

Krylov Subspace Methods for sign(Q)b(where Q is hermitian)

Andreas Frommer Bergische Universität Wuppertal Fachbereich Mathematik und Naturwissenschaften frommer@math.uni-wuppertal.de http://www.math.uni-wuppertal.de/SciComp

joint work with

- Henk van der Vorst
- Jasper van den Eshof
- Katrin Schäfer
- Thomas Lippert

Outline

- 1. matrix methods for sign(Q)
- 2. Schulz as a Krylov subspace method
- 3. projection on K(Q) and Lanczos
- 4. projection on $K(Q^2)$ and Lanczos
- 5. partial fraction expansions and multishift CG

ai

Definition

 $Q = VJV^{-1}$ Jordan canonical form

$$J = \operatorname{diag}(J_{\ell}), \quad J_{\ell} = \left(egin{array}{ccc} \lambda & 1 & & \ & \ddots & \ddots & \ & & \lambda & 1 \ & & & \lambda \end{array}
ight)$$

Assume $\operatorname{Re}(\lambda) \neq 0$ for all $\lambda \in \operatorname{spec}(Q)$. Then

sign(Q) = V sign(J)V⁻¹, sign(J) = diag(sign(J_l)), where sign(J_l) = sign(λ) · I

Note: Q hermitian: $V^{-1} = V^H$, spec(Q) $\subset \mathbb{R}$.

Matrix Methods

Newton's method

Roberts, 1970: Solve

F(X) = 0 where $F(X) = X^2 - I$.

We have

$$DF(X)H = XH + HX$$

so that Newton's method

$$X_{k+1} = X_k - \Delta_k, \quad DF(X_k)\Delta_k = F(X_k)$$

gives

$$\Delta_k = \frac{1}{2} \left(X_k - X_k^{-1} \right), \quad X_{k+1} = \frac{1}{2} \left(X_k + X_k^{-1} \right).$$

jai

Matrix Methods

- Newton's method
- Roberts, 1970: Solve

F(X) = 0 where $F(X) = X^2 - I$.

We have

$$DF(X)H = XH + HX$$

so that Newton's method

$$X_{k+1} = X_k - \Delta_k, \quad DF(X_k)\Delta_k = F(X_k)$$

gives

$$\Delta_k = \frac{1}{2} \left(X_k - X_k^{-1} \right), \quad X_{k+1} = \frac{1}{2} \left(X_k + X_k^{-1} \right).$$

Theorem. Let $X_0 = Q$. Then $\lim_{k\to\infty} X_k = \operatorname{sign}(Q)$ for every Q with $\operatorname{spec}(Q) \cap i\mathbb{R} = \emptyset$. Convergence is quadratic.

l a i

Schulz' method

Solve

$$F(X) = 0$$
 where $F(X) = X^{-2} - I$.

We have

$$DF(X)H = X^{-2}HX^{-1} + X^{-1}HX^{-2}$$

so that Newton's method

$$X_{k+1} = X_k - \Delta_k, \quad DF(X_k)\Delta_k = F(X_k)$$

gives

$$\Delta_{k} = \frac{1}{2} \left(X_{k}^{3} - X_{k} \right), \quad X_{k+1} = \frac{1}{2} X_{k} \left(3I - X_{k}^{2} \right).$$

Schulz' method

Solve

$$F(X) = 0$$
 where $F(X) = X^{-2} - I$.

We have

$$DF(X)H = X^{-2}HX^{-1} + X^{-1}HX^{-2}$$

so that Newton's method

$$X_{k+1} = X_k - \Delta_k, \quad DF(X_k)\Delta_k = F(X_k)$$

gives

$$\Delta_k = \frac{1}{2} \left(X_k^3 - X_k \right), \quad X_{k+1} = \frac{1}{2} X_k \left(3I - X_k^2 \right).$$

Theorem. Let $X_0 = Q$. Then $\lim_{k\to\infty} X_k = \operatorname{sign}(Q)$ if $||I - Q^2|| \le 1$ and $\operatorname{spec}(Q) \cap i\mathbb{R} = \emptyset$. Convergence is quadratic.

