,−). Hence, we can switch between symmetric
isomorphisms to its dual and symmetric bilinear forms. For more details, see
[Scha85, Chapter 1, §2].

Definition 3.2.4. Let (E , ∗, η) be an exact category with duality.

(i) A totally isotropic subobject of a symmetric object (M,φ) is an admissi-
ble monomorphism i : L → M such that 0 = i∗φi, and such that L →
ker(i∗φ) ⊂M is also an admissible monomorphism.

(ii) A Lagrangian of a symmetric object (M,φ) is a totally isotropic subobject
L

i→M such that

L
i→M

i∗φ−→ L∗

is an exact sequence in E .

(iii) A symmetric object (M,φ) is called metabolic if it has a Lagrangian.

(iv) A hyperbolic object is a symmetric object H(A) for some object A of the
form

H(A) := (A⊕ A∗,

[
0 1A∗

ηA 0

]
).
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Chapter 3. Grothendieck–Witt and Witt Groups

Definition 3.2.5. Let (E , ∗) be an exact category with duality. We define the
Grothendieck–Witt group GW0(E , ∗) := GW(E , ∗) as the quotient of SymOb(E)
divided by the relation [(M,φ)] = [H(L)] for metabolic objects [(M,φ)] with
Lagrangian L.

The Witt group W0(E , ∗) := W(E , ∗) is the quotient of GW0(E , ∗) modulo the
relation [H(A)] = 0 for any hyperbolic object H(A).

Example 3.2.6. Given a ring R with involution and a scheme X together with a
line bundle L, the category of finitely generated projective right R-modules P(R)
and the category of algebraic vector bundles Vect(X) are exact categories with
duality via the dualities HomR(−, R) and HomOX

(−, L), respectively, compare
[Sch10a, Examples 2.2 and 2.3].

We now verify the compatibility of the definition of Grothendieck–Witt groups
of exact categories with duality and triangulated categories with duality. The ar-
gument in particular implies that the relation [(M,φ)] = [H(L)] is always fulfilled
in the split-exact category P(k) of finite-dimensional k-vector spaces as stated in
[QSS79, Theorem 5.6].

Proposition 3.2.7. [[Wal03, Theorem 6.1], [Bal01, Theorem 4.3]] Let k be a field
of characteristic ̸= 2. Then, we have a group isomorphism of Grothendieck–Witt
groups

GW(k) := GW(P(k),Homk(−, k)) ∼= GW(Dperf(Spec(k)), hom(−,1))

as well as a group isomorphism

W(k) := W(P(k),Homk(−, k)) ∼= W(Dperf(Spec(k)), hom(−,1)).

Remark 3.2.8. In the above proposition, the isomorphisms generalizes to isomor-
phisms

GW(P(k),Homk(−, L)) ∼= GW(Dperf(Spec(k)), hom(−, L))

(and for Witt groups respectively) for any line bundle L on Spec(k) corresponding
to an invertible k-vector space L, i.e. a vector space of dimension 1 over k. Note
that GW(k, L) ∼= GW(k) and W(k, L) ∼= W(k) for any invertible k-vector space
L, but this isomorphism is non-canonical. In the theory of Chow–Witt groups,
twists of this sort can be interpreted as local orientations, see [Deg23, Remark
2.1.15].

We will need additional structure in the form of weak equivalences, similar to
the idea of Waldhausen categories in algebraic K-theory, in order to formulate
localization sequences.

Definition 3.2.9. (i) An exact category with weak equivalences (E , w) consists
of an exact category E in the sense of [Qui73] (compare [Kel96, Chap-
ter 4]) and a set of morphisms w that contains all identity morphisms, is
closed under isomorphisms, composition, retracts, pushouts along admissi-
ble monomorphisms, pullbacks along admissible epimorphisms, and satisfies
the 2-out-of-3 property. We call morphisms in w weak equivalences.
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(ii) An exact category with weak equivalences and duality is a collection of data
(E , w, ∗, η) such that (E , w) is an exact category with weak equivalences and
(E , ∗, η) is an exact category with (not necessarily strong) duality such that

(i) ∗ : (Eop, w)→ (E , w) is exact, hence, in particular, ∗(w) ⊂ w, and
(ii) ηX ∈ w for all objects X.

Remark 3.2.10. If (E , w, ∗, η) is an exact category with weak equivalences and
duality, the subcategory wE of weak equivalences is an exact category with duality.

The example of chain complexes of coherent locally free sheaves on a scheme X
will play an important role in showing the agreement of algebro-geometric Chow–
Witt groups and tensor triangular Chow–Witt groups. It can be considered an
exact category with weak equivalences and duality in the following way.

Example 3.2.11. Let k be a field, X be a k-scheme, and L a line bundle on X.
By [Sch11, Example 3.2.4] the exact category with duality of coherent locally free
sheaves on a scheme X

(P (X),HomOX
(−, L))

yields an exact category with weak equivalences and duality (see [Sch10b, Section
6.1])

(Chb(P (X)), quis,HomOX
(−, L))

by fixing the quasi-isomorphisms w := quis, which is moreover complicial in the
sense of [Sch11, Definition 3.2.2]. We define for n ∈ N the subcategory of com-
plexes with homology supported in codimension ≥ n

Chb(P (X))(n) := {P• ∈ Chb(P (X)) | codim(supph(P•)) ≥ n}

(see Definition 4.2.5 for the definition of the homological support). By quisn
′
, we

denote the morphisms in Chb(P (X))(n) with cone in Chb(P (X))(n
′) for n′ ≥ n.

Then, for any n′ ≥ n,

(Chb(P (X))(n), quisn
′
,HomOX

(−, L))

is a (Z[1
2
]-)complicial exact category with weak equivalences and duality, compare

[FS09, Definition 6]. We denote the triangulated category where we invert the
quasi-isomorphisms quisn

′
by Chb(P (X))(n)[(quisn

′
)−1].

Remark 3.2.12. In a preprint version of [Sch17], Schlichting used the language of
complicial exact categories with weak equivalences and duality as we do here. The
published version is written in the setting of dg-categories, but Schlichting explains
in the introduction of loc. cit. (p.1733) that, in practice, all complicial exact
categories have a dg-enhancement. They might have different exact structures,
but this does not affect the GW-groups. For this reason, our references to [Sch17]
remain valid despite the fact that we work in the complicial setting. For further
details, the reader is referred to [Sch10b, Sch17].
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Analogously to the triangulated case, one can define for n ∈ Z the shifted
Grothendieck–Witt groups GW

[n]
0 (E , w, ∗, η) := GW[n](E , w, ∗, η) =: GW[n](E)

and Witt groups W
[n]
0 (E , w, ∗, η) := W[n](E , w, ∗, η) =: W[n](E) of a complicial

exact category with weak equivalences and duality. We will not give the explicit
definition but refer the reader to [Sch17].

Now, we discuss the compatibility between the concept of GW of exact cate-
gories with duality and exact categories with weak equivalences and duality, yield-
ing an intuitive result well-known for more theories such as algebraic K-theory.

The result is stated in a more general way. Expanding the definitions we just
gave, one can define higher (shifted) Grothendieck–Witt groups GW[n]

m (E), m ≥ 1,
for complicial exact categories with duality (see [Sch10a, Section 4]) as well as for
exact categories with weak equivalences and duality (see [Sch10b, Section 2.7]).

Proposition 3.2.13. ([Sch10b, Proposition 6]) Let (E , ∗) be an exact category
with duality, m ∈ N. There are isomorphisms of (higher) Grothendieck–Witt
groups induced by the inclusion as complexes concentrated in degree 0

GWm(E , ∗)
∼=→ GW[0]

m (Chb(E), quis, ∗).

Moreover, we have the following agreement between Grothendieck–Witt groups
of exact categories with weak equivalences and duality, and of triangulated cate-
gories.

Proposition 3.2.14. ([Sch17, Proposition 3.8]) For an exact category with duality
(E , ∗), n, n′ ∈ N, n′ ≥ n, i ∈ Z, we have isomorphisms of (shifted) Grothendieck–
Witt groups

GW
[i]
0 (Ch

b(E)(n), quisn′
, ∗) ∼= GW

[i]
0 (Ch

b(E)(n)[(quisn′
)−1]).

Remark 3.2.15. LetX be a scheme and L a line bundle onX. We follow the idea of
Fasel and Srinivas ([FS09]) in Theorem 3.3.4. For Chb(P (X))(n)[(quisn

′
)−1], they

use the notation Db(P (X))n/n
′ . Moreover, they denote by GWm(D

b(P (X))n/n
′
)

the m-th higher Grothendieck–Witt group of the complicial exact category with
duality (Chb(P (X))(n), quisn

′
,HomOX

(−, L)). In our case, we consider this nota-
tion misleading since it suggests the existence of higher Grothendieck–Witt groups
of triangulated categories with duality. However, so far we do not have such a
definition, hence the change of notation.

Note that, as in the case of rings, negative Grothendieck–Witt groups ([Sch17])
of complicial exact categories with weak equivalences and duality can be defined
and recover Witt groups in the following sense.

Proposition 3.2.16. ([Sch17, Proposition 6.3]) Let A = (A, w, ∗, η) be a compli-
cial exact category with weak equivalences and duality, m < 0, and n ∈ Z. Then,
there are isomorphisms

GW[n]
m (A, w) ∼= GW

[n−1]
m−1 (A, w)

and

W[n−m](A, w) ∼= GW[n]
m (A, w).
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Together with [Bal01, Theorem 4.3] this yields the following comparison.

Corollary 3.2.17. Let (E , ∗) be an exact category with duality, n, n′ ∈ N, n′ ≥ n,
m < 0, and i ∈ Z

GW[i]
m(Ch

b(E)(n), quisn′
, ∗) ∼= W[i−m](Chb(E)(n), quisn′

, ∗)
∼= W[i−m](Chb(E)(n)[(quisn′

)−1]).

In a nutshell, this section introduced the notion of (Grothendieck–)Witt groups
of exact categories with duality as well as of complicial exact categories with
weak equivalences and duality. For an exact category with duality (E , ∗), we
have seen that its (Grothendieck–)Witt groups coincide with the ones for the
category with weak equivalences and duality (Chb(E), quis, ∗, η) as well as with the
(Grothendieck–)Witt groups of triangulated categories with duality after inverting
the quasi-isomorphisms.

These concepts and their connection will be essential in the proof of the central
agreement theorem of tensor triangular Chow–Witt groups and classical Chow–
Witt groups in Section 4.2. The main ingredients will be the different forms of
localization sequences arising from the different GW/W-theories we have seen so
far in this chapter.

3.3 Localization

As already mentioned, one central idea of the agreement between triangular and
algebro-geometric Chow–Witt groups lies in the agreement of the different lo-
calization sequences. To lay the foundations for this, we discuss localization se-
quences for GW and W in the different settings of triangulated categories and
exact categories.

We begin with the triangulated setting in which a lot of work on Witt groups
has been done by Balmer, e.g. in [Bal00, Bal01]. Although Walter did not publish
the article [Wal03] in which he stated the localization theorem for Grothendieck–
Witt and Witt groups of triangulated categories, we still rely on this source since
Grothendieck–Witt groups play a more central role here.

Let us first recall the definition of exact sequences in the triangulated setting.

Definition 3.3.1. We say that a sequence J → T → L of triangulated categories
with duality and duality-preserving functors is a localization or exact sequence if
L = S−1T for some class S of morphisms and J is the full subcategory of T
spanned by those objects that become isomorphic to 0 in L.

Theorem 3.3.2. ([Bal00, Theorem 6.2 and Corollary/Definition 5.16]) If we are
given a localization of triangulated categories with duality J j→ T q→ S−1T such
that A⊕B ∼= B implies A ∼= 0 in S−1T (i.e. S−1T is weakly cancellative), 1

2
∈ T ,
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and T satisfies the axiom (TR4+) in [Bal00, Section 1], we obtain a long exact
sequence for n ∈ Z

...→W[n−1](S−1T )
dn−1

−−−−→W[n](J )
Wn(j)

−−−−→W[n](T )
W[n](q)

−−−−→W[n](S−1T )
dn

−−−−→W[n+1](J )→ ...,

where dn is the well-defined homomorphism

dn : W[n](S−1(T ))→W[n+1](J ), x 7→ [cone(A, s)]

with (A, s) being any S-space (see [Bal00], Definition 5.4) such that x = [q(A), q(s)].

Walter then derives the following localization theorem involving Grothendieck–
Witt groups.

Theorem 3.3.3. ([Wal03, Localization Theorem 2.4]) For n ∈ N, Balmer’s long
exact sequence from above extends to an exact sequence

GW[n](J )→ GW[n](T )→ GW[n](S−1T ) dn−→W[n+1](J )→W[n+1](T )→ ... .

Now, to establish a localization sequence in the setting of complicial exact
categories with weak equivalences and duality, it is not necessary for our pur-
poses to state it in the full generality of [Sch17, Theorem 6.6] but only for
(Chb(P (X))(n), quis) and (Chb(P (X))(n), quisn

′
) from Example 3.2.11.

Theorem 3.3.4. ([FS09, Theorem 8], [Sch17, Theorem 6.6]) For a k-scheme X
with char(k) ̸= 2, a line bundle L, and n, n′ ∈ N such that n′ ≥ n, consider the
functors of complicial exact categories with weak equivalences and duality

(Chb(P (X))(n
′), quis)

ICh−→ (Chb(P (X))(n), quis)
QCh−→ (Chb(P (X))(n), quisn

′
),

where all dualities are derived from HomOX
(−, L), see Example 3.2.11.

They yield a long exact sequence for all i,m ∈ Z

...→ GW[i]
m(Ch

b(P (X))(n
′), quis)

ii,mCh

−−−→ GW[i]
m(Ch

b(P (X))(n), quis)

qi,mCh

−−−→ GW[i]
m(Ch

b(P (X))(n), quisn
′
)

...
dmCh

−−−→ GW
[i]
m−1(Ch

b(P (X))(n
′), quis)

ii,m−1
Ch

−−−→ GW
[i]
m−1(Ch

b(P (X))(n), quis)→ ...

The sequence starting at GW
[i]
0 (Ch

b(P (X))(n
′)) coincides with the sequence

GW[i](Chb(P (X))(n
′)[(quis)−1])

ii−→ GW[i](Chb(P (X))(n)[(quis)−1])

qi−→GW[i](Chb(P (X))(n)[(quisn
′
)−1])

di−→W[i+1](Chb(P (X))(n
′)[(quis)−1])→ ... .

of triangulated categories with duality from Theorem 3.3.3 for the localization

Chb(P (X))(n
′)[(quis)−1]→ Chb(P (X))(n)[(quis)−1]→ Chb(P (X))(n)[(quisn

′
)−1].
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In this chapter, we have seen localization sequences for Grothendieck–Witt
and Witt groups in different settings. On the one hand, Balmer and Walter give a
localization sequence for triangulated categories with duality. On the other hand,
Fasel, Srinivas, and Schlichting show localization for complicial exact categories
with weak equivalences and duality. These sequences coincide by construction, as
Fasel and Srinivas state.

Having introduced (Grothendieck–)Witt groups and localization for triangu-
lated and exact categories in this chapter and having shown their agreement, we
now have enough foundation to generalize the definition of Chow–Witt groups of
schemes to Chow–Witt groups of rigid tensor triangulated categories in the next
chapter and prove the agreement of these two approaches.
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Chapter 4

Tensor Triangular Chow–Witt
Groups

In this work’s central chapter, we construct tensor triangular Chow–Witt groups
and justify their name by showing the equivalence to Chow–Witt groups of a
regular scheme X for the derived category of perfect complexes Dperf(X).

In order to do so, we refer to two underlying generalization concepts. On the
one hand, we let the construction be inspired by the passage from classical Chow
groups to classical Chow–Witt groups. On the other hand, Balmer’s definition and
Klein’s work on tensor triangular Chow groups ([Bal13, Kl16a, Kl16b]) will lead
the way to lift the algebro-geometric definition to the tensor triangular setting.

Consequently, this chapter needs to begin with recalling these underlying ideas.
In Section 4.1, Balmer’s idea of tensor triangular Chow groups and Klein’s work
on the agreement with the algebro-geometric definition are reconstructed. After
that, Section 4.2 will give an overview of Chow–Witt groups of a scheme, be-
fore we can sketch the idea and give the concrete definition of tensor triangular
Chow–Witt groups in Section 4.3, but with the restriction of certain quotients
being idempotent complete. Section 4.4 is then dedicated to the proof of the
agreement theorem Theorem 4.4.5, making use of the foundations we presented in
Chapter 2 and Chapter 3. Section 4.5 treats the functoriality of the construction
before Section 4.6 focuses on the case when the quotients mentioned above are
not idempotent complete, which will lead to the introduction of models.

4.1 Tensor Triangular Chow Groups

A standard reference for classical Chow groups of schemes is [Ful98]. Let us first
recall the definition of tensor triangular Chow groups that was first presented by
Paul Balmer in [Bal13] and elaborated by Sebastian Klein in [Kl16a] and [Kl16b].
We closely follow [Kl16a] here.

The rough idea is to use a definition of classical Chow groups based on a
long exact sequence in K-theory alternative to the original one of cycles modulo
rational equivalence (compare [Ful98, Section 1.3]). This sequence comes from
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a filtration of the abelian category of coherent sheaves Coh(X) on a separated,
non-singular scheme X of finite type over a base field k by codimension of support.
This filtration can be transferred to the tensor triangular setting as introduced in
Section 2.3. This way, the definition of Chow groups as the cohomology of the
Rost–Schmid complex at a certain point can be generalized.

Convention 4.1.1. Let T be an essentially small rigid tensor triangulated cate-
gory equipped with a dimension function dim and such that Spc(T ) is noetherian.
Moreover, let X be a regular, separated scheme of finite type over a field k.

Klein begins with considering a filtration of the abelian category of coherent
sheaves Coh(X)

... ⊂Mn ⊂Mn−1 ⊂ ... ⊂M0 = Coh(X),

where Mn is the abelian subcategory of Coh(X) with codim(supp(A)) ≥ n for A
in Coh(X). Since the components of this filtration are moreover Serre subcate-
gories of the respective next component, one obtains quotient abelian categories
Mn/Mn+1 and, thus, short exact sequences

Mn+1 →Mn →Mn/Mn+1.

These yield a long exact sequence in K-theory

...→ Km(M
n+1)

inm
−−→ Km(M

n)
qnm
−−→ Km(M

n/Mn+1)

bnm
−−→ Km−1(M

n+1)
inm−1

−−−→ Km−1(M
n)

qnm−1

−−−→ Km−1(M
n/Mn+1)→ ... .

One considers the composition

d1 : K1(M
n−1/Mn)

bn−1
1

−−−→ K0(M
n)

qn0−→ K0(M
n/Mn+1)

and uses Quillen’s theorem [Qui73, Chapter 7, Proposition 5.14] to prove that the
image of d1 equals the subgroup of codimension-n-cocycles rationally equivalent
to 0. That means, one has

Zn(X)/ Im(d1) ∼= CHn(X),

where Zn(X) = K0(M
n/Mn+1), compare [Kl16a, Remark 3.1.3]. Moreover, this

proves that, by using the exactness of the above long exact sequence in K-theory
of abelian categories, we have

Im(d1) = Im(qn0 ◦ bn−1
1 ) = qn0 (Im(bn−1

1 )) = qn0 (ker(i
n−1
0 )).

Thus, the codimension-n-cocycles rationally equivalent to 0 are, moreover, equiv-
alent to qn0 (ker(i

n−1
0 )), which gives us an inspiration for the tensor triangular def-

inition.
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4.1. Tensor Triangular Chow Groups

The maps in0 and qn0 are straightforward to translate into the tensor triangular
setting. For a tensor triangulated category T with dimension function, we obtain
a filtration by dimension of support as mentioned in Section 2.3

T(−∞) ⊂ ... ⊂ T(n−1) ⊂ T(n) ⊂ ... ⊂ T(∞) = T .

At first sight, this mimics the filtration of the category Coh(X) of coherent sheaves,
but keep in mind that Coh(X) is not a tensor triangulated category since it is
not even triangulated. Moreover, one has to be careful about the indices since the
sign will change when passing to the tensor triangular setting later.

For the agreement with the algebro-geometric case, we will make use of the
passage to its bounded derived category Db(Coh(X)), but first, let us consider the
following diagram of triangulated categories and functors coming from the above
filtration

T(n)
In+1
T //

Qn
T
��

T(n+1)

T(n)/T(n−1)

Jn
T
��

(T(n)/T(n−1))
♮

for each n ∈ Z.
Here, In+1

T is the inclusion functor, Qn
T the localization functor, and JnT the

idempotent completion functor.
We will later explain why we need to include the idempotent completion JnT

in this process, but first, recall that the idempotent completion of a triangulated
category naturally inherits the structure of a triangulated category ([BS01]). Now,
one can apply K0 to this diagram to obtain

K0(T(n))
in+1
T //

qnT
����

K0(T(n+1))

K0(T(n)/T(n−1))� _

jnT
��

K0((T(n)/T(n−1))
♮),

(4.1)

which we call the defining diagram of tensor triangular Chow groups. Inspired by
the alternative definition of cocycles rationally equivalent to 0 as qn0 (ker(i

n−1
0 )),

triangular algebraic cocycles and Chow groups are defined as follows.

Definition 4.1.2. For an essentially small rigid tensor triangulated category
(T ,⊗,1) equipped with a dimension function dim such that Spc(T ) is noetherian,
its n-th tensor triangular Chow group, n ∈ Z, is defined as

CHn
∆(T ) := Zn

∆(T )⧸jnT ◦ qnT (ker(in+1
T )),
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Chapter 4. Tensor Triangular Chow–Witt Groups

where the n-th tensor triangular cocycles are given as follows

Zn
∆(T ) := K0((T(n)/T(n−1))

♮)

and jnT , qnT and in+1
T are the morphisms from Diagram 4.1.

To see the agreement of this definition to the original Chow Witt groups of
a regular scheme X for the tensor triangulated category Dperf(X), see Defini-
tion 2.1.18, there are a few things left to show.

First, Klein proves that tensor triangular cocycles and algebraic cocycles are
equivalent for that special case. He makes use of theorems on the algebraic geo-
metric side as well as on the tensor triangular side as follows.

Quillen’s dévissage theorem yields equivalences for all n ≥ 0

K0(M
n/Mn+1) ∼=

⊕
x∈X(n)

K0(k(x)) ∼=
⊕
x∈X(n)

Z ∼= Zn(X),

showing that the Grothendieck group of the quotient Mn/Mn+1 obtained by the
filtration of Coh(X) by codimension of support equals the usual cocycle groups
Zn(X) of a regular scheme X. This is an elegant way to overcome the concrete
description of algebraic cocycles and instead use an alternative definition that we
can translate more directly into the tensor triangular settings.

In the tensor triangular case, using Balmer’s Theorem 2.3.9, we obtain an
equivalence after applying K0

Zn
∆(T ) = K0((T(n)/T(n−1))

♮) ∼=
⊕

P∈Spc(T )
dim(P)=n

K0(Min(TP )).

The necessity of the idempotent completion for the equivalence in Theorem 2.3.9
now motivates us to include the idempotent completion functors JnT and the maps
jnT , which will become the identity in the algebro-geometric case for regular X
(see below).

Eventually, Klein proves the following.

Lemma 4.1.3. ([Kl16a, Corollary 3.1.9]) For a noetherian, regular scheme X
and T := Dperf(X) equipped with the dimension function − codimKrull, there is an
isomorphism for all n ≥ 0

Z−n
∆ (T )

∼=−→ Zn(X).

After having generalized the definition of algebraic cocycles and seen their
agreement, the second problem in the construction is to compare the defining
diagram in the algebro-geometric setting to the tensor triangulated case. We
at least have homomorphisms (the diagonal maps in Diagram 4.2) between the
diagrams given by the formula

[C•] 7→
∑
i

(−1)i[H i(C•)],
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4.1. Tensor Triangular Chow Groups

yielding the following diagram

K0(D
b(X)(n))

in+1
T //

qnT
���� **

K0(D
b(X)(n+1))

((

K0(D
b(X)(n)/D

b(X)(n−1))� _

jnT
�� **

K0(M
−n)

i−n−1
0 //

q−n
0
����

K0(M
−n−1)

K0((D
b(X)(n)/D

b(X)(n−1))
♮) K0(M

−n/M−n+1).

(4.2)

For the justification of the construction of tensor triangular Chow groups, it is
now left to show that the diagonal arrows are isomorphisms and the map jnT is
the identity. For this, Klein applies the following theorem.

Theorem 4.1.4. ([Kel99, Section 1.15]) Let A be a Serre subcategory of an abelian
category B and let the following criterion be satisfied:

If 0→ A→ B → C → 0 is an exact sequence in B with A in A, then there is
a commutative diagram with exact rows

0 // A //

id
��

B //

f
��

C //

g
��

0

0 // A // A′ // A′′ // 0

such that A′, A′′ are in A.
Then, the inclusion induces a triangulated equivalence of triangulated cate-

gories Db(A) ≃−→ Db
A(B), where Db

A(B) ⊂ Db(B) is the full subcategory of com-
plexes with homology in A.

Moreover, the sequence

Db(A)→ Db(B)→ Db(B/A)

is exact, i.e. Db(B/A) ≃ Db(B)/Db(A).

The conditions are satisfied by [Kl16a, Lemma 3.2.5] if X is regular, so, one
obtains an equivalence

Db(M−n) ≃ Db
M−n(Coh(X)) = Db(X)(n)

for all n, where Db
M−n(Coh(X)) consists of the complexes in Db(Coh(X)) with

homology in M−n. Moreover, there is an equivalence of triangulated categories

Db(M−n/M−n+1) ≃ Db(M−n)/Db(M−n+1).

This again establishes equivalences

Db(X)(n)/D
b(X)(n−1) ≃ Db(M−n/M−n+1).

43



Chapter 4. Tensor Triangular Chow–Witt Groups

Moreover, we know that there are isomorphisms K0(D
b(A)) ∼= K0(A) for abelian

categories A (see e.g. [Wei13, Chapter II, Theorem 9.2.2] which is essentially
[SGA6, I.6.4] for Waldhausen categories or [Nee05, Theorem 3] for triangulated
categories). In particular, this holds for all components of the filtration of Coh(X)
and its quotients since Serre quotients of abelian categories are abelian. This
proves that the diagonal maps in Diagram 4.2) are isomorphisms.

Moreover, the derived category of an abelian category is always idempotent
complete, hence so is Db(X)(n)/D

b(X)(n−1) for all n by the above equivalences.
As a consequence, JnT and thus also jnT are the identity.

In [Kl16a, Theorem 3.2.6], the results are summarized and the agreement of
tensor triangular and classical Chow groups is shown for the category Dperf(X)
for a separated, regular scheme of finite type.

We have seen in this section the construction of tensor triangular Chow groups
and the agreement with the classical definition for schemes when considering the
tensor triangulated category Dperf(X). The main idea was to use an alternative
definition of Chow groups as the cohomology of a chain complex arising from the
filtration of the category Coh(X) of coherent sheaves by codimension of support.
This filtration can be translated to the tensor triangular setting, giving rise to
the definition of tensor triangular cocycles and coboundaries, and, eventually, of
tensor triangular Chow groups.

In the next section, basics on Chow–Witt groups of a scheme will be recalled
serving as the second inspiration of how Chow–Witt groups of a tensor triangu-
lated category could be constructed.

4.2 Chow–Witt Groups of a Scheme
Chow–Witt groups were originally constructed by Barge and Morel in [BM00] to
answer the question of when a projective A-module is isomorphic to the direct
sum Q ⊕ A for some projective A-module Q. To approach this problem, they
constructed the Euler class c̃n(E) of a vector bundle E as a refinement of the top
Chern class cn(E). One solution to the problem now breaks down to determining
whether the Euler class (or Chern class) is zero, see [BM00] for more details. More
information on Chow–Witt groups of schemes can be found in e.g. [Fas07, Fas08].
We will mainly follow the latter here.

Convention 4.2.1. Let X be a separated, regular scheme of finite type over a
perfect field k of characteristic ̸= 2.

The Chow–Witt groups of X can be defined as the cohomology of a complex
obtained as the fiber product

Ci(X,Gj) //

��

Ci(X, Ij)

��

Ci(X,KM
j ) // Ci(X, Ij/Ij+1),
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4.2. Chow–Witt Groups of a Scheme

whose components we will define below. If twists by a graded line bundle L are
included, the square changes as follows

Ci(X,Gj, L) //

��

Ci(X, Ij, L)

��

Ci(X,KM
j ) // Ci(X, Ij/Ij+1).

With this fiber product at hand, one defines:

Definition 4.2.2. Let X be a separated, regular k-scheme of finite type. We
define the n-th Chow–Witt group of X as

C̃H
n
(X) := Hn(C(X,Gn)) = Z̃n(X)/B̃n(X)

and the Chow–Witt groups twisted by L for a fixed line bundle L

C̃H
n
(X,L) := Hn(C(X,Gn, L)) = Z̃n(X,L)/B̃n(X,L).

We denote the differentials of C(X,Gn) and C(X,Gn, L) by ∂n and will talk about
these later.

Here, Z̃n(X) (and Z̃n(X,L)) are called the (twisted) oriented cocycles and
defined as the kernel of the complex at n. Similarly, B̃n(X) (and B̃n(X,L))
denote the (twisted) oriented coboundaries and define the image of the complex
at n.

To understand the complex C(X,KM
n ), we recall that Milnor K-theory KM

∗ (F )
of a field F is given as the graded tensor algebra

T (F×) = Z⊕ F× ⊕ (F× ⊗ F×)⊕ ...

divided by the equivalence relation a⊗ (1−a) = 0. The Milnor K-groups KM
n (F )

are then given by the n-th homogene components, see [Mil70].
The Milnor-K-theory complex is then given as follows. Note that the differen-

tials are slightly complicated and can be found in detail, for example, in [Fas08,
Chapter 2].

Definition 4.2.3. ([Fas08, Théorème 2.2.13]) For a noetherian scheme X over a
field k and any n ∈ Z, we define the Milnor-K-theory complex C(X,KM

n ) as

0 −→
⊕
x∈X(0)

KM
n (k(x))

d−→
⊕
x∈X(1)

KM
n−1(k(x)) −→ ...

... −→
⊕

x∈X(m)

KM
n−m(k(x))

d−→
⊕

x∈X(m+1)

KM
n−m−1(k(x)) −→ ... .

Remark 4.2.4. Grading this complex by the codimension of points in X, one
obtains isomorphism for all n

Hn(C(X,KM
n )) ∼= CHn(X),

where the right-hand side denotes the Chow groups defined as cocycles modulo
rational equivalence as in [Ful98, Section 1.3].
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Chapter 4. Tensor Triangular Chow–Witt Groups

The other complexes involved in the definition of C(X,Gn, L) come from the
Gersten–Witt complex C(X,W,L) by restriction to powers of the fundamental
ideals or quotients of these. First, let us take a look at the construction of the
Gersten–Witt complex.

Let P (X) be the exact category of locally free OX-modules of finite type over
X. Then, by [Bal99, Proposition 2.3], (Db(P (X)), RHomOX

(−, L)) is a trian-
gulated category with duality, and since X is regular, there is an equivalence
Db(P (X)) ≃ Db(Coh(X)) of triangulated categories with duality when consider-
ing the duality RHom(−, L) on Db(Coh(X)).

Now, we can define the following subcategories analogously to Example 3.2.11.

Definition 4.2.5. The homological support supph(P•) of
P• ∈ Db(P (X)) is defined as

supph(P•) :=
⋃
i

supp(Hi(P•)).

Definition 4.2.6. We define for each n ∈ N

Db(P (X))(n) = {P• ∈ Db(P (X)) | codim(supph(P•)) ≥ n}.

This way, we obtain a filtration for dim(X) = d

0 = Db(P (X))(d+1) ⊂ Db(P (X))(d) ⊂ ... ⊂ Db(P (X))(0) = Db(P (X)).

As in Section 4.1, the indices of the filtration decrease with each step. Note that
the filtrations of triangulated categories as in Section 2.3 have increasing indices,
which has as a consequence that the signs swap when comparing tensor triangular
Chow(–Witt) groups and Chow(–Witt) groups of a scheme. More details will be
given in the proof of Theorem 4.4.5.

