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Programme

This discovery, which is technically so simple, made a very strong impression on me,

and it represents a decisive turning point in the course of my reflections [...]. I do not

believe that a mathematical fact has ever struck me quite so strongly as this one, nor had

a comparable psychological impact. – A. Grothendieck1

Grothendieck is refering to the discovery of (what he called) dessins d’enfants. A dessin
d’enfant is a bicoloured graph (each vertex is colored black or white) drawn on a compact
oriented topologial surface X such that removing the graph decomposes X into open cells.
Such a dessin gives rise to the structure of a Riemann surface on X together with a map to the
Riemann sphere which ramifies over the points 0,1 and ∞ (the white vertices are the inverse
images of 0, the black vertices the inverse images of 1 and each cell contains an inverse image
of ∞). However, the category of compact Riemann surfaces is equivalent to the category
of smooth projective complex curves. Belyi’s three point theorem states that such a curve
admits a dominant morphism to P1(C) which ramifies over at most three points if and only
if the curve is defined over the field Q of algebraic numbers. The consequence is astonishing:
The absolute Galois group Gal(Q/Q) acts on the set of dessins (which can be described as
purely combinatorial objects). The aim of this seminar is to learn the basic theory of dessins
d’enfants and to get an idea of the action of the absolute Galois group. For more information
I recommend to look at the short article [Za03].

Structure of the seminar: Our main reference is the book “Introduction to Compact Rie-
mann Surfaces and Dessins d’Enfants” of Girondo and González-Diez [GGD]. It is available
as an eBook if you search for it via the website of the library in Düsseldorf. It is easy to
read and contains a lot of examples. Our main interest lies in Chapter 4. However, I tried
to include many other sources. The talks vary in length and difficulty. In case you have the
impression that your talk is too long, please shorten it – there is no need to hurry (ask me if
you are unsure which part to leave out). On the other hand, if your talk is too short: add
examples! If you have any questions, please don’t hesitate to ask:
steffen.kionke@uni-duesseldorf.de

Meeting 1: 20.04.17 in Düsseldorf

1. Introduction to Riemann surfaces

Ref.: parts of 1.1 and 1.2 in [GGD] and II.4 in [Mi]  Riemann surfaces

The purpose of this talk is to give an introduction to Riemann surfaces. The focus lies on
the properties of holomorphic maps between compact Riemann surfaces. Take the viewpoint
that the audience is familiar with the general concept of a manifold (smooth or topologcial)
and emphasize the specific features of Riemann surfaces.

Give the definition of a Riemann surface [GGD, Def.1.2]. Mention examples: the Riemann
sphere P1(C) and the upper half plane H ([GGD, Ex.1.5,1.6]). Define the genus g of a compact
Riemann surface S via the Euler characteristic and the formula χ(S) = 2− 2g.

Define holomorphic maps between Riemann surfaces and introduce the field M(S) of
meromorphic functions (1.15, 1.16 [GGD]). Give an example such as the Riemann sphere

1Grothendieck: Esquisse d’un programme; english translation from [SchL].



(see Prop. 1.26). Discuss the normal form theorem (II. Prop. 4.1 in [Mi]) and define the
multiplicity of a holomorphic map at a point P ([Mi, II.Def.4.2]). Define branch point,
ramification point, branch value as in [GGD, Def.1.31]. Explain II. Prop. 4.8 in [Mi] and
define the degree of holomorphic maps between compact Riemann surfaces. State (and proof)
the Riemann-Hurwitz formula (II. Thm. 4.16 in [Mi] or Thm.1.60 & Thm.1.76 in [GGD]).
Discuss the local structure of morphisms of Riemann surfaces: After removing the branch
points one obtains a finite covering of surfaces (1.2.6 especially Theorem 1.74 in [GGD]).

2. Riemann surfaces, function fields and algebraic curves

Ref.: 1.3 in [GGD] (and parts of I.6 in [Ha])  algebraic geometry, Riemann surfaces

The aim of this talk is to discuss the equivalence of the following four categories: (1) compact
Riemann surfaces (with non-constant holomorphic maps), (2) function fields of transcendence
degree 1, (3) algebraic curves over C (with dominant rational maps) and (4) smooth projective
curves over C (with dominant morphisms). This is not an easy theorem, so the aim is to give
an idea of the proof.

