Abgabe bis 10:00 Uhr am 20.11.13 in die Postfächer der Tutoren auf D13

Übungen zur Vorlesung "Lineare Algebra 1" Blatt 4

Aufgabe 1.

Geben Sie jeweils den Realteil $a \in \mathbb{R}$ und den Imaginärteil $b \in \mathbb{R}$ der komplexen Zahl $z = a + ib \in \mathbb{C}$ an:

a)
$$1 = z \cdot (3 - 2i)$$

b)
$$0 = z + (1+2i) \cdot (4+i)^{-1}$$

c) $z \neq 1$, z hat positiven Imaginärteil und es gilt $z^3 = 1$

Aufgabe 2.

Es sei p eine Primzahl.

a) In der Vorlesung Analysis 1 wurde der Satz über die Eindeutigkeit der Primfaktorzerlegung bewiesen. Folgern Sie aus diesem, dass für beliebige $a, b \in \mathbb{Z}$ gilt:

p ist ein Teiler von $a \cdot b \iff p$ ist ein Teiler von a oder von b

b) Für welche Äquivalenzklassen $[a]_{\sim}$ und $[b]_{\sim}$ in \mathbb{Z}_p gilt dann $[a]_{\sim}[b]_{\sim}=[0]_{\sim}$?

Aufgabe 3.

a) Es sei X eine Menge und K ein Körper. Ist die Menge

$$K^{(X)} := \{ f \in K^X \mid \text{ die Menge } X \setminus f^{-1}(0) \text{ ist endlich } \}$$

ein Untervektorraum von $K^X := Abb(X, K)$?

b) Ist die Menge der Polynome vom Grad 2013 ein Untervektorraum des Polynomringes $\mathbb{R}[t]$? Dabei ist der Grad eines Polynoms $\sum_{j=0}^{\infty} a_j t^j$ definiert als das größte $d \in \mathbb{N}$ mit $a_d \neq 0$.

c) Ist
$$\left\{ \begin{pmatrix} s-1\\ s+t\\ t+1 \end{pmatrix} \in \mathbb{R}^3 \mid s,t \in \mathbb{R} \right\}$$
 ein Untervektorraum von \mathbb{R}^3 ?

d) Es sei $n \in \mathbb{N}$. Ist die Menge $\left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{Q}^n \mid \text{ es gibt ein } i \in \{1, 2, \dots, n\} \text{ mit } x_i = 0 \right\}$ ein Untervektorraum von \mathbb{Q}^n ?

Aufgabe 4.

Bestimmen Sie die Schnittmenge der Geraden g und der Ebene E, welche gegeben sind durch:

$$g := \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \,\middle| \text{ es gibt } c \in \mathbb{R} \text{ mit } \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = c \begin{pmatrix} -5 \\ -6 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\}$$

und

$$E := \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \,\middle| \, \text{ es gibt } c_1, c_2 \in \mathbb{R} \text{ mit } \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = c_1 \begin{pmatrix} -60 \\ -27 \\ 9 \end{pmatrix} + c_2 \begin{pmatrix} 60 \\ 12 \\ -12 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\}$$

Die Bearbeitung der folgenden Aufgabe geben Sie bitte nicht ab; sie wird nur in den Tutorien am 13. und 19. November 2013 besprochen.

Aufgabe 5.

- a) Zeigen Sie: Es ist $S^1 := \{a + ib \mid a, b \in \mathbb{R}, a^2 + b^2 = 1\}$ eine Untergruppe der komplexen Zahlen \mathbb{C} mit der üblichen Multiplikation.
- b) Zeigen Sie: Es sei $m \in \mathbb{Z}$. Wenn der Ring \mathbb{Z}_m ein Körper ist, so ist m eine Primzahl.
- c) Es sei $n \in \mathbb{N}$. Ist die Menge $\left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{Q}_n \mid x_n = 0 \right\}$ ein Untervektorraum von \mathbb{Q}^n ?
- d) Es sei $n \in \mathbb{N}$. Ist die Menge $\left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{Q}_n \mid x_1 = 1 \right\}$ ein Untervektorraum von \mathbb{Q}^n ?
- e) Geben Sie einen von $\mathbb{R}[t]$ verschiedenen Untervektorraum von $\mathbb{R}[t]$ an, der die Polynome $t^3 + t^2$ und $t^3 + t$ enthält.