Since Db(P (X))(n) is a thick subcategory of Db(P (X)) for all n ∈ N, we also
have quotients of the filtration components and exact sequences of triangulated
categories with duality

Db(P (X))(n+1) In−→ Db(P (X))(n)
Qn

−→ Db(P (X))(n)/Db(P (X))(n+1),

where all the functors are duality-preserving when considering the dualities in-
duced by RHomOX

(−, L) for a fixed line bundle L.
In particular, In and Qn induce maps on Witt groups and Grothendieck–Witt

groups for i ∈ Z

W[i](Db(P (X))(n+1))
in,W

−−→W[i](Db(P (X))(n))

qn,W

−−→W[i](Db(P (X))(n)/Db(P (X))(n+1))

and

GW[i](Db(P (X))(n+1))
in−→ GW[i](Db(P (X))(n))

qn−→ GW[i](Db(P (X))(n)/Db(P (X))(n+1)),
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4.2. Chow–Witt Groups of a Scheme

respectively. One also obtains a boundary morphism by [Bal00, Theorem 6.2/Corol-
lary and Definition 5.16] which is exactly the one from Theorem 3.3.3,

din : W[i](Db(P (X))(n)/Db(P (X))(n+1))→W[i+1](Db(P (X))(n+1))

and, hence, a homomorphism

∂̃in = qi+1,W ◦ din :W[i](Db(P (X))(n)/Db(P (X))(n+1))

→W[i+1](Db(P (X))(n+1)/Db(P (X))(n+2)).

If i = n, we write din = dn and ∂̃in = ∂̃n.

We can already define a complex with these components and differentials, but
to get to the original definition of the Gersten–Witt complex, we consider the
following.

Definition 4.2.7. (i) Let A be a regular local ring of dimension d and A-modfl
be the category of A-modules of finite length. Then, the derived Hom functor

ExtdA(−, A) : (A-modfl)
op → A-modfl

yields a duality on A-modfl, turning (A-modfl,Ext
d
A(−, A)) into an exact

category with duality, see [Fas08, Section 3.3].

(ii) We define the Witt group of finite length modules as

Wfl(A) := W(A-modfl,Ext
d
A(−, A)).

(iii) The category of A-modules of finite type shall be denoted by A-modft.

Theorem 4.2.8. ([Bal01, Theorem 4.3], [BW02, Lemma 6.4]) We have an iso-
morphism

Wfl(A)
∼=−→W[0](Db(A-modfl),Ext

d
A(−, A))

and duality-preserving categorical equivalences

Db
fl(P (A))

≃−→ Db
fl(A-modft)

≃←− Db(A-modfl),

where Db
fl(−) is the subcategory of complexes with finite length homology yielding

an isomorphism

W[d](Db
fl(P (A)))

∼=−→W[0](Db(A-modfl,Ext
d
A(−, A))).

Here, the duality of the bounded derived category of complexes with finite length
homology is induced by the duality on the respective original bounded derived cat-
egory.
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Chapter 4. Tensor Triangular Chow–Witt Groups

We will now use a concrete form of Theorem 2.3.9/Corollary 2.3.10, namely
[BW02, Proposition 7.1], to obtain isomorphisms for all n and i after applying W

W[i](Db(P (X))(n)/Db(P (X))(n+1))
∼=−→

⊕
x∈X(n)

W[i](Db
fl(P (OX,x))).

Now, we can finally define the Gersten–Witt complex, using the above consider-
ations.

Definition 4.2.9. For a regular scheme X of finite dimension, we define the
Gersten–Witt complex as

... −→
⊕
x∈X(n)

Wfl(OX,x)
d−→

⊕
y∈X(n+1)

Wfl(OX,y) −→ ...

and denote it by C(X,W ).

Remark 4.2.10. One can instead equip Db(X) with the duality derived from
Hom(−, L) for an invertible OX-module L and obtains analogously the twisted
versions Wfl(A,L) and C(X,W,L). Note that the components Cn(X,W ) and
Cn(X,W,L) are isomorphic (but not necessarily canonically).

We will briefly recall the pullback square of the defining complex of Chow–Witt
groups.

Ci(X,Gj, L) //

��

Ci(X, Ij, L)

��

Ci(X,KM
j ) // Ci(X, Ij/Ij+1)

We are now familiar with the Milnor-K-theory complex and the Gerste–Witt
complex. To understand the complexes Ci(X, Ij, L) and Ci(X, Ij/Ij+1), we will
need the following lemma.

Lemma 4.2.11. ([MH73, Chapter III, §3, Lemma 3.3]) Let F be a field. There
exists a unique ideal I in W(F ) such that W(F )/I ∼= F2. This ideal (consisting
of all Witt classes of even dimension) is called the fundamental ideal of W(F ).

We want to restrict the Gersten–Witt complex to a generalized version of this
fundamental ideal.

Definition 4.2.12. Let B be a regular local ring of dimension n with residue
field F . For any generator β of ExtnB(F,B), we define the m-th fundamental ideal
Im(B) = Iflm (B) as

Iflm (B) := ϕβ(I
m(F )),

where ϕβ : W(F ) → Wfl(B) is an isomorphism induced by β and ϕβ(I
m(F )) is

independent of the choice of the generator β, compare [Fas08, Section 9.2]

To restrict the Gersten–Witt complex to the fundamental ideals, we need to
check if the differentials behave well with these ideals, which is answered by the
following theorem.
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4.2. Chow–Witt Groups of a Scheme

Proposition 4.2.13. ([Fas08, Theorem 9.2.4]) The differentials of the Gersten–
Witt complex preserve the fundamental ideal.

Definition 4.2.14. We denote by C(X, Ij) the complex

...→
⊕
x∈X(n)

Ij−n(OX,x)→
⊕

x∈X(n+1)

Ij−(n+1)(OX,x)→ ...

graded by codimension of support. Analogously, for a fixed invertible OX-module
L we denote by C(X, Ij, L) the following complex

...→
⊕
x∈X(n)

Ij−n(OX,x, Lx)→
⊕

x∈X(n+1)

Ij−(n+1)(OX,x, Lx)→ ... .

The maps induced by the inclusion of powers of the fundamental ideals

C(X, Ij+1)→ C(X, Ij) and C(X, Ij+1, L)→ C(X, Ij, L)

have canonically isomorphic cokernels (see [Fas08, Corollary E.1.3]). Thus, we
can define:

Definition 4.2.15. We denote by C(X, Ij/Ij+1) the cokernel of the above mor-
phisms graded by codimension of support.

We now have defined the components of the pullback square

Ci(X,Gj, L) //

��

Ci(X, Ij, L)

��

Ci(X,KM
j ) // Ci(X, Ij/Ij+1).

The arrow on the right is induced by the canonical projection. For the arrow on
the bottom of the diagram, the reader is referred to [Fas08, Section 10.2]; the
differentials of Ci(X,Gj, L) are induced by the differentials on Ci(X,KM

j ) and
Ci(X, Ij, L), see [Fas08, Lemma 10.2.12].

Remark 4.2.16. The complex Ci(X,Gj, L) is called the Rost–Schmid complex and
can also be defined directly as follows (in the for us important case n := j = i).
Here, det(Ωk(x)/k) is the determinant bundle of the differential sheaf, see [Fas20,
Section 1.4], and L is a fixed invertible OX-module.⊕

x∈X(n−1)

KMW
1 (k(x), det(Ωk(x)/k)⊗ L)

∂1−→
⊕
x∈X(n)

KMW
0 (k(x), det(Ωk(x)/k)⊗ L)

∂0−→
⊕

x∈X(n+1)

KMW
−1 (k(x), det(Ωk(x)/k)⊗ L)
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Note that the differentials are complicated, see for example [Fas20] for more de-
tails, and in their explicit form not necessary for our purposes.

The definition of Milnor–Witt K-theory of fields F is due to Hopkins and
Morel and can be found in [Mor12, Chapter 3], where it is defined as a quotient
of the Z-graded ring A(F ), generated in degree 1 by [a] for all a ∈ F× and by one
additional generator η in degree −1, defined by concrete relations. The basic idea
we will make use of here is that we have isomorphisms GW(F ) ∼= KMW

0 (F ) and
W(F ) ∼= KMW

−i (F ) for all i > 0, see loc.cit.

Remark 4.2.17. It will be important for us to know that, by using [Fas07, Remark
3.23], there are isomorphisms

Cn(X,Gn, L) ∼= GW[n](Db(P (X))(n)/Db(P (X))(n+1), RHomOX
(−, L)).

More details can be found in [Fas08, Remark 10.2.9].
Hence, we can rewrite the complex from Definition 4.2.2 as follows

...→ Cn−1(X,Gn, L)
∂n−1

−→ GW[n](Db(P (X))(n)/Db(P (X))(n+1), RHomOX
(−, L))

∂̃n−→W[n+1](Db(P (X))(n+1)/Db(P (X))(n+2), RHomOX
(−, L))→ ... .

Here, ∂̃n is defined as qn+1,W ◦ dn, where dn is the boundary map from Theo-
rem 3.3.3.

Remark 4.2.18. Let us recall some results about the connection between Chow
groups and Chow–Witt groups.

(i) Let X be a scheme of dimension d over an algebraically closed field k, then
there is a natural isomorphism between C̃H

d
(X) and CHd(X), see [Fas08,

Remarque 10.2.16].

(ii) If we replace KMW in the Rost–Schmid complex as in the description before
Remark 4.2.17 by KM, we basically divide out the ideal generated by η.
Since η commutes with the differentials, we obtain differentials on the level
of Milnor K-theory. The cohomology at i = −n now yields Chow groups
instead of Chow–Witt groups, hence we get a homomorphism

C̃H
n
(X,L)→ CHn(X),

which is, in general, neither injective nor surjective. For more details, com-
pare [Fas13, HW19].

This section has served to recall the theory of Chow–Witt groups of a scheme.
Together with the construction of tensor triangular Chow groups from Section 4.1,
we can now glue these concepts together to sketch the idea, give the concrete
construction, and prove the agreement theorem in the following two sections.
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4.3 Tensor Triangular Chow–Witt Groups

We now come to the central section of the first part of this work, where we con-
struct Chow–Witt groups of tensor triangulated categories. Before coming to the
definition in Subsection 4.3.2, we give an overview of the idea in Subsection 4.3.1.
This way, we prepare the main concepts of Section 4.4, where we prove the agree-
ment of our definition to the classical definition of Chow–Witt groups of a scheme
for the derived category of perfect complexes Dperf(X).

Convention 4.3.1. Let T be an essentially small rigid tensor triangulated cat-
egory such that Spc(T ) is noetherian and 1

2
∈ T . We fix a ⊗-invertible object

L and a dimension function dim. When considered a triangulated category with
duality, T will be equipped with the duality DL := hom(−, L) as in Example 2.2.6
(ii). If not mentioned explicitly otherwise, restrictions of T will always carry the
restriciton of DL.

Moreover, we will assume that all quotients of the form T(n)/T(n−1) are idem-
potent complete. This is true for a very wide range of examples, for example for
T = Dperf(X) when X is a regular scheme. We will comment on the case that
the quotient is not idempotent complete for some n later in Section 4.6, see also
[Kl16a, Remark 3.2.7].

4.3.1 Idea

Let X be a regular, separated scheme of finite type over a base field k of charac-
teristic ̸= 2. The natural idea to generalize Chow–Witt groups of a scheme is to
generalize the oriented cocycles Z̃n(X) and coboundaries B̃n(X), hence, the kernel
of the differential ∂n and the image of the differential ∂n−1 from Definition 4.2.2.

The problem of this approach is that the differentials of the Rost–Schmid com-
plex constructed in Section 4.2 are quite concrete and do not suggest a categorical
generalization at first sight. However, we did see in Remark 4.2.17 that there
is a way to rewrite at least a part of it in terms of triangulated categories with
duality, namely by viewing Chow–Witt groups as the cohomology of the following
complex:

...→ Cn−1(X,Gn)
∂n−1

−→ GW[n](Db(P (X))(n)/Db(P (X))(n+1), RHomOX
(−, L))

∂̃n−→W[n+1](Db(P (X))(n+1)/Db(P (X))(n+2), RHomOX
(−, L))→ ... .

Now, the map ∂̃n can be generalized directly to the tensor triangular setting since
it already uses Grothendieck–Witt groups of triangulated categories with duality.
Hence, we may construct a triangular form of ∂̃n when replacing Db(P (X))(n) by
filtration components T(n′) of suitable tensor triangulated categories.

We deliberately chose different indices here, since it is not clear at first sight
whether n′ = n or else and, in fact, we will see later that for T = Dperf(X), we
have n′ = −n.
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Chapter 4. Tensor Triangular Chow–Witt Groups

We briefly recall that, for an essentially small strongly tensor triangulated
category equipped with a dimension function and a fixed ⊗-invertible object L,
we have a filtration of triangulated categories with duality

T(−∞) ⊂ ... ⊂ (T(n−1), DL|T(n−1)
) ⊂ (T(n), DL|T(n)

) ⊂ ... ⊂ T(∞) = (T , DL).

We will omit the duality functor from the notation for better readability if we
consider the duality DL or its restrictions.

We obtain exact sequences of triangulated categories with duality and duality-
preserving functors for each n ∈ Z ∪ {±∞}

T(n−1)

InT−→ T(n)
Qn

T−→ T(n)/T(n−1)

which induce exact sequences by Theorem 3.3.3

GW[n](T(n−1))
inT−→ GW[n](T(n))

qnT−→ GW[n](T(n)/T(n−1))

and by Theorem 3.3.2

W[n](T(n−1))
in,W
T−→W[n](T(n))

qn,W
T−→W[n](T(n)/T(n−1)).

The idea of generalizing the cocycles, i.e. the kernel of ∂n, is now as follows: We
know that ker(∂n) = ker(∂̃n), and we can write ∂̃n in terms of maps coming from
functors of the underlying triangulated categories with duality such as qnT or inT .
Of course, we need to take care of (lower and upper!) indices, but, for the details,
the reader is referred to Subsection 4.3.2.

The coboundaries, i.e. the image of ∂n−1, however, are not that easily general-
ized since the term Cn−1(X,Gn) above of the Rost—Schmid complex is still in its
concrete algebro-geometric form. We prove in Theorem 4.4.3, that, even though
we might not be able to write ∂n−1 in terms of maps coming from functors of
triangulated categories with duality, we can still do so for its image. Concretely,
we show that the image of ∂n−1 can be written only in terms of maps qnT and inT
coming from the inclusion and quotient functor. The passage to complicial exact
categories with weak equivalences and duality is essential here since there are no
higher Grothendieck–Witt groups of triangulated categories with duality.

Then again, we can generalize the coboundaries and, hence, the whole concept
of Chow–Witt groups.
Remark 4.3.2. The attentive reader might observe that the idea works mainly
with the underlying triangulated categories with duality and the tensor structure
does not appear too often in the sketch of the idea. The tensor structure and the
additional information of a dimension function only serve as a basis to filtrate the
category by dimension of support.

However, one can easily generalize the definition for essentially small trian-
gulated categories C with duality containing 1

2
that allow a filtration C(−∞)... ⊂

C(n−1) ⊂ C(n) ⊂ ... ⊂ C(∞) = C of C, where all the filtration components are trian-
gulated categories with duality and the inclusion functors are duality-preserving.

Since the leading concept of this work is tensor triangular geometry, we spe-
cialize on filtrations coming from rigid tensor triangulated categories introcuced
in Section 2.3.
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4.3.2 Construction and Definition

Finally, we come to the construction of tensor triangular Chow–Witt groups. We
still follow Convention 4.3.1.

Recall the following, for us central localization sequence from Theorem 3.3.3

GW[n](T(n−1))
inT−→ GW[n](T(n))

qnT−→ GW[n](T(n)/T(n−1))

dnT−→W[n+1](T(n−1))
in,W
T−→W[n+1](T(n))

qn,W
T−→W[n+1](T(n)/T(n−1))→ ...

To define tensor triangular Chow–Witt groups in terms of these maps, we consider
the following defining diagram.

W[n+1](T(n−2))
in−1,W
T //W[n+1](T(n−1)) GW[n](T(n))

in+1
T //

qnT
��

GW[n](T(n+1))

GW[n](T(n)/T(n−1))

dnT
ii

(4.3)
Then, we can give the definition of tensor triangular oriented cocycles and

coboundaries.

Definition 4.3.3. For T as in Convention 4.3.1, we define its n-th tensor trian-
gular oriented cocycles (twisted by L) for n ∈ Z as

Z̃n
∆(T , L) := (dnT )

−1(Im(in−1,W
T ))

and its n-th tensor triangular oriented coboundaries (twisted by L) as

B̃n
∆(T , L) := qnT (ker(i

n+1
T )),

where the maps are the ones from the defining diagram Diagram 4.3.

Proposition 4.3.4. In the setting of Definition 4.3.3, B̃n
∆(T ) is a subgroup of

Z̃n
∆(T ) and Z̃n

∆(T ) is a subgroup of GW[n](T(n)/T(n−1)).

Proof. What we need to check is whether qnT (ker(i
n+1
T )) is a subgroup of Z̃n

∆(T ) :=
(dn)−1

T (Im(in−1,W
T )) and whether the latter is itself a subgroup of GW[n](T(n)/T(n−1)).

We will omit the subscript T from the notation here for better readability. How-
ever, be careful not to confuse it with the maps from the algebro-geometric setting
in Definition 4.2.6.

The last statement follows from the fact that (dn)−1(Im(in−1,W)) = ker(qn−1,W◦
dn) by the exactness of the sequence from Theorem 3.3.3. Moreover, by construc-
tion, qn(ker(in+1)) is a subgroup of GW[n](T(n)/T(n−1)). It is left to check that

qn(ker(in+1)) ⊂ (dn)−1(Im(in−1,W)).
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Chapter 4. Tensor Triangular Chow–Witt Groups

Since Im(qn) = ker(dn) by exactness of the localization sequence (Theorem 3.3.3)

GW[n](T(n−1))
in−→ GW[n](T(n))

qn−→ GW[n](T(n)/T(n−1))

dn−→W[n+1](T(n−1))
in,W

−→W[n+1](T(n))
qn,W

−→W[n+1](T(n)/T(n−1)) −→ ...,

we have, in particular, Im(qn) ⊂ ker(dn) = (dn)−1({0}). Since 0 ∈ Im(in−1,W),
we obtain Im(qn) ⊂ (dn)−1({0}) ⊂ (dn)−1(Im(in−1,W)), hence, qn(ker(in+1)) ⊂
(dn)−1(Im(in−1,W)) as stated.

This guarantees that the following, for this work central new notion of tensor
triangular Chow–Witt groups is well-defined.

Definition 4.3.5. For T as in Convention 4.3.1, we define its n-th tensor trian-
gular Chow–Witt groups twisted by L for n ∈ Z as

C̃H
n

∆(T , L) := Z̃n
∆(T , L)/B̃n

∆(T , L),

where Z̃n
∆(T , L) and B̃n

∆(T , L) are defined in Definition 4.3.3.

Remark 4.3.6. If we are given a dimension function dim, we can always shift it by
some m ∈ Z to obtain a dimension function dim′. Then, we have isomorphisms
C̃H

n

∆(T , dim) ∼= C̃H
n+m

∆ (T , dim′) and CHn
∆(T , dim) ∼= CHn+m

∆ (T , dim′) for all n.
However, since the constructions depend on the choice of the dimension function
a priori, it is not clear if the change of tensor triangular Chow(–Witt) groups can
be controlled when changing the dimension function in arbitrary ways.

Remark 4.3.7. If we replace GW with K0 in the construction, it coincides with
Balmer’s tensor triangular Chow groups from [Bal13]. The assumption that all
quotients of filtration components are idempotent complete is essential in this
comparison.

We have given a construction of tensor triangular Chow–Witt groups in this
section. However, the definition comes at the price of an agreement theorem
that justifies the name, i.e. it shows that the definition agrees with the classical
algebro-geometric case for regular X.

4.4 Agreement with Algebraic Geometry

Convention 4.4.1. Let X be a regular, separated scheme of finite type over a
field k with char(k) ̸= 2.

This section will justify the name of Definition 4.3.5. We will show that,
for regular X, the definition for the tensor triangulated category T = Dperf(X)
recovers the usual Definition 4.2.2 for X. Note that, in this case, T satisfies all
the conditions from Convention 4.3.1.
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In Subsection 4.4.1, we reformulate the classical definition of oriented cocycles
to a form that we can refine to the tensor triangular setting using the filtration by
dimension of support. In Subsection 4.4.2, we do the same for classical oriented
coboundaries. Finally, we merge these alternative definitions in Subsection 4.4.3
to show the agreements of tensor triangular and classical Chow–Witt groups and
calculate an easy example by hand.

4.4.1 Reformulation of Classical Oriented Cocycles

As for Chow groups, we first aim to reformulate the definition of classical oriented
cocycles in terms of maps coming from localization that we can directly generalize
to the triangular setting.

Recall that P (X) is the exact category of locally free OX-modules of finite type
over a noetherian scheme X of dimension d. Keep in mind that, if in addition
X is regular, the bounded derived category of P (X) is equivalent to Db(X) :=
Db(Coh(X)) as a rigid tensor triangulated category.

The filtration by codimension of homological support from Definition 4.2.6

0 = Db(P (X))(d+1) ⊂ Db(P (X))(d) ⊂ ... ⊂ Db(P (X))(0) = Db(P (X))

yields short exact sequences of triangulated categories with duality for 0 ≤ n ≤ d

Db(P (X))(n+1) In−→ Db(P (X))(n)
Qn

−→ Db(P (X))(n)/Db(P (X))(n+1).

We will need Walter’s localization sequence from Theorem 3.3.3 for triangulated
categories with duality

GW[n](Db(P (X))(n+1))
in−→ GW[n](Db(P (X))(n))
qn−→ GW[n](Db(P (X))(n)/Db(P (X))(n+1))

dn−→W[n+1](Db(P (X))(n+1))
in,W

−→W[n+1](Db(P (X))(n))

qn,W

−→W[n+1](Db(P (X))(n)/Db(P (X))(n+1))→ ...

to reformulate the classical oriented cocycles for a scheme X.

Theorem 4.4.2. Let X be a separated, regular scheme of finite type over a field
k of characteristic ̸= 2. With the above notation, there are isomorphisms for all
n

Z̃−n(X,L) ∼= (d−n)−1(Im(i−n+1,W)),

where we are in the algebro-geometric setting as in Definition 4.2.2.

Proof. By Remark 4.2.17, we know that Z̃−n(X,L) := ker(∂−n) ∼= ker(∂̃−n), where

∂̃−n := q−n+1,W ◦ d−n : GW[−n](Db(P (X))(−n)/Db(P (X))(−n+1),HomOX
(−, L))

→W[−n+1](Db(P (X))(−n+1),HomOX
(−, L))

→W[−n+1](Db(P (X))(−n+1)/Db(P (X))(−n+2),HomOX
(−, L)).
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Chapter 4. Tensor Triangular Chow–Witt Groups

Since d−n is exactly the boundary map from the localization sequence Theo-
rem 3.3.3 for (Grothendieck–)Witt groups of triangulated categories with duality,
we can use the exactness of that sequence to write Z̃−n(X,L) as

Z̃−n(X,L) : = ker(∂−n) ∼= ker(∂̃−n) = ker(q−n+1,W ◦ d−n)
= (d−n)−1(ker(q−n+1,W)) = (d−n)−1(Im(i−n+1,W)).

After having found an alternative description of algebraic oriented cocycles
in terms of maps coming from the localization sequence for (Grothendieck–)Witt
groups, we do the same for oriented coboundaries in the next subsection.

4.4.2 Reformulation of Classical Oriented Coboundaries

Reformulating classical oriented coboundaries in terms of maps coming from local-
ization is trickier, as mentioned in Subsection 4.3.1. We recall from Example 3.2.11
that

(Chb(P (X)), quis,HomOX
(−, L))

is a complicial exact category with weak equivalences and duality by fixing the
quasi-isomorphisms quis. We have subcategories

Chb(P (X))(n) := {P• ∈ Chb(P (X)) | codim(supph(P•)) ≥ n}

and denote by quisn
′
the morphisms in Chb(P (X))(n) with cone in Chb(P (X))(n

′)

for n′ ≥ n, which again yield complicial exact categories with weak equivalences
and duality

(Chb(P (X))(n), quisn
′
,HomOX

(−, L)).

Recall that we denote the triangulated categories with duality obtained by in-
verting the quasi-isomorphisms quisn

′
or quis by Chb(P (X))(n)[(quisn

′
)]−1 and

Chb(P (X))(n)[(quis)]−1, respectively.

By Theorem 3.3.4, we obtain for n ∈ Z a localization sequence for Grothendieck–
Witt groups of complicial exact categories with weak equivalences and duality

...→ GW[n]
m (Chb(P (X))(n+1), quis)

in,m
Ch−→ GW[n]

m (Chb(P (X))(n), quis)

qn,m
Ch−→ GW[n]

m (Chb(P (X))(n), quisn+1)

dn,m
Ch−→ GW

[n]
m−1(Ch

b(P (X))(n+1), quis)
in,m−1
Ch

−−−→ GW
[n]
m−1(Ch

b(P (X))(n), quis)→ ... .

With these tools, we can prove a hermitian analog of [Qui73, Theorem 5.14],
which has already been proven in [Hor08, Theorem 1.7] and [FS09, Theorem 33].
An important part of its proof will be the comparison of the localization sequences
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in the different settings introduced in Section 3.3, and the comparison between
localization sequence of the triangulated categories Chb(P (X))(n)[(quisn+1)−1] and
Db(P (X))(n)/Db(P (X))(n+1). Recall that the notation for the latter is

GW[n](Db(P (X))(n+1))
in−→ GW[n](Db(P (X))(n))

qn−→ GW[n](Db(P (X))(n)/Db(P (X))(n+1))
dn−→W[n+1](Db(P (X))(n+1))→ ... .

Now, we can formulate:

Theorem 4.4.3. Let X be a separated, regular scheme of finite type over a field
k of characteristic ̸= 2. With the notation from above, there are isomorphisms for
all n

B̃n(X,L) ∼= qn(ker(in−1)),

i.e. the image of

∂n−1 : Cn−1(X,Gn, L)→ Cn(X,Gn, L)
∼=−→ GW[n](Db(P (X))(n)/Db(P (X))(n+1), RHomOX

(−, L))

of Definition 4.2.2 equals qn(ker(in−1)).
Here, the isomorphism to GW[n](Db(P (X))(n)/Db(P (X))(n+1), RHomOX

(−, L))
is the one from Remark 4.2.17.

Proof of Theorem 4.4.3. We do the proof in three steps. First, we reformulate the
oriented coboundaries in terms of maps coming from the localization sequence of
exact categories with weak equivalences and duality from Theorem 3.3.4. Second,
we move this description to the triangular setting after inverting the respective
quasi-isomorphisms of the considered exact categories with weak equivalences and
duality. At last, we compare the localization sequences for triangulated categories
with duality as in Theorem 3.3.3 for the categories Chb(P (X))(n)[(quisn+1)−1]
and Db(P (X))(n)/Db(P (X))(n+1), i.e. for the case of first inverting the quasi-
isomorphisms and then filtrating the category, and vice versa.

By [FS09, Theorem 33], the n-th Chow–Witt group can also be defined as the
cohomology of the following sequence of (Grothendieck–)Witt groups of complicial
exact categories with weak equivalences and duality, all dualities again being
derived from HomOX

(−, L),

GW
[n]
1 (Chb(P (X))(n−1), quisn)

∂̃1,nCh

−−−→GW[n](Chb(P (X))(n), quisn+1)

∂̃0,nCh

−−−→W[n+1](Chb(P (X))n+1, quisn+2).

Hence, we have an isomorphism

Hn(C(X,Gn, L)) = Z̃n(X,L)/B̃n(X,L) ∼= ker(∂̃0,nCh )/ Im(∂̃1,nCh ),
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where C(X,Gn, L) is the complex from Definition 4.2.2. The sequence arises from
the Gersten–Grothendieck–Witt spectral sequence from [FS09, Definition 26] and,
thus, it follows by construction that, in particular, Im(∂̃1,nCh )

∼= B̃n(X,L).
Now, Theorem 3.3.4 yields the long exact localization sequence for Grothendieck–

Witt groups of exact categories with weak equivalences and duality

...→ GW[n]
m (Chb(P (X))(n+1), quis)

in,m
Ch

−−−→ GW[n]
m (Chb(P (X))(n), quis)

qn,m
Ch

−−−→ GW[n]
m (Chb(P (X))(n), quisn+1)

...
dn,m
Ch

−−−→ GW
[n]
m−1(Ch

b(P (X))(n+1), quis)
in,m−1
Ch

−−−→ GW
[n]
m−1(Ch

b(P (X))(n), quis)→ ...,

and we know that ∂̃1,nCh is the composition

∂̃1,nCh := qn,0Ch ◦ d
n−1,1
Ch : GW

[n]
1 (Chb(P (X))(n−1), quisn)

→GW
[n]
0 (Chb(P (X))(n), quis)

→GW
[n]
0 (Chb(P (X))(n), quisn+1).

We can use the exactness of the localization sequence from Theorem 3.3.4 to
conclude

Im(∂̃1,nCh ) = Im(qn,0Ch ◦ d
n−1,1
Ch ) = qn,0Ch (Im(dn−1,1

Ch )) = qn,0Ch (ker(i
n−1,0
Ch )).

After having rewritten the algebro-geometric coboundaries in terms of maps in
the localization sequence of exact categories with weak equivalences and duality,
we will now pass to the triangular setting.

For this, we show that the horizontal arrows in the diagram

GW
[n]
0 (Chb(P (X))(n−1), quis) // GW[n](Chb(P (X))(n−1)[(quis)−1])

GW
[n]
0 (Chb(P (X))(n), quis) //

in−1,0
Ch

OO

qn,0
Ch
��

GW[n](Chb(P (X))(n)[(quis)−1])

OO

��

GW
[n]
0 (Chb(P (X)(n)), quisn+1) // GW[n](Chb(P (X))(n)[(quisn+1)−1])

are isomorphisms. The left column treats Grothendieck–Witt groups of exact
categories with weak equivalences and duality, whereas the right column contains
Grothendieck–Witt groups of triangulated categories with duality.

The isomorphisms follow from Proposition 3.2.14 and the fact that, by [FS09,
Theorem 8], the part of the localization sequence from above (Theorem 3.3.4) for
complicial exact categories with weak equivalences and duality starting in GW0

coincides with the tensor triangular localization sequence Theorem 3.3.2 for the
short exact sequence

Chb(P (X))(n−1)[(quis)−1]→ Chb(P (X))(n)[(quis)−1]→ Chb(P (X))(n)[(quisn+1)−1].
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Lastly, we want to show that the horizontal morphisms in the diagram

GW[n](Chb(P (X))(n−1)[(quis)−1])
f

// GW[n](Db(P (X))(n−1))

GW[n](Chb(P (X))(n)[(quis)−1])

OO

��

g
// GW[n](Db(P (X))(n))

in−1

OO

qn

��

GW[n](Chb(P (X))(n)[(quisn+1)−1]) h // GW[n](Db(P (X)(n))/Db(P (X)(n+1)))

are isomorphism.
Both columns involve Grothendieck–Witt groups of triangulated categories

with duality. In the left column, we first filtrate the exact category with weak
equivalences and duality Chb(P (X)) by codimension of homological support and
then invert the given quasi-isomorphisms; in the column on the right, we first
invert all quasi-isomorphisms in Chb(P (X)) before filtrating.

The underlying functors of f and g are categorical equivalences since invert-
ing quasi-isomorphisms commutes with restricting objectwise to the subcategory
(−)(k) for k ∈ {n − 1, n, n + 1}. Moreover, we note that the underlying triangu-
lated categories in the domain and codomain of h are equivalent by universality of
the Verdier quotient functor (compare e.g. [Nee05, Proposition 2.1.24] or [Wei95,
Exercise 10.3.2] for abelian categories). The isomorphisms on the level of GW
now follow from Proposition 3.2.14.

Hence, we obtain a commutative diagram with the horizontal maps being
isomorphisms

GW
[n]
0 (Chb(P (X))(n−1), quis)

∼= // GW[n](Db(P (X))(n−1))

GW
[n]
0 (Chb(P (X))(n), quis)

∼= //

in−1,0
Ch

OO

qn,0
Ch
��

GW[n](Db(P (X))(n))

in−1

OO

qn

��

GW
[n]
0 (Chb(P (X)(n)), quisn+1)

∼= // GW[n](Db(P (X)(n))/Db(P (X)(n+1))).

Eventually, this yields B̃n(X,L) ∼= qn,0Ch (ker(i
n−1,0
Ch )) ∼= qn(ker(in−1)) as claimed.