Partial Fraction Expansions

Pandey, Kenney and Laub (1990):

$$S_{p} = \left((Q+I)^{2p} - (Q-I)^{2p} \right) \cdot \left((Q+I)^{2p} + (Q-I)^{2p} \right)^{-1}$$

= $\frac{1}{p} Q \sum_{i=1}^{p} \frac{1}{\xi_{i}} \left(Q^{2} + \alpha_{i}^{2} I \right)^{-1},$

where
$$\xi_i = \frac{1}{2} \left(1 + \cos \frac{(2i-1)\pi}{2p} \right), \alpha_i^2 = \frac{1}{\xi_i} - 1.$$

 S_p is an approximation to sign(Q). Formula may be iterated.

jai

Zolotarev (long ago): Assume $\operatorname{spec}(Q) \subset [-b, -a] \cup [a, b]$. Then

$$Z_{p} = \delta \cdot Q \prod_{i=1}^{p-1} (Q^{2} + c_{2i}I) \cdot \prod_{i=1}^{p} (Q^{2} + c_{2i-1}I)^{-1}$$
$$= \delta \cdot Q \sum_{i=1}^{p} \omega_{i} (Q^{2} + \alpha_{i}I)^{-1},$$

where

$$c_i = \frac{\operatorname{sn}^2\left(iK/(2m); \sqrt{1-(b/a)^2}\right)}{1-\operatorname{sn}^2\left(iK/(2m); \sqrt{1-(b/a)^2}\right)},$$

K is the complete elliptic integral.

Motivation for matrix-vector type methods

Neuberger Fermions in QCD. Solve

 $(I - \Gamma_5 \operatorname{sign}(Q))x = b$

- Q is nearest neighbor coupling on 4-dimensional grid: (very) sparse
- Q is (very) hermitian indefinite
- 12 variables per grid point
- grid is 8⁴ to 16⁴
- size of system is (very) large: 50 000 to 800 000.

Inner-outer iteration: inner iteration computes sign(Q)v.

Back
Close

ai

2. Schulz as a Krylov Subspace Method

Schulz: $Q_{k+1} = \frac{1}{2}Q_k (3I - Q_k^2) = p_{3^{k+1}}(Q)$ Consequently

$$Q_{k+1}v = \frac{1}{2}Q_k \left(3v - Q_k^2 v \right) \in K_{3^{k+1}}(Q, v).$$

Related issue: How to draw a fork.

2. Schulz as a Krylov Subspace Method

Schulz: $Q_{k+1} = \frac{1}{2}Q_k (3I - Q_k^2) = p_{3^{k+1}}(Q)$ Consequently

$$Q_{k+1}v = \frac{1}{2}Q_k \left(3v - Q_k^2 v\right) \in K_{3^{k+1}}(Q, v).$$

Related issue: How to draw a fork.

2. Schulz as a Krylov Subspace Method

Schulz: $Q_{k+1} = \frac{1}{2}Q_k (3I - Q_k^2) = p_{3^{k+1}}(Q)$ Consequently

$$Q_{k+1}v = \frac{1}{2}Q_k \left(3v - Q_k^2 v\right) \in K_{3^{k+1}}(Q, v).$$

Related issue: How to draw a fork.

2. Schulz as a Krylov Subspace Method

Schulz: $Q_{k+1} = \frac{1}{2}Q_k (3I - Q_k^2) = p_{3^{k+1}}(Q)$ Consequently

$$Q_{k+1}v = \frac{1}{2}Q_k \left(3v - Q_k^2v\right) \in K_{3^{k+1}}(Q, v).$$

Related issue: How to draw a fork.

2. Schulz as a Krylov Subspace Method

Schulz: $Q_{k+1} = \frac{1}{2}Q_k (3I - Q_k^2) = p_{3^{k+1}}(Q)$ Consequently

$$Q_{k+1}v = \frac{1}{2}Q_k \left(3v - Q_k^2v\right) \in K_{3^{k+1}}(Q, v).$$

Related issue: How to draw a fork.

the linear algebra person's strategy:

2. Schulz as a Krylov Subspace Method

Schulz: $Q_{k+1} = \frac{1}{2}Q_k (3I - Q_k^2) = p_{3^{k+1}}(Q)$ Consequently

$$Q_{k+1}v = \frac{1}{2}Q_k \left(3v - Q_k^2 v\right) \in K_{3^{k+1}}(Q, v).$$

Related issue: How to draw a fork.

