2. Übungsblatt zur Einführung in die Algebra

Aufgabe 1. 2+2+2 Punkte

- a) Es sei Q_8 eine Menge mit 8 Elementen, die wir mit $\pm e, \pm i, \pm j, \pm k$ bezeichnen. Angenommen, man kann eine Verknüpfung · auf Q_8 definieren, so dass Q_8 eine Gruppe ist und folgende Regeln gelten:
 - \bullet +e ist das Einselement.
 - Es gelte $i^2 = j^2 = k^2 = i \cdot j \cdot k = -e$
 - Es gelten die üblichen Vorzeichenregeln, also z.B. -(-i) = i and $j \cdot (-i) = -(j \cdot i)$

Zeigen Sie, dass damit die Verknüpfung \cdot eindeutig bestimmt ist; bestimmen Sie explizit die Multiplikationstabelle, d. h. die Tabelle aller Produkte $g \cdot h$ mit $g, h \in Q_8$. Ist Q_8 abelsch?

b) Betrachten Sie die folgende Teilmenge $Q(8)=\{\pm E,\pm I,\pm J,\pm K\}$ von 2×2 -Matrizen mit Einträgen in $\mathbb C$ mit

$$E:=\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \quad I:=\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right), \quad J:=\left(\begin{array}{cc} 0 & \mathbf{i} \\ \mathbf{i} & 0 \end{array}\right), \quad K:=\left(\begin{array}{cc} \mathbf{i} & 0 \\ 0 & -\mathbf{i} \end{array}\right).$$

Zeigen Sie, dass Q(8) schon eine Untergruppe (bezüglich der Matrixmultiplikation) von $GL_2(\mathbb{C})$ ist und das obige Regeln mit E, I, J, K anstelle von e, i, j, k gelten. Schließen Sie daraus, dass es die oben angenomme Verknüpfung gibt. (Diese Gruppe wird die Quaternionengruppe genannt; die Regeln gehen auf W. R. Hamilton im 19. Jahrhundert zurück.)

c) Bestimmen Sie alle Untergruppen der Gruppe Q_8 .

Aufgabe 2. 2+2 Punkte

Operiert eine Gruppe G auf einer Menge Ω , so nennen wir ein Element $x \in \Omega$ einen Fixpunkt von Ω (bezüglich der Operation von G), wenn die Operation von G ihn fix läßt, d.h. es gilt g.x = x für alle $g \in G$.

- (a) Zeigen Sie, dass eine 18-elementige Menge bezüglich einer beliebigen Operation einer Gruppe der Ordnung 55 mindestens zwei Fixpunkte besitzt.
- (b) Ist G eine p-Gruppe und operiert auf Ω mit $(|\Omega|, p) = 1$, so hat Ω einen Fixpunkt.

Aufgabe 3. 2+2 Punkte

Zu einer Gruppe G mit Normalteiler N betrachte man die Mengen

$$\begin{split} A := \{U \mid N \leq U \leq G\}, & \bar{A} := \{V \mid V \leq G/N\} \\ B := \{U \mid N \leq U \triangleleft G\}, & \bar{B} := \{V \mid V \triangleleft G/N\} \end{split}$$

Zeigen Sie:

- (a) Der kanonische Epimorphismus $\nu \colon G \longrightarrow G/N$ induziert eine Bijektion $\Phi \colon A \longrightarrow \bar{A}, U \mapsto \nu(U)$.
- (b) Auch $\Phi|_B \colon B \longrightarrow \bar{B}$ ist bijektiv, d.h. Normalteiler entsprechen einander.

Aufgabe 4. 2+2+2+2 Punkte

Ziel dieser Aufgabe ist die Bestimmung der Konjugationsklassen der S_n .

(a) Zeigen Sie, dass für ein festes $r \leq n$ die Menge aller r-Zykel eine Konjugationsklasse ist. Beschreiben Sie dann die Konjugationsklasse einer beliebigen Permutation $\sigma = \sigma_1 \dots \sigma_k$, wobei $\sigma_1, \dots, \sigma_k$ die Zerlegung von σ in disjunkte Zykel der Länge r_1, \dots, r_k resp. ist.

(b) Wir definieren die Menge \mathcal{P} der aufsteigenden Partitionen von n durch

$$\mathcal{P} := \{(n_1, \dots, n_k) \mid k \le n \text{ und } 1 \le n_1 \le n_2 \le \dots \le n_k \le n \text{ und } n_1 + n_2 + \dots + n_k = n\}$$

Zeigen Sie, dass $b \colon \mathcal{P} \longrightarrow \mathcal{K}$ mit

$$(n_1,\ldots,n_k)\mapsto \mathrm{cc}_{S_n}((1,2,\ldots,n_1)(n_1+1,\ldots,n_1+n_2)\ldots(n_1+\ldots+n_{k-1}+1,\ldots,n))$$

eine Bijektion von \mathcal{P} auf die Menge \mathcal{K} der Konjugationsklassen von S_n ist.

- (c) Geben Sie die Konjugationsklassen der S_3 und der S_4 an.
- (d) Wie viele Elemente hat die Konjugationsklasse von (1,2,3,4)(5,6,7)(8,9) in S_{10} ? Wie viele die von (1,2,3,4)(5,6,7,8)(9,10) in S_{10} ?

[Hinweis zu 4.(a): Blatt 1, Aufgabe 1.(f)]