Remark 4.4.4. Note that, until now, we have only considered filtrations by codi-
mension of homological support as in Definition 4.2.6, which is why there has
not appeared a change of sign yet as announced before. We have not yet con-
sidered tensor triangular oriented cocycles/coboundaries; their definition requires
the filtration of tensor triangulated categories by codimension of support as in
Definition 2.3.4. Passing between these filtrations will involve change of signs.
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In this and the last section, we have rewritten the algebro-geometric oriented
cocycles Z̃n(X,L) and coboundaries B̃n(X,L) in terms of maps coming from the
localization sequence

GW[n](Db(P (X))(n+1))
in−→ GW[n](Db(P (X))(n))

qn−→ GW[n](Db(P (X))(n)/Db(P (X))(n+1))
dn−→W[n+1](Db(P (X))(n+1))

in,W

−→ ...

for triangulated categories with duality. Hence, we have lifted the definition of
Chow–Witt groups already to a triangular setting. However, to show the agree-
ment between the definition of tensor triangular Chow–Witt groups and the clas-
sical Chow–Witt groups, we need to check whether these rewritten forms coincide
with Definition 4.3.5 in the tensor triangular setting. We will do so in the following
section.

4.4.3 Agreement of Chow–Witt Groups

Above, we have brought oriented cocycles and coboundaries to a form that we
can generalize directly. In this sense, Theorem 4.4.3 and Theorem 4.4.2 pave the
path for the following central agreement theorem this section aims to prove. It is
a refinement of [Kl16a, Theorem 3.2.6].

Theorem 4.4.5. Let X be a separated, regular scheme of finite type over a field
k with char(k) ̸= 2, L a line bundle over X, and Dperf(X) be equipped with the
dimension function − codimKrull. Then, there are isomorphisms for all n ∈ Z

Z̃n
∆(D

perf(X), hom(−, L)) ∼= Z̃−n(X,L),

B̃n
∆(D

perf(X), hom(−, L)) ∼= B̃−n(X,L)

and

C̃H
n

∆(D
perf(X), hom(−, L)) ∼= C̃H

−n
(X,L).

Proof. We start in the algebro-geometric setting as in Definition 4.2.2. Then,
Theorem 4.4.2 and Theorem 4.4.3 tell us that we have isomorphisms

C̃H
−n

(X) ∼= (d−n)−1(Im(i−n+1,W))/q−n(ker(i−n−1)),

where the maps are the ones from the localization sequence of triangulated cate-
gories with duality

GW[n](Db(P (X))(n+1))
in−→ GW[n](Db(P (X))(n))

qn−→ GW[n](Db(P (X))(n)/Db(P (X))(n+1))
dn−→W[n+1](Db(P (X))(n+1))

in,W

−→ ... .

Now, let T := Dperf(X) be the rigid tensor triangulated category from Exam-
ple 2.2.6 (iii) equipped with − codimKrull, and L a fixed ⊗-invertible object; note
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4.4. Agreement with Algebraic Geometry

that here hom := RHom. We know that, by our assumptions, there is a categor-
ical equivalence Dperf(X) ≃ Db(P (X)).

We recall the definition of the filtration components in the tensor-triangular
setting as in Section 2.3

Dperf(X)(n) := {P ∈ Dperf(X) | − codimKrull(supp(P )) ≤ n}

with

supp(P ) := {I ∈ Spc(Dperf(X)) | P /∈ I} ⊂ Spc(Dperf(X))

and the filtration components in the algebro-geometric setting as in Definition 4.2.6

Db(P (X))(−n) :={P ∈ Db(P (X)) | codim(supph(P )) ≥ −n}
={P ∈ Db(P (X)) | − codim(supph(P )) ≤ n}

with

supph(P ) :=
⋃
i

supp(Hi(P )) ⊂ X.

We know by [Bal05b, Corollary 5.6] that, under the isomorphism Spec(Dperf(X)) ∼=
X from Example 2.1.20, supph(A) ⊂ X and supp(A) ⊂ Spc(Dperf(X)) coincide
for A ∈ Dperf(X). Thus, using Dperf(X) ≃ Db(P (X)), we obtain equivalences of
triangulated categories with duality

(Dperf(X)(n), hom(−, L)) ≃ (Db(P (X))(−n),Hom(−, L))

and

(Dperf(X)(n)/D
perf(X)(n−1), hom(−, L))

≃(Db(P (X))(−n)/Db(P (X))(−n+1),Hom(−, L)).

It follows that the horizontal arrows in the commutative diagrams (where the
dualities are omitted from the notation)

GW[n](T(n+1)) // GW[n](Db(P (X))(−n−1))

GW[n](T(n)) //

in+1
T

OO

qnT
��

GW[n](Db(P (X))(−n))

i−n−1

OO

q−n

��

GW[n](T(n)/T(n−1)) // GW[n](Db(P (X))(−n)/Db(P (X))(−n+1))
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Chapter 4. Tensor Triangular Chow–Witt Groups

and

GW[n](T(n)/T(n−1)) //

dnT
��

GW[n](Db(P (X))(−n)/Db(P (X))(−n+1))

d−n

��

W[n+1](T(n−1)) //W[n+1](Db(P (X))(−n+1))

W[n+1](T(n−2)) //

in−1,W
T

OO

W[n+1](Db(P (X))(−n+2))

i−n+1,W

OO

coming from the above equivalences are isomorphisms. As a consequence, we have

B̃−n(X,L) := Im(∂−n+1) ∼= q−n(ker(i−n−1))

∼= qnT (ker(i
n+1
T )) =: B̃n

∆(D
perf(X), hom(−, L))

and, moreover,

Z̃−n(X,L) := ker(∂−n) ∼= ker(∂̃−n) ∼= (d−n)−1(Im(i−n+1,W))

∼= (dnT )
−1(Im(in−1,W

T )) =: Z̃n
∆(D

perf(X), hom(−, L)).

Remark 4.4.6. Fasel and Srinivas present an alternative definition of Chow–Witt
groups of a scheme in terms of Grothendieck–Witt groups of triangulated cat-
egories with duality. One could also have started the attempt of generalizing
Chow–Witt groups of a scheme at this point.

Consider the exact sequences of triangulated categories with duality

Db(P (X))(n+1)[(quisn+2)−1]→ Db(P (X))(n)[(quisn+2)−1]

→ Db(P (X))(n)[(quisn+1)−1]

and

Db(P (X))(n)[(quisn+1)−1]→ Db(P (X))(n−1)[(quisn+1)−1]

→ Db(P (X))(n−1)[(quisn)−1]

They yield exact sequences by localization

GW[n](Db(P (X))(n)[(quisn+2)−1])
α−→ GW[n](Db(P (X))(n)[(quisn+1)−1])

qn−1,W◦dn

−−−−−→ W[n+1](Db(P (X))(n+1)[(quisn+2)−1])

and

GW
[n]
1 (Db(P (X))(n−1)[(quisn)−1])

qn◦dn−1

−−−−→ GW[n](Db(P (X))(n)[(quisn+1)−1])

β−→ GW[n](Db(P (X))(n−1)[(quisn+1)−1]),
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where GW
[n]
1 (Db(P (X))(n−1)[(quisn)−1]) is defined as the higher Grothendieck–

Witt group GW
[n]
1 (Chb(P (X))(n−1), quisn) of the underlying complicial exact cat-

egory with weak equivalences and duality, compare Remark 3.2.15. The localiza-
tion sequences of triangulated categories with duality from Theorem 3.3.3 and of
complicial exact categories with weak equivalences and duality from Theorem 3.3.4
are combined here, using that they coincide from Grothendieck–Witt groups of
degree ≤ 0 on by Theorem 3.3.4.

In [FS09, Theorem 34], Fasel and Srinivas prove that

C̃H
n
(X,L) = Im(α)/ ker(β)

for a regular Z[1
2
]-linear scheme X and a line bundle L. Using the tools of this

proof, one can show Theorem 4.4.2 and Theorem 4.4.3 in the following way.
By exactness and [FS09, Theorem 34], it follows that

Z̃n(X,L) = Im(α) = ker(qn−1,W ◦ dn) = (dn)−1(ker(qn−1,W))

=(dn)−1(Im(in−1,W)).

and

B̃n(X,L) = ker(β) = Im(qn ◦ dn−1) = q(Im(dn−1)) = qn(ker(in−1)).

One of the main reasons why we did not go down the route of [FS09, Theorem 34]
was that we wanted to distinguish more clearly the localization sequences in the
setting of triangulated categories with duality and of complicial exact categories
with weak equivalences and duality. On the other hand, we aimed to stay close
to the definition of tensor triangular Chow groups introduced in [Bal13] and the
corresponding agreement theorem [Kl16a, Theorem 3.2.6].
Remark 4.4.7. In Theorem 4.4.5, we assume X to be separated, regular, and of
finite type over a field k with characteristic ̸= 2. These assumptions originate
in the definition of Chow–Witt groups we use, compare [Fas20, Section 2.1]. If
one uses a more general definition of Chow–Witt groups for regular Z[1

2
]-linear

schemes as for example in [FS09, Definition 32], the proof of Theorem 4.4.5 also
holds true for this slightly more general case (so do the proofs from Remark 4.4.6).

To get an intuitive understanding of why Theorem 4.4.5 is true, we compare
easy Chow–Witt groups “by hand”.

Example 4.4.8. Let k be a field of characteristic ̸= 2. We know that

C̃H
n
(Spec(k)) =

{
GW(k) if n = 0

0 else.

We want to show the same for C̃H
n

∆(D
perf(Spec(k))).

Consider T := Dperf(Spec(k)) equipped with the dimension function dim :=
− codimKrull, i.e. the category of perfect complexes ofOSpec(k)-modules. AnOSpec(k)-
module is a sheaf that sends open sets in Spec(k) to OSpec(k) = k-modules. Since
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Chapter 4. Tensor Triangular Chow–Witt Groups

Spec(k) contains only one point, OSpec(k)-modules are completely determined by
the k-vector space the point is sent to, i.e. we can identify OSpec(k)-modules with
k-vector spaces. It follows that Dperf(Spec(k)) is given by perfect complexes of
k-vector spaces.

We now want to understand what T(n) looks like for n ∈ Z. For this, we check that
for all objects A ̸= 0 in T we have supp(A) = {0}, hence dim(supp(A)) = 0, i.e.
−1 < dim(supp(A)) ≤ 0. For 0 ∈ T , we have supp(0) = ∅ by [Bal07, Proposition
1.3 (i)]. Hence, we obtain

T(n) =

{
T for n ≥ 0

0 for n ≤ −1

and for the quotients

T(n)/T(n−1) =


0 for n ≥ 1

T for n = 0

0 for n ≤ −1.

For n = 0, the defining diagram Diagram 4.3 becomes

W[1](T(−2))
i−1,W

//W[1](T(−1)) GW[0](T(0)) i1 //

q0

��

GW[1](T(1))

GW[0](T(0)/T(−1))

d0
hh

and thus
W[1](0)

0i //W[1](0) GW[0](T ) id //

id
��

GW[1](T ).

GW[0](T )

0d
ee

It follows that

C̃H
0

∆(D
perf(Spec(k))) = 0−1

d (Im(0i))⧸id(ker(id)) =
GW(T )⧸0 = GW(T ).

Using Proposition 3.2.7, we obtain

C̃H
0

∆(D
perf(Spec(k))) = GW(T ) ∼= GW(k).

The cases n ̸= 0 can be seen directly.

This subsection has proven that the construction of tensor triangular Chow–
Witt groups we gave in Chapter 4 agrees with the classical definition of Chow–Witt
groups of a scheme X for the derived category of perfect complexes Dperf(X), X
being regular. Moreover, we have seen an easy example by hand. The following
section discusses functorial properties of C̃H

n

∆.
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4.5. Functoriality

4.5 Functoriality
We are in the situation of Convention 4.3.1. After having seen the agreement
theorem between classical and tensor triangular Chow–Witt groups, we now show
the functoriality of the construction from Chapter 4. We will see that we obtain,
in particular, flat pullbacks and proper pushforwards.

First, we need to specify what kind of functors we allow.

Definition 4.5.1. Let T ,L be tensor triangulated categories equipped with di-
mension functions, and let F : T → L be a triangulated functor. We say
that F is of relative dimension m if there exists a smallest m ∈ N such that
F (T(n)) ⊂ L(n+m) for all n.

Remark 4.5.2. We do not require F to be a tensor functor following the idea
of [Kl16a, Remark 4.1.2]. There are various examples of functors of relative di-
mension that are neither tensor functors nor duality-preserving, e.g. a⊗− when
dim(supp(a)) ̸= ±∞, see [Kl16a, Proposition 4.1.6].

Remark 4.5.3. Suppose F is a functor of relative dimension m. By shifting the di-
mension function, we can always obtain m = 0. Recall that shifting the dimension
function on a rigid tensor triangulated category T by m′ ∈ Z yields isomorphisms
C̃H

n

∆(T ) ∼= C̃H
n+m′

∆ (T ) for all n, compare Remark 4.3.6.

We can generalize [Kl16a, Theorem 4.1.3] in the following way.

Theorem 4.5.4. Let T ,L be rigid tensor triangulated categories equipped with
dimension functions and let K and L be ⊗-invertible objects in T and L, respec-
tively. Moreover, let F : T → L be a functor of relative dimension 0 that is
duality-preserving when considering T and L triangulated categories with duality
(T , hom(−, K)) and (L, hom(−, L)) as in Example 2.2.6. Then, F induces group
homomorphisms for all n ∈ Z

z̃n :Z̃n
∆(T , K)→ Z̃n

∆(L, L) and

c̃n :C̃H
n

∆(T , K)→ C̃H
n

∆(L, L).

Proof. We will omit the dualities from the notation for better readability. The
functor F restricts to functors on the filtration components Fi : T(i) → L(i) for
all i. Consider the following commutative diagram, which is the underlying right
part of the defining Diagram 4.3,

T(n)
Fn

''

In+1
T //

Qn
T
��

T(n+1)

Fn+1

&&

T(n)/T(n−1)

Fn

''

L(n)

In+1
L //

Qn
L
��

L(n+1)

L(n)/L(n−1)
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Chapter 4. Tensor Triangular Chow–Witt Groups

Here, F n exists since F (T(n−1)) ⊂ L(n−1) by definition, hence, F induces a mor-
phism on quotients.

Since F is duality-preserving, so are Fi and F i for all i. Consequently, we
obtain the commutative diagram

GW[n](T(n))
fn

))

in+1
T //

qnT
��

GW[n](T(n+1))
fn+1

))

GW[n](T(n)/T(n−1))
f

))

GW[n](L(n))
in+1
L //

qnL
��

GW[n](L(n+1))

GW[n](L(n)/L(n−1))

(4.4)

by applying GW[n]. For the left part of the defining Diagram 4.3, note that the
diagram

T(n−2)

In−1
T //

Fn−2

��

T(n−1)

Fn−1

��

L(n−2)

In−1
L // L(n−1)

commutes, and, as above, we can apply W[n+1] and obtain a commutative diagram

W[n+1](T(n−2))
in−1,W
T //

f ′n−2

��

W[n+1](T(n−1))

f ′n−1

��

W[n+1](L(n−2))
in−1,W
L //W[n+1](L(n−1)).

(4.5)

It is left to show that the diagram

W[n+1](T(n−1))

f ′n−1

��

GW[n](T(n)/T(n−1))
dnToo

f̄n
��

W[n+1](L(n−1)) GW[n](L(n)/L(n−1))
dnLoo

also commutes, but this is Lemma 4.5.5 below, and, thus, we can glue together Di-
agram 4.4 and Diagram 4.5. Hence, we have a homomorphism

f̄n : GW[n](T(n)/T(n−1))→ GW[n](L(n)/L(n−1))

which restricts to a homomorphism

f̄n : Z̃n
∆(T )→ GW[n](L(n)/L(n−1))
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since Z̃n
∆(T ) is a subgroup of GW[n](T(n)/T(n−1)) by Proposition 4.3.4. Now, the

glued diagram yields

f̄n(Z̃
n
∆(T )) ⊂ Z̃n

∆(L),

so we set f̄n =: z̃n.
To show that z̃n induces a homomorphism on Chow–Witt groups, we observe

directly from Diagram 4.4 and Diagram 4.5 that

z̃n(B̃n
∆(T )) ⊂ B̃n

∆(L).

Lemma 4.5.5. The diagram

W[n+1](T(n−1))

f ′n−1

��

GW[n](T(n)/T(n−1))
dnToo

f̄n
��

W[n+1](L(n−1)) GW[n](L(n)/L(n−1))
dnLoo

from above commutes.

Proof. To see that this diagram commutes, we recall that it comes from the local-
ization sequence Theorem 3.3.3. We have exact sequences (the horizontal lines) of
triangulated categories with duality and (duality-preserving) maps between these
as above such that the following diagram commutes.

Tn−1

InT //

Fn−1

��

T(n)
Qn

T //

Fn

��

T(n)/T(n−1)

F̄n

��

Ln−1

InL // L(n)

Qn
L // L(n)/L(n−1)

The horizontal sequences now give rise to long exact localization sequences (by
Theorem 3.3.3) with induced maps between them. The square from the state-
ment can now be found as a part of the lower diagram and, hence, commutes by
construction of the differential in the localization sequences.

GW[n](T(n)) //

fn
��

GW[n](T(n)/T(n−1))
dnT //

f̄n
��

W[n+1](T(n−1))

f ′n−1

��

//W[n+1](T(n))

f ′n
��

GW[n](L(n)) // GW[n](L(n)/L(n−1))
dnL //W[n+1](L(n−1)) //W[n+1](L(n)).

As an example, let us consider flat pullbacks and proper pushforwards.
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Example 4.5.6. (i) Let f : X → Y be a faithfully flat morphism between
separated schemes of finite type over a field and consider the rigid tensor
triangulated categories Dperf(X) and Dperf(Y ) equipped with the dimen-
sion function − codimKrull. Then, by [Kl16a, Lemma 4.3.2], the functor
Lf ∗ : Dperf(Y ) → Dperf(X) has relative dimension 0. Hence, it induces ho-
momorphisms on the respective tensor triangular Chow groups that coincide
with the flat pullbacks of the usual Chow groups (see [Kl16a, Section 4.3]).

For tensor triangular Chow–Witt groups, let K be a line bundle on Y .
Assume that X and Y are regular. The functor

Lf ∗ : (Dperf(Y ), hom(−, K))→ (Dperf(X), hom(−, Lf ∗(K))

is duality-preserving by [CH11, Theorem 4.1] and, hence, it induces a mor-
phism for all n between the respective Chow–Witt groups

Lf ∗ : C̃H
n

∆(D
perf(Y ), K)→ C̃H

n

∆(D
perf(X), Lf ∗(K)).

The author assumes that one can show that it coincides with the flat pullback
for usual Chow–Witt groups. For a more general case of pullbacks, see
[CH09, Theorem 4.1.2 and Corollary 4.1.3].

(ii) Let f : X → Y be a proper morphism between integral, regular, separated
schemes of finite type over an algebraically closed field and consider the
rigid tensor triangulated categories Dperf(X) and Dperf(Y ) equipped with
the dimension function dimKrull. Then, by [Kl16a, Lemma 4.4.1], the func-
tor Rf∗ : Dperf(X) → Dperf(Y ) has relative dimension 0. Hence, it induces
homomorphisms on the respective tensor triangular Chow groups that co-
incide with the proper pushforwards of the usual Chow groups (see [Kl16a,
Section 4.4]).

For tensor triangular Chow–Witt groups, let K be a line bundle on Y . The
functor

Rf∗ : (D
perf(X), hom(−, f !(K)))→ (Dperf(Y ), hom(−, K))

is duality-preserving by [CH11, Theorem 4.4] and, hence, it induces a mor-
phism for all n between the respective Chow–Witt groups

Rf∗ : C̃H
n

∆(D
perf(X), f !(K))→ C̃H

n

∆(D
perf(X), K).

Here, f ! is the right adjoint of Rf∗ from [CH11, Theorem 3.8]. The author
assumes that one can show that Rf∗ coincides with the flat pullback for
usual Chow–Witt groups. For a more general case of pushforwards, see
[CH09, Corollary 4.3.3].

Summing up, this chapter has given a concrete definition of tensor triangular
Chow–Witt groups in Section 4.3 after recalling tensor triangular Chow groups
in Section 4.1 and classical Chow–Witt groups in Section 4.2. After this, we
have seen the agreement with the algebro-geometric case in Section 4.4 and the
functoriality above.
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4.6 Chow(–Witt) Groups for Tensor Triangular Cat-
egories with Models

Convention 4.6.1. Let T be as in Convention 4.3.1, but now we allow the ex-
istence of quotients of filtration components T(n)/T(n−1) that are not idempotent
complete. We also assume that T is idempotent complete. This implies that all
filtration components T(n) are also idempotent complete. We will fix L = 1 and,
hence, omit L from the notation.

In this section, ideas are merely sketched and can be generalized to arbitrary
⊗-invertible L. We investigate the case of tensor triangular Chow groups at first,
although their Definition 4.1.2 does not require quotients of filtration components
to be idempotent complete, whereas we do require it for the construction of tensor
triangular Chow–Witt groups as in Definition 4.3.5.

We will mainly use the notation from [Sch06].

We want to redefine Chow groups of tensor triangulated categories as intro-
duced in Definition 4.1.2, in particular, when quotients of filtration components
are not necessarily idempotent complete. Later, we want to generalize tensor
triangular Chow–Witt groups Definition 4.3.5 to the above case.

The underlying motivation is the following: By [Sch06, Remark 1], we know
that if T(n)/T(n−1) is not idempotent complete, K−1(T(n−1)) is nonzero. Consider
the case of a nice enough singular scheme X, T = Dperf(X), still satisfying Bloch’s
formula but such that T(n)/T(n−1) is not idempotent complete. If Bloch’s formula
holds, we would like to use this cohomological description of its Chow groups to
translate the definition to the tensor triangular setting as seen in Section 4.1 for
regular schemes.

If X is regular and negative K-groups vanish, the tensor triangular n-cocycles
are everything, i.e. K0((T(n)/T(n−1))

♮); if not, negative K-groups appear and hence
the tensor triangular n-cocycles may be a proper subgroup of K0((T(n)/T(n−1))

♮).
We thus want to redefine tensor triangular n-cocycles.

What changes in the non-singular case is that we do not have an equivalence of
tensor triangulated categories Dperf(X) ≃ Db(Coh(X)) and, hence, the quotients
of the filtration components do not have a good description, but the idempotent
completion can be described as

(T(n)/T(n−1))
♮ ≃

∐
x∈X(n)

Dperf
{x} (OX,x),

compare [Bal09, Proof of Theorem 2]. To adapt the construction of tensor trian-
gular cocycles to this case, we thus need a localization sequence of the form

K0(T(n−1))
inT−→ K0(T(n))

q′n−→ K0((T(n)/T(n−1))
♮)

d′n−→K−1(T(n−1))
inT−→ K−1(T(n))

q′n−→ K−1((T(n)/T(n−1))
♮)

d′n−→K−2(T(n−1))→ ...,
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which we obtain from [Sch06, Theorem 1].
Since T(n) is idempotent complete for all n, the maps inT coincide in degree

0 with the maps inT from Definition 4.1.2 and the maps q′n in degree 0 are the
composition of the maps jnT : K0(T(n)/T(n−1)) → K0((T(n)/T(n−1))

♮), induced by
idempotent completion, and qnT from Definition 4.1.2.

However, the price one has to pay for this is the introduction of models in order
to obtain localization sequences, which means that we need our tensor triangulated
category T to admit a model. The above localization sequence is defined on the
level of models, hence, there is a slight abuse of notation here. For more details
on models in general, the reader is referred to [Sch06, Section 2.2]. The models
Schlichting uses are Frobenius models, compare [Sch06, Sections 4-6], which are
the same kind of models Klein uses in [Kl16b] to introduce a ring structure on
tensor triangular Chow groups, but other models categories are possible such as
the category of small exact categories.

In particular, our most prominent examples Dperf(X) for a noetherian k-scheme
X and the stable module category kG- stab for G a finite group and k a field with
characteristic dividing the order of G are such tensor triangulated categories which
admit for instance Frobenius models; more examples of Frobenius models can be
found in [Sch06, Chapter 6]. To see why admitting models might not be too strong
a restriction the reader is referred to the introduction of [Sch06].

Hence, we can introduce the following variant of Definition 4.1.2, where the
idea is to extend the Gersten complex to negative degrees.

Definition 4.6.2. Let T be an idempotent complete, essentially small tensor tri-
angulated category equipped with a dimension function dim that admits a model
and such that Spc(T ) is noetherian. When considering T a triangulated category
with duality, we fix the duality hom(−,1) and restrictions of it on subcategories,
quotients and idempotent completions (by Lemma 2.3.7, Lemma 2.3.8). Then, we
define

Zn
∆′(T ) := ker(q′n−1 ◦ d′n) ⊂ K0((T(n)/T(n−1))

♮)

which, by exactness of the above localization sequence, equals

(d′n)
−1(Im(in−1

T )),

and

CHn
∆′(T ) : = Zn

∆′(T )/q′n(ker(in+1
T ))

= Zn
∆′(T )/jnT ◦ qnT (ker(in+1

T )).

The algebraic n-cocycles from Definition 4.6.2 and Balmer’s Definition 4.1.2
differ a priori if the quotient T(n)/T(n−1) is not idempotent complete, i.e. if jnT is
not the identity, but the coboundaries coincide.

It follows from the construction that for T = Dperf(X), X non-singular (so, in
particular, for jnT the identity), CHn

∆′(T ) and CHn
∆(T ), and thus by Lemma 4.1.3

also CH−n(X), coincide.
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Remark 4.6.3. For noetherian schemes which may be singular, the idea of adapting
Balmer’s definition of tensor triangular cocycles for the derived category of perfect
complexes already appears in the unpublished work [Ya16, Definition 3.6 and
Section 3.2]. We sketched the generalized idea for general idempotent complete,
essentially small tensor triangulated categories with a dimension function that
admit models, hence, in particular, for T = kG- stab, where G is a finite group
and k a field such that char(k) divided |G|.

Let X be a connected quasi-projective variety of dimension d ≥ 2 whose
singular locus Sing(X) is contained in a finite closed set Y . If X is nice enough,
i.e. it in particular satisfy some kind of Bloch’s formula (see [Ya16, Question
3.19]), Yang’s definition for T = Dperf(X) coincides with the relative Chow groups
CH(X, Y ) of Pedrini and Weibel from [PW86] by [Ya16, Corollary 3.21] after
tensoring with Q, hence so they do with Definition 4.6.2 after tensoring with Q.

Balmer’s tensor triangular n-cocycles from Definition 4.1.2 differ a priori from
Zn

∆′(T ) and for this reason in the special case mentioned above also from the
relative Chow groups from Pedrini and Weibel.

In the case of tensor triangular Chow–Witt groups, we observe something
similar. As usual, we now assume T to be rigid, Z[1

2
]-linear, and dualities as in

Convention 4.3.1 when considering T a triangulated category with duality.
The Witt group W[n+1](T(n−1)) may be nonzero even when T(n)/T(n−1) is idem-

potent complete. As a consequence, the oriented n-cocycles may be a proper sub-
group of GW[n]((T(n)/T(n−1))

♮), which follows from Definition 4.3.3. If the quotient
is idempotent complete, the localization sequence from Theorem 3.3.3 still suffices
to define tensor triangular Chow–Witt groups as we did in Definition 4.3.5.

If the quotient is not idempotent complete, as above we need a sequence of
the form

GW[n](T(n−1))
ĩnT−→ GW[n](T(n)

q̃′n−→ GW[n]((T(n)/T(n−1))
♮)

d̃′n−→W[n+1](T(n−1))
ĩn,W
T−→W[n+1](T(n))

q̃′n,W

−−−→W[n+1]((T(n)/T(n−1))
♮)

d̃′n−→W[n+2](T(n−1))→ ... ,

which we have after tensoring with Z[1
2
] essentially by [Bal09, Remark 3]. Note

that here, models have to carry some notion of duality such as complicial BiWald-
hausen categories, compare [Bal09] and [Sch06, Section 6.5].

Again, the maps ĩn(,W)
T coincide with the maps in(,W)

T from Definition 4.3.5
and the maps q̃′n(,W) are the composition of the map j̃nT : GW[n](T(n)/T(n−1)) →
GW[n]((T(n)/T(n−1))

♮) and j̃n,WT : W[n](T(n)/T(n−1))→W[n]((T(n)/T(n−1))
♮), respec-

tively, induced by idempotent completion, and qn(,W)
T from Definition 4.3.5.

We thus have a variant of Definition 4.3.5 for tensor triangulated categories
admitting models:

Definition 4.6.4. Let T be a Z[1
2
]-linear, essentially small, idempotent complete,

rigid tensor triangulated category equipped with a dimension function admitting
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Chapter 4. Tensor Triangular Chow–Witt Groups

a model and such that Spc(T ) is noetherian. When considering T a triangulated
category with duality, we fix the duality hom(−,1) and restrictions of it on sub-
categories. Moreover, we consider all groups being tensored by Z[1

2
] here. We

define

Z̃n
∆′(T ) : = (d̃′n)

−1(Im(̃in−1,W
T ))

= ker(q̃′n−1,W ◦ d̃′n)

and

C̃H
n

∆′(T ) := Z̃n
∆′(T )/q̃′n(ker(̃in+1

T )) = Z̃n
∆′(T )/j̃nT ◦ qnT (ker(in+1

T )).

When T(n)/T(n−1) is idempotent complete for all n, for example for T =

Dperf(X) and X smooth, Definition 4.3.5 and Definition 4.6.4 coincide since j̃nT is
the identity in this case. Moreover, when replacing GW by K0 in the construction,
Definition 4.6.4 agrees with Definition 4.6.2 and thus with Definition 4.1.2 when
all quotients T(n)/T(n−1) are idempotent complete.

In this section, we have redefined our definition of tensor triangular Chow–
Witt groups for cases when quotients of the filtration components T(n) are not
idempotent complete. For this, we sketched the idea of introducing models for
(rigid) tensor triangulated categories.

The following chapter is dedicated to concrete calculations of tensor triangular
Chow–Witt groups in the setting of modular representation theory.
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Chapter 5

Computations in Modular
Representation Theory

In this chapter, we want to compute examples of tensor triangular Chow–Witt
groups. Since, for the derived category of perfect complexes over a regular scheme,
the definition coincides with the algebro-geometric one for regular schemes (The-
orem 4.4.5), the field of algebraic geometry already provides us with many known
examples. It is therefore interesting to consider Chow–Witt groups in new ar-
eas Definition 4.3.5 and Definition 4.6.4 have opened, for example in modular
representation theory.

To do so, we will recall some basic concepts on group rings and the stable
module category in Section 5.1. In Section 5.2, we will collect helpful theorems
and propositions that will serve as tools for the computation of the Chow–Witt
group of the stable module category kG- stab – first for G = Z/pnZ and then we
will give partial results for G = Z/pZ× Z/pZ with p ̸= 2.

5.1 The Stable Module Category

Our input candidate for tensor triangular Chow–Witt groups in a non-algebro-
geometric setting will be the tensor triangulated category kG- stab, known as the
stable module category, for a field k whose characteristic divides the group order.
We will focus on two examples, namely G = Z/pZ and G = Z/pZ × Z/pZ for
p ̸= 2. Already for the latter, obstacles will occur so that we will only give partial
results here.

In this section, we first collect basic notions and results on group rings and then
on the stable module category for the reader’s convenience. As an introductory
lecture, we recommend [Car96, BIK12, Ben98a]; we mainly follow these references
in this section.

5.1.1 Recollection on Group Rings

We recall some essential notations and results concerning group rings.
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Chapter 5. Computations in Modular Representation Theory

Convention 5.1.1. Let G be a finite group and k a field of positive characteristic
p.

Definition 5.1.2. We define the group ring kG as the set of all formal k-linear
combinations

∑
g∈G αgg, where αg ∈ k and g ∈ G. It becomes a ring and even a

k-algebra via the compositions∑
g∈G

αgg +
∑
g∈G

βgg :=
∑
g∈G

(αg + βg)g

and

(
∑
g∈G

αgg) · (
∑
h∈G

βhh) :=
∑
g,h∈G

(αgβh)gh.

As a k-module, kG is free with basis G.

Example 5.1.3. Let G = Z/pnZ = ⟨g | gpn = 1⟩, with g generating G, and
char k = p. Then, the group ring is given by kG ∼= k[y]/(yp

n − 1) which is
isomorphic to k[x]/(xpn) via x 7→ y − 1.

For later calculations, it will be important for us to have conditions whether
a group ring is local and to then determine its unique maximal ideal as well as its
residue field.

Lemma 5.1.4. ([Car96, Corollary 1.4]) If G is a finite p-group, the group ring
kG is local and its unique maximal ideal is the augmentation ideal (see [Car96,
Chapter 1]).

Lemma 5.1.5. ([Car96, Proposition 7.4]) For groups A and B, we have k(A ×
B) ∼= kA⊗k kB.

Example 5.1.6. (i) For G = Z/pnZ, the unique maximal ideal of the local
ring kG ∼= k[x]/(xp

n
) is given by (x), hence, its residue field kG/(x) simply

is k.