the linear algebra person's strategy:

2. Schulz as a Krylov Subspace Method

Schulz: $Q_{k+1} = \frac{1}{2}Q_k (3I - Q_k^2) = p_{3^{k+1}}(Q)$ Consequently

$$Q_{k+1}v = \frac{1}{2}Q_k \left(3v - Q_k^2v\right) \in K_{3^{k+1}}(Q, v).$$

Related issue: How to draw a fork.

jai

 \checkmark

jai

 \checkmark

 $\forall \gamma \forall \gamma$

Back Close

]a i

Recursive computation:

 $s = \operatorname{schulz}(v, k) \{$ if k = 1 $s = \frac{1}{2}Q(3v - Q^2v)$ else $s = \operatorname{schulz}(v, k - 1)$ $s = \operatorname{schulz}(s, k - 1)$ s = 3v - s $s = (1/2) \cdot \operatorname{schulz}(s, k - 1)$ } jai

11/24

Back Close

Recursive computation:

 $s = \operatorname{schulz}(v, k) \{$ if k = 1 $s = \frac{1}{2}Q(3v - Q^2v)$ else $s = \operatorname{schulz}(v, k - 1)$ $s = \operatorname{schulz}(s, k - 1)$ s = 3v - s $s = (1/2) \cdot \operatorname{schulz}(s, k - 1)$ }

Properties:

- $\operatorname{schulz}(v,k) = Q_k v$
- schulz $(v, k) \in K_{3^k}(Q, v)$ sublinear convergence
- time cost: 3^k MVMs
- storage cost: k vectors

•
$$k = 6: 3^k = 729$$

3. Projection on K(Q) and Lanczos

From now on: Q is hermitian

The Lanczos process generates an orthonormal basis v_1, v_2, \ldots, v_m for $K_m(Q, v)$

$$v_{1} = v/||v||_{2}, \ \beta_{0} = 0$$

for $i = 1, 2, ..., k$
 $\tilde{v} = Av_{i} - \beta_{i-1}v_{i-1}$
 $\alpha_{i} = v_{i}^{H}\tilde{v}$
 $\tilde{v} = \tilde{v} - \alpha_{i}v_{i}$
 $\beta_{i} = ||\tilde{v}||_{2}$
 $v_{i+1} = \tilde{v}/\beta_{i}$

Notation $V_m = [v_1, v_2, \dots, v_m], T_m = \text{tridiag}(\beta_{m-1}, \alpha_m, \beta_m)$ $\Rightarrow V_m^H Q V_m = T_m$

Approximating sign(Q)v from $K_m(Q,v)$

 $\operatorname{sign}(Q) = Q \cdot \left(Q^2\right)^{-1/2}$

• variant 1 [Borici 99]: projection on $QK_m(Q, v)$

 $x^{m} = QV^{m} \cdot \left(T_{m}^{2}\right)^{-1/2} \cdot V_{m}^{H}v = (= p_{m+1}(Q)v)$

jai

Approximating sign(Q)v from $K_m(Q,v)$

 $\operatorname{sign}(Q) = Q \cdot \left(Q^2\right)^{-1/2}$

• variant 1 [Borici 99]: projection on $QK_m(Q, v)$

$$x^{m} = QV^{m} \cdot (T_{m}^{2})^{-1/2} \cdot V_{m}^{H}v = (= p_{m+1}(Q)v)$$

• variant 2 [van der Vorst 00]: projection on $K_m(Q, v)$ $x^m = V^m \cdot \operatorname{sign}(T_m) \cdot V_m^H v = V^m \cdot \operatorname{sign}(V_m^H Q V_m) \cdot V_m^H v$ $(= p_m(Q)v, p \text{ interpolates the Ritz values})$

la i

Approximating sign(Q)v from $K_m(Q,v)$

 $\operatorname{sign}(Q) = Q \cdot \left(Q^2\right)^{-1/2}$

• variant 1 [Borici 99]: projection on $QK_m(Q, v)$

$$x^{m} = QV^{m} \cdot (T_{m}^{2})^{-1/2} \cdot V_{m}^{H}v = (= p_{m+1}(Q)v)$$

- variant 2 [van der Vorst 00]: projection on $K_m(Q, v)$ $x^m = V^m \cdot \operatorname{sign}(T_m) \cdot V_m^H v = V^m \cdot \operatorname{sign}(V_m^H Q V_m) \cdot V_m^H v$ $(= p_m(Q)v, p \text{ interpolates the Ritz values})$
- variant 3 [van den Eshof et al 02]: projection on $K_m(Q, v)$, harmonic Ritz values