Discuss Sect. 1.3 in [GGD] up to Prop. 1.95 to explain the equivalence of (1), (2) and (3)
(you have to leave out some technical details). Mention the correspondence of points on a
compact Riemann surface and valuations of its function field (cf. Sect. 3.4: Thm. 3.23). Then
clarify that the same description is available for the points of a complex smooth projective
curve (see I. Thm. 6.9 in [Ha]). Indicate how this can be used to establish an equivalence of
(2), (3) and (4) [Ha, Cor.6.12]. Translate the notions of the previous talk – degree, branch
points, multiplicity at a point – to curves (see IV.2 (p.299) in [Ha]).

Meeting 2: 04.05.17 in Wuppertal

3. Definition of dessins d’enfants

Ref.: 4.1 and 4.2.1 (pp. 207–215) in [GGD]  topology

Mention the concept of an orientation of a smooth manifold (cf. 1.2.1 [GGD]) and deduce
that Riemann surfaces are orientable. Give the definition of a dessin d’enfant (Def. 4.1).
Clarify that a dessin is not just an abstract graph (e.g. Fig. 4.1). Introduce the permutation
representation pair of a dessin (Sect. 4.1.1). Give a small example and discuss Prop. 4.10 and
Prop. 4.13. This is a good opportunity to mention the different definition of dessins given in
[Za03]. Finally, explain the triangle decomposition in Sect. 4.2.1 and state Summary 4.15.
You may describe the triangle decomposition using an example instead of going through the
details.

4. The correspondence between dessins and Belyi pairs

Ref.: 4.2.2 and 4.3 (pp. 215–227) in [GGD]  topology, Riemann surfaces

The goal of this talk is to explain Theorem 4.25: Equivalence classes of dessins correspond
to equivalence classes of Belyi pairs. Discuss Sect. 4.2.2: a dessin on a surface X gives rise a
complex structure on X and a Belyi map X → Ĉ (Summary 4.16). Explain the underlying
idea of Lemma 1.80 (cf. Thm. 4.6 and Thm. 8.4 in [Fo]). Prove Prop. 4.18 and give the



definition of a Belyi pair (4.19). (Skip the long Example 4.21). Explain with Sect. 4.3 how a
Belyi pair can be used to construct a dessin (Prop. 4.22). Combine this to prove Thm. 4.25.
Explain how to find the Belyi function associated to a dessin on the Riemann sphere using
some examples from Sect. 4.6.1.

Meeting 3: 18.05.17 in Düsseldorf

5. Belyi functions and the abc-conjecture

Ref.: pp. 1–4 in [Wo06], pp. 137–138 in [LZ]  number theory

The aim of this talk is to give an idea of the connections between Belyi functions and the abc-
conjecture. Introduce the abc-conjecture from number theory. Present the ABC-Theorem
for polynomials and its relation to Belyi functions (Thm. 1, Prop. 1 and Prop. 2. in [Wo06],
another source is 10.1 in [JW]). Then discuss Sect. 2.5.4 in [LZ] and indicate how to construct
“high quality triples” via Belyi functions. Explain Examples 2.3.1 and 2.5.16 in [LZ] (how to
find the Belyi function?). Attention: in this book the white vertices are not always drawn,
they are supposed to lie in the middle of each edge. (Alternatively, if this is too boring for
you, explain [El91] instead.)

6. Belyi’s three point theorem

Ref.: [Kö04]  algebraic geometry

The purpose of this talk is to explain Belyi’s theorem: a complex smooth projective curve X
is defined over Q if and only if there is a non-constant morphism to P1(C) with at most 3
branching values. The “only if” direction is due to Belyi and is rather elementary. The “if”
part is called the “obvious” direction, but is only obvious modulo more difficult results of
Weil. The plan is to prove “only if” and to sketch “if” following [Kö04].

Introduce the action of Aut(C) on complex curves, define the moduli field and explain
what it means for a curve to be “defined over K” (1.1–1.4). Mention Ex. 1.7. and Thm. 1.8
without proof. State Belyi’s Theorem (3.3) and proof the “only if” direction (various different
options: 3.4 – 3.6 in [Kö04], the short proof in [Go14] or [GGD, 3.1.1]). If time permits, sketch
the “if” direction.