(ii) For G = Z/pZ× Z/pZ, by Lemma 5.1.5 and (i), we have that

kG ∼= k[x]/(xp)⊗k k[y]/(yp) ∼= k[x, y]/(xp, yp)

with maximal ideal (x, y), hence the residue field kG/(x, y) again is k. More
generally, the residue field of kE for any finite elementary abelian p-group
E is k by the same argument.

(iii) The group ring kZ equals the ring of Laurent polynomials and is not local.

Remark 5.1.7. Note that since k is a field (more general a (left) Artinian ring),
kG is left Artinian by [BIK12, Remark 1.24]. It follows that, for modules over
kG, being finitely generated and having finite length is equivalent. This will be
important for us in the computation of the Grothendieck–Witt group of kG- stab,
the first step in the computation of its Chow–Witt group.
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The following results on the semisimplicity of kG are well-known.

Theorem 5.1.8. (Maschke) If the characteristic of k does not divide the order of
G, then kG is a semisimple k-algebra, i.e. every nonzero kG-module is semisimple
(if moreover kG is finite-dimensional).

Theorem 5.1.9. (Converse of Maschke’s theorem) If kG is a semisimple k-
algebra, then the characteristic of k does not divide the order of G.

For the notion of a Frobenius algebra we follow [Hap88].

Definition 5.1.10. A k-algebra R is called Frobenius algebra if indecomposable
projective R-modules and indecomposable injective R-modules coincide and if
moreover it is locally bounded (see [Hap88, p.25]).

Example 5.1.11. Let G be a finite group and k a field, then kG is a finite-
dimensional Frobenius k-algebra by [Ben98a, Proposition 3.1.2].

For our purposes, this is all we need to know about group rings. In the
following, we recall the construction and basic results concerning the stable module
category kG- stab.

5.1.2 Construction of kG- stab

Convention 5.1.12. If not stated otherwise, modules in this chapter we consider
will always be finitely generated left modules. For the rest of this chapter, let G
be a finite group and k a field of characteristic p dividing the order of G.

We denote by kG-mod the abelian category of finitely generated left kG-
modules. Recall that since k is a field, being finitely generated and having finite
length is equivalent due to Remark 5.1.7. The category kG-mod has the following
structural properties.

Remark 5.1.13. (i) The tensor product M ⊗k N of finitely generated left kG-
modules is again an object of kG-mod when considering the linear extension
of the diagonal action

g(m⊗ n) := gm⊗ gn

for g ∈ G, m ∈ M , and n ∈ N . Moreover, the set Homk(M,N) of k-linear
maps from M to N is an object of kG-mod via linear extension of the action

(gf)(m) := f(g−1m)

for g ∈ G, m ∈M and f ∈ Homk(M,N).

(ii) The category kG-mod becomes an abelian category with duality when
equipping it with the duality Homk(−, k), where k carries the trivial kG-
module structure.
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Chapter 5. Computations in Modular Representation Theory

The category theoretic analogon of Definition 5.1.10 is the following.

Definition 5.1.14. A Frobenius category is an exact category E which has enough
injectives, enough projectives, and projective and injective objects coincide. A
functor of Frobenius categories is a functor preserving projective-injective objects.

Example 5.1.15. For G a finite group and k a field, the abelian (hence, exact)
category kG-mod is a Frobenius category. This follows from Example 5.1.11 and
[Ben98a, Proposition 1.6.2].

Now, we can define the stable module category via the category kG-mod in
the following way.

Definition 5.1.16. Let G be a finite group and k a field whose characteristic
divides the group order. For the abelian Frobenius category kG-mod, we denote
by kG- stab its associated stable category with the same objects as kG-mod. The
morphism group between two kG-modules M and N is given as the quotient

Homk(M,N)/J,

where J is the subgroup of morphisms factoring through projective-injective ob-
jects of kG-mod. This construction is called the stable module category.

More generally, we can define the stable category of any Frobenius category in
an analog manner.

Remark 5.1.17. A construction like in Definition 5.1.16 is called a quotient cat-
egory. Note that the construction of a localization of a category is different in
general since the amount of morphisms may increase by adding formal inverses to
create isomorphisms, whereas, in a quotient category, the number of morphisms
decreases. In both cases though, objects can become isomorphic that have not
been isomorphic before. The construction of a Serre quotient has parallels to the
construction of a quotient category, but behaves like a localization of a category
in many cases.

Together with the definition of the stable module category come Hellers inverse
loop space functors Ω and Ω−1 that encode the information of kernels of projective
covers and of cokernels of injective hulls, respectively. Keep in mind that in our
case, kG-mod is a Frobenius category, hence, injective and projective modules
coincide.

Definition-Lemma 5.1.18. ([He60]) Let π : P → M be a projective cover of a
kG-module M . Then, we define Ω(M) := ker(π). Moreover, for an injective hull
i :M → I of M , we define Ω−1(M) := coker(i).

Two projective covers (or injective hulls) are isomorphic to each other in
kG- stab. We obtain well-defined functors Ω,Ω−1 : kG- stab → kG- stab which
are inverse to each other, yielding an autoequivalence of categories.

For our purposes, we of course are interested in the triangulated structure of
kG- stab, which turns out to be even a rigid tensor triangulated category.
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Proposition 5.1.19. ([Car96, Theorem 5.6]) The category kG- stab is a trian-
gulated category with shift functor T := Ω−1 and exact triangles as follows. For
f ∈ HomkG- stab(X, Y ), X f→ Y

g→ Z
h→ T (X) is a standard triangle in kG- stab if

Z is the pushout in kG-mod of f and iX : X → I(X), where I(X) is an injective
hull, and if g and h appear in the following commutative diagram

0 // X

f

��

iX // I(X)

��

// T (X) //

=

��

0

0 // Y
g
// Z

h // T (X) // 0.

The exact triangles are the ones isomorphic to such a standard triangle.

Proposition 5.1.20. ([Bal07, Proposition 4.2]) Let G be a finite group and k
a field of characteristic dividing the group order. The stable module category
kG- stab is a rigid tensor triangulated category with tensor product ⊗k and internal
Hom hom := Homk.

Remark 5.1.21. (i) Combining Proposition 5.1.20 and Example 2.2.6 (i), we can
consider kG- stab a triangulated category with duality Homk(−, k).
We can see by hand that the duality is well-defined: Let A be in kG-mod.
For any projective P , we have

Homk(A⊕ P, k) ∼= Homk(A, k)⊕ Homk(P, k)

and since P is projective and kG-mod Frobenius, P ∗ = Homk(P, k) is also
projective. It follows that Hom(A ⊕ P, k) ∼= Hom(A, k) in kG- stab by
Theorem 5.2.2. If f ∼ g : A → B in kG- stab, then b ◦ f ∼ b ◦ g for all
b ∈ Homk(B, k) = B∗, hence, f ∗ ∼ g∗.

(ii) As already mentioned in [Kl16a, Remark 6.2.3], we deliberateley consider ⊗k
and consequently Homk(−, k) as opposed to ⊗kG. This is because the tensor
product M ⊗kGN of two left kG-modules M,N does not have a natural left
module structure.

We can view kG- stab as an Verdier localization of the derived category of
kG-modules Db(kG-mod) as the following result by Rickard shows.

Theorem 5.1.22. ([Ric89, Theorem 2.1]) Let G be a finite group and k a field
dividing the group order. The natural functor kG-mod → Db(kG-mod) induces
an equivalence of tensor triangulated categories

F : kG- stab
≃→ Db(kG-mod)/Db(kG- proj),

where kG- proj denotes the subcategory of kG-mod generated by projective kG-
modules.

In our case, we need to make sure that the above equivalence preserves duality.
The rigid tensor triangulated category kG- stab becomes a triangulated category
with duality when fixing the duality Homk(−, k), as Remark 5.1.21 shows.
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Lemma 5.1.23. The above equivalence F is duality-preserving.

Proof. The inclusion kG-mod → Db(kG-mod) sending a module M to the com-
plex ... → 0 → M → 0 → ... concentrated in degree 0 is duality-preserving and,
thus, also kG-mod → Db(kG-mod)/Db(kG- proj). Since kG-mod and kG- stab
have the same objects, the equivalence is duality-preserving on the level of objects.
On the level of morphisms, note that kG- stab and Db(kG-mod)/Db(kG- stab) are
well-defined with respect to taking duals. The statement now again follows from
the fact that kG-mod → Db(kG-mod)/Db(kG- proj) is duality-preserving and
duality in Db(kG-mod) is defined degreewise: Let f : M → N be a morphism in
kG-mod and f̄ its equivalence class in kG- stab. Then,

F (f̄ ∗) = F (f ∗) = [f ∗] = [f ]∗,

where [−] denotes the class of a morphism in Db(kG-mod)/Db(kG- proj).

Apart from the rigid tensor triangular structure, we were moreover interested
in dimension functions Section 2.3.

Definition 5.1.24. Let P ∈ Spc(kG- stab). We define its Krull dimension
dimKrull(P) as the maximal length n of a chain of irreducible closed subsets

∅ ⊊ C0 ⊊ C1 ⊊ ... ⊊ Cn = {P}.

It gives rise to a dimension function in the sense of Definition 2.3.1 by [Bal07,
Example 3.2].

We will now see that the cohomology ring of a group algebra coming with
its projective support variety already encodes all the information on the Balmer
spectrum of kG- stab.

Definition 5.1.25. We define the cohomology ring of kG as the graded ring

H•(G, k) :=
⊕
i≥0

ExtikG(k, k)

if p = 2, and only as its even part if the characteristic p is odd.

Definition 5.1.26. The projective support variety of kG is given by

VG(k) := Proj(H•(G, k)).

The projective support variety VG(M) of a kG-module M is defined as the subvari-
ety of VG(k) associated to the annihilator ideal J(M) of Ext∗k(M,M) in H•(G, k).

Proposition 5.1.27. ([Bal05b, Corollary 5.10]) Let G be a finite group and k a
field with characteristic dividing the group order. There is a homeomorphism

VG(k)
∼=−→ Spc(kG- stab)

x 7→ {M ∈ kG- stab | x /∈ VG(M)}

Under this homeomorphism, VG(M) corresponds to supp(M) ⊂ Spc(kG- stab) for
M an object of kG- stab.
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Moreover, we can compute the dimension of the support variety of a module
via its complexity, an invariant depending on the growth of the dimension of
components in projective resolutions.

Theorem 5.1.28. ([Car96, Theorem 4.3]) Any object M of kG-mod has a min-
imal projective resolution, that is, a projective resolution P• → M such that
for any other projective resolution Q• → M there exists an injective chain map
(P• → M) → (Q• → M) and a surjective chain map (Q• → M) → (P• → M)
that lift the identity on M .

Definition 5.1.29. For a minimal projective resolution P• →M of an object M
in kG-mod its complexity cG(M) is defined as the smallest s ∈ Z such that there
is a constant κ > 0 with

dimk(Pn) ≤ κ · ns−1 for n > 0.

We obtain the following correspondence between the dimension of VG(M) and
the complexity of M .

Proposition 5.1.30. ([Ben98b, Proposition 5.7.2]) Let G be a finite group and
k a field of characteristic dividing the group order. For an object M of kG-mod,
we have

dim(VG(M)) = cG(M)− 1.

Remark 5.1.31. The original statement of [Ben98b, Proposition 5.7.2] is that the
complexity of a kG-module M equals the dimension of VG(M). However, in
[Ben98b, Section 5.1], VG(M) is defined as the affine variant of the projective
support variety we defined in Definition 5.1.26 and carries the name cohomological
variety. Their dimensions differ by 1, hence, so do the statements of [Ben98b,
Proposition 5.7.2] and Proposition 5.1.30.

In this section, we have recalled foundations on the group ring kG and the
stable module category kG- stab. Next, we discuss in more detail the relation
between the Frobenius category kG-mod and its stable category kG- stab. The
(Grothendieck–)Witt group of the latter is harder to calculate, so we give a state-
ment on how to compute it in terms of the (Grothendieck–)Witt group of kG-mod.

5.2 The (Grothendieck–)Witt Group of kG- stab
Convention 5.2.1. Let G be a finite group and k a field of characteristic ̸= 2
dividing the group order. When considering kG- stab a triangulated category with
duality, we fix the duality Homk(−, k).

As mentioned before, this section intends to simplify the computations of the
groups GW[n](kG- stab) and W[n](kG- stab), n ∈ Z, by writing it in terms of
GW[n](kG-mod) and W[n](kG-mod), respectively. Calculations like these will
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turn out to be the first step in the determination of tensor triangular Chow–
Witt groups of kG- stab in Section 5.3 and Section 5.5. Since the (Grothendieck–
)Witt groups (and, for that matter, also the K0-groups) of kG- stab are harder to
calculate by hand than the respective groups of kG-mod, we will use a variation
of [TaWa91, Proposition 1] to break it down to a computation involving merely
the Frobenius category kG-mod.

For this, we first need to understand how equivalences translate between
kG- stab and kG-mod. The category kG-mod is a category with cancellation,
compare [He58, p.486/487], which is why we can apply [He60, Theorem 2.2] to
our case to obtain the following result.

Theorem 5.2.2. ([He60, Theorem 2.2]) Let f : M → N be a morphism in
kG-mod. Then, the following are equivalent:

(i) [f ] is an isomorphism in kG- stab

(ii) There are projective modules M ′, N ′ and an isomorphism f ′ : M ⊕M ′ →
N ⊕N ′ in kG-mod making the following diagram in kG-mod commute

M ⊕M ′ f ′
// N ⊕N ′

��

M

OO

f
// N.

With these tools at hand, we can prove the following theorem. It will be
central in the computation of tensor triangular Chow–Witt groups of kG- stab
since the first step is usually to determine its (shifted) Grothendieck–Witt group.
The theorem is a generalization of a similar statement for K0, namely [TaWa91,
Proposition 1], that Klein uses to calculate tensor triangular Chow groups of
kG- stab in [Kl16a].

Theorem 5.2.3. Let G be a finite group and k a field of characteristic ̸= 2
dividing the order of G; all dualities here are given by Homk(−, k).

(i) The quotient map kG-mod → kG- stab from Definition 5.1.16 induces iso-
morphisms for even n

GW[n](kG- stab) ∼= GW[n](Db(kG-mod))/ Im(α),

where α : GW[n](Db(kG- proj)) → GW[n](Db(kG-mod)) is induced by the
inclusion kG- proj→ kG-mod.

In particular,

GW(kG- stab) ∼= GW(kG-mod)/ Im(α′)

for α′ : GW(kG- proj)→ GW(kG-mod) induced by the inclusion kG- proj→
kG-mod.
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(ii) The quotient map kG-mod → kG- stab from Definition 5.1.16 induces iso-
morphisms for all n

W[n](kG- stab) ∼= W[n](Db(kG-mod))/W[n](Db(kG- proj)).

In particular,

W(kG- stab) ∼= W(kG-mod)/W(kG- proj)

and W[n](kG- stab) = 0 for n odd.

Proof. We prove (ii) first. Let m be odd. Then, by [BW02, Proposition 5.2],
W[m](Db(kG-mod)) = 0 = W[m](Db(kG- proj)). Moreover, by Theorem 5.1.22
and Theorem 4.1.4, which is applicable by Lemma 5.2.4 below, we have

W[m](kG- stab) ∼= W[m](Db(kG-mod)/Db(kG- proj))

∼= W[m](Db(kG-mod /kG- proj)) = 0,

again using [BW02, Proposition 5.2]. Now, let n be even. We have Balmer’s
localization sequence Theorem 3.3.2

...→W[n−1](Db(kG-mod)/Db(kG- proj))→W[n](Db(kG- proj))→W[n](Db(kG-mod))

→W[n](Db(kG-mod)/Db(kG- proj))→W[n+1](Db(kG- proj))→ ... .

By the above observations, we have that W[n−1](Db(kG-mod)/Db(kG- proj)) =
0 = W[n+1](Db(kG- proj)). Consequently, the statement follows from the isomor-
phism theorem of abelian groups.

Using Proposition 3.2.13, Proposition 3.2.14, and Proposition 3.2.16, we ob-
serve that, for an abelian category A, the Grothendieck–Witt group of A co-
incides with the Grothendieck–Witt group of Db(A). It follows directly that
W(kG- stab) ∼= W(kG-mod)/W(kG- proj).

For (i), consider Walter’s localization sequence Theorem 3.3.3

GW[n](Db(kG- proj))
α−→ GW[n](Db(kG-mod))

→GW[n](Db(kG-mod)/Db(kG- proj))→W[n+1](Db(kG- proj))→ ... .

For even n, W[n+1](Db(kG- proj)) = 0 by [BW02, Proposition 5.2]. It follows that
the morphism GW[n](Db(kG-mod))→ GW[n](Db(kG-mod)/Db(kG- proj)) ∼= GW[n](kG- stab)
is an epimorphism, where the latter isomorphism again follows from Theorem 5.1.22
and Theorem 4.1.4. The first statement now follows from the exactness of the se-
quence and the isomorphism theorem of abelian groups.

The second statement follows as in the case of Witt groups using that GW(A) ∼=
GW(Db(A)) for an abelian category A.

Lemma 5.2.4. The condition for Theorem 4.1.4 is satisfied for the inclusion
kG- proj→ kG-mod. Moreover, the equivalence

Db(kG-mod /kG- proj) ≃ Db(kG-mod)/Db(kG- proj)

is duality-preserving.
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Proof. Let 0 → P → B → C → 0 be a short exact sequence in kG-mod with P
in kG- proj. The category kG-mod is Frobenius, hence, we have an injective hull
iC : C → I(C) with I(C) in kG- proj. Note that I(C) and P are both injective
and projective. Consequently, the given sequence splits via an isomorphism f :

B
∼=→ P ⊕ C. Then, the following diagram commutes and the rows are exact:

0 // P //

id
��

B //

f ∼=
��

C //

id
��

0

0 // P
i1 //

id
��

P ⊕ C p2
//

(id,iC)
��

C //

iC
��

0

0 // P
i1 // P ⊕ I(C) p2

// I(C) // 0.

The second statement follows from the fact that the equivalence is induced by the
duality-preserving short exact sequence

Db(kG- proj)→ Db(kG-mod)→ Db(kG-mod /kG- proj).

Remark 5.2.5. In general, α : GW[n](kG- proj) → GW[n](kG-mod) from Theo-
rem 5.2.3 above might not be injective and, hence, Im(α) might not be isomor-
phic to GW[n](kG- proj), similar to the K-theoretic case in [TaWa91, Proposition
1]. For odd n, the map GW[n](kG-mod)→ GW[n](Db(kG-mod)/Db(kG- proj)) is
not even surjective in general, so other techniques are required to investigate this
case. We will not pursue this issue further here.

In order to do further calculations, we will moreover need the following version
of the dévissage theorem, for GW and W, respectively. For readers not familiar
with the theory of (Grothendieck–)Witt groups of fields, [Scha85, Lam05, MH73]
are recommended as an introductory reference.

Proposition 5.2.6. For k a field of characteristic p ̸= 2 and G a finite p-group,
the forgetful functor U : kG-mod→ k-mod induces isomorphisms

W(kG-mod,Homk(−, k)) ∼= W(k)

and

GW(kG-mod,Homk(−, k)) ∼= GW(k),

where the left-hand side denotes the shifted (Grothendieck–)Witt group of an exact
category with duality as in Definition 3.2.5.

Proof. We know from Lemma 5.1.4 that kG is local with residue field k, hence,
all simple modules are isomorphic (as kG-modules) to k, endowed with trivial
G-action. It follows that the semisimple modules are isomorphic to kn for some
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n ∈ N since all modules are of finite length in our setting, i.e. they correspond to
finite-dimensional k-modules.

Since the subcategory of kG-mod of semisimple modules is equivalent to
k-mod, the statement follows directly from [QSS79, Theorem 6.10] (and [QSS79,
Theorem 6.9] for Witt groups).

After having seen how to compute the (Grothendieck–)Witt group of kG- stab
in terms of the (Grothendieck–)Witt group of kG-mod, we have enough tools at
hand to determine the first non-algebro-geometric example of a Chow–Witt group,
namely of the tensor triangulated category kG- stab for G = Z/pnZ.

5.3 Tensor Triangular Chow–Witt Groups for G =

Z/pnZ
In order to compute the Chow–Witt group of the rigid tensor triangulated category
kG- stab, consider the following setup.

Convention 5.3.1. In this section, we fix n ∈ N and p ̸= 2 prime. Let k
be a field of characteristic p and G = Z/pnZ. When considering the tensor
triangulated category kG − stab a triangulated category with duality, we fix the
duality Homk(−, k) and restrictions of it on subcategories. Moreover, we equip
kG− stab with the dimension function dimKrull (Definition 5.1.24).

We begin with determining the filtration components kG- stab(i) of kG- stab
introduced in Definition 2.3.4. Recall that Proposition 5.1.27 tells us that it
suffices to look at support varieties.

By [Car96, Theorem 7.3] we know that VG(k) is a point, hence, so is VG(M) for
any non-projective kG-module M , i.e. dimKrull(VG(M)) = 0 for all M ̸= 0 in kG−
stab. Under the isomorphism VG(k) ∼= Spc(kG- stab) from Proposition 5.1.27, the
support of an object in kG- stab corresponds to its projective support variety. In
particular, they have equal dimension. It follows that

kG- stab(i) =

{
kG- stab i ≥ 0,

0 i < 0,

and thus

kG- stab(i)⧸kG- stab(n−1)
=

{
kG- stab i = 0,

0 else,

compare also [Kl16a, Section 6.3]. In particular, all quotients of filtration compo-
nents are idempotent complete, which is why we can apply Definition 4.3.5. The
only non-trivial degree of C̃H

∆

i (kG- stab) is i = 0. For this case, we obtain the
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following defining diagram for T := kG- stab.

W[1](T(−2))
ĩ−1,W
T //W[1](T(−1)) GW(T(0))

ĩ1T //

q̃0T
��

GW(T(1))

GW(T(0)/T(−1))

d̃0T
hh

which, by the above considerations, equals

0 0 // 0 GW(kG- stab) id //

id
��

GW(kG- stab)

GW(kG- stab)

0d

ee

So, we obtain

C̃H
0

∆(kG- stab) = (0d)
−1(Im(0))/ id(ker(id))

= GW(kG- stab)/0

= GW(kG- stab).

As a consequence, the computation of C̃H
0

∆(kG- stab) amounts to the computation
of GW(kG- stab). For this, we observe that kG is local with residue field k by
Example 5.1.6. So, we use Theorem 5.2.3 and Proposition 5.2.6 to obtain

GW(kG- stab) ∼= GW(kG-mod)/ Im(α)
∼= GW(k)/U(Im(α))

where U : GW(kG-mod) → GW(k-mod) is the isomorphism from Proposi-
tion 5.2.6 and α : GW(kG- proj) → GW(kG-mod) is induced by the inclusion.
Abusing notation, we also write U for the composition (dim, det) ◦ U .

We have proven the following.

Proposition 5.3.2. Let G = Z/pnZ, k a field of prime characteristic p ̸= 2
and n ∈ N and U, α as above. Then, the tensor triangular Chow–Witt groups of
kG- stab are given as

C̃H
i

∆(kG- stab)
∼=

{
GW(k)/U(Im(α)) i = 0,

0 i ̸= 0.

We can even be more concrete than this general result. If k is algebraically
closed, Chow–Witt groups and Chow groups coincide as expected.

Example 5.3.3. For algebraically closed fields k, the map dim : GW(k) → Z is
an isomorphism by [Lam05, Proposition II.3.1], hence

C̃H
i

∆(kG- stab)
∼=

{
Z/pnZ i = 0,

0 i ̸= 0
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since kG is local, i.e. projective and free modules coincide. Thus, symmetric forms
in Im(α) have k-dimension a multiple of pn. It follows from [Kl16a, Proposition
6.3.2] that

C̃H
i

∆(kG- stab)
∼= CHi

∆(kG- stab)

for all i.

For the next example, we restrict to the case of k being finite, since GW(k)
is known for this special case. Again, it turns out that Chow–Witt and Chow
groups coincide here.

Example 5.3.4. Let k be finite. We know by Proposition 5.2.6 that

GW(kG-mod) ∼= GW(k).

By [Scha85, Chapter 2, Theorem 3.3 and Lemma 3.7] (and the considerations of
[Scha85, Chapter 2, §2,]) we have the isomorphism

(dim, det) : GW(k)
∼=→ Z⊕ Z/2Z

given by the dimension and the determinant. Note that [Scha85, Chapter 2,
Theorem 3.3] can be applied since, by [Scha85, Chapter 2, Theorem 3.8], every
3-dimensional quadratic space is isotropic (in the sense of [Scha85]). By Theo-
rem 5.2.3 and Proposition 5.2.6 we hence have

GW(kG- stab) ∼= GW(kG-mod)/ Im(α)
∼= GW(k)/U(Im(α))
∼= (Z⊕ Z/2Z)/U(Im(α))

for U : GW(kG-mod) → GW(k-mod) and α : GW(kG- proj) → GW(kG-mod)
as before.

The subgroup Im(α) is generated by equivalence classes of symmetric objects
(P, ϕ), where P is projective. Since kG is local by Lemma 5.1.4, all projective
modules are free, and hence have k-dimension a multiple of pn. Moreover, classes
of objects of the form (P, ϕ) can have arbitrary determinant in each dimension
m · pn, m ∈ Z, hence, the map (dim, det) induces a group isomorphism

U(Im(α)) ∼= pnZ⊕ Z/2Z.

In the end, we have

GW(kG- stab) ∼= Z⊕ Z/2Z/U(Im(α))
∼= (Z⊕ Z/2Z)/(pnZ⊕ Z/2Z)
∼= Z/pnZ.
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Hence,

C̃H
i

∆(kG- stab)
∼=

{
Z/pnZ i = 0,

0 i ̸= 0.

Again, it follows from [Kl16a, Proposition 6.3.2] that

C̃H
i

∆(kG- stab)
∼= CHi

∆(kG- stab)

for all i.

The reader might find it surprising that C̃H
i

∆(kG- stab)
∼= CHi

∆(kG- stab)
not only for k algebraically closed but also for finite k as we have seen above.
What actually happens when dividing out Im(α) is that we divide out such a
big subgroup that symmetric objects of the same dimension become equivalent
although they have different determinants, i.e. in particular are not isometric
in GW(k). To get a better intuition of this circumstance, we consider the case
k = F3 and G = Z/3Z in the following.

Example 5.3.5. Let k = F3 and G = Z/3Z, i.e. p = 3 and n = 1. Since
GW(k) ∼= Z ⊕ Z/2Z, each element in GW(k) is uniquely determined (up to
isometry) by its dimension together with its determinant, where the determinant
is an element of k×/(k×)2 = {[1], [−1]} since −1 is not a square in F3.

Dividing out U(Im(α)), symmetric objects of equal dimension now are in the
same equivalence class. We check dimensions 1 and 2:

We have ⟨1⟩ ∼ ⟨−1⟩ since

⟨1⟩+ ⟨−1, 1, 1⟩ = ⟨−1, 1, 1, 1⟩ = ⟨−1⟩+ ⟨1, 1, 1⟩

with ⟨1, 1, 1⟩, ⟨−1, 1, 1⟩ in U(Im(α)).
In dimension 2, we have

⟨1, 1⟩+ ⟨−1, 1, 1⟩ = ⟨−1, 1, 1, 1, 1⟩ = ⟨−1, 1⟩+ ⟨1, 1, 1⟩

with ⟨−1, 1, 1⟩, ⟨1, 1, 1⟩ ∈ U(Im(α)). Analogous considerations can be done for
different values of pn for p ̸= 2.

Summarizing these results, we have the following.

Proposition 5.3.6. If G = Z/pnZ, and k is either algebraically closed or finite
of characteristic p ̸= 2, we have that

C̃H
i

∆(kG- stab)
∼= CHi

∆(kG- stab)
∼=

{
Z/pnZ i = 0,

0 i ̸= 0.

In particular, GW(kG- stab) ∼= K0(kG- stab) ∼= Z/pnZ.
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Proof. If G = Z/pnZ, the first statement follows directly from Example 5.3.3 and
Example 5.3.4. The second statement follows from

GW(kG- stab) = C̃H
0

∆(kG- stab)
∼= CH0

∆(kG- stab) = K0(kG- stab)

by Proposition 5.3.2 and [Kl16a, Section 6.3].

We have just seen examples of tensor triangular Chow–Witt groups in the
setting of representation theory. For G = Z/pnZ, we obtained a general result,
but also witnessed that, for k algebraically closed or k finite, Chow–Witt and
Chow groups of kG- stab coincide.

In the next section, we will consider the “next complicated” case, namely G =
Z/pZ× Z/pZ.

5.4 Tensor Triangular Chow Groups for G = Z/pZ×
Z/pZ

We are in the situation of Convention 5.3.1, but with G = Z/pZ× Z/pZ.
In [Kl16a], Klein computes the Chow groups for G = Z/2Z × Z/2Z and

char(k) = 2, but since we work with symmetric bilinear forms, characteristic
2 is usually a problem as mentioned in Remark 3.1.4. For this reason, we consider
fields k of characteristic p ̸= 2 and G = Z/pZ× Z/pZ.

Remark 5.4.1. Note that there has been progress on the matter of characteristic 2
for Grothendieck–Witt and Witt groups. For example, works by Schlichting which
we use here such as [Sch10a] do not make any assumptions on the characteristic.
However, some of the tools we use do not have an analog for characteristic 2 yet.
Since the focus of this work is merely to see some basic examples, we will not
consider this case.

To get a sensible intuition of what the Chow–Witt groups of kG- stab could
possibly look like, we start with computing its tensor triangular Chow groups
following [Kl16a] (here for Z/pZ× Z/pZ, p ̸= 2 as opposed to Z/2Z× Z/2Z).

As for G = Z/pnZ, we first determine the filtration components of the tensor
triangulated category kG- stab. By [Car96, Thm 7.6] (compare [BBC09, Example
1.2]), it follows that VG(k) = P1, i.e. the modules of complexity ≤ 1 yield a proper
subcategory kG- stab(0) of kG- stab. The filtration components of kG- stab thus
are

kG- stab(i) :=


kG- stab i ≥ 1,

kG- stab(0) i = 0,

0 i < 0,

and the only non-trivial quotients are

kG- stab(0) /kG- stab(−1) = kG- stab(0)
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and

kG- stab(1) /kG- stab(0) = kG- stab /kG- stab(0) .

Hence, we distinguish the following non-trivial degrees i for CH∆
i (kG- stab).

i = 0
First note that

Z∆
0 (kG- stab) : = K0((kG- stab(0) /kG stab(−1))

♮)

= K0((kG- stab(0))
♮) = K0(kG- stab(0))

since kG- stab(0) is idempotent complete as a thick subcategory of an idempotent
complete category. It follows that

CH0
∆(kG- stab) := Z0

∆(kG- stab)/j
0 ◦ q0(ker(i1)) = K0(kG- stab(0))/ ker(i

1),

for i1 : K0(kG- stab(0)) → K0(kG- stab) and by the isomorphism theorem of
abelian groups

CH0
∆(kG- stab) = K0(kG- stab(0))/ ker(i

1) ∼= Im(i1).

i = 1
We do not know whether the quotient kG- stab /kG- stab(0) is idempotent com-
plete, which was a condition until now. So, we use the model-theoretic description
of tensor triangular Chow groups introduced in Definition 4.6.2. It is applicable
since kG- stab admits a model by [Kl16b, Example 2.31].

The coboundaries (whose definition does not differ from Balmer’s definition)
are defined as

B1
∆(kG- stab) = j1 ◦ q1(ker(i2)),

where

i2 : K0(kG- stab(1))→ K0(kG- stab(2))

is the identity on K0(kG- stab) since kG- stab(i) = kG- stab for i ≥ 1. Hence,

B1
∆(kG- stab) = j1 ◦ q1(ker(i2)) = j1 ◦ q1(0) = 0.

It follows that

CH1
∆′(kG- stab) := Z1

∆′(kG- stab)/B1
∆(kG- stab) = Z1

∆′(kG- stab).

By Definition 4.6.2,

Z1
∆′(kG- stab) := ker(q′0 ◦ d′1) ⊂ K0((kG- stab /kG- stab(0))

♮)
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with

d′1 : K0((kG- stab /kG- stab(0))
♮)→ K−1(kG- stab(0))

and

q′1 : K−1(kG- stab(0))→ K−1(kG- stab(0) /kG- stab(−1))

→ K−1((kG- stab(0) /kG- stab(−1))
♮).

Since kG- stab(−1) = 0, the map q′1 is the identity on K−1(kG- stab(0)). Conse-
quently,

CH1
∆′(kG- stab) = Z1

∆′(kG- stab) = ker(d′1).