 $x^m = QV^m \cdot \operatorname{sign}(T_m + \beta_m^2 T_m^{-1} e_m) \cdot V_m^H v$

 $(= p_m(Q)v, p \text{ interpolates the harmonic Ritz values})$

la i

Test example

14/24

$Q = diag(-30, -29, \dots, -10, 1, 2, \dots, 100)$

optimal (solid lower) projection on $QK_m(Q, v)$ (dotted) projection on $K_m(Q, v)$ (dash-dot) projection on $K_m(Q, v)$ harmonic Ritz (dash) norm of the CG residual (solid top)

ja i

15/24

4. Projection on $QK(Q^2)$ and Lanczos

Borici 00: Lanczos for Q^2 :

$$Q^2 \widehat{V}_k = \widehat{V}_k \widehat{T}_k + \widehat{\beta}_{k+1} \widehat{v}_{k+1} e_k^H,$$

Take

$$x^m = Q \widehat{V}_m \widehat{T}_m^{-1/2} V_m^H v$$
 ($= p_{2m+1}(Q)v, p_{2m+1}$ odd)

Q from QCD, 16⁴ grid, $\kappa = 0.208$ and $\beta = 6$.

16/24

optimal (solid lower) Chebyshev method (dash-dot)

projection on $K_m(Q, v)$ (dotted)

projection on $QK_m(Q^2, v)$ (solid upper)

Theory

Lemma [van den Eshof et al 02]: Let

 $v = v^+ + v^-$ where sign $Qv^+ = v^+$, sign $Qv^- = -v^-$.

- r_m^+ : GMRES residual for $Qx = v^+$
- r_m^- GMRES residual for $Qx = b^-$
- odd polynomial $p_{2m+1}(t) = t \cdot q_m(t^2)$
- approximation $x = p_{2m+1}(Q)v$ for sign(Q)v.

Then

$$\|\operatorname{sign} Qv - x\|_{2}^{2} \ge \|r_{2m+1}^{+}\|_{2}^{2} + \|r_{2m+1}^{-}\|_{2}^{2}.$$

Note: Lower bound goes like $\sqrt{\kappa(Q)}$.

Back Close

lai

Projection on $QK(Q^2)$ via Lanczos for Q^2 :

Theorem [van den Eshof et al. 02]: r_m residual of CG for $Q^2x = v, x^0 = 0$. Then

$$\|\text{sign}(Q)v - Q\widehat{V}_m\widehat{T}_m^{-1/2}\widehat{V}_mv\|_2 \le \|r_m\|_2.$$

Note: Upper bound goes like $\kappa(Q)$.

Proof: Roberts' integral representation gives

$$sign(Q)v - Q\widehat{V}_{m}\widehat{T}_{m}^{-1/2}\widehat{V}_{m}v$$

= $\frac{2}{\pi}\int_{0}^{\infty}Q(t^{2}I + Q^{2})^{-1}b - Q\widehat{V}_{m}(t^{2}I + \widehat{T}_{m})^{-1}\widehat{V}_{m}^{H}v dt$
= $\frac{2}{\pi}\int_{0}^{\infty}Q(t^{2}I + Q^{2})^{-1}r_{m}^{t^{2}} dt.$

Here $r_m^{t^2} = v - (Q^2 + t^2 I) \hat{V}_k (\hat{T}_k + t^2 I)^{-1} e_1$ is the CG residual for $(Q^2 + t^2 I)x = v$.

