Wegen des Feiertags (Fronleichnam): Abgabe bis 12:00 Uhr am 31.5.13 in das Postfach 41 auf D.13

Übungen zu Elementare Zahlentheorie Blatt 6

Aufgabe 1. Es bezeichne φ die Eulersche Funktion.

- a) Berechnen Sie $\varphi(12)$, $\varphi(60)$, $\varphi(40320)$ und $\varphi(1000008)$.
- b) Wie viele natürliche Zahlen n gibt es mit $\varphi(n) = 4$?

Aufgabe 2.

a) Es seien $s, t \in \mathbb{N}$ mit ggT(s, t) = 1. Zeigen Sie, dass

$$\varphi(s \cdot t) = \varphi(s) \cdot \varphi(t)$$

gilt, indem Sie die Anzahl der zu $s \cdot t$ teilerfremden Zahlen in folgender Matrix bestimmen:

b) Beweisen Sie anschließend, dass für alle $n \in \mathbb{N}$ gilt:

$$\varphi(n) = n \cdot \prod_{\substack{p \text{ Primzahl} \\ \text{clinical}}} \left(1 - \frac{1}{p}\right)$$

Benutzen Sie dabei nur die Aussage in a) und, dass $\varphi(q^{\alpha}) = q^{\alpha}(1 - \frac{1}{q})$ für alle Primzahlen q und $\alpha \in \mathbb{N}$ gilt.

Aufgabe 3.

- a) Es sei $n \in \mathbb{N}$ mit $n \neq 4$ und $\varphi(n) \equiv 2 \mod 4$. Zeigen Sie, dass dann eine Primzahl p mit $p \equiv 3 \mod 4$ und ein $\alpha \in \mathbb{N}$ existieren, so dass $n = p^{\alpha}$ oder $n = 2 \cdot p^{\alpha}$ gilt.

 Tipp: Finden Sie geeignete Fallunterscheidungen um festzustellen, welche Faktoren nicht in der Primfaktorzerlegung von n auftauchen können.
- b) Zeigen Sie, dass kein $n \in \mathbb{N}$ existiert mit $\varphi(n) = 14$.

Aufgabe 4.

Es sei p eine Primzahl und $a \in \mathbb{Z}$ kein Vielfaches von p. Es bezeichne $[a]_p$ die Restklasse von a in $\mathbb{Z}/p\mathbb{Z}$ und $[a]_{p^2}$ die Restklasse von a in $\mathbb{Z}/p^2\mathbb{Z}$. Zeigen Sie, dass für die Ordnung von $[a]_{p^2}$ gilt:

$$\operatorname{ord}([a]_{p^2}) = \operatorname{ord}([a]_p) \quad \operatorname{oder} \quad \operatorname{ord}([a]_{p^2}) = p \cdot \operatorname{ord}([a]_p)$$

Wir wünschen Ihnen eine gute Pfingstwoche.