In conclusion, we have shown:

Proposition 5.4.2. Let G = Z/pZ× Z/pZ and k a field of prime characteristic
p ̸= 2 and n ∈ N. Then, the tensor triangular Chow groups of kG- stab are

CHi
∆(kG- stab) =


0 i ̸= 0, 1,

Im(i1) i = 0,

ker(d′1) i = 1,

where i1 : K0(kG- stab(0))→ K0(kG- stab) and d′1 : K0((kG- stab /kG- stab(0))
♮)→

K−1(kG- stab(0)).

For i = 0, it amounts to computing the image of i1.
Remark 5.4.3. For the case p = 2, Klein does so in [Kl16a, Lemma 6.4.4]. He uses
a complete characterization of the indecomposable modules of complexity 1 as the
non-projective indecomposable modules of even dimension, see [Kl16a, Corollary
6.4.3]. At this point, concrete results about p = 2 are applied, which is why we
use different arguments here.

Recall that, by Example 5.1.6, the group algebra of kG for G = Z/pZ×Z/pZ
is given by

k(Z/pZ× Z/pZ) ∼= k[x, y]/(xp, yp).

We know from [Ben98b, Corollary 5.8.5] that if p does not divide the dimension
of a module, then its support variety already is VG(k), which in our case equals
P1. Hence, if p does not divide the dimension of a module, then its complexity is
2.

Example 5.4.4. Let p = 3. We want to give an example of an indecomposable
3-dimensional module of complexity 1. One can extend this example to p > 3
since this is a general procedure.

Let J = (x, y) be the radical of kG, then J2 = (x2, y2, xy). We consider the
indecomposable module

M = kG/J2 = k[x, y]/(x2, y2, xy).
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It is 3-dimensional with k-generators 1, x and y. To see that it has complexity 1,
we construct a minimal resolution.

We define f0 : kG→M as the canonical projection which has kernel ker(f0) =
(x2, y2, xy) as a kG-module. Next, we construct

f1 : kG
3 → kG,

(1, 0, 0) 7→ x2,

(0, 1, 0) 7→ y2,

(0, 0, 1) 7→ xy,

such that ker(f0) = Im(f1). We obtain the description of its kernel as ker(f1) =
((x, 0, 0), (0, y, 0), (0, 0, x2), (0, 0, y2)) and construct a map

f2 : kG
4 → kG3,

(1, 0, 0, 0) 7→ (x, 0, 0),

(0, 1, 0, 0) 7→ (0, y, 0),

(0, 0, 1, 0) 7→ (0, 0, x2),

(0, 0, 0, 1) 7→ (0, 0, y2),

with Im(f2) = ker(f1) and ker(f2) = ((x2, 0, 0, 0), (0, y2, 0, 0), (0, 0, x, 0), (0, 0, 0, y)).
We continue inductively by always sending the generators of kG4 to the generators
of the kernel from the step before. This way, we obtain that all fi for i ≥ 3 odd
and for i ≥ 4, respectively, are equal and we have a minimal resolution

...→ kG4 f3−→ kG4 f2−→ kG3 f1−→ kG
f0−→M → 0.

This procedure is described in [Car96, p.14]; the resolution is minimal by [Car96,
Theorem 4.1].

Now, let λ := 5. We observe that dim(kG3) = 3 ≤ 5·21−1 = 5 and dim(kG4) =
4 ≤ 5 · i1−1 where i ≥ 3 is the index of kG4 in the free resolution. Hence, the
complexity of M is indeed 1 whereas its dimension is 3, i.e. in particular divisible
by 3.

On the other hand, the module k ⊕ k ⊕ k is three-dimensional, but has com-
plexity 2 by Proposition 5.1.30 and [Ben98b, Theorem 5.1.1 (ii)].

As we have just seen, there are modules of dimension 3 with different com-
plexity.

However, for general p, such modules of the same dimension but different

complexity are in the same equivalence class in K0(kG-mod)
dim∼= Z. Consequently,

we can still compute Im(i1). By the same arguments as in the case G = Z/pnZ,
we know that the dimension yields an isomorphism

dimk : K0(kG- stab)
∼=−→ Z/p2Z.
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Restricting this isomorphism to Im(i1) ⊂ K0(kG- stab), we obtain an injective
group homomorphism

dimk : Im(i1)→ Z/p2Z.

Let A be the subgroup of K0(kG- stab) ∼= Z/p2Z generated by modules of dimen-
sion divisible by p. We have that

A ∼= p(Z/p2Z) ∼= Z/pZ

via dimension. Modules of complexity 1, i.e. modules in kG-mod(0), all have di-
mension divisible by p by contraposition of [Ben98b, Corollary 5.8.5] and the fact
that VG(k) = P1. Thus, Im(i1) ⊂ A. On the other hand, there is a kG-module
of dimension p and complexity 1, namely kG/J2 for J = (x, y) by Example 5.4.4.
Since 1 = cG(kG/J

2) = cG((kG/J
2)n) by [Ben98b, Theorem 5.1.1 (ii)], the com-

position

Im(i1) �
�

// A
∼= // Z/pZ

is also surjective. It follows that Im(i1) ∼= Z/pZ.
Applying these computations to Proposition 5.4.2, we can now deduce the

following.

Proposition 5.4.5. Let G = Z/pZ × Z/pZ and k a field with char(k) = p ̸= 2.
Then,

CHi
∆(kG- stab) =


0 i ̸= 0, 1,

Z/pZ i = 0,

ker(d′1) i = 1,

where d′1 : K0((kG- stab /kG- stab(0))
♮)→ K−1(kG- stab(0)).

For i = 1, we will not proceed further since it would exceed the extent of this
work.

5.5 Tensor Triangular Chow–Witt Groups for G =

Z/pZ× Z/pZ
Again, we are in the situation of Convention 5.3.1, but with G = Z/pZ× Z/pZ.

We would like to take a closer look at the defining diagram for Chow–Witt
groups of kG- stab for G = Z/pZ × Z/pZ, at first for general k of characteristic
p ̸= 2.

We have seen the filtration components above, so we also consider the fol-
lowing cases where T := kG- stab. Since we do not know in general whether
kG- stab /kG- stab(0) is idempotent complete, the defining diagram is considered
on the level of models as in Definition 4.6.4.
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i = 0
Since kG- stab(0) is idempotent complete as a thick subcategory of an idempotent
complete category, the defining diagram has the form

0 0 // 0 GW(kG- stab(0))
ĩ //

id
��

GW(kG- stab)

GW(kG- stab(0))

0d

ff

.

We obtain

C̃H
0

∆(kG- stab) = 0−1
d (Im(0))/(id(ker(̃i)))

= GW(kG- stab(0))/ ker(̃i)

∼= Im(̃i),

where the last isomorphism follows from the isomorphism theorem for abelian
groups.

i = 1
As in the case of tensor triangular Chow groups, we use the model-theoretic
version Definition 4.6.4 since we do not know whether kG- stab /kG- stab(0) is
idempotent-complete.

The oriented coboundaries are defined as

B̃1
∆′(kG- stab) := q̃′1(ker(̃i

2)),

where

ĩ2 : GW[1](kG- stab(1))→ GW[1](kG- stab(2))

is the identity on GW[1](kG- stab) since kG- stab(i) = kG- stab for i ≥ 1. Hence,

B̃1
∆′(kG- stab) = q̃′1(ker(̃i

2)) = q̃′1(0) = 0.

It follows that

C̃H
1

∆′(kG- stab) := Z̃1
∆′(kG- stab)/B̃1

∆′(kG- stab) = Z̃1
∆′(kG- stab).

By Definition 4.6.4,

Z̃1
∆′(kG- stab) = ker(q̃′0,W ◦ d̃′1) ⊂ GW[1]((kG- stab /kG- stab(0))

♮)

with

d̃′1 : GW[1]((kG- stab /kG- stab(0))
♮)→W[2](kG- stab(0))

and

q̃′0,W : W[2](kG- stab(0))→W[2](kG- stab(0) /kG- stab(−1))

→W[2]((kG- stab(0) /kG- stab(−1))
♮).
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Since kG- stab(−1) = 0, the map q̃′0,W is the identity on W[2](kG- stab(0)). Conse-
quently,

C̃H
1

∆′(kG- stab) = Z̃1
∆′(kG- stab) = ker(d̃′1).

We have thus proven the following

Proposition 5.5.1. For G = Z/pZ×Z/pZ and k a field of characterisitc p ̸= 2,
we have isomorphisms

C̃H
i

∆′(kG- stab) =


0 i ̸= 0, 1,

Im(̃i) i = 0,

ker(d̃′1) i = 1

for ĩ : GW(kG- stab(0))→ GW(kG- stab) and d̃′1 : GW[1]((kG- stab /kG- stab(0))
♮)→

W[2](kG- stab(0)).

For more concrete cases of k one can say a bit more, but we can only give
partial results here.

Example 5.5.2. For k be algebraically closed, let

U : GW(kG-mod)→ GW(k-mod)

be the morphism induced by the forgetful functor and

α : GW(kG- proj)→ GW(kG-mod)

the morphism induced by the inclusion. To compute the Chow–Witt group in
degree 0, we consider the inclusion

i : GW(kG- stab(0))→ GW(kG- stab)

and observe that

GW(kG- stab) ∼= GW(kG-mod)/ Im(α) ∼= GW(k)/U(Im(α)) ∼= Z/p2Z

by Theorem 5.2.3 and Proposition 5.2.6; recall that by Example 5.1.6 the residue
field of kG is k. The last isomorphism follows from the dimension isomorphism
GW(k) ∼= Z and the fact that kG is local (see Lemma 5.1.4), hence, free and
projective modules coincide. So, their dimension is always a multiple of p2 and a
kG-module of dimension p2 exists, namely kG itself.

As in the case of Chow groups, the image Im(i) is now spanned by modules
of complexity 1. These always have dimension divisible by p by contraposition of
[Ben98b, Corollary 5.8.5] and support variety P1. There is indeed a kG-module
of dimension p, namely kG/J2 from Example 5.4.4. Analogously, it follows that
the restriction of the isomorphism dimk : GW(kG- stab)→ Z/p2Z to Im(̃i)

dimk : Im(̃i)→ Z/p2Z
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is injective with image Z/pZ. It follows by Proposition 5.5.1, that

C̃H
0

∆(kG- stab)/ Im(̃i) ∼= p(Z/p2Z) ∼= Z/pZ.

For the computation of kernel of d̃′1, or even GW[i](kG- stab) as a first ap-
proach, we lack the necessary tools at the moment and will not pursue this further
here. Therefore, we have that for k algebraically closed

C̃H
i

∆(kG- stab) =


0 i ̸= 0, 1,

Z/pZ i = 0,

ker(d̃′1) i = 1,

where d̃′1 : GW[1]((kG- stab /kG- stab(0))
♮)→W[2](kG- stab(0)).

In degree 0, our computation coincides with the case of Chow groups. To
compare degree 1, further steps will need to be made.

After having treated algebraically closed fields, we now want to consider finite
fields.

Example 5.5.3. Let k be finite and U, α as above. Analogously to Example 5.3.4,
we consider the following isomorphism

(dim, det) : GW(k)
∼=−→ Z⊕ Z/2Z.

By Theorem 5.2.3 and Proposition 5.2.6 we, hence, have

GW(kG- stab) ∼= GW(kG-mod)/ Im(α)
∼= GW(k)/U(Im(α))
∼= (Z⊕ Z/2Z)/U(Im(α))

Again, as in Example 5.3.4, kG is local by Lemma 5.1.4, all projective modules
are free, hence, have a dimension a multiple of p2 and arbitrary determinant in
each dimension. It follows that U(Im(α)) ∼= p2Z⊕ Z/2Z and, thus,

GW(kG- stab) ∼= (Z⊕ Z/2Z)/(p2Z⊕ Z/2Z)
∼= Z/p2Z ∼= K0(kG- stab).

To determine the image of ĩ : GW(kG- stab(0)) → GW(kG- stab), recall that,
since VG(k) = P1 and by contraposition of [Ben98b, Corollary 5.8.5], modules in
the image of ĩ have dimension a multiple of p2 but arbitrary determinants. Thus,
as above, Im(̃i) ∼= p(Z/p2Z) ∼= pZ/p2Z ∼= Z/pZ and we obtain

C̃H
i

∆′(kG- stab) =


0 i ̸= 0, 1,

Z/pZ i = 0,

ker(d̃′1) i = 1.

Again, Chow- and Chow–Witt groups coincide in degree 0 and further progress
on degree 1 may be made in future work.
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5.5. Tensor Triangular Chow–Witt Groups for G = Z/pZ× Z/pZ

As before, we lack the necessary technical tools to compute the first shifted
Grothendieck–Witt groups and kernels or images of maps between them.

However, from the examples, we can deduce the following results. The restric-
tion to the cases where G is an elementary abelian p-group or G = Z/pnZ is due
to the assumptions in Proposition 5.2.6.

Corollary 5.5.4. If G ∼= (Z/pZ)r is a finite elementary abelian p-group and k is
algebraically closed or finite of characteristic p ̸= 2, we have that GW(kG- stab) ∼=
K0(kG- stab).

Proof. Let U, α be as above. For G elementary abelian we have that

GW(kG- stab) ∼= GW(kG-mod)/ Im(α) ∼= GW(k)/U(Im(α))

by Theorem 5.2.3 and Proposition 5.2.6.
For k algebraically closed, GW(k) ∼= Z ∼= K0(k) by dimension, and hence by

[TaWa91, Proposition 1] GW(kG- stab) ∼= K0(kG- stab).
If k is finite, GW(k) ∼= Z ⊕ Z/2Z via dimension and determinant. Then, the

subgroup U(Im(α)) is isomorphic to prZ ⊕ Z/2Z analogously to Example 5.5.3.
Hence, GW(kG- stab) ∼= Z/prZ ∼= K0(kG- stab) using again [TaWa91, Proposition
1], where both isomorphisms are given by the dimension.

In this chapter, we have made some very first computations concerning Chow–
Witt groups of tensor triangulated categories outside the field of algebraic geom-
etry. For G = Z/pnZ, p ̸= 2, we have seen that the only non-trivial Chow–Witt
group is in degree 0 and isomorphic to Z/pnZ and coincides with the non-oriented
case. For G = Z/pZ×Z/pZ and p ̸= 2, the 0-th Chow–Witt group again coincides
with the Chow group being Z/pZ. The other non-trivial degree is 1, but we lack
technical tools such as an analogon of Proposition 5.2.6 to do further steps here.
Our computations moreover show that the Chow–Witt groups of kG- stab usually
also heavily depends on the Grothendieck–Witt group of the base field k, which
are hard to determine in general.
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Chapter 6

The Spectrum of Artin Motives

After having seen how Chow–Witt groups of schemes can be generalized to the
setting of tensor triangulated categories, we now want to investigate the role of
Chow–Witt groups in the theory of motives. The first aim is to refine results of
[BG23a] before computing some examples of Balmer spectra of Artin Milnor–Witt
motives.

To begin with, this chapter recalls the construction of Voevodsky’s derived cat-
egory of motives DM(k;R) in Section 6.1 and arguments and results of [BG23a] in
Section 6.2 connecting Artin motives, permutation modules, and Mackey functors.

Convention 6.0.1. Let R be a commutative ring. In the rest of this work, let
k be a perfect field with a fixed separable closure k̄ and absolute Galois group
Γ := Gal(k̄/k). If not mentioned otherwise, all schemes will be separated and of
finite type over their respective base field (often k).

6.1 The Derived Category of Motives

We recall the construction of Voevodsky’s derived category of motives DM(k;R)
over a field k with coefficients in a ring R. As an introductory lecture on this topic,
we recommend [MVW06, Voe00], which we use as references for the contents of
this section. The latter is the original work.

Consider the following diagram demonstrating the construction setps. We
start with the category of finite correspondences discussed below and consider
presheaves on this category. After that, one passes to the derived category of t-
sheaves with transfers, usually for topologies such as Nisnevich, étale, or Zariski.
In the next step, we force A1-invariance to define the derived category of effective
motives. Finally, we formally invert the Tate twist which is usually done by
passing to spectrum objects, but we will not focus on this part here since we only
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Chapter 6. The Spectrum of Artin Motives

deal with effective motives in this work.

Cork,R

additive functors Coropk,R→Ab

��

finite correspondences

PShR(Cork,R)

sheafify, derive

��

presheaves with transfers

D(Sht(Cork,R))

force A1-invariance

��

derived category of t-sheaves with transfers

DMeff(k;R)

formally invert Tate twist R(1)

��

derived category of effective motives

DM(k;R) derived category of motives

We start with the construction of the category of finite correspondences.

Definition 6.1.1. Let X be a smooth connected scheme over k and Y any sep-
arated scheme over k. An elementary correspondence from X to Y is defined as
an irreducible closed subset W ⊂ X × Y whose associated integral subscheme is
finite and surjective over X. If X is non-connected, an elementary correspondence
from X to Y is an elementary correspondence from a connected component of X
to Y . A finite correspondence is an element of the free abelian group Cork(X, Y )
generated by the elementary correspondences.

Definition 6.1.2. We define the category Cork of finite correspondences as fol-
lows. The objects are smooth separated schemes over k denoted by Smk. Its
morphism sets are given by the abelian groups Cork(X, Y ). If X is not connected
with connected components Xi, i ∈ I, we have Cork(X, Y ) = ⊕i∈I Cork(Xi, Y ).
Composition of correspondences is illustrated in [MVW06, Figure 17A.1.]. For a
ring R, we set the category Cork,R := Cork⊗ZR, i.e., tensoring every morphism
group between two objects with R.

Remark 6.1.3. Note that Cork,R is a symmetric monoidal additive category with
coproduct the disjoint union of k-schemes.

Example 6.1.4. Let f : X → Y be a morphism in Smk and X connected, then
the graph Γf is an elementary correspondence from X to Y . If X is not connected,
the sum of components of the graph yields a finite correspondence.
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We obtain a functor

γ : Smk → Cork,

being the identity on objects and sending a morphism to its graph.

In the next step of the construction of DM(k;R), we pass to (pre-)sheaves with
transfers.

Definition 6.1.5. A presheaf with transfers is an additive, R-linear contravariant
functor Coropk,R → R-Mod. The category of R-linear additive presheaves on Cork,R
will be denoted by PShR(Cork,R).

A presheaf with transfers is a t-sheaf with transfers if it is a sheaf in the t-
topology when restricted to Smk, where t can be Zariski (Zar), Nisnevich (Nis),
or étale (et). We denote the corresponding category by Sht(Cork,R).

Example 6.1.6. Constant presheaves on Smk are presheaves with transfers. The
classical Chow groups CHi(−) are presheaves with transfers, see [MVW06, Exam-
ple 2.5].

An important class of presheaves with transfers will be the representable ob-
jects. They are essential to define motivic complexes and the Tate twist we later
wish to invert.

Definition 6.1.7. Let X be an object of Smk, then Rtr(X) is defined as the
presheaf with transfers given by Rtr(X)(U) := Cork,R(U,X), also denoted the
presheaf with transfers represented by X.

Remark 6.1.8. By [Voe00, Lemma 3.1.2], Rtr(X) is a Nis-sheaf with transfers.

Definition 6.1.9. Let q ∈ N. Then, we define the motivic complex R(q) as the
complex of presheaves with transfers given by

R(q) := C∗Rtr (G∧q
m ) [−q],

where Gm is the multiplicative group and C∗Rtr (G∧q
m [−q]) the complex obtained

from the simplicial presheaf U 7→ Rtr (G∧q
m ) [−q](U×∆•) and ∆• is the cosimplicial

scheme defined as

∆n := Spec(k[x0, ..., xn])/(
n∑
i=0

xi = 1) .

Example 6.1.10. We consider the following examples of motivic complexes.

(i) For a general ring R we have R(q) = Z(q)⊗R.

(ii) If q = 0, then Z(0) = C∗(Z), which is quasi-isomorphic to Z.

(iii) For q = 1 we have Z(1) = C∗Ztr(Gm)[−1], which is quasi-isomorphic to
O∗[−1] by [MVW06, Theorem 4.1].
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In the next step, we force A1-invariance to define effective motives.

Definition 6.1.11. We denote by EA1 the smallest thick (and closed under arbi-
trary direct sums) subcategory of D(ShNis(Cork,R)) containing maps of the form
Rtr(X × A1)→ Rtr(X) and by WA1 the class of maps with cone in EA1 .

Then, we define the triangulated category of effective motives as the localiza-
tion

DMeff(k;R) := D(ShNis(Cork,R))[W
−1
A1 ],

which coincides with the Verdier quotient D(ShNis(Cork,R))/EA1 , compare [Nee05,
Proposition 2.1.24].

By the motive M(X) of X in Smk we denote the object Rtr(X) in DMeff(k;R).
Moreover, we define the triangulated category of geometric effective motives

DMeff,gm(k;R) as the localization of the category Kb(Cor
♮
k,R) with respect to the

thick subcategory T̄ from [Voe00, p.191], i.e., forcing A1-invariance.

Finally, we pass to the triangulated category of motives in the last step. Since
we will only consider effective motives in the rest of this work, we will not go into
detail. For this, the reader is referred to [MVW06, Voe00].

If t = Nis, we omit it from the notation.

Definition 6.1.12. We define the triangulated category of motives DM(k;R) as
the category obtained from DMeff(k;R) after formally inverting the Tate twist
operation ⊗R(1).

Similarly, we set the triangulated category of geometric motives DMgm(k;R) as
the category obtained from DMeff,gm(k;R) after formally inverting the Tate twist
operation. By abuse of notation, we denote by the motive M(X) of a smooth
scheme X the class of Rtr(X) in DM(k;R).

Remark 6.1.13. The category DMeff(k;R) is a tensor triangulated category. It
is compactly generated by motives M(X) of smooth schemes. The category
DM(k;R) is a tensor triangulated category in which every object is isomorphic to
some M(X)(−n) for a smooth scheme X and some n ≥ 0.

The geometric motives form a rigid tensor triangulated category DMgm(k;R)
by [Voe00, Theorem 4.3.7]. It is moreover essentially small and idempotent com-
plete, hence, so is DMeff,gm(k;R). Moreover, the category of geometric (effective)
motives coincides with the thick subcategory of compact objects of DM(eff)(k;R).

Remark 6.1.14. The triangulated category of Tate motives is the localizing subcat-
egory of DM(k;R) generated by Tate twists R(n) for n ∈ Z and is a large tensor
triangulated category. The triangulated category of geometric Tate motives is the
thick subcategory of DMgm(k;R) generated by Tate twists R(n) for n ∈ Z. It is
a small, rigid, idempotent complete tensor triangulated category.

After having recalled the construction of Voevodsky’s derived category of mo-
tives, we will now recollect the most important results from [BG23a].
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6.2 Artin Motives, Mackey Functors, and Permu-
tation Modules

In this section, we recall constructions and main results from [BG23a] on the
connection bewteen Artin motives, permutation modules, and Mackey functors.
The recollection is coarse and only included for the reader’s convenience. For more
details the reader is referred to the original work [BG23a], which we will follow
here.

The aim of [BG23a] is to prove equivalences of tensor triangulated categories
in the following diagram, where all the candidates will be recalled briefly.

DAM(k;R)
66

≃

vv

hh

≃

((

DPerm(Γ;R) oo ≃ // D(MackcohR (Γ))

(6.1)

A part of these equivalences already appears in [Voe00, Proposition 3.4.1]. We
begin with the upper part of the triangle.

Definition 6.2.1. The derived category of Artin motives DAM(k;R) is defined as
the localizing subcategory of DMeff(k;R) generated by the motives of 0-dimensional
smooth k-schemes. Its compact part, the derived category of geometric Artin mo-
tives, is denoted by DAMgm(k;R). It can also be described as the thick subcat-
egory of DMeff,gm(k;R) generated by motives M(X) of zero-dimensional smooth
k-schemes X.

Remark 6.2.2. The category DAM(k;R) is a tensor triangulated category which
is compactly generated by motives M(X), where X is a 0-dimensional smooth
scheme. Its compact part DAMgm(k;R) is an essentially small, idempotent com-
plete, rigid tensor triangulated category by [HPS97, Theorem 2.1.3] (compare
[Bal10b, Definition 44]). Moreover, one does not distinguish effective and non-
effective (geometric) Artin motives by [BG23a, Remark 7.9].

Let Cor0k,R be the full subcategory of Cork,R spanned by the 0-dimensional
smooth k-schemes. Balmer and Gallauer prove the following.

Proposition 6.2.3. ([BG23a, Corollary 7.10]) The inclusion ι : Cor0k,R → Cork,R
induces an equivalence of tensor triangulated categories

D(ShNis(Cor
0
k,R)) ι!

≃ // DAM(k;R)

that restricts to an equivalence on the level of compacts

Kb((Cor
0
k,R)

♮) ≃ // DAMgm(k;R),

where (−)♮ denotes the idempotent completion.

101



Chapter 6. The Spectrum of Artin Motives

We now give the definition of permutation modules in the left corner of the
triangle from Equation 6.1.

Let Γ be an arbitrary profinite group. Later, it will denote the absolute Galois
group of k as in Convention 6.0.1.

In the category Γ − Sets, the objects are sets equipped with a continuous Γ-
action. Morphisms are simply Γ-equivariant maps. By Γ- sets we denote the full
subcategory consisting of finite sets with a continuous Γ-action.

Moreover, we define the category Mod(Γ;R) with objects being R-modules
endowed with the discrete topology and a continuous Γ-action. For X in Γ−Sets,
we define R(X) to be the free R-module on the basis X. The Γ-action on X can
be R-linearly extended to R(X). Hence, R(X) is an object in Mod(Γ;R). We
obtain a functor

R(−) : Γ− Sets→ Mod(Γ;R)

that is symmetric monoidal, where the tensor product of two modules over R is
equipped with the diagonal Γ-action.

Note that by [BG23a, Proposition 2.6] the category Mod(Γ;R) is Grothendieck
abelian with {R(Γ/H) | H ≤ Γ open subgroup} as a set of finitely presented
generators.

Definition 6.2.4. We call modules in the essential image of R(−) permutation
modules, the full subcategory of such is denoted by Perm(Γ;R). Modules in the
essential image of R(−) : Γ−sets→ Mod(Γ;R) also yield a full subcategory which
will be denoted by perm(Γ;R), the finitely generated permutation modules.

For Balmer’s and Gallauer’s definition of the derived category of permutation
modules DPerm(Γ;R), the reader is referred to [BG23a, Definition 3.6]. Here, a
Γ-acyclic complex is an object C in KPerm(Γ;R) such that the complex CH of
H-fixed points is acyclic for every open subgroup H ≤ Γ. By [BG23a, Corollary
3.13], DPerm(Γ;R) is a tensor triangulated category.

For the right corner of the triangle from Equation 6.1, we need to introduce
(cohomological) Mackey functors.

We will go into more detail when introducing the oriented counterpart in the
following Construction 8.1.2. For a more concerete definition of span(Γ), the
reader is referred to [ThWe95, Section 2].

Definition 6.2.5. ([ThWe95, Section 2]) We denote by span(Γ) the following
category. Objects are Γ- sets and morphisms X → Y are given by isomorphisms
classes of spans X ← Z → Y , where [X ← Z → Y ] = [X ← Z ′ → Y ] if there is
an isomorphism Z ∼= Z ′ making the resulting diagrams commute. Composition is
defined by pulling back.

Now, Ω(Γ) denotes the category obtained from span(Γ) by group completing
the Hom sets, where the monoidal structure is given by the disjoint union. The
resulting category is additive. By extending the scalars formally to an arbitrary
ring R, we obtain an additive category denoted by ΩR(Γ).
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Definition 6.2.6. An (R-linear) Mackey functor is an additive functor M :
Ω(Γ)op → R-Mod. Furthermore, if M sends spans Γ/H ← Γ/K → Γ/H for
every open subgroup K ≤ H to multiplication by [H : K], M is called a cohomo-
logical Mackey functor. We denote the resulting abelian categories by MackR(Γ)
and MackcohR (Γ), respectively.

If we extend scalars to R formally, Mackey functors are defined as R-linear
additive functors M : ΩR(Γ)

op → R-Mod, but we do not introduce a separate
notation for this case.

Moreover, [BG23a, Proposition 4.17] tells us that we can view perm(Γ;R) as
a quotient

perm(Γ;R) ≃ ΩR(Γ)

JR(Γ)
,

where JR(Γ) is the ideal generated by differences

(Γ/H ← Γ/K → Γ/H)− [H : K] · idΓ/H

for K ≤ H ≤ Γ. We consequently have the following equivalent description of
cohomological Mackey functors, which is cited in [BG23a, Corollary 4.22]).

Proposition 6.2.7. ([Yos83, Theorem 4.3]) There is an equivalence of R-linear
Grothendieck abelian categories

MackcohR (Γ) ≃ PShR(perm(Γ;R)),

where PShR(−) denotes the category of R-linear additive presheaves with values
in R-modules.

Now, let k and Γ be as in Convention 6.0.1.

To see how cohomological Mackey functors fit into Equation 6.1, we construct
a functor

Ψk : Shet(Cork,R)→ Mod(Γ;R)

M 7→ colim
k′

M(Spec(k′)),

where k′ runs over finite field extensions of k contained in k; the colimit is taken in
the category of R-modules and the Γ = Gal(k̄/k)-action is canonical. The functor
Ψk is an equivalence of tensor categories by [BG23a, Lemma 6.13].

Proposition 6.2.8. ([BG23a, Proposition 6.14]) Let k be a field with a fixed
separable closure k̄ and absolute Galois group Γ := Gal(k̄/k). The composition
Ψk ◦ aet : ShNis(Cork,R) → Mod(Γ;R), where aet denotes the étale sheafification
functor, restricts to an equivalence of tensor categories

Cor0k⊗R ≃ perm(Γ;R).
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Following [BG23a, Remark 6.16], we can extend Ψk to the Nisnevich-topology
to get the following result.

Corollary 6.2.9. ([BG23a, Corollary 6.17]) Let k be a field with a fixed separable
closure k̄ and absolute Galois group Γ := Gal(k̄/k). The functor

Ψk : ShNis(Cor
0
k,R)

≃−→ MackcohR (Γ)

is an equivalence of abelian categories.

Together with Proposition 6.2.3, this induces the equivalence of the right-hand
side of the triangle in Equation 6.1.

In order to establish the equivalence at the bottom of the triangle in Equa-
tion 6.1, one defines a functor, called the fixed-point functor, via

FP : Mod(Γ;R)→ PShR(perm(Γ;R)) ≃ MackcohR (Γ)

M 7→ HomMod(Γ;R)(−,M)
∣∣
perm(Γ;R)

which can be seen as a restricted version of Yoneda. It admits a left adjoint
LP : PShR(perm(Γ;R)) ≃ MackcohR (Γ)→ Mod(Γ;R) defined by left Kan extension
(see[BG23a, Remark 5.4]).

By [BG23a, Lemma 5.5], FP is R-linear, lax monoidal, fully faithful and pre-
serves filtered colimits. To justify the name fixed-point functor, fix a Γ-module M .
Then, the image of a generator R(Γ/H) of perm(Γ;R) under FP(M) is isomoprhic
to MH for any open subgroup H ≤ Γ.

We want to understand compact objects better. Balmer and Gallauer prove
the following using Neeman–Thomason localization, which can be transferred to
different settings using Corollary 6.2.12 below.

Lemma 6.2.10. ([BG23a, Corollary 3.10]) Let Γ be a profinite group. There is a
canonical equivalence

DPerm(Γ;R)c ≃ thick(perm(Γ;R)) = Kb(perm(Γ;R)♮)

between the compact part of the triangulated category DPerm(Γ;R) and the thick
subcategory of K(Perm(Γ;R)) generated by finitely generated permutation modules.

Finally, [BG23a] deduces an equivalence between the derived category of per-
mutation modules and the derived category of cohomological Mackey functors.

Proposition 6.2.11. ([BG23a, Corollary 5.7]) Let Γ be a profinite group. The
fixed-point functor FP induces an equivalence of tensor triangulated categories

FP : DPerm(Γ;R) ≃ // D(MackcohR (Γ))

The results are summarized in the following diagram.
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Corollary 6.2.12. ([BG23a, Corollary 7.10]) Let k be a field with a fixed separable
closure k̄ and absolute Galois group Γ := Gal(k̄/k). There are equivalences of
tensor triangulated categories

DAM(k;R) oo ≃
ι!

D(ShNis(Cor
0
k,R))

OO

≃Ψ−1

k

DPerm(Γ;R) ≃
FP

// D(MackcohR (Γ))

which restrict to equivalences on the level of compacts

DAMgm(k;R) oo ≃ // Kb((Cor
0
k,R)

♮)

Kb(perm(Γ;R)♮)
tt

≃
44

Proof. The statements follow from Proposition 6.2.3, Corollary 6.2.9 and Propo-
sition 6.2.11.

