1. Übungsblatt zur Einführung in die Algebra

Aufgabe 1.

In dieser Aufgabe geht es ausschließlich um die symmetrische Gruppe S_n . Einige Bezeichnungen: Seien i_1, \ldots, i_r paarweise verschiedene Ziffern in $\{1, \ldots, n\}$. Dann bezeichnen wir mit (i_1, \ldots, i_r) die Permutation in S_n , welche i_1 auf i_2 abbildet, i_2 auf i_3 abbildet, usw., bis schließlich i_r auf i_1 abgebildet wird. Eine solche Permutation heißt r-Zykel, ein 2-Zykel heißt auch Transposition. Mit diesen Bezeichnungen ist zum Beispiel $(2,5) \in S_7$ die Transposition, welche 2 und 5 vertauscht und alle anderen Ziffern festlässt.

- (a) Überzeugen Sie Sich davon, dass sich jede Permutation in S_n als Produkt von disjunkten Zykeln schreiben lässt.
- (b) Für jedes der folgenden Elemente σ und π bestimmen Sie seine Zerlegung als Produkt von disjunkten Zykeln, sein Inverses sowie seine Ordnung:

$$\sigma = (1,3) \circ (2,4) \circ (3,6) \circ (5,6) \circ (3,2) \circ (2,6) \circ (4,3) \circ (2,3) \circ (4,6) \circ (1,4) \in S_6$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 9 & 5 & 10 & 6 & 7 & 2 & 4 & 3 & 1 & 8 \end{pmatrix}$$

(Im Folgenden werden wir zur Vereinfachung der Schreibweise das Symbol o weglassen.)

- (c) Mit $Z(G) := \{g \in G | xg = gx \text{ für alle } x \in G\}$ wird das Zentrum einer Gruppe G bezeichnet. Zeigen Sie: Ist n > 3, so ist $Z(S_n) = \{id\}$.
- (d) Jeder r-Zykel lässt sich als Produkt von r-1 Transpositionen schreiben. Schreiben Sie insbesondere einen Zykel der Form $(i, i+1, i+2, \ldots, j)$ mit $1 \le i < j \le n$ als Produkt von Transpositionen.
- (e) S_n wird von allen Transpositionen (i, j) mit $1 \le i < j \le n$ erzeugt.
- (f) Ist (i_1, \ldots, i_r) ein r-Zykel und $\sigma \in S_n$, so gilt : $\sigma \circ (i_1, \ldots, i_r) \circ \sigma^{-1} = (\sigma(i_1), \ldots, \sigma(i_r))$.
- (g) Zeigen Sie, dass $S_n = \langle s_1, \dots, s_{n-1} \rangle$ gilt, wobei $s_i = (i, i+1)$ die Transposition ist, welche i und i+1 vertauscht. D.h., eine beliebige Permutation der Ziffern $1, \dots, n$ lässt sich stets dadurch erreichen, dass in mehreren Schritten stets jeweils nur zwei benachbarte Ziffern i, i+1 vertauscht werden.

[Hinweis zu (g): Induktion nach n. Für n=1,2 ist die Aussage klar. Sei nun n>3 und die Aussage bereits für S_{n-1} gezeigt. Dann beachten Sie, dass wir S_{n-1} auch als Untergruppe von S_n auffassen können, nämlich als die Menge aller Permutationen in S_n , welche die Ziffer n fest lassen. Sei nun $\sigma \in S_n$ beliebig. Ist $\sigma(n) = n$, so können Sie direkt Induktion anwenden. Ist $\sigma(n) \neq n$, also $k := \sigma(n) < n$, so betrachten Sie $\sigma' := \sigma^{-1} \circ \tau$, wobei τ der Zykel $(k, k+1, \ldots, n-1, n)$ ist.]

Aufgabe 2.

- (a) Sei G eine Gruppe mit $g^2 = 1$ für alle $g \in G$. Beweisen Sie, dass dann G abelsch ist.
- (b) Sei H eine Untergrupppe der endlichen Gruppe G, so dass |G|/|H|=2. Beweisen Sie, dass H ein Normalteiler von G ist, d.h. gH=Hg gilt für alle $g\in G$.

Aufgabe 3.

Es sei K ein Körper. Mit $\mathrm{GL}_n(K)$ wird die Gruppe der invertierbaren $n \times n$ -Matrizen mit Einträgen in K bezeichnet. Wir definieren

$$B_n(K) := \{A = (a_{ij}) \in GL_n(K) \mid a_{ij} = 0 \text{ falls } i > j\},\$$

 $U_n(K) := \{A = (a_{ij}) \in GL_n(K) \mid a_{ij} = 0 \text{ falls } i > j \text{ und } a_{ii} = 1 \text{ für alle } i\}.$

Die Menge $B_n(K)$ besteht also aus allen invertierbaren oberen Dreiecksmatrizen und $U_n(K)$ besteht aus allen invertierbaren oberen Dreiecksmatrizen mit 1 auf der Diagonalen.

- (a) Zeigen Sie, dass $B_n(K)$ und $U_n(K)$ Untergruppen von $GL_n(K)$ sind.
- (b) Ist K ein endlicher Körper mit q Elementen, so bestimmen Sie $|B_n(K)|$ und $|U_n(K)|$.

Aufgabe 4.

Seien G_1, \ldots, G_n beliebige Gruppen. Auf dem kartesischen Produkt $G := G_1 \times \ldots \times G_n$ definieren wir eine Verknüpfung * durch

$$(g_1, \ldots, g_n) * (h_1, \ldots, h_n) := (g_1 h_1, \ldots, g_n h_n)$$
 mit $g_i, h_i \in G_i$ für $i = 1, \ldots, n$

(Das Produkt $g_i h_i$ wird jeweils mit der Verknüpfung in G_i gebildet.) Zeigen Sie, dass damit G eine Gruppe ist. Außerdem ist G genau dann abelsch, wenn alle G_i abelsch sind.