Abgabe bis 10:00 Uhr am 4.12.13 in die Postfächer der Tutoren auf D13

Übungen zur Vorlesung "Lineare Algebra 1" Blatt 6

Aufgabe 1.

Geben Sie für folgende Vektorräume jeweils eine Basis an und begründen Sie Ihre Wahl:

a)
$$\langle t^3, t^3 + 5, t^3 + t^2 + 5, t^2 + t^4, t^4 + 10 \rangle \subseteq \mathbb{R}[t]$$

b)
$$\left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \,\middle|\, x_1 = x_3 \right\}$$

c)
$$\left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_4 \end{pmatrix} \in \mathbb{R}^4 \mid x_1 + 3x_2 + 2x_4 = 0, \ 2x_1 + x_2 + x_3 = 0 \right\}$$

d)
$$\mathbb{R}^{(\mathbb{R})} := \{ f \in \mathbb{R}^{\mathbb{R}} \mid \text{ die Menge } \mathbb{R} \setminus f^{-1}(0) \text{ ist endlich } \}$$

Aufgabe 2.

Betrachten Sie die Vektoren $v_1 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$, $v_4 = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$ im \mathbb{R} -Vektorraum \mathbb{R}^3 .

- a) Zeigen Sie, dass (v_1, v_2, v_3, v_4) ein Erzeugendensystem von \mathbb{R}^3 ist.
- b) Bestimmen Sie alle unverlängerbaren linear unabhängigen Teilmengen von $\mathcal{B} := \{v_1, v_2, v_3, v_4\}.$
- c) Stellen Sie für jede dieser Teilmengen \mathcal{B}' die Vektoren aus $\mathcal{B} \setminus \mathcal{B}'$ als Linearkombination der Vektoren aus \mathcal{B}' dar. Warum ist das möglich?

Aufgabe 3.

Es sei $a \in \mathbb{Q}$. Betrachten Sie die Vektoren $u_1 = \begin{pmatrix} 0 \\ a \\ 1 \end{pmatrix}$, $u_2 = \begin{pmatrix} a \\ 1 \\ 0 \end{pmatrix}$ und $u_3 = \begin{pmatrix} 1 \\ a \\ 0 \end{pmatrix}$ im \mathbb{Q} -Vektorraum $V := \mathbb{Q}^3$.

- a) Für welche $a \in \mathbb{Q}$ ist das Tupel $(u_1, u_2, u_3) \in V^3$ linear unabhängig?
- b) Bestimmen Sie die Dimension von $\langle u_1, u_2, u_3 \rangle \subseteq V$ für alle $a \in \mathbb{Q}$.

Aufgabe 4.

Es sei K ein Körper und V ein Vektorraum. Es seien x_1, \ldots, x_n Vektoren in V, so dass das Tupel (x_1, x_2, \ldots, x_n) linear unabhängig ist. Zeigen Sie:

- a) Das Tupel $(x_1, \ldots, x_n, x_1 + \ldots + x_n)$ ist linear abhängig, aber je n dieser Vektoren sind linear unabhängig.
- b) Es seien $a_1,\dots,a_n\in K$ und $x:=\sum_{j=1}^n a_jx_j\in V.$ Dann gilt:

$$(x_1 - x, \dots, x_n - x)$$
 ist linear unabhängig $\iff \sum_{j=1}^n a_j \neq 1$

Die Bearbeitung der folgenden Aufgabe geben Sie bitte nicht ab; sie wird in dem Tutorium am 28. November 2013 besprochen.

Aufgabe 5.

- a) Wir fassen $\mathbb R$ als Vektorraum über $\mathbb Q$ auf. Zeigen Sie, dass $(\sqrt{3},\sqrt{7})$ linear unabhängig, aber keine $\mathbb Q$ -Basis von $\mathbb R$ ist.
- b) Es seien V und W endlich dimensionale Vektorräume über einem Körper K. Dann wird das direkte Produkt $V \times W$ durch

$$+: (V \times W) \times (V \times W) \longrightarrow V \times W, \quad (v, w) + (v', w') = (v + v', w + w')$$

$$\cdot: K \times (V \times W) \longrightarrow V \times W, \quad k \cdot (v, w) = (kv, kw)$$

zu einem K-Vektorraum. Beweisen Sie:

$$\dim_K V \times W = \dim_K V + \dim_K W$$