Having seen the main results of [BG23a] and the construction of the derived
category of motives DM(k;R), the next chapter aims at refining the first step to an
oriented setting. For this, the construction of the derived category of Milnor–Witt
motives D̃M(k;R) is recalled in Section 7.1 before we generalize Proposition 6.2.3
to the Milnor–Witt setting in the following sections.
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Chapter 7

The Derived Category of Artin
Milnor–Witt Motives

This chapter aims at extending some results of [BG23a] to the category D̃M(k;R)
of Milnor–Witt motives. In the end, we want to construct the following categories
and prove equivalences of tensor triangulated categories between them.

D̃AM(k;R) D(ShNis(C̃or
0

k,R))
≃oo

≃
��

D(M̃ack
coh

R (k)).

(7.1)

In Remark 8.2.7, we will comment on why we do not present an analog of the
category DPerm(Γ;R) in our case.

We begin with a recapitulation of the construction of the derived category
of Milnor–Witt motives D̃M(k;R) in the first section. Then, we discuss further
details on the category C̃ork,R of finite Milnor–Witt correspondences when re-
stricting it to 0-dimensional schemes as in [BG23a]. In Section 7.3, we introduce
Milnor–Witt Artin motives and prove the upper equivalence of the diagram above
under the assumption that Conjecture 7.3.10 holds. For geometric Artin motives,
we will prove the upper equivalence without assuming a conjecture to be true.
The remaining equivalence will be treated in the Chapter 8.

Convention 7.0.1. For this chapter, let k be a perfect field of characteristic ̸= 2
and R a ring.

7.1 Milnor–Witt Motives

In this section, we recall the theory of Milnor–Witt (=MW) motives following
[CF22] and [DF22]. As for DM(k;R), we have similar steps to follow. The main
difference here lies in the underlying category of finite correspondences, which
refines to finite MW-correspondences. The other steps then follow in an analog
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manner. Consider the following diagram illustrating the construction of D̃M(k;R).

C̃ork,R

additive functors C̃or
op

k,R→Ab

��

finite MW-correspondences

PShR(C̃ork,R)

��

presheaves with MW-transfers

D(ShNis(C̃ork,R))

force A1-invariance

��

derived category of Nis -sheaves with MW-transfers

D̃M
eff
(k;R)

formally invert Tate twist R̃(1)

��

derived category of effective MW-motives

D̃M(k;R) derived category of MW-motives

Because it will be a central object of study, we dedicate the first subsection to
the construction of the category C̃ork,R of finite MW-correspondences. The rest
of the construction will follow in Subsection 7.1.2.

7.1.1 Milnor–Witt Correspondences

The idea why one would like to enlarge the category Cork,R of finite correspon-
dences is that, for example, Chow–Witt groups (see Section 4.2) are not captured
here. To understand why the concept of “decorating with ∼” is interesting, the
reader is, for example, referred to the introduction of [BC+22].

In order to create a category C̃ork,R it therefore seems sensible to equip finite
correspondences with symmetric bilinear forms, in this case over the function field
of each irreducible component of the support of a finite correspondence. Together
with some conditions on the symmetric bilinear form, this is exactly what the
definition of MW-correspondences comes down to. However, due to technical
reasons, we define the group C̃ork,R(X, Y ) in terms of Chow–Witt groups.

Remark 7.1.1. At first, we need to adapt our definition of Chow–Witt groups of
schemes from Definition 4.2.2 slightly. Let X be a scheme and (i, L) a graded line
bundle over X in the sense of [Fas20, Section 1.3]. One can define the Chow–Witt
groups C̃H

n
(X, (i, L)) twisted by a graded line bundle (i, L). The addition of an
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7.1. Milnor–Witt Motives

integer i to the line bundle L over X is only a technical convenience when treating
products.

What we will be interested in now is the Chow–Witt group supported on a
closed subset. For this, first recall that we can write Chow–Witt groups as the
sheaf cohomology C̃H

n
(X, (i, L)) = Hn

X(X,K
MW
n (i, L)), compare [AF16, Theorem

2.3.4]. Then, we define for a closed subset Z ⊂ X the n-th Chow–Witt group
supported on Z as C̃H

n

Z(X, (i, L)) := Hn
Z(X,K

MW
n (i, L)).

Having seen the definition of Chow–Witt groups with support, we want to
define finite Milnor–Witt correspondences as the directed limit of such Chow–
Witt groups.

Definition 7.1.2. Let X and Y be smooth schemes over a perfect field k of
characteristic ̸= 2 and Y equidimensional and let T ⊂ X × Y be a closed subset.
We call T an admissible subset if the canonical morphism T → X is finite and
maps each irreducible component of T surjectively onto an irreducible component
of X. The poset of admissible subsets partially ordered by inclusion is denoted
by A(X, Y ).

Definition 7.1.3. Let X and Y be smooth schemes over a perfect field k of
characteristic ̸= 2 and Y equidimensional. Then, we define the group of finite
Milnor–Witt correspondences

C̃ork(X, Y ) := lim−→
T∈A(X,Y )

C̃H
dim(Y )

T (X × Y, ωY ),

where ωY is the graded line bundle (dim(Y ), p∗Y ωY/k), pY : X × Y → Y being
the canonical projection and ωY/k := det(ΩY/k) is the determinant bundle of the
differential sheaf as in Remark 4.2.16.

If Y is not equidimensional, i.e. Y =
∐

j Yj with each Yj equidimensional, we
define

C̃ork(X, Y ) :=
∏
j

C̃ork,R(X, Yj).

For a ring R, we set C̃ork,R(X, Y ) := C̃ork(X, Y )⊗Z R.
We obtain a category C̃ork,R with objects smooth k-schemes and morphisms

groups from X to Y given by C̃ork,R(X, Y ). The composition is defined as in
[CF22, Section 4.2].

Remark 7.1.4. When considering the set of elementary correspondences from Def-
inition 6.1.1 a partially ordered set ordered by inclusion, it coincides with the
poset of admissible subsets from Definition 7.1.2 since a scheme is integral if and
only if it is reduced and irreducible.

Example 7.1.5. For arbitrary smooth schemes X, we have C̃ork(X, Spec(k)) =

C̃H
0
(X) = KMW

0 (X).
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On the other hand, if Y has dimension d, we have

C̃ork(Spec(k), Y ) =
⊕
y∈Y (d)

C̃H
d

{y}(Y, ωY ) =
⊕
y∈Y (d)

GW(k(y), ωk(y)/k).

For more details, see [CF22, Example 4.1.5].

As for the classical case, we can ask ourselves how to turn morphisms in Smk

into finite MW-correspondences.

Example 7.1.6. Analogously to the functor γ : Smk → Cork from Example 6.1.4,
we can assign to each morphism f : X → Y in Smk its oriented graph γ̃f , which
is constructed as follows.

Let Y be of dimension dY and f : X → Y a morphism in Smk. Further, let
Γf : X → X × Y be its graph. It follows that Γf (X) is of codimension dY in
X × Y and we obtain a finite pushforward (Γf )∗ : K

MW
0 (X)→ C̃H

dY

Γf
(X × Y, ωY ).

Eventually, we define the oriented graph of f as γ̃f := (Γf )∗(⟨1⟩). For more details,
see [CF22, Section 4.3].

In particular, we set γ̃id =: 1X for X = Y . It is the identity of the composition
of MW-correspondences defined in [CF22, Section 4.2].

This way, we obtain a functor

γ̃ : Smk → C̃ork

being the identity on objects and sending a morphism f to its oriented graph γ̃f .

In the beginning, we mentioned that finite Milnor–Witt correspondences can
be considered finite correspondences in the sense of Voevodsky. To further com-
ment on this, we introduce the notion of the support of a finite MW-correspondence.

Definition 7.1.7. For smoothX, equidimensional smooth Y , and α ∈ C̃ork(X, Y ),
we define the support of α as

supp(α) :={x ∈ (X × Y )(dim(Y )) | the component of α in

KMW
0 (k(x),Λ(x)⊗ (ωY )x) is nonzero},

where Λ(x) denotes the one-dimensional k(x)-vector space ∧n(m/m2)∗. Here, ∧
denotes the exterior power, n = dim(Y ), (−)∗ denotes the dual, and mx is the
maximal ideal corresponding to x in OX,x.

Remark 7.1.8. As promised, we want to shed some light on the connection between
finite Milnor–Witt correspondences and finite correspondences in the sense of
Voevodsky mentioned above. For this, let R = Z.

Moreover, let X and Y be smooth schemes and dim(Y ) = d. We describe
finite Milnor–Witt correspondences alternatively (compare [CF22, Chapter 4]) as
admissible, unramified elements in G :=

⊕
x∈(X×Y )(d) GW(k(x), ωk(x)/k).
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Here, an element α of G is unramified if it is in the kernel of the residue
map G→

⊕
x∈(X×Y )(d+1) W(k(x), ωk(x)/k) (compare Section 4.2) and admissible if

supp(α) is the union of the closure of admissible points. A point x ∈ (X × Y )(d)

is admissible if its closure is finite surjective over X.
Now, the support defined above can be interpreted as the union of the closure

of points where the symmetric bilinear forms are non-trivial. The support of an
admissible, unramified element in G is a finite correspondence in the sense of
Voevodsky by [CF22, Lemma 4.1.8] using Remark 7.1.11 below. On the other
hand, one can equip the support of a finite correspondence with a symmetric
bilinear form that is moreover unramified and admissible and obtains a finite
Milnor–Witt correspondence.

As usual, we are interested in the categorical properties of the construction.
First, we see that C̃ork,R is an additive category with disjoint union as direct sum.

Moreover, we can define a tensor product for finite MW-correspondences that
turns the category C̃ork,R into a symmetric monoidal (or tensor) category following
[CF22, Section 4.4], where more details can be found.

Definition 7.1.9. We define the tensor product X ⊗ X ′ in C̃ork,R of smooth
schemes X and X ′ as the underlying cartesian product X ×X ′.

Let α ∈ C̃H
d1

T1
(X × Y, ωY ) ⊗ R and β ∈ C̃H

d2

T2
(X ′ × Y ′, ωY ′) ⊗ R for some

admissible subsets T1 ⊂ X × Y and T2 ⊂ X ′ × Y ′. The exterior product of
Chow–Witt groups as defined in [Fas07, Chapter 4] yields a cycle

α× β ∈ C̃H
d1+d2

T1×T2(X × Y ×X
′ × Y ′, p∗Y ωY/k ⊗ p∗Y ′ωY ′/k)⊗R.

We define the tensor product α⊗ β as

α⊗ β := σ∗(α× β),

where

σ : X × Y ×X ′ × Y ′ ∼=−→ X ×X ′ × Y × Y ′

is the transpose isomorphism. It is not only a cycle but also a finite Milnor-Witt
correspondence between X ×X ′ and Y × Y ′, see [CF22, Section 4.4] for details.
Hence, we can define for α ∈ C̃or

0

k,R(X, Y ) and β ∈ C̃or
0

k,R(X
′, Y ′) their tensor

product as α⊗ β := σ∗(α× β).

Lemma 7.1.10. ([CF22, Lemma 4.4.2])The category C̃ork,R is symmetric monoidal
by ⊗ defined above.

Remark 7.1.11. By replacing Chow–Witt groups with Chow groups in the con-
struction of C̃ork,R, one recovers classical finite correspondences Cork,R, see [CF22,
Remark 4.3.3].

In particular, the forgetful homomorphisms

C̃H
d

T (X × Y, ωY )→ CHd
T (X × Y )
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yield an additive functor

π : C̃ork,R → Cork,R

such that γ : Smk → Cork is the composition π ◦ γ̃ : Smk → C̃ork,R → Cork,R.
On the other hand, the hyperbolic mapHX,Y : CHd

T (X×Y )→ C̃H
d

T (X×Y, ωY )
does not yield a functor Cork,R → C̃ork,R since identity and composition are not
preserved by HX,Y , compare [CF22, p.22].

In the next part, we proceed with the construction of the derived category of
Milnor–Witt motives indicated at the beginning of this chapter.

7.1.2 Construction of the Derived Category of Milnor–Witt
Motives

As in the construction of DM(k;R), the next step is the passage to presheaves and
sheaves with transfers, in this case with MW-transfers. As in the classical case,
sheaves with MW-transfers satisfy the sheaf property on the underlying category
of smooth k-schemes.

Definition 7.1.12. A presheaf with MW-transfers is a contravariant, additive R-
linear functor C̃or

op

k → R-Mod. The corresponding category of presheaves with
MW-transfers will be denoted by PShR(C̃ork,R).

Let t be the Zariski, Nisnevich, or étale topology, denoted by Zar, Nis, or et,
respectively. A t-sheaf with MW-transfers is a presheaf with MW-transfers whose
restriction to Smk is a t-sheaf. We denote the corresponding category of t-sheaves
with MW-transfers by Sht(C̃ork,R).

Again, we will focus on one specific type of presheaves, namely the repre-
sentable ones.

Definition 7.1.13. Let X be a smooth k-scheme. We denote the representable
presheaf with MW-transfers C̃ork,R(−, X) by c̃R(X). If R = Z, we omit it from
the notation.

Example 7.1.14. By [CF22, Lemma 5.0.3], the functor X 7→ KMW
j (X)⊗R is a

presheaf with MW-transfers. We have that c̃R(Spec(k)) = KMW
0 ⊗R for a field k.

Remark 7.1.15. The presheaf c̃R(X) is a Zar-sheaf with MW-transfers, but in
general not a Nis-sheaf with transfers, see [CF22, Example 5.2.5], contrarily to
the setting of (pre-)sheaves with transfers in the sense of Voevodsky as mentioned
in Remark 6.1.8.

We have a forgetful functor Õ : Sht(C̃ork,R)→ PShR(C̃ork,R) which has a left
adjoint ã by [DF22, Proposition 1.2.11 (1)], where ã is the sheafification functor.
We define the following.

Definition 7.1.16. Let t be Zar, Nis, or et. For a smooth scheme X, we set
R̃t(X) := ã(c̃R(X)). When t = Nis, we sometimes omit it from the notation.
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Remark 7.1.17. By definition, R̃t(X) is a t-sheaf with MW-transfers. It is called
the t-sheaf associated to c̃R(X) and all t-sheaves of this form generate the abelian
category Sht(C̃ork,R). Moreover, we obtain a tensor product ⊗̃ on Sht(C̃ork,R)
uniquely characterized by the property R̃t(X)⊗̃R̃t(Y ) = R̃t(X×Y ) and commut-
ing with colimits. For more details, see [DF22, 1.2.14].

Definition 7.1.18. Let TA1 denote the localizing triangulated subcategory of
D(Sht(C̃ork,R)) generated by complexes

...→ 0→ R̃t(A1 ×X)→ R̃t(X)→ 0→ ... .

We define the category of effective MW-motives D̃M
eff

t (k;R) as the localization
of D(Sht(C̃ork,R)) with respect to TA1 . The category of geometric effective MW -
motives D̃M

eff,gm

t (k;R) is defined as the Verdier localization of (Kb(C̃ork,R))
♮ with

respect to the thick triangulated subcategory containing complexes of the form (1)
and (2) from [DF22, Definition 3.2.22]. Note that (Kb(C̃ork,R))

♮ ∼= Kb((C̃ork,R)
♮)

by [BS01, Corollary 2.12] (the same arguments hold for K instead of D).

Definition 7.1.19. Let X be a smooth scheme. Its MW-motive M̃(X) is defined
as the class of R̃t(X) in D̃M

eff

t (k;R).

Remark 7.1.20. By [DF22, 3.2.4], D̃M
eff

t (k;R) is a tensor triangulated category
with internal Hom. For t = Nis, the motives M̃(X) for X a smooth k-scheme
form a family of compact generators as seen in [DF22, Remark 3.2.24]. The
category D̃M

eff,gm

t (k;R) is also tensor triangulated with internal Hom by [BC+22,
Introduction, (MW1)].

As in the case of Voevodsky’s derived category of motives, the next step would
be to formally invert the Tate twist. In this setting, we have the following defini-
tion.

Definition 7.1.21. The object

R̃(1) := M̃(P1)/M̃({∞})[−2]

in D̃M
eff

t (k;R) is called the Tate twist.

Again, we will not go into detail about how to invert the Tate twist since
we will only concentrate on effective Milnor–Witt motives in this work. The
usual procedure of inverting the Tate twist operation, also called P1-stabilization,
is usually done by passage to spectrum objects, hence the name MW-motivic
spectra. For more details, see [DF22, Section 3.3].

Definition 7.1.22. We define the derived category of MW-motives D̃M(k;R)
(also the category of MW-motivic spectra) as the category obtained from the
derived category of effective motives D̃M

eff

Nis(k;R) by formally inverting the Tate
twist operation ⊗R̃(1).
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Remark 7.1.23. We know from [DF22, Proposition 3.3.4] that D̃M(k;R) is a tensor
triangulated category.

Having recalled the construction of the derived category of Milnor–Witt mo-
tives, we can now begin with formulating and proving Diagram 7.1 given at the
beginning of this chapter.

7.2 Sheaves with Milnor–Witt Transfers on Zero-
Dimensional Schemes

In this section, we will become more familiar with the category C̃ork,R when
allowing only 0-dimensional smooth k-schemes.

Definition 7.2.1. We denote by C̃or
0

k,R the full tensor subcategory of C̃ork,R
spanned by 0-dimensional smooth schemes.

For smooth k-schemes of dimension 0, the definition of finite Milnor–Witt
correspondences simplifies in the following way.

Example 7.2.2. Let X and Y be smooth k-schemes. We know from Exam-
ple 7.1.5 that C̃ork,R(X, Spec(k)) = C̃H

0
(X). If Y is of dimension d, then

C̃ork,R(Spec(k), Y ) =
⊕

y∈Y (d) C̃H
d

{y}(Y, ωY ) ⊗ R. We can go even further and
show that for 0-dimensional X and Y

C̃or
0

k,R(X, Y ) = C̃H
0
(X × Y )⊗R

and

C̃or
0

k,R(X, Y ) = C̃H
0
(X × Y )⊗R = Z̃0(X × Y )⊗R.

It suffices to show that X × Y is an element in A(X, Y ). In this case, X × Y is a
final object in A(X, Y ). We then have

C̃or
0

k,R(X, Y ) = C̃H
0

X×Y (X × Y )⊗R = C̃H
0
(X × Y )⊗R.

The canonical projection X × Y → X is surjective and maps an irreducible com-
ponent of X × Y onto an irreducible component of X, compare [CF22, Section
4.1]. For the finiteness of the projection, it suffices to show that Y → Spec(k) is
finite since base change of a finite morphism is finite. We assume Y = Spec(K) for
a finite separable field extension K of k, because a morphism

∐n
i=1 Spec(Ki) →

Spec(k) is finite if each Spec(Ki)→ Spec(k) is. But Spec(K)→ Spec(k) is finite
since K is a finite separable field extension of k, hence K is finitely generated as
a k-vector space.

Remark 7.2.3. We did not include any twists in the above notion for the following
reason. Let X and Y in C̃or

0

k,R be connected, i.e. X = Spec(K) and Y = Spec(L)
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for some finite separable field extensions K,L ⊃ k. Let pX : X × Y → X and
pY : X × Y → Y be the canonical projections.

In the original definition of C̃ork,R(X, Y ), the Chow–Witt group of X × Y is
twisted by p∗Y ωY/k. Since L is a separable field, ωY/k is canonically isomorphic
to L (see [CF22, Lemma 2.2.1]). It follows that p∗Y ωY/k is canonically isomorphic
to ωX×Y . By [Har77, Exercise II.8.3], ωX×Y ∼= p∗XωX ⊗ p∗Y ωY and since X =
Spec(K) and Y = Spec(L), this is canonically equivalent to OX×Y ⊗ OX×Y ∼=
OX×Y again by [CF22, Lemma 2.2.1]. For a smooth non-connected scheme X,
ωX is defined connected component by connected component, so, this observation
linearly extends to non-connected X and Y .
Remark 7.2.4. The functor π : C̃ork,R → Cork,R, induced by the forgetful ho-
momorphism from Chow–Witt to Chow groups, now restricts to a functor π :

C̃or
0

k,R → Cor0k,R. It is the identity on objects and sends a morphism in C̃H
0
(X ×

Y )⊗R to the respective element in CH0(X × Y )⊗R.
Recall from [CF22, Section 4.3, p.21] that the hyperbolic homomorphism

HX,Y : Cork,R(X, Y ) → C̃ork,R(X, Y ) does not yield a functor Cork,R → C̃ork,R
since identity morphisms and composition are not preserved:

The composition πX,Y ◦HX,Y is the multiplication by 2 (see [CF22, Section 3,
p.11]), where πX,Y : C̃ork,R(X, Y )→ Cork,R(X, Y ) is the forgetful homomorphism.
This is also true when considering only 0-dimensional schemes.

The composition HX,Y ◦ πX,Y is not the identity either. For example, let
X = Y = Spec(k) for an algebraically closed field k and R = Z. By [Lam05,
Proposition II.3.1] and [Wei13, Lemma II.2.1], the dimension yields isomorphisms
GW(k) ∼= Z and K0(k) ∼= Z. It follows that

πX,X : C̃ork(X,X) ∼= GW(k) ∼= Z→ Z ∼= K0(k) ∼= Cork(X,X)

is the identity, whereas HX,X is multiplication by 2.

Remark 7.2.5. We recall from Remark 7.1.15 that c̃R(X) := C̃ork,R(−, X) is a
Zariski sheaf with Milnor–Witt transfers, but in general not a Nisnevich sheaf.

However, the Nisnevich and Zariski topology coincide on Sm0
k as mentioned

in [BG23a, Remark 6.16]. Recall that t-sheaves with Milnor–Witt transfers and
those with classical transfers are both defined to fulfill the sheaf property only on
the underlying category Smk, so the same considerations apply to our case. We
thus have

PShR(C̃or
0

k,R) = ShZar(C̃or
0

k,R) = ShNis(C̃or
0

k,R),

and, in particular, c̃R(X) is a sheaf in the Nisnevich topology for X in Sm0
k.

Even more, any presheaf on C̃or
0

k,R is already a Zar-/Nis-sheaf with Milnor–
Witt transfers: We can apply [BG23a, Remark 6.16] to the Milnor–Witt case since,
in both cases, the sheaf condition needs to be satisfied only on the underlying
presheaf on Sm0

k by definition.
However, for X not 0-dimensional, c̃R(X) is in general not a Nisnevich sheaf,

see [CF22, Example 5.2.5].
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Remark 7.2.6. By [DF22, Section 3.1, p.59], the derived category D(Sht(C̃ork,R))

is a tensor triangulated category with internal Hom, hence so is D(Sht(C̃or
0

k,R)).

In this section, we have seen that the category C̃or
0

k,R of finite Milnor–Witt cor-
respondences simplifies when restricting to 0-dimensional schemes; the morphism
groups between X and Y are the Chow–Witt groups of the fiber product X × Y .
Moreover, although the representable presheaf is in general not a Nisnevich (nor
an étale) sheaf with MW-transfers, it does enjoy this property when considering
C̃or

0

k,R.
In the next section, we will introduce Artin Milnor–Witt motives and establish

the horizontal equivalence of Diagram 7.1 from the beginning of this chapter,
assuming that Conjecture 7.3.10 is true. For geometic Artin Milnor–Witt motives,
we will show the equivalence without assuming a conjecture to hold.

7.3 Artin Milnor–Witt Motives

In this section, we want to prove the upper equivalence of Diagram 7.1, which we
recall here for convenience. We begin with introducing Milnor–Witt Artin motives
in the upper left corner.

D̃AM(k;R) D(ShNis(C̃or
0

k,R))
≃oo

≃
��

D(M̃ack
coh

R (k))

Definition 7.3.1. Let k be a perfect field of characteristic ̸= 2, R a commutative
ring, and t = Nis, Zar, or et. We define the category D̃AMt(k;R) := Loc(C̃or

0

k,R)

of Artin MW-motives as the localizing subcategory of D̃M
eff

t (k;R) generated by
the motives of 0-dimensional smooth k-schemes. Moreover, we define the cat-
egory of geometric Artin MW -motives as its compact part D̃AM

gm

t (k;R) :=

(D̃AMt(k;R))
c.

Convention 7.3.2. If omitted from the notation, t = Nis.

Proposition 7.3.3. Let k be an infinite perfect field of characteristic ̸= 2 and R
a ring. There is a canonical equivalence of tensor triangulated categories

D̃AM
gm

(k;R) := (D̃AM(k;R))c ≃ thick(C̃or
0

k,R) ≃ Kb((C̃or
0

k,R)
♮)

between the compact part of the tensor triangulated category D̃AM(k;R) and the
thick triangulated subcategory of D̃AM(k;R) generated by motives M̃(X) of zero-
dimensional smooth k-schemes X, denoted thick(C̃or

0

k,R).
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Proof. Using [DF22, Remark 3.2.24], the first equivalence follows analogously to
[BG23a, Notation 7.8] from Neeman-Thomason-Localization in [BG23a, Recollec-
tion 3.8(b)], compare [Nee92, Theorem 2.1].

For the second equivalence, it suffices to show that C̃or
0

k,R(−, Y ) considered
a complex in degree 0 denoted by M̃(Y ) is already Nisnevich-local and A1-local
in Kb((C̃ork,R)

♮) for a smooth 0-dimensional k-scheme Y , i.e. local with respect
to objects satisfying conditions (1) and (2) of [DF22, Definition 3.2.22]. By Re-
mark 7.2.5, C̃or

0

k,R(−, Y ) is already a Nisnevich-sheaf with Milnor–Witt transfers,

hence, Nisnevich-local. In particular, this shows that the map i : Kb(C̃or
0

k,R) →
D(ShNis(C̃ork,R)) is a fully faithful embedding.

It remains to show that M̃(Y ) is A1-local, but this follows from M̃(Y ) being
A1-local in D(ShNis(C̃ork,R)) by fully faithfulness of i, so we prove this statement
instead. The proof is analog to the proof of the second statement of [BG23a,
Proposition 7.4]. Since the category C̃or

0

k,R is additive, it suffices to show the
statement for schemes Y of the form Spec(L) for a finite separable field extension
L/k. This means that the map

Hom
D(ShNis(C̃or

0

k,R))
(X,T i(Spec(L)))→ Hom

D(ShNis(C̃or
0

k,R))
(A1

X , T
i(Spec(L)))

is bijective for all i ∈ Z and for all smooth k-schemes X.
By Lemma 7.3.6, objects in C̃or

0

k,R are their own duals. It follows that

Hom
D(ShNis(C̃or

0

k,R))
(X,T i(Spec(L))) ∼= Hom

D(ShNis(C̃or
0

k,R))
(X ′, T i(Spec(k)))

and

Hom
D(ShNis(C̃or

0

k,R))
(A1

X , T
i(Spec(L))) ∼= Hom

D(ShNis(C̃or
0

k,R))
(A1

X′ , T i(Spec(k)))

for X ′ = X ⊗ Spec(L). Hence, it amounts to show that

Hom
D(ShNis(C̃or

0

k,R))
(X ′, T i(Spec(k)))→ Hom

D(ShNis(C̃or
0

k,R))
(A1

X′ , T i(Spec(k)))

is bijective. By [DF22, Corollary 3.1.8] (which is the Milnor–Witt analog of
[Voe00, Proposition 3.1.8]), this is equivalent to showing that the map

H i
Nis(X

′, Spec(k))→ H i
Nis(A1

X′ , Spec(k))

is bijective, i.e. that M̃(Spec(k)), which is KMW
0 by Example 7.1.5, is strictly A1-

invariant. But this follows from [DF22, Theorem 3.2.10] and the fact that KMW
0

is A1-invariant by [Mor12, p.86].

Remark 7.3.4. One could hope to drop the assumption of k being infinite in the
above proposition.
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Chapter 7. The Derived Category of Artin Milnor–Witt Motives

Remark 7.3.5. The (Voevodsky) motive M(X) of a 0-dimensional smooth scheme
X is its own tensor dual in DMeff

t (k;R) and DMt(k;R), i.e. M(X) is isomorphic
to hom(M(X),1). In particular, it is rigid in the sense of Definition 2.2.1, see
[BG23a, Remark 7.9]. In this remark, Balmer and Gallauer use the equivalence
between the derived category of permutation modules and D(ShNis(Cor

0
k,R)) and

show that objects in perm(Γ;R) are already their own tensor duals. However, one
can also see directly that objects in Cor0k,R enjoy this property and we generalize

this idea to C̃or
0

k,R as follows.

Lemma 7.3.6. The objects in C̃or
0

k,R are their own tensor duals.

Proof. We will use that C̃or
0

k,R(X, Y ) ∼= C̃or
0

k,R(Y,X) by Example 7.2.2. The

category C̃or
0

k,R is additively generated by objects of the form Spec(K) for K ⊃ k
a separable finite field extension, so, it suffices to show that Spec(K) is rigid with
dual Spec(K). Recall from Definition 7.1.9 that the tensor product in C̃or

0

k,R is
given by the underlying cartesian product of schemes. To show that objects in
C̃or

0

k,R are rigid, by Remark 2.2.2 we need to find (co-)evaluation maps

η : Spec(k)→ Spec(K)× Spec(K) ∈Hom
C̃or

0

k,R
(Spec(k), Spec(K)× Spec(K))

∼=GW(K ⊗K)⊗R

and

ε : Spec(K)× Spec(K)→ Spec(k) ∈Hom
C̃or

0

k,R
(Spec(k), Spec(K)× Spec(K))

∼=GW(K ⊗K)⊗R

fulfilling the triangle identities

(idSpec(K)⊗ε)(η ⊗ idSpec(K)) = idSpec(K)

and

(ε⊗ idSpec(K))(idSpec(K)⊗η) = idSpec(K),

where idSpec(K) ∈ Hom
C̃or

0

k,R
(Spec(K), Spec(K)) ∼= GW(K ⊗K) ⊗ R. We choose

η := ε := ⟨1⟩ ∈ GW(K⊗K)⊗R. The triangle identities now easily follow from the
fact that η, ε, and idSpec(K) all represent the identity element in GW(K⊗K)⊗R.

We have shown that objects in the category of finite MW-correspondences are
their own tensor duals and, in particular, rigid.

Remark 7.3.7. We can now generalize [BG23a, Remark 7.9]. By Voevodsky’s can-
cellation theorem [Voe00, Theorem 4.3.1], we know that the passage from geomet-
ric effective (Artin) motives to geometric non-effective (Artin) motives embodies
turning each object rigid; for Milnor–Witt motives, this is shown by [DF22, The-
orem 3.3.9]. But, by the above considerations, the Milnor–Witt motive M̃(X) of
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7.3. Artin Milnor–Witt Motives

a smooth 0-dimensional scheme X is its own tensor dual. In particular, it is rigid,
so we do not distinguish effective and non-effective geometric Artin Milnor–Witt
motives. Since the motives of the form M̃(X) with dim(X) = 0 form a set of
compact generators of D̃AM(k,R), it follows that we neither distinguish effective
and non-effective Artin Milnor–Witt motives in general, just as in loc. cit.

We obtain the following structural properties for the category of (geometric)
Artin motives.

Lemma 7.3.8. The category D̃AM(k;R) is a tensor triangulated category with
internal Hom and the category D̃AM

gm

(k;R) is an essentially small, idempotent
complete, rigid tensor triangulated category.

Proof. The category D̃M
eff
(k;R) is tensor triangulated and possesses an internal

Hom adjoint to the tensor product by [DF22, Remark 3.2.4]. As a localizing
subcategory, D̃AM(k;R) is again tensor triangulated with internal Hom. It is
closed under ⊗ since the tensor product is induced by the tensor product in
Sht(C̃or

0

k,R)). It commutes with colimits and satisfies R̃t(X)⊗R̃t(Y ) = R̃t(X×Y )
([DF22, (1.2.14.a)]), where X × Y is again 0-dimensional, compare Remark 8.1.1.
It follows from the ⊗-hom adjunction and Lemma 7.3.6 that D̃AM(k;R) is also
closed under the internal Hom.

As the compact part of a compactly generated tensor triangulated category,
the statement for D̃AM

gm

(k;R) follows from [HPS97, Theorem 2.1.3] (compare
[Bal10b, Definition 44]) under consideration of Proposition 7.3.3.

To show the equivalence between D̃AM
eff

(k;R) and DShNis(C̃or
0

k,R), we con-

struct the left adjoint functor ι̃! : D(ShNis(C̃or
0

k,R))→ D(ShNis(C̃ork,R)) and show
that it is fully faithful and remains so under composition with the quotient functor
to D̃M

eff
(k) just as in the proof of [BG23a, Lemma 6.9]. It will follow that its

essential image is precisely D̃AM
eff

(k;R).