Meeting 4: 01.06.17 in Wuppertal

7. Fuchsian triangle groups

Ref.: 2.4 in [GGD]  group theory

State the classical Uniformization Theorem: the simply connected Riemann surfaces are Ĉ,H
and C (p.81 in [GGD]). As every connected Riemann surface is covered by one of these, it is of
interest to construct groups acting properly discontinuously on the simply connected surfaces.
Important examples are triangle groups. The aim is to discuss the hyperbolic triangle groups
in detail.

Recall the definition of Fuchsian groups (for Aut(H) see Prop. 1.27). Mention facts from
2.4.1 and 2.4.2 if needed. Discuss 2.4.3 in detail (Thm. 2.27 can be skipped if there is
not enough time). Describe the generators and relations of Γn,m,l. Mention the similar



construction of spherical and euclidean triangle groups (Rem. 2.30 or [Jo, pp. 139–143]).
Then explain 2.4.4: Introduce the groups Γ(1) and Γ(2) and show that they are triangle
groups (Thm. 2.31, Thm. 2.34). Spell out why Γ(2) ∼= Γ∞,∞,∞ (rank-2 free group!) and why
H/Γ(2) is a sphere with three points removed.

8. The Uniformization Theorem

Ref.: 4.3.1, 4.4. in [GGD]  group theory, Riemann surfaces

Introduce the monodromy homomorphism of a morphism of compact Riemann surfaces (see
2.7, pp. 148–150) in [GGD]). Discuss the monodromy of a Belyi function in 4.3.1 (Prop. 4.29).
Explain Sect. 4.4. in detail. In particular, prove the Uniformization Theorem 4.31 (see also
Cor. 1–Cor. 3 in [JS96]). Give an example.

Meeting 5: 22.06.17 in Düsseldorf

9. The action of Gal(Q/Q) on dessins

Ref.: 3.5 and 4.5 in [GGD]  algebraic geometry/Riemann surfaces

The aim is to define the Galois action on dessins d’enfants and to establish some basic prop-
erties. I suggest to use the language of algebraic curves instead of Riemann surfaces.

Remind the audience of the action of Aut(C) on complex curves (see 1.1. – 1.2 in [Kö04]).
State Theorem 3.28 and prove some of the statements. (The proof is written up for Riemann
surfaces but most parts seem to translate directly for curves; cf. [Ha, I.6] as in talk 2).
Proceed to discuss Sect. 4.5. Use Belyi’s theorem (Talk 6) to define an action of Gal(Q/Q)
on (equivalence classes of) dessins. Translate Thm. 3.28 into Thm. 4.46. State Thm. 4.48 on
the faithfulness of the Galois action and prove it for genus g = 0 and/or g = 1. The case
g = 0 (4.5.1) is elementary but a bit technical. Genus g = 1 (4.5.2) is short but needs some
preparation: recall the Weierstraß equation of elliptic curves, the definition of the j-invariant
and that the j-invariant determines the curve (see III.§1, Prop.1.4 in [Si]).

10. Regular dessins and the Grothendieck-Teichmüller group

Ref.: 4.4.2, 4.4.3 in [GGD] and 5.1–5.4 in [Gu14]  profinite groups

The aim of this talk is to introduce regular dessins and to define the (coarse) Grothendieck-
Teichmüller group following [Gu14]. This is probably too much, but both parts depend only
mildly on each other. Decide freely which part you want to emphasize.

Discuss the automorphism group of a dessin [GGD, 4.4.2]. Define regular dessins and
explain that they correspond to the Belyi pairs which are Galois coverings (Thm. 4.43 in
[GGD]). Proceed to explain parts 5.1–5.4 in [Gu14]. It is not requested that you give all the
details. Discuss Theorem 5.4. in [Gu14]: There is an injective homomorphism of profinite
groups Γ : Gal(Q/Q) → Out(F̂2). Indicate how Out(F̂2) acts on dessins. The image of Γ is
contained in a subgroup, the coarse Grothendieck-Teichmüller group. Give the definition of
this group (p. 368). If time permits relate it to Drinfeld’s definition.
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