3. Übungsblatt zur Einführung in die Algebra

Aufgabe 1. 2+2+2 Punkte

Sei G eine Gruppe und $n \geq 2$. Es gebe zwei Elemente s, d, die G erzeugen und für die gilt:

$$d^{n} = 1$$
, $s^{2} = 1$ und $sdsd = 1$

Dann wird G Diedergruppe genannt und mit D_n bezeichnet.

- (a) Zeigen Sie, dass $D_n = \{d^k \mid k = 0, ..., n 1\} \cup \{sd^k \mid k = 0, ..., n 1\}$ gilt.
- (b) Geben Sie den Untergruppenverband von D_p an für den Fall, dass p > 2 eine Primzahl ist.
- (c) Zeigen Sie, dass die symmetrische Gruppe S_3 eine Diedergruppe ist, die Quaternionengruppe Q_8 jedoch nicht.

Zur Information: Die Diedergruppe D_n taucht übrigens als Gruppe derjenigen längentreuen Abbildungen des \mathbb{R}^2 auf, welche die Seiten eines festen regelmäßigen n-Eckes in sich überführen.

Aufgabe 2. 4 Punkte

Das direkte Produkt endlich vieler zyklischer Gruppen ist zyklisch, wenn die Gruppen endlich sind und die Ordnungen paarweise teilerfremd sind.

Aufgabe 3. 2 Punkte

Zeigen Sie, dass die Automorphismengruppe einer endlichen zyklischen Gruppe abelsch ist.

Aufgabe 4. 4 Punkte

Suchen und beweisen Sie den Satz von Cayley.