Construction 7.3.9. We consider the inclusion functor ι̃ : C̃or
0

k,R → C̃ork,R. It
induces a functor on the level of presheaves with values in R-modules

ι̃∗ : PShR(C̃ork,R)→ PShR(C̃or
0

k,R),

defined as ι̃∗(F ) = F ◦ ι̃.
The category of R-modules is complete by [MacL71, p. 111] and C̃or

0

k,R is
locally small. More generally, it is small since its objects are the same as the
objects in Sm0

k, which form a set. Hence, we can apply [KS06, Theorem 2.3.3] to
see that the left adjoint

ι̃! : PShR(C̃or
0

k,R)→ PShR(C̃ork,R)

constructed as in [SGA4, (5.11)] exists.
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Since ι̃ is fully faithful, ι̃! is fully faithful as well and there are isomorphisms

id
PShR(C̃or

0

k,R)
∼= ι̃∗ι̃!

by [KS06, Theorem 2.3.3]. In particular, we have isomorphisms C̃or
0

k,R(−, X) ∼=
ι̃∗ι̃!(C̃or

0

k,R(−, X)) = ι̃!(C̃or
0

k,R(−, X))◦ι̃ for eachX in Sm0
k. Since ι̃ is the inclusion,

it follows that

ι̃!(C̃or
0

k,R(−, X)) = C̃or
0

k,R(−, X) = C̃ork,R(−, X)

for all X in Sm0
k.

Now, since ι̃ is merely the inclusion, the functor ι̃∗ preserves t-sheaves with
MW-transfers and hence induces a functor

Sht(C̃or
0

k,R)← Sht(C̃ork,R) : ι̃
∗

which admits a left adjoint

ι̃! : Sht(C̃or
0

k,R)→ Sht(C̃ork,R)

defined as the composition PShR(C̃or
0

k,R)
ι̃!−→ PShR(C̃ork,R)

ãt−→ Sht(C̃ork,R) re-

stricted to Sht(C̃or
0

k,R), where ãt denotes the sheafification functor with respect

to the topology t. Hence, we have constructed ι̃! : Sht(C̃or
0

k,R) → Sht(C̃ork,R) as
a left adjoint functor.

It moreover induces a functor

ι̃! : D(Sht(C̃or
0

k,R))→ D(Sht(C̃ork,R))

on the level of derived categories which we will use later.

One might conjecture that [BG23a, Lemma 6.9] allows for a refinement to
Chow-Witt correspondences. For t = et, one can use that Shet(C̃ork,R) ≃ Shet(Cork,R)
by [DF22, Corollary 1.2.15 (3)].

Conjecture 7.3.10. The inclusion ι̃ : C̃or
0

k,R → C̃ork,R and the étale sheafification
functor ãet induce a commutative square of left adjoint tensor triangulated functors
with the horizontal arrows being fully faithful.

ShNis(C̃or
0

k,R)
ι̃! //

ãet
��

ShNis(C̃ork,R)

ãet
��

Shet(C̃or
0

k,R)
ι̃! // Shet(C̃ork,R)

The result motivates the following proposition, showing that ι̃! remains fully
faithful when passing to MW-motives, which is a refinement of [BG23a, Proposi-
tion 7.4].

For the rest of this subsection, we assume that Conjecture 7.3.10 is true.
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7.3. Artin Milnor–Witt Motives

Proposition 7.3.11. Let k be a perfect field of characteristic ̸= 2 and R a com-
mutative ring. If Conjecture 7.3.10 is true, the functor

ι̃! : D(ShNis(C̃or
0

k,R))→ D(ShNis(C̃ork,R))

induced by inclusion satisfies the following properties.

(i) It is tensor triangulated and fully faithful.

(ii) The composition with the quotient functor

ι̃! : D(ShNis(C̃or
0

k,R))→ D(ShNis(C̃ork,R))→ D̃M
eff
(k;R)

remains fully faithful.

Proof. Analogously to the proof of [BG23a, Proposition 7.4.(a)], we can deduce the
first statement from Conjecture 7.3.10 since ι̃! is tensor, fully faithful, triangulated,
and admits a triangulated right adjoint ι̃∗, so, the unit of the adjunction remains
an isomorphism at the derived level.

To see that the composition with the quotient functor remains fully faith-
ful, it suffices to show that the image of a 0-dimensional smooth scheme in
D(ShNis(C̃ork,R)) is A1-local, but we have already shown this in the proof of Propo-
sition 7.3.3.

Now, the following corollary refines the last equivalence of [BG23a, Corollary
7.10].

Corollary 7.3.12. Let k be a perfect field of characteristic ̸= 2 and R a com-
mutative ring. If Conjecture 7.3.10 is true, there is an equivalence of tensor
triangulated categories

ι̃! : D(ShNis(C̃or
0

k,R))
≃−→ D̃AM(k;R).

Proof. By Construction 7.3.9, the fully faithful functor ι̃! : D(ShNis(C̃or
0

k,R)) →
D̃M

eff

Nis(k;R) has image D̃AM(k;R).
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Chapter 8

Cohomological Milnor–Witt Mackey
Functors

It might help to have a copy of [BG23a] at hand while reading this chapter.

After having proven the upper equivalence of Diagram 7.1 in the last chapter,
we want to construct the vertical equivalence of

D̃AM(k;R) D(ShNis(C̃or
0

k,R))
≃oo

≃
��

D(M̃ack
coh

R (k))

refining the equivalence in [BG23a, Corollary 6.17].
We stay in the world of algebraic geometry; a Milnor–Witt analog of per-

mutation modules will merely be commented in Remark 8.2.7. In Section 8.1,
we introduce a category Ω̃R(k) closely related to classical span categories and
investigate its relation to C̃or

0

k,R. The idea of Section 8.2 then is to construct

a category of cohomological Milnor–Witt Mackey functors M̃ack
coh

R (k) and show

that M̃ack
coh

R (k) ≃ ShNis(C̃or
0

k,R).
Basics on symmetric bilinear forms and Grothendieck–Witt groups of fields

and rings used here are taken from [Scha85, Lam05].

Convention 8.0.1. Let R be a commutative ring. In this chapter, let Γ :=
Gal(k̄/k) be the absolute Galois group of a perfect field k of characteristic ̸= 2 for
a fixed algebraic closure k̄. For a subgroup H of Γ and an element g ∈ Γ, we set
gH := gHg−1 and Hg := g−1Hg. We will only consider open subgroups of Γ.

8.1 Span Categories

To begin with, we need an analog Ω̃R(k) of the additive category ΩR(k) defined
in [ThWe95, Section 2] and recalled in [BG23a, Remark 6.5]. The construction
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Chapter 8. Cohomological Milnor–Witt Mackey Functors

is motivated by the idea of obtaining a functor Ω̃R(k) → C̃or
0

k,R that sends a
morphism to its oriented pushforward, analogously to the non-oriented case. After
defining the category Ω̃R(k) we will go into more detail about how Ω̃R(k) and
C̃or

0

k,R relate.
We start with an observation on tensor products of 0-dimensional smooth k-

schemes.

Remark 8.1.1. Recall that the fiber product of 0-dimensional smooth k-schemes
is isomorphic to an object of Sm0

k. In the case Z = Spec(KZ), Y = Spec(KY ) and
V = Spec(KV ) we have that

Z ×Y V = Spec(KZ)×Spec(KY ) Spec(KV ) = Spec(KZ ⊗KY
KV ).

It suffices to restrict to this case since Sm0
k is additively generated by such schemes

and pulling back is an additive functor. Now, the tensor product of fields is
not always a field, but, in our case, it is isomorphic to a finite product of finite
separable field extensions Ωi of KY

KZ ⊗KY
KV
∼=

n∏
i=1

Ωi,

see [Milne20, Theorem 1.18]. Hence,

Spec(KZ ⊗KY
KV ) ∼= Spec(

n∏
i=1

Ωi) =
n∐
i=1

Spec(Ωi)

is isomorphic to a finite disjoint union of spectra of finite separable field extensions
over KY and, thus, over k, i.e. in particular, isomorphic to an object of Sm0

k.
Concretely, if KZ = KY (α) for some α ∈ KZ , the minimal polynomial f of α

has a decomposition in KV [X] into monic irreducible polynomials f = f1 · ... · fn.
Then, we have Ωi = KV [X]/(fi) for all i by the Chinese Remainder Theorem since
KZ is separable over KY .

In the special case K := KZ = KV and L := KY , let L(α) = K for some
α ∈ K and let f be the minimal polynomial of α, hence, K = L[X]/(f). Then,
we have

K ⊗L K ∼= K ⊗L L[X]/(f) ∼= K[X]/(f).

In particular, since α ∈ K, the linear polynomial X − α is a factor of f in K[X],
so,

K[X]/(X − α) ∼= K

is one of the Ωi from above. It follows that the tensor product K ⊗L K contains
at least one copy of K.

Let us now come to the definition of Ω̃(k), which is a refinement of [ThWe95,
Section 2].
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Construction 8.1.2. Let k be a perfect field of characteristic ̸= 2 and R a
commutative ring. At first, we define the category s̃pan(k) as follows. The objects
are the same as in Sm0

k, i.e., finite disjoint unions of spectra of finite separable
field extensions of k.

Morphisms f : X → Y are given by isomorphism classes of so-called (ori-
ented) spans consisting of pairs of morphisms

X ← Z :=
n∐
i=1

Spec(Li)→ Y

in Sm0
k, where Li is a finite separable field extension of k for each i, together with

an equivalence class of symmetric bilinear forms

⟨αi⟩ ∈ Z̃0(Spec(Li)) = GW(Li)

for each i, where αi ∈ L×
i , i.e. the rank of ⟨αi⟩ is 1. We denote such a morphism

by X ←
∐n

i=1(Spec(Li), ⟨αi⟩)→ Y or
∐n

i=1(Spec(Li), ⟨αi⟩)→ X × Y .
Two spans X ←

∐n
i=1(Spec(Li), ⟨αi⟩)→ Y and X ←

∐m
j=1(Spec(L

′
j), ⟨α′

j⟩)→
Y are isomorphic if there is an isomorphism f : Z =

∐n
i=1 Spec(Li) → Z ′ =∐m

j=1 Spec(L
′
j), so, in particular, n = m, making the diagram

Z

f∼=

��

~~   

X Y

Z ′

>>``

commute and satisfying the following property. For all index pairs (i, j) with
f(Spec(Li)) = Spec(L′

j), we have that f ′(⟨αi⟩) = ⟨α′
j⟩ ∈ Z̃0(Spec(L′

j)), where
f ′ : Z̃0(Z)

∼=→ Z̃0(Z ′) is the isomorphism on oriented 0-cocycles induced by f .
The composition in s̃pan(k) is defined as follows. Let Z = Spec(L) and

V = Spec(K) for K,L finite separable field extensions of k. Consider morphisms
X

r←− (Z, ⟨α⟩) −→ Y and Y ←− (V, ⟨β⟩) t−→ W and let Y be connected w.l.o.g.
Consider the pullback square

Z ×Y V
pV //

pZ
��

V

��

t //W

Z //

r
��

Y

X .

Since Z̃0(Z) = C̃H
0
(Z) for all Z in Sm0

k, we can apply the pullback construction
of Chow–Witt groups from [Fas08, Corollaire 10.4.3] in order to obtain elements

(pZ)
∗(⟨α⟩) ∈ Z̃0(Z ×Y V )
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and

(pV )
∗(⟨β⟩) ∈ Z̃0(Z ×Y V ).

We fix an isomorphism φ : Z ×Y V
∼=−→

∐n
i=1 Spec(Ωi) for finite separable field

extensions Ωi/k for all i, which exists by Remark 8.1.1. It induces an isomorphism
φ′ on oriented 0-cocycles. Then, φ′((pZ)

∗(⟨α⟩)) and φ′((pV )
∗(⟨β⟩)) have the form

⟨α′
1⟩ ⊕ ...⊕ ⟨α′

n⟩ ∈
n⊕
i=1

Z̃0(Spec(Ωi)) ∼=
n⊕
i=1

GW(Ωi)

and

⟨β′
1⟩ ⊕ ...⊕ ⟨β′

n⟩ ∈
n⊕
i=1

Z̃0(Spec(Ωi)) ∼=
n⊕
i=1

GW(Ωi),

respectively, where α′
i, β

′
i ∈ Ω×

i for all i. Let

⟨α′
i⟩ · ⟨β′

i⟩ ∈ Z̃0(Spec(Ωi)) = C̃H
0
(Spec(Ωi))

denote the intersection product of Chow–Witt groups (see [Fas07, Definition 6.1]),
which coincides with the multiplication in GW(Ωi) by [Fas07, Theorem 7.6]. The
composition is then defined as the morphism

X
r◦pZ
←−−−

n∐
i=1

(Spec(Ωi), ⟨α′
i⟩ · ⟨β′

i⟩)
t◦pV
−−−→ W.

The construction is linearly extended to general Z, V, Y in Sm0
k. The composition

is independent of the choice of φ, as Remark 8.1.3 shows.
One checks that the identity element in Homs̃pan(k)(Z,Z) for an object Z =∐n

i=1 Spec(Li) is the morphism

Z
id←−

n∐
i=1

(Spec(Li), ⟨1⟩)
id−→ Z,

where the Li are finite separable field extensions of k. The composition is asso-
ciative since the multiplication in Grothendieck–Witt groups is associative and
the composition in the non-oriented counterpart span(k) is as well.

We have a monoid structure on Homs̃pan(k)(X, Y ) given by

[X ←
n∐
i=1

(Spec(Li), ⟨αi⟩)→ Y ] + [X ←
m∐
j=1

(Spec(L′
j), ⟨α′

j⟩)→ Y ]

:= [X ← (
n+m∐
k=1

(Spec(Lk), ⟨αk⟩)→ Y ],
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where Ln+j := L′
j and ⟨αn+j⟩ := ⟨α′

j⟩ for all j ∈ {1, ...,m}. One checks that the
empty set gives rise to a zero element.

The disjoint union equips s̃pan(k) with finite products and coproducts, see
Remark 8.1.4.

We denote by Ω̃(k) the additive category after group completing the Hom-
sets and imposing the following equivalence relation on Hom-sets. The morphism
group HomΩ̃(k)(X, Y ) is then the group of isomorphism classes of oriented spans
dividing out the equivalence relation

[X ← (Z, ⟨a⟩)→ Y ] + [X ← (Z, ⟨b⟩)→ Y ]

= [X ← (Z, ⟨a+ b⟩)→ Y ] + [X ← (Z, ⟨ab(a+ b)⟩)→ Y ],

where X, Y are in Sm0
k, Z = Spec(L) for some finite separable field extension L/k,

a, b, a + b ∈ L×, and we procede componentwise for general Z. This relation is
inspired by the definition of a Grothendieck–Witt group of a field via relations,
compare [Lam05, Theorem II.4.3]. Note that the relation

[X ← (Z, ⟨a⟩)→ Y ] = [X ← (Z, ⟨ab2⟩)→ Y ] ∈ HomΩ̃(k)(X, Y )

is already satisfied by construction.
We may extend scalars to a given commutative ring R in order to obtain

a category Ω̃R(k). While objects are the same as in Ω̃(k), oriented spans f :

(
∐n

i=1(Spec(Li), ⟨αi⟩))→ X×Y , αi ∈ Lxi , now satisfy ⟨αi⟩ ∈ Z̃0(Spec(Li))⊗R) =
GW(Li)⊗R.

Remark 8.1.3. Let the notation be as in Construction 8.1.2. The composition in
s̃panR(k) (and therefore in Ω̃(k)) does not depend on the choice of the isomorphism
φ : Z ×Y V

∼=−→
∐n

i=1 Spec(Ωi). Take another isomorphism ψ : Z ×Y V
∼=−→∐n

i=1 Spec(Ω
′
i). We obtain isomorphisms

n⊕
i=1

Z̃0(Spec(Ω′
i)))⊗R

(ψ−1)′−→ Z̃0(Z ×Y V )⊗R φ′
−→

n⊕
i=1

Z̃0(Spec(Ωi)))⊗R.

Then, the resulting compositions for the different choices φ and ψ are in the same
isomorphism class in Homs̃pan(k)(X,W ) via the isomorphism φ◦ψ−1 since it fulfills

(φ′ ◦ (ψ−1)′)(ψ′((pZ)
∗(⟨α⟩))) = φ′((pZ)

∗(⟨α⟩))

and

(φ′ ◦ (ψ−1)′)(ψ′((pV )
∗(⟨β⟩))) = φ′((pV )

∗(⟨β⟩)).

Remark 8.1.4. Let us briefly verify that the disjoint union is product and coprod-
uct in s̃pan(k) and its non-oriented counterpart span(k) from [ThWe95, Section
2].

First, we show that the disjoint union is a product. Let A,B, T,X, Y be con-
nected 0-dimensional k-schemes. This observation extends to the non-connected

127



Chapter 8. Cohomological Milnor–Witt Mackey Functors

case. Let T ←− A
fX−→ X and T ←− B

fY−→ Y be spans in span(k). We construct
a span

f = [T ←− A
∐

B
(fX ,fY )

−−−−→ X
∐

Y ].

Moreover, we set

πX = [X
∐

Y
iX←− X

id−→ X]

and

πY = [X
∐

Y
iY←− Y

id−→ Y ].

Since the fiber product (A
∐
B)×X∐

Y X is simply A, the composition πX ◦ f is
the span

T ← (A
∐

B)×X∐
Y X → X

= T ←− A
fX−→ X

Similarly, πY ◦ f = fY . One checks that for a different choice of f , at least one of
the equations πX ◦ f = fX and πY ◦ f = fY is not satisfied. Hence, the choice of
f is unique.

Now, consider spans T ←− (A, ⟨α⟩) fX−→ X and T ←− (B, ⟨β⟩) fY−→ Y in
s̃pan(k). We equip the spans πX , πY , and f from above with the forms ⟨1⟩ ∈
Z̃0(X), ⟨1⟩ ∈ Z̃0(Y ), and ⟨α⟩

∐
⟨β⟩, respectively, where the latter notation means

⟨α⟩ ∈ Z̃0(A) and ⟨β⟩ ∈ Z̃0(B). From the above description of the span πX◦f = fX

it follows that the composition of T ←− (A
∐
B, ⟨α

∐
⟨β⟩)

(fX ,fY )

−−−−→ X
∐
Y and

X
∐
Y

iX←− X
id−→ X is again T ←− (A, ⟨α⟩) fX−→ X. The same follows for the

component Y . The choice of f in span(k) has been unique and if we equip f with
a different form than ⟨α⟩

∐
⟨β⟩, the respective diagram does not commute. Hence,

the choice of f together with ⟨α⟩
∐
⟨β⟩ is unique as well.

This shows that the disjoint union is a product in both span(k) and s̃pan(k).
It can be seen directly that span(k) ≃ span(k)op and s̃pan(k) ≃ s̃pan(k)op, so
product and coproduct coincide.

We now turn back to the category Ω̃R(k). There is an additive forgetful functor

V : Ω̃R(k)→ ΩR(k)

that is the identity on objects and is induced by the forgetful homomorphism
V : Z̃0(Z)⊗R→ Z0(Z)⊗R on morphism groups.

We also obtain a functor from Ω̃R(k) to C̃or
0

k,R induced by the pushforward of
Chow–Witt groups. For an overview of the general construction of the pushfor-
ward of Chow–Witt groups, the reader is referred to [Fas20, Section 2.3]. Recall
from Remark 7.2.3 that we may fix isomorphisms trivializing the twists in an
canonical way in our case.
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Lemma 8.1.5. The functor ε̃ : Ω̃R(k)→ C̃or
0

k,R is well-defined with respect to the
equivalence relation on Hom-sets.

Proof. Let fα := [(Spec(L), ⟨α⟩) f−→ X × Y ] be in Ω̃R(k), α, β, α + β ∈ L×, and
fβ, fα+β, fαβ(α+β) the same spans but equipped with the respective bilinear forms
⟨β⟩, ⟨α+β⟩ and ⟨αβ(α+β)⟩. We have to check that ε̃(fα+fβ) = ε̃(fα+β+fαβ(α+β)).

By additivity of ε̃, we have

ε̃(fα + fβ) = ε̃(fα) + ε̃(fβ) = f∗(⟨α⟩) + f∗(⟨β⟩).

Since f∗ is a group homomorphism ([Lam05, Corollary VII.1.5]) and because the
relation ⟨α⟩+ ⟨β⟩ = ⟨α + β⟩+ ⟨αβ(α + β)⟩ holds in GW(L)⊗R, it follows that

ε̃(fα + fβ) = f∗(⟨α⟩+ ⟨β⟩) = f∗(⟨α + β⟩+ ⟨αβ(α + β)⟩)
= f∗(⟨α + β⟩) + f∗(⟨αβ(α + β)⟩))
= ε̃(fα+β) + ε̃(fαβ(α+β)) = ε̃(fα+β + fαβ(α+β)).

Lemma 8.1.6. Let k be a perfect field of characteristic ̸= 2 and R a ring. The
pushforward of Chow–Witt groups induces an additive functor

ε̃ : Ω̃(k)→ C̃or
0

k

being the identity on objects. It sends a span f : (Z = Spec(L), ⟨α⟩) → X × Y
to the oriented pushforward ε̃(f) := f∗(⟨α⟩) ∈ C̃H

0
(X × Y ) = Z̃0(X × Y ) and we

extend this definition linearly for general Z in Sm0
k. Extending scalars to a ring

R, we obtain an additive functor ε̃ : Ω̃R(k)→ C̃or
0

k,R.

Proof. Additivity is given by construction. To see that the identity is preserved,
it thus suffices to check that Spec(L) ← (Spec(L), ⟨1⟩) → Spec(L) with L ⊃ k a
finite separable field extension and 1 ∈ L is preserved. We have by Example 8.1.9
below that

ε̃(Spec(L)← (Spec(L), ⟨1⟩)→ Spec(L))

= (TrLL)∗(⟨1⟩) = id∗(⟨1⟩) = ⟨1⟩ ∈ Z̃0(Spec(L)× Spec(L)).

The fact that composition is preserved follows directly from the definition of the
composition in C̃or

0

k introduced in [CF22, Section 4.2]. The statement after ex-
tending scalars follows immediately.

Let us consider examples and special cases in order to understand ε̃ better.
Since, in our case, we only treat (finite coproducts of) zero-dimensional regular
k-schemes, the definition simplifies and essentially breaks down to the Scharlau
transfer of Grothendieck–Witt groups with respect to the transfer map, compare
[Lam05, Chapter VII, Section 1].
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Remark 8.1.7. Let X × Y ∼= Spec(
∏n

i=1 Ωi) =
∐n

i=1 Spec(Ωi) for X, Y in Sm0
k (by

Remark 8.1.1), i.e. Ωi is a finite separable field extension of k for every i. Recall
from [BG23a, Remark 6.5] that a morphism f : Z → X × Y , Z = Spec(L),
factors through one of the points Spec(Ωj) of X × Y , and, thus, the pushforward
f∗ : GW(L)⊗R = C̃H

0
(Z)⊗R→ C̃H

0
(X×Y )⊗R =

⊕n
i=1GW(Ωi)⊗R is given

by the composition

f∗ : GW(L)⊗R
(TrLΩj

)∗
// GW(Ωj)⊗R �

�
//
⊕n

i=1GW(Ωi)⊗R ,

where (TrLΩj
)∗ is the Scharlau transfer of the field trace TrLΩj

: L → Ωj, compare
[Lam05, Chapter VII, Section 1]. It sends a one-dimensional form ⟨α⟩, α ∈ L×,
to the scaled trace form

(TrLΩj
)α : L× L→ Ωj

(x, y) 7→ TrLΩj
(αxy)

of dimension [L : Ωj].

To understand the functor ε̃ intuitively, we give some concrete examples for
the case k = R, hence, ⊗ = ⊗R.

Example 8.1.8. Let k = R and R = Z.

(i) Consider the span

Spec(C) id←− Spec(C) (−)−→ Spec(C)

corresponding to the ring homomorphism

C⊗ C ∼= C× C→ C
u⊗ v 7→ (uv, uv) 7→ uv,

hence, yielding the map

f : Spec(C)→ Spec(C× C) ∼= Spec(C)⨿ Spec(C)
(0) 7→ C× (0)

factoring through the second component of Spec(C)⨿ Spec(C).

The pushforward f∗ : GW(C) → GW(C ⊗ C) ∼= GW(C) ⊕ GW(C) is now
the composition of the identity id = (TrCC)∗ and the inclusion into the second
component, hence the only equivalence class of one-dimensional forms ⟨1⟩ ∈
GW(C) ∼= Z is sent to itself in the second component of GW(C)⊕GW(C)
under ε̃.
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(ii) Consider the span

Spec(R) π←− Spec(C) π−→ Spec(R)

corresponding to multiplication m : R⊗ R ∼= R→ C yielding

g : Spec(C)→ Spec(R)
(0)C 7→ (0)R.

Thus, g∗ is the Scharlau transfer (TrCR)∗ : GW(C) → GW(R) sending ⟨1⟩ ∈
GW(C) to its trace form (TrCR)1.

To determine the matrix representation of (TrCR)1, we choose the R-basis
e1 = 1, e2 = i of C and determine

TrCR(ei · ej)

for i, j ∈ {1, 2}. The multiplication by i is given by the matrix
(

0 −1
1 0

)
,

so, for ei ̸= ej, we have TrCR(eiej) = TrCR(i) = tr

((
0 −1
1 0

))
= 0 + 0 = 0.

Moreover, TrCR(1) = 1 + 1 = 2 and TrCR(i
2) = −1 + (−1) = −2, so the trace

form (TrCR)1 is
(

2 0
0 −2

)
= ⟨2,−2⟩ ∼= ⟨1,−1⟩ = H ∈ GW(R).

Hence, the image of the span

Spec(R) i←− (Spec(C), ⟨1⟩) i−→ Spec(R)

under ε̃ in C̃or
0

k(Spec(R), Spec(R)) is the hyperbolic form ⟨1,−1⟩ ∈ GW(R).

For our purposes, it will be important to understand where spans of the fol-
lowing special type are sent to under ε̃, just as in [BG23a, Remark 6.5].

Example 8.1.9. Let L/K/k be finite separable field extensions and consider the
span

f = [Spec(K)
π←− (Spec(L), ⟨α⟩) π−→ Spec(K)].

We know from [BG23a, Remark 6.5] that the underlying map f without langleα⟩
factors through Spec(K), hence its image in C̃or

0

k,R is given by

ε̃(f) = f∗(⟨α⟩) = (TrLK)∗(⟨α⟩) = (TrLK)α ∈ GW(K)⊗R � � // GW(K ⊗K)⊗R .

Forgetting the symmetric bilinear form ⟨α⟩, the span f gets send to [L : K] idSpec(K)

under ε : ΩR(k)→ Cor0k,R, see loc.cit.

More generally, the functor ε̃ is a generalization of the functor ε in the following
sense.
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Lemma 8.1.10. Let k be a perfect field of characteristic ̸= 2 and R a ring.
The following diagram commutes, where the horizontal arrows are the forgetful
functors.

Ω̃R(k)

ε̃
��

// ΩR(k)

ε

��

C̃or
0

k,R
// Cor0k,R .

Proof. Let R = Z for better readability. All arrows are the identity on objects,
hence we only have to check the statement for morphisms. Since all functors are
additive, let f : Spec(K1) ← Spec(L) → Spec(K2) be a prototypical span in
Ω(k) and ⟨α⟩ ∈ GW(L), α ∈ L×. We know that f factors through some point
P = Spec(k(P )) := f(Spec(L)) of Spec(K1)× Spec(K2). Then, f∗ factors as

f∗ : Z
0(Spec(L)) ∼= Z→ Z0(P ) ∼= Z incl.−→ Z0(Spec(K1)× Spec(K2))

[Spec(L)] = 1 7→ [L : k(P )] · P

and, in the oriented case, f∗ factors as

f∗ : GW(L)→ GW(k(P ))
incl.−→ GW(Spec(K1)× Spec(K2))

⟨α⟩ 7→ (TrLk(P ))∗(⟨α⟩).

The forgetful functor V : GW(k(P ))→ K0(k(P )) ∼= Z is given by dimension and
since dim((TrLk(P ))∗(⟨α⟩)) = [L : k(P )] by Remark 8.1.7, the diagram commutes.
The proof extends directly to general R.

We construct the following ideal of homomorphisms inspired by [BG23a, No-
tation 4.15].

Definition 8.1.11. We define the two-sided ideal J̃R(k) of homomorphisms in
Ω̃R(k) as the ideal generated, i.e. consisting of linear combinations (with respect
to the sum as defined in Construction 8.1.2) with coefficients in R, by spans of
the form

[Spec(L′)
πL′
L

←−−− (Spec(L), ⟨α⟩)
πL′
L

−−−→ Spec(L′)]

−
[L:L′]∑
i=1

[Spec(L′)
id

←−−− (Spec(L′), ⟨αi⟩)
id

−−−→ Spec(L′)]

for L/L′/k finite separable field extensions of k and ⟨α⟩ ∈ GW(L)⊗R, where

⟨α1, ..., α[L:L′]⟩ = ε̃([Spec(L′)
πL′
L←− (Spec(L), ⟨α⟩)

πL′
L−→ Spec(L′)])

= (TrLL′)∗(α)
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is a matrix representation of the trace form of α ∈ L× in GW(L′)⊗R.
Note that two such matrix representations may differ by permutation of the

entries or multiplication of the i-th entry by a square β2
i for βi ∈ (L′)× and

i ∈ {1, ..., [L : L′]}, see [Scha85, Lemma 3.5]. Since the addition of oriented spans
is commutative, permutation of entries by some permutation π yields

[L:L′]∑
i=1

[Spec(L′)
id

←−−− (Spec(L′), ⟨απ(i)⟩)
id

−−−→ Spec(L′)]

=

[L:L′]∑
i=1

[Spec(L′)
id

←−−− (Spec(L′), ⟨αi⟩)
id

−−−→ Spec(L′)] .

On the other hand, multiplying αi with a square yields isomorphic oriented spans
by Construction 8.1.2, hence,

[L:L′]∑
i=1

[Spec(L′)
id

←−−− (Spec(L′), ⟨αiβ2
i ⟩)

id

−−−→ Spec(L′)]

=

[L:L′]∑
i=1

[Spec(L′)
id

←−−− (Spec(L′), ⟨αi⟩)
id

−−−→ Spec(L′)] .

Moreover, there is the Scharlau relation in GW(L′) for forms of dimension 2. Let
w.l.o.g. [L : L′] = 2. Then,

[Spec(L′)
id

←−−− (Spec(L′), ⟨α1⟩)
id

−−−→ Spec(L′)]

+[Spec(L′)
id

←−−− (Spec(L′), ⟨α2⟩)
id

−−−→ Spec(L′)]

=[Spec(L′)
id

←−−− (Spec(L′), ⟨α1 + α2⟩)
id

−−−→ Spec(L′)]

+[Spec(L′)
id

←−−− (Spec(L′), ⟨α1α2(α1 + α2)⟩)
id

−−−→ Spec(L′)]

by definition of Ω̃R(k). Consequently, the description of the ideal is independent
of the choice of the αi.

This yields an equivalence relation on each Hom-set of the form
HomΩ̃R(k)(Spec(H), Spec(H)) in Ω̃R(k) by defining the equivalence class of f in the
quotient of abelian groups HomΩ̃R(k)(Spec(H), Spec(H))/J̃R(k) as [f ] := f+J̃R(k).

We extend this equivalence relation via composition in the following way. Let
f = f1 ◦ f2 ◦ f3, n ∈ N be an arbitrary composition of some morphism f ∈
HomΩ̃R(k)(Spec(K), Spec(L)). If f2 is an element of HomΩ̃R(k)(Spec(H), Spec(H))

for some finite separable field extension H/k, we say

f ∼ f1 ◦ f ′
2 ◦ f3

for each f ′
2 ∈ [f2] = f2+ J̃R(k). We denote the quotient category defined this way

by Ω̃R(k)/J̃R(k).
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We need the following lemma that characterizes prototypical spans in Ω̃(k)
just as in [BG23a, Remark 4.14], inspired by [ThWe95, Proposition 2.2].

Lemma 8.1.12. Let K and H be open subgroups of Γ := Gal(k̄/k) for a fixed
separable closure k̄ of a perfect field k with char(k) ̸= 2. Every morphism in
HomΩ̃R(k)(Spec(k̄

K), Spec(k̄H)) is equivalent modulo J̃R(k) to a linear combination
of spans of the form

Spec(k̄K) Spec(k̄K
g∩H , ⟨β⟩)

gπK
Kg∩Hoo

πH
Kg∩H // Spec(k̄H) ,

where [g] ∈ K\Γ/H.

Proof. Recall that there is a well-known equivalence Sm0
k ≃ Γ- sets, by which

every smooth connected 0-dimensional k-scheme is equivalent to Spec(k̄H) for
some open subgroup H ≤ Γ.

Therefore, we can apply [ThWe95, Proposition 2.2] (compare [BG23a, Remark
4.14]) and conclude that we can rewrite a prototypical span in ΩR(k)

Spec(k̄K)
gπK

L

←−−− Spec(k̄L)
πH
L

−−−→ Spec(k̄H)

as the composition

[Spec(k̄K)

gπK
Kg∩H

←−−−−−− Spec(k̄K
g∩H) = Spec(k̄K

g∩H)]

◦[Spec(k̄Kg∩H)
πKg∩H
L

←−−−−−− Spec(k̄L)
πKg∩H
L

−−−−−−→ Spec(k̄K
g∩H)]

◦[Spec(k̄Kg∩H) =Spec(k̄K
g∩H)

πH
Kg∩H

−−−−−−→ Spec(k̄H)]

and it follows that we can rewrite a prototypical span

Spec(k̄K)
gπK

L←− (Spec(k̄L), ⟨α⟩)
πH
L−→ Spec(k̄H)

in Ω̃R(k) as the composition

[Spec(k̄K)

gπK
Kg∩H

←−−−−−−(Spec(k̄Kg∩H), ⟨1⟩) = Spec(k̄K
g∩H)]

◦[Spec(k̄Kg∩H)
πKg∩H
L

←−−−−−−(Spec(k̄L), ⟨α⟩)
πKg∩H
L

−−−−−−→ Spec(k̄K
g∩H)]

◦[Spec(k̄Kg∩H) =(Spec(k̄K
g∩H), ⟨1⟩)

πH
Kg∩H

−−−−−−→ Spec(k̄H)]

since ⟨1⟩ ⊗ ⟨α⟩ ⊗ ⟨1⟩ = ⟨1 · α · 1⟩ = ⟨α⟩ in GW(k̄L)⊗R.
By definition of J̃R(k), the middle term is equivalent modulo J̃R(k) to

n∑
i=1

[Spec(k̄K
g∩H)← (Spec(k̄K

g∩H), ⟨αi⟩)→ Spec(k̄K
g∩H)]
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for n = [k̄L : k̄K
g∩H ], where ⟨α1⟩ ⊥ ... ⊥ ⟨αn⟩ is the trace form of α ∈ L, i.e. the

image of ⟨α⟩ under the pushforward

(Trk̄
L

k̄K
g∩H )∗ : GW(k̄L)⊗R→ GW(k̄K

g∩H)⊗R.

It follows that our original span is equivalent modulo J̃R(k) to

[Spec(k̄K)

gπK
Kg∩H

←−−−−−− (Spec(k̄K
g∩H), ⟨1⟩) = Spec(k̄K

g∩H)]

◦
n∑
i=1

([ Spec(k̄K
g∩H)← (Spec(k̄K

g∩H), ⟨αi⟩)→ Spec(k̄K
g∩H)])

◦[ Spec(k̄Kg∩H) = (Spec(k̄K
g∩H), ⟨1⟩)

πH
Kg∩H

−−−−−−→ Spec(k̄H)]

which equals

n∑
i=1

[ Spec(k̄K)

gπH
Kg∩H

←−−−−−− (Spec(k̄K
g∩H), ⟨αi⟩)

πH
Kg∩H

−−−−−−→ Spec(k̄H)].

Remark 8.1.13. At this point, we would have liked to have proven an analog of
[BG23a, Proposition 4.17], namely that the functor ε̃ : Ω̃R(k) → C̃or

0

k,R induces
an equivalence of additive categories

ε̃′ :
Ω̃R(k)

J̃R(k)

≃−→ C̃or
0

k,R.

The idea was to construct an R-submodule M̃ of HomΩ̃R(k)(Spec(k̄
K), Spec(k̄H))

generated by spans of the form

sαg := [Spec(k̄K)

gπK
Kg∩H

←−−−−−− (Spec(k̄K
g∩H), ⟨α⟩)

πH
Kg∩H

−−−−−−→ Spec(k̄H)]

for [g] ∈ K\Γ/H and we wanted to show that

Hom
C̃or

0

k⊗R
(Spec(k̄K), Spec(k̄H)) ∼= M̃ ∼=

HomΩ̃R(k)(Spec(k̄
K), Spec(k̄H))

J̃R(k)
,

where the composition of the isomorphisms is given by ε′. However, it is not clear
whether

ε̃ : M̃
ε̃→ Hom

C̃or
0

k,R
(Spec(k̄K), Spec(k̄H)) ∼= GW(k̄K ⊗ k̄H)⊗R

is injective in general.

135



Chapter 8. Cohomological Milnor–Witt Mackey Functors

8.2 Milnor-Witt Mackey Functors

Having constructed the span category Ω̃(k) and the passage to finite MW corre-
spondences, we now define (cohomological) Mackey functors. We define Mackey
functors in a different way than the direct analog of [BG23a, Definition 4.5] since
its oriented version is not as concrete as its non-oriented counterpart. Our defini-
tion is inspired by [KY15, Proposition 2], which states an equivalent definition of
cohomological Mackey functors via factorizations. One could show these defini-
tions coincide in the Milnor–Witt case as well, but this would require some form
of an equivalence as discussed in Remark 8.1.13.

Definition 8.2.1. Let k be a perfect field of characteristic ̸= 2 and R a commu-
tative ring. We define MW Mackey functors to be additive functors

(Ω̃(k))op → R-Mod .

A cohomological MW Mackey functor is a MW Mackey functor that factors
through C̃or

0

k via ε̃. We will denote the abelian categories of (cohomological)

MW Mackey functors by M̃ack
coh

(k) ⊂ M̃ack(k).
As in the non-oriented case, we may extend scalars to R, denoting the resulting

categories by M̃ack
coh

R (k) ⊂ M̃ackR(k). The (cohomological) MW Mackey func-
tors in this case are R-linear additive functors Ω̃R(k)

op → R-Mod (which factor
through C̃or

0

k,R).

Conjecture 8.2.2. The factorization via ε̃ is unique.

The conjecture is true if the equivalence from Remark 8.1.13 holds, but we do
not expect the latter to be true in this form. However, it might still be possible
to show the uniqueness of the factorization independently.

For the rest of this work, we assume Conjecture 8.2.2 to be true.

The vertical equivalence of Diagram 7.1 is the following. After forgetting ∼,
the result can be considered a refinement of [BG23a, Corollary 6.17].

Corollary 8.2.3. We assume that Conjecture 8.2.2 holds. Let k be a perfect field
of characteristic ̸= 2 and R a commutative ring. Consider the functor

Φ̃ : M̃ack
coh

R (k)→ PShR(C̃or
0

k,R)

sending a cohomological MW Mackey functor M that factors as

(Ω̃R(k))
op M //

ε̃ &&

R-Mod

(C̃or
0

k,R)
op

M ′

99
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to Φ̃(M) := M ′ and a natural transformation φ : M1 ⇒ M2, defined via φX :

M1(X)→M2(X) for all objects X in Ω̃(k), to Φ̃(φ) := φ′ :M ′
1 ⇒M ′

2 defined via
φ′
ε̃(X) :M

′
1(ε̃(X))→M ′

2(ε̃(X)).
It is an equivalence of Grothendieck abelian categories.

Proof. The factorization is unique by Conjecture 8.2.2, so the statement follows
directly.

Remark 8.2.4. Note thatM ′ is, in particular, a Nisnevish sheaf with MW-transfers
since every presheaf on C̃or

0

k,R is automatically one by Remark 7.2.5. The above
equivalence hence extends to an equivalence

M̃ack
coh

R (k)
≃−→ ShNis(C̃or

0

k,R) = PShR(C̃or
0

k,R).

Let us say a few words about representation theoretical analogs.

We denote by Γ := Gal(k̄/k) the absolute Galois group of a perfect field k

of characteristic ̸= 2 for a fixed algebraic closure k̄. The category Ω̃(k) from
Construction 8.1.2 has a representation theoretical analog. For this, we recall the
explicit description of the following equivalence (on the left-hand side determined
by evaluation on additive generators)

Sm0
k

≃−→ Γ- sets

X 7→ X(k̄)

Spec(k̄H)←[ Γ/H.

Using this equivalence, we can directly transfer Construction 8.1.2 generalizing
[BG23a, Definition 4.5/Recollection 4.2]. The definition is merely sketched here.

Definition 8.2.5. Let Γ := Gal(k̄/k) be the absolute Galois group of a perfect
field k of characteristic ̸= 2 for a fixed algebraic closure k̄ and R a commutative
ring. Analogously to Construction 8.1.2, we define the category Ω̃(Γ) as the group
completion of the category s̃pan(Γ) with objects finite Γ- sets, i.e. finite direct sums
of finite permutation modules isomorphic to R(Γ/H).

A morphism from X to Y is a span X ← Z :=
∐n

i=1R(Γ/Hi) → Y together
with a one-dimensional symmetric bilinear form ⟨αi⟩ ∈ GW(k̄Hi) for each i. Com-
position and addition are defined analogously to Construction 8.1.2; extension of
scalars yields an additive category Ω̃R(Γ).

Remark 8.2.6. Let Γ := Gal(k̄/k) be the absolute Galois group of a perfect field k
of characteristic ̸= 2 for a fixed algebraic closure k̄. The equivalence of categories
Γ- sets ≃ Sm0

k induces equivalences of additive categories

Ω(Γ) ≃ Ω(k)

and

Ω̃(Γ) ≃ Ω̃(k)

and similarly after extending scalars to R.
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Remark 8.2.7. let Γ := Gal(k̄/k) be the absolute Galois group of a perfect field k
of characteristic ̸= 2 for a fixed algebraic closure k̄. One could (forcably) define
the additive category p̃erm(Γ;R) as follows. Objects are free R-modules of the
form R(X) for X in Γ- sets. The morphism group between additive generators
R(Γ/K) and R(Γ/H) is defined as

Homp̃erm(Γ;R)(R(Γ/K), R(Γ/H)) := GW(k̄K ⊗ k̄H)⊗R.

Since Homp̃erm(Γ;R)(R(Γ/K), R(Γ/H)) ∼= C̃H
0
(Spec(k̄K)× Spec(k̄H))⊗ R, we set

the composition as the restriction of the usual composition in C̃or
0

k,R introduced
in [CF22, Section 4.2]. Immediately, one could generalize [BG23a, Proposition
6.14] to obtain an equivalence of R-linear tensor categories

C̃or
0

k ⊗R ≃ p̃erm(Γ;R).

Then, we could define cohomological MW Mackey functors to be additive func-
tors

(Ω̃R(Γ))
op → R-Mod .

factoring (conjecturally uniquely) through p̃erm(Γ;R) and denote the resulting

abelian categories of cohomological MW Mackey functors by M̃ack
coh

R (Γ). It would
immediately follow that we have equivalences of abelian categories

M̃ack
coh

R (Γ) ≃ M̃ack
coh

R (k) ≃ ShNis(C̃or
0

k,R).

However, the results only transfer directly from C̃or
0

k,R and Ω̃(k), and not much
is won by this definition of p̃erm(Γ;R).

We have not found a sensible way how to equip morphisms of R-modules with
symmetric bilinear forms without using the equivalence Sm0

k ≃ Γ- sets. For this
reason, we do not have an intrinsic candidate for p̃erm(Γ;R) and especially not
for P̃erm(Γ;R) or M̃od(Γ;R).

In the end, our computations in Chapter 9 do not rely on representation the-
oretical results as opposed to computations in [BG22a].
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Chapter 9

The Balmer Spectrum of Artin
Milnor–Witt Motives

We now want to compute Balmer spectra for initial examples. In Section 9.1, we
determine, for example, the spectrum of (geometric) Artin Milnor–Witt motives
over algebraically closed base fields. Then, Section 9.2 treats the base field R
with coefficients in Z/2. We will assume all base fields k (and sometimes L) to
be infinite. Following Remark 7.3.4, it may be possible to drop this assumption
in the future.

9.1 Algebraically Closed Fields and First Compu-
tations

As expected, for algebraically closed fields with arbitrary coefficients, the derived
category of Milnor–Witt Artin motives is equivalent to Voevodsky’s derived cat-
egory of Artin motives.

Lemma 9.1.1. Let k be an algebraically closed field of characteristic ̸= 2 and R a
commutative ring. Then, we have an equivalence of tensor triangulated categories
DAMgm(k;R) ≃ D̃AM

gm

(k;R). If Conjecture 7.3.10 holds, then DAM(k;R) ≃
D̃AM(k;R).

Proof. First, we show that C̃or
0

k,R ≃ Cor0k,R. Let X, Y ∈ Sm0
k and T ⊂ X × Y an

admissible subset. Then, X × Y is zero-dimensional by Remark 8.1.1. It follows
from [Fas08, Remarque 10.2.16] that

C̃H
0

T (X × Y )⊗R ∼= CH0
T (X × Y )⊗R,

since k is algebraically closed. In particular, C̃or
0

k,R ≃ Cor0k,R by [CF22, Remark
4.3.3]. The result now follows from Proposition 7.3.3 and Corollary 7.3.12.

Corollary 9.1.2. Let k be an algebraically closed field of characteristic ̸= 2 and
R a commutative ring. The Balmer spectra of D̃AM

gm

(k;R) and DAMgm(k;R)
are homeomorphic to Spec(R).
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Proof. Follows from Lemma 9.1.1 and the observation from [BG22b, Corollary
2.9] that Spc(DAMgm(k;R)) = Spc(Dperf(R)).

Moreover, we obtain a refinement of [BG22b, Proposition 2.8].

Proposition 9.1.3. Let L be a finite separable field extension of k, both L and
k of characteristic ̸= 2, and K a perfect field such that the trace form (TrLk )1 is
invertible in GW(k)⊗K. Then, the map

Spc(D̃AM
gm

(L;K))→ Spc(D̃AM
gm

(k;K))

induced by the extension of scalars functor

Ẽxt
L

k : C̃or
0

k,K → C̃or
0

L,K

is surjective.

Proof. We follow an argument similar to the standard argument in the proof of
[BG22b, Proposition 2.8]. The extension functor Ẽxt

L

k admits a left adjoint R̃es
L

k

with unit η and counit ϵ which is also a right adjoint with unit η̃ and counit ϵ̃,
see [CF22, Section 6.2]. It is a tensor functor by [CF22, Section 6.2, p.32].

We obtain adjunctions after applying Kb((−)♮) on both sides. Using [CF22,
Lemma 6.2.2], we see that the composition

ϵ ◦ η̃ : id
Kb((C̃or

0

k,K)♮)
→ R̃es

L

k ◦ Ẽxt
L

k → id
Kb((C̃or

0

k,K)♮)

is given by (degreewise) multiplication as a (GW(k)⊗K)-module by the trace form
(TrLk )1 ∈ GW(k)⊗K. Since (TrLk )1 is invertible in GW(k)⊗K by assumption, ϵ◦ η̃
is also invertible. Here, we use that composition in Hom

C̃or
0

k,K
(Spec(k), Spec(k))

coincides with multiplication in GW(k)⊗K by [Fas07, Theorem 7.6].
It follows that η̃A is injective for all objects A in Kb((C̃or

0

k,K)
♮). Consequently,

the functor Ẽxt
L

k : Kb((C̃or
0

k,K)
♮) → Kb((C̃or

0

L,K)
♮) is faithful. Moreover, it is a

tensor triangulated functor since it is a tensor functor before applying Kb((−)♮).
The statement now follows from [Bal18, Theorem 1.3] and Proposition 7.3.3.

Remark 9.1.4. Unlike in the non-oriented case, it is not an immediate corollary of
this proposition that the spectrum of D̃AM

gm

(R;K) is homeomorphic to a point
when 2 is invertible in K (compare [BG22b, Corollary 2.9]). The reason for this
is that the field extension C/R does not fulfill the assumption that the trace form
is invertible.

Recall from Example 8.1.8 (ii) that (TrCR)1 = ⟨1,−1⟩ ∈ GW(R) ⊗ K, which
is indeed not invertible. It is not even a monomorphism when considered an
morphism in Hom

C̃or
0

R,K
(Spec(R), Spec(R)) ∼= GW(R)⊗K since we have

⟨1,−1⟩⟨1⟩ = ⟨1,−1⟩

140



9.2. The Base Field R and Coefficients in F2

and

⟨1,−1⟩⟨−1⟩ = ⟨−1, 1⟩ = ⟨1,−1⟩

by [Lam05, Proposition II.3.2] and [Scha85, Definition 1.4/1.7], but ⟨1⟩ ≠ ⟨−1⟩ ∈
GW(R)⊗K. Here, we used that the composition in Hom

C̃or
0

R,K
(Spec(R), Spec(R))

coincides with the multiplication in GW(R)⊗K by [Fas07, Theorem 7.6].

9.2 The Base Field R and Coefficients in F2

Let K = F2 in the following. We want take initial steps to compute the Balmer
spectrum of geometric Artin Milnor–Witt motives D̃AM

gm

(R;K) over the base
field R with coefficients in K.

Recall from Proposition 7.3.3 that we have a categorical equivalence

D̃AM
gm

(R;K) ≃ Kb((C̃or
0

R,K)
♮)

since R is perfect infinite of characteristic ̸= 2.

Remark 9.2.1. In the non-oriented case, these categories are equivalent to the
bounded homotopy category of the abelian category KC2-mod of finitely gen-
erated KC2-modules by [BG23a, Proposition 6.14] since every KC2-module is
already a permutation module. Moreover, [BG22a, Remark 10.5] recalls that
there is a categorical equivalence between KC2-mod and the category of Artin
Chow motives AM(R, K). Its oriented analogon is precisely C̃or

0

R,K , which is why

ÃM(R, K) would also be a suitable notation for C̃or
0

R,K .

Remark 9.2.2. An additive category is a Krull-Schmidt category if the endomor-
phism ring of every indecomposable object is a local ring, see [Rin84, p.52]. By
definition, every object in C̃or

0

R,K and Cor0R,K is a finite direct sum of copies of
Spec(R) and Spec(C). The latter is a Krull-Schmidt category, see [BG22b, Re-
mark 3.1]. It follows that End

C̃or
0

R,K
(Spec(C)) ∼= EndCor0R,K

(Spec(C)) is a local
ring. Moreover, the endomorphism ring End

C̃or
0

R,K
(Spec(R)) ∼= K[C2] is local as

well. Consequently, C̃or
0

R,K is a Krull–Schmidt category with indecomposable
objects Spec(R) and Spec(C).

The category Cor0R,K ≃ KC2-mod is abelian, but problems appear for its
oriented counterpart.

Lemma 9.2.3. The category C̃or
0

R,K is not abelian or the forgetful functor π :

C̃or
0

R,K → Cor0R,K is not exact.

Proof. Suppose C̃or
0

R,K is abelian and π is exact. We want to show that the
morphism H := ⟨1,−1⟩ ∈ GW(R)⊗K ∼= Hom

C̃or
0

R,K
(Spec(R), Spec(R)) does not

have a kernel.
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Since π is exact by assumption, it commutes with kernels and we have

π(ker(H)) = ker(π(H)) = ker([Spec(R) 0−→ Spec(R)])

=[Spec(R) id−→ Spec(R)] ∈ HomCor0R,K
(Spec(R), Spec(R)).

Since K = F2, the identity morphism on Spec(R) has exactly two lifts under π
in Hom

C̃or
0

R,K
(Spec(R), Spec(R)) ∼= GW(R) ⊗ K, namely ⟨1⟩ and ⟨−1⟩. Recall

that composition in Hom
C̃or

0

R,K
(Spec(R), Spec(R)) coincides with multiplication

in GW(R) ⊗ K by [Fas07, Theorem 7.6]. Since ⟨1⟩ · ⟨1,−1⟩ = ⟨−1⟩ · ⟨1,−1⟩ =
⟨1,−1⟩ ≠ 0, the diagram

Spec(R)
H

&&

Spec(R)

κ

OO

0 // Spec(R)

does not commute for κ ∈ {⟨1⟩, ⟨−1⟩}, which contradicts the definition of a kernel
in an abelian category, see [MacL71, Section VIII.1].

Example 9.2.4. Let ⟨1,−1⟩ ∈ Hom
C̃or

0

R,K
(Spec(R), Spec(R)) ∼= GW(R) ⊗ K.

We want to show that ⟨1,−1⟩ ◦ ⟨1,−1⟩ = 0 ∈ Hom
C̃or

0

R,K
(Spec(R), Spec(R)) ∼=

GW(R)⊗K.
The composition in Hom

C̃or
0

R,K
(Spec(R), Spec(R)) coincides with the multipli-

cation in GW(R)⊗K by [Fas07, Theorem 7.6]. By [Scha85, §2, Definition 1.4/1.7],
the multiplication ⟨1,−1⟩ · ⟨1,−1⟩ in GW(R)⊗K is defined as

⟨1,−1⟩ · ⟨1,−1⟩ := ⟨1,−1,−1, 1⟩ ,

which equals 2⟨1⟩+ 2⟨−1⟩. Since K is of characteristic 2, it follows that ⟨1,−1⟩ ·
⟨1,−1⟩ = 0 ∈ GW(R)⊗K.

We want to take first steps in computing the Balmer spectrum of

D̃AM
gm

(R;K) ≃ Kb((C̃or
0

R,K)
♮).

It suffices to consider the tensor triangulated category Kb(C̃or
0

R,K) since idempotent-
completion does not change the Balmer spectrum by [Bal05b, Proposition 3.13].

In order to determine some points of Spc(Kb(C̃or
0

R,K)), one can begin with
computing preimages of tensor prime ideals under the tensor triangulated forgetful
functor

π∗ : Kb(C̃or
0

R,K)→ Kb(Cor
0
R,K),
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which is defined by applying π : C̃or
0

R,K → Cor0R,K at each stage by [BC+22,
(MW1)]. It induces a continuous map

Spc(π∗) : Spc(Kb(Cor
0
R,K))→ Spc(Kb(C̃or

0

R,K))

P 7→ (π∗)−1(P)

by [Bal05b, Proposition 3.6].
The left-hand side consists of the three tensor prime ideals ⟨M(Spec(C))⟩, ⟨S⟩,

and ⟨S,M(Spec(C))⟩ as shown in [BG22a, Theorem 3.14]. Here, M(Spec(C)) is
Spec(C) considered a complex concentrated in degree 0 and

S = ...→ 0→ Spec(R) η−→ Spec(C) ϵ−→ Spec(R)→ 0→ ...

is concentrated in degrees 0, 1, and 2, see [BG22a, (3.4)].

Notation 9.2.5. The notation ⟨C⟩ for a set of objects C in Kb(Cor
0
R,K) stands

for the thick tensor ideal generated by C, i.e., the smallest thick tensor ideal
containing C.

We abuse notation here by writing M(Spec(C)) for an object in Kb(Cor
0
R,K),

which originally denotes the motive of Spec(C) in DM(R;K). Similarly, we denote
by M̃(Spec(C)) not only the Milnor-Witt motive of Spec(C) in D̃M(R;K), but also
the corresponding complex in Kb(C̃or

0

R,K), i.e., the complex Spec(C) concentrated
in degree 0. Translating their notation from the setting of representation theory
to algebraic geometry, some authors, e.g. in [BG22a, Section 3], use the notation
Spec(C) for the complex Spec(C) concentrated in degree 0. We choose a different
notation to better identify whether me mean an object in the oriented or non-
oriented case.

As a consequence, in order to determine some points of Spc(Kb(C̃or
0

R,K)), we
need to compute

(π∗)−1(⟨M(Spec(C))⟩), (π∗)−1(⟨S⟩), and (π∗)−1(⟨S,M(Spec(C))⟩).

In the light of [BG22a, Corollary 3.15], this amounts to computing the kernels of
(see loc.cit. for the notation in the third composition)

Kb(C̃or
0

R,K)
π∗
−→ Kb(Cor

0
R,K)

extRC
−−−−→ Kb(Cor

0
C,K) ≃ Kb(K-mod),

Kb(C̃or
0

R,K)
π∗
−→ Kb(Cor

0
R,K)

q−→ Db(Cor
0
R,K) ≃ Db(KC2-mod)

stab−→ KC2 − stab,

and

Kb(C̃or
0

R,K)
π∗
−→ Kb(Cor

0
R,K) ≃ Kb(KC2-mod)

Kb(stab)

−−−−→ Kb(K-mod),

where extRC denotes the functor induced by extension of scalars.

Let us focus on some intereseting objects in the category Chb(Cor
0
R,K) that

have multiple or no lifts in Chb(C̃or
0

R,K).
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Example 9.2.6. Let K = F2.

(i) The composition Spec(R) η−→ Spec(C) ϵ−→ Spec(R) in Cor0R,K appearing in
the acyclic complex S has a unique lift

Spec(R) ⟨1⟩−→ Spec(C) ⟨1⟩−→ Spec(R)

to C̃or
0

R,K since there are isomorphisms

Hom
C̃or

0

R,K
(Spec(R), Spec(C)) ∼= GW(C)⊗K

∼= K ∼= HomCor0R,K
(Spec(R), Spec(C))

and

Hom
C̃or

0

R,K
(Spec(C), Spec(R)) ∼= GW(C)⊗K

∼= K ∼= HomCor0R,K
(Spec(C), Spec(R)).

However, we have seen in Example 8.1.8 (ii) that the composition is ⟨1,−1⟩ ≠
0 ∈ GW(R). Consequently, the complex S does not give rise to a complex
in Chb(C̃or

0

R,K).

(ii) On the other hand, the composition

Spec(R)
⟨1,−1⟩
−−−→ Spec(R)

⟨1,−1⟩
−−−→ Spec(R)

in C̃or
0

R,K yields a complex (the composition is 0 by Example 9.2.4)

H• : ...→ 0→ Spec(R)
⟨1,−1⟩
−−−→ Spec(R)

⟨1,−1⟩
−−−→ Spec(R)→ 0→ ... ,

which is not chain homotopy equivalent by the considerations below to

C• : ...→ 0→ Spec(R) 0−→ Spec(R) 0−→ Spec(R)→ 0→ ... .

The forgetful functor π : C̃or
0

R,K → Cor0R,K sends both compositions ⟨1,−1⟩◦
⟨1,−1⟩ and 0 ◦ 0 to

Spec(R) 0−→ Spec(R) 0−→ Spec(R),

which gives rise to a complex in Chb(Cor
0
R,K).

Let us check that H• and C• are indeed not chain homotopy equivalent. If
they were, we could find chain maps f : H• → C• and g : C• → H• such
that f ◦g ∼ idC• and g◦f ∼ idH• . In order to make the diagrams mandatory
for chain maps appearing in

0 // Spec(R)
f1
��

H // Spec(R)
f2
��

H // Spec(R)
f3
��

// 0

0 // Spec(R)

g1

OO

0 // Spec(R)

g2

OO

0 // Spec(R)

g3

OO

// 0
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commutative, the concrete description of the Hom-sets in C̃or
0

R,F2
implies

that g1, g2, f2, f3 ∈ {0, ⟨1,−1⟩}. In particular, g2 ◦ f2 = f2 ◦ g2 = 0.

A chain homotopy equivalence between idC• and f ◦g is a collection of maps
hi : C

i → Ci−1

0 // Spec(R)
f1◦g1

��

⟨1⟩
��

0 // Spec(R)
h2

xx

⟨1⟩
��

0
��

0 // Spec(R)
h3

xx

f3◦g3
��

⟨1⟩
��

// 0

0 // Spec(R) 0 // Spec(R) 0 // Spec(R) // 0

such that, in particular, ⟨1⟩−0 = 0◦h2+h3◦0 = 0, which is a contradiction.

Lemma 9.2.7. Let K = F2. The image of ⟨S⟩ under

Spc(π∗) : Spc(Kb(Cor
0
R,K))→ Spc(Kb(C̃or

0

R,K))

is contained in supp(M̃(Spec(C))).

Proof. It follows from [Bal05b, Proposition 3.6] and [BG22a, Theorem 3.14] that

(Spc(π∗))−1(supp
Kb(C̃or

0

R,K)
(M̃(Spec(C)))) = suppKb(Cor0R,K)(π

∗(M̃(Spec(C))))

= suppKb(Cor0R,K)(M(Spec(C))) = ⟨S⟩.

Now, we can apply Spc(π∗) on both sides and obtain

Spc(π∗)(⟨S⟩) = Spc(π∗)(Spc(π∗)−1(supp
Kb(C̃or

0

R,K)
(M̃(Spec(C)))))

⊂ supp
Kb(C̃or

0

R,K)
(M̃(Spec(C))).

We can compute the preimage of ⟨M(Spec(C))⟩ under π∗.

Lemma 9.2.8. Let K = F2. The image of ⟨M(Spec(C))⟩ under

Spc(π∗) : Spc(Kb(Cor
0
R,K))→ Spc(Kb(C̃or

0

R,K))

is the prime ideal ⟨M̃(Spec(C))⟩.

Proof. Since π∗(M̃(Spec(C))) = M(Spec(C)) ∈ ⟨M(Spec(C))⟩, we have that
M̃(Spec(C)) ∈ (π∗)−1(⟨M(Spec(C))⟩). Consequently, we obtain ⟨M̃(Spec(C))⟩ ⊂
(π∗)−1(⟨M(Spec(C))⟩) = Spc(π∗)(⟨M(Spec(C))⟩).

For the other inclusion, we recall that Cor0R,K and C̃or
0

R,K have the same ob-
jects and the additive generators satisfy Spec(C)⊗Spec(R) Spec(R) ∼= Spec(C) and
Spec(C)⊗Spec(R)Spec(C) ∼= Spec(C)⊕Spec(C). Hence, complexes in ⟨M(Spec(C))⟩
and ⟨M̃(Spec(C))⟩ have only (possibly 0) copies of Spec(C) in each degree. Note
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that the tensor unit M̃(Spec(R)) considered a complex concentrated in degree 0
cannot appear as a direct summand of an object in ⟨M̃(Spec(C))⟩. Otherwise, the
thick tensor prime ideal Spc(π∗)(⟨M(Spec(C))⟩) would not be proper, which is a
contradiction. Analogously, M(Spec(R)) cannot appear as a direct summand of
an object in ⟨M(Spec(C))⟩. The differentials are arbitrary morphisms in Cor0R,K

and C̃or
0

R,K , respectively, such that the composition of two consecutive differentials
is 0.

Let C̃ ∈ (π∗)−1(⟨M(Spec(C))⟩), i.e., π∗(C̃) = C ∈ ⟨M(Spec(C))⟩. The func-
tor π∗ is given by applying the additive forgetful functor π degreewise, which
is the identity on objects. Hence, Ci = C̃i in each degree i. In particular,
C̃ ∈ ⟨M̃(Spec(C))⟩.

Remark 9.2.9. Applying Proposition 7.3.3 and using the fact that idempotent
completion does not change the Balmer spectrum by [Bal05b, Proposition 3.13],
we have computed one point of the Balmer spectrum Spc(D̃AM

gm

(R;K)) for K of
characteristic 2. The next step is to compute the images under Spc(π∗) of ⟨S⟩ and
⟨S,M(Spec(C))⟩, which we conjecture to be ⟨0⟩ and ⟨M̃(Spec(C))⟩, respectively.
In future work, one could try to find tensor prime ideals in Spc(Kb(C̃or

0

R,K)) that
are not images under Spc(π∗).

However, one can show that the functor π : C̃or
0

R,K → Cor0R,K detects ⊗-

nilpotence for morphisms. That is, if π(f) = 0 for a morphism f in C̃or
0

R,K , then
f⊗n = 0 for some n ≥ 1. One can also show that this property transfers to the
level of chain complexes, but it is not clear whether it transfers to the level of
homotopy categories as well. If it does, one can apply [Bal18, Theorem 1.3] and
conclude that the induced map on spectra Spc(π∗) is surjective.

In this case, computing the its image already yields a complete description of
the Balmer spectrum Spc(Kb(C̃or

0

R,K)). If the above conjecture of the computation
of the other preimages proves to be true, the spectrum would actually consist of
less points than Spc(Kb(Cor

0
R,K)). This is unexpected, since “decorating with

tilde” adds information and one would, in general, rather suspect a surjection in
the opposite direction. However, we are in the special case of coefficients in a field
K of characteristic 2. Therefore, unexpected results may appear. Still, the author
expects Spc(π∗) not to be surjective in this case.

Remark 9.2.10. If the conjecture Spc(π∗)(⟨S⟩) = ⟨0⟩ proves to be true, it fol-
lows that ⟨0⟩ is a prime ideal in Kb(C̃or

0

R,K). In Kb(Cor
0
R,K), this is not the case.

We repeat the argument in Kb(perm(C2, K)) ≃ Kb(Cor
0
R,K) after applying Corol-

lary 6.2.12. By Frobenius reciprocity,

kC2 ⊗M ∼= IndC2
∗ ResC2

∗ M = IndC2
∗ 0 = 0

for any acyclic complex M ∈ ⟨S⟩ = Kb,ac(Cor
0
R,K). Hence, in particular, kC2⊗S =

0.
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