jai

Proof: Roberts' integral representation gives

$$sign(Q)v - Q\widehat{V}_{m}\widehat{T}_{m}^{-1/2}\widehat{V}_{m}v$$

$$= \frac{2}{\pi} \int_{0}^{\infty} Q(t^{2}I + Q^{2})^{-1}b - Q\widehat{V}_{m}(t^{2}I + \widehat{T}_{m})^{-1}\widehat{V}_{m}^{H}v \, dt$$

$$= \frac{2}{\pi} \int_{0}^{\infty} Q(t^{2}I + Q^{2})^{-1}r_{m}^{t^{2}} \, dt.$$

Here $r_m^{t^2} = v - (Q^2 + t^2 I) \widehat{V}_k (\widehat{T}_k + t^2 I)^{-1} e_1$ is the CG residual for $(Q^2 + t^2 I)x = v$. Use $r_m^{t^2} = \phi_m^{t^2} \cdot r_m^0$, $|\phi_m^{t^2}| < 1$ to get $\operatorname{sign}(Q)v - Q\widehat{V}_m \widehat{T}_m^{-1/2} \widehat{V}_m v = X_m r_m^0$ where $X = \frac{2}{\pi} \int_0^\infty Q(t^2 I + Q^2)^{-1} \phi_m^{t^2} dt$. **j**ai

19/24

Back Close **Proof:** Roberts' integral representation gives

$$sign(Q)v - Q\widehat{V}_{m}\widehat{T}_{m}^{-1/2}\widehat{V}_{m}v$$

$$= \frac{2}{\pi} \int_{0}^{\infty} Q(t^{2}I + Q^{2})^{-1}b - Q\widehat{V}_{m}(t^{2}I + \widehat{T}_{m})^{-1}\widehat{V}_{m}^{H}v \, dt$$

$$= \frac{2}{\pi} \int_{0}^{\infty} Q(t^{2}I + Q^{2})^{-1}r_{m}^{t^{2}} \, dt.$$

Here $r_m^{t^2} = v - (Q^2 + t^2 I) \hat{V}_k (\hat{T}_k + t^2 I)^{-1} e_1$ is the CG residual for $(Q^2 + t^2 I)x = v$. Use $r_m^{t^2} = \phi_m^{t^2} \cdot r_m^0$, $|\phi_m^{t^2}| < 1$ to get $\operatorname{sign}(Q)v - Q\hat{V}_m \hat{T}_m^{-1/2} \hat{V}_m v = X_m r_m^0$ where $X = \frac{2}{\pi} \int_0^\infty Q(t^2 I + Q^2)^{-1} \phi_m^{t^2} dt$. But $\operatorname{spec}(X) \subset [-1, 1]$. ai

19/24

Back Close

PFEs and Multishift CG

$$\operatorname{sign}(Q)v pprox \sum_{i=1}^{p} \omega_i Q \left(Q^2 + \tau_i I\right)^{-1} v.$$

 $(\tau_i > 0)$. Solve all p systems $(Q^2 + \tau_i I) x_i = v$ in one stroke ('multishift CG'), since

$$K_m(Q^2, b) = K_m(Q^2 + \tau_i I, b), \ i = 1, 2, \dots, m.$$

Computational aspects:

- 1. **error** is controlled through CG residuals and approximation error of rational approximation (approx. error needs a, b s.t. $\operatorname{spec}(Q) \subset [-b, -a] \cup [a, b]$)
- 2. **implementation**: perform CG on seed system, update quantities for other systems
- stability: use CGLS-like algorithm for seed (F., Maass 99)
- update quantities for other systems using the (differential form of the stationary) qd algorithm (van den Eshof, Sleijpen 03)
- 5. efficiency: remove converged systems

31

Comparison of PFEs

- Pandey, Kenney, Laub (PKL)
- Zolotarev
- Edwards, Heller, Narayanan 99 (EHN): $t \cdot w(t^2)$, w(t) best approximation from $R_{m,m}$ to $t^{-1/2}$ on $[a^2, b^2]$ (via the Remez algorithm)

 b/a
 PKL
 EHN
 Zolotarev

 200 19
 7
 5

 1000 42
 12
 6

Numerical experiments

QCD, 16^4 lattice, 16 processors on ALiCE.

PFE/CG Zolotarev without removalMVs1141985977927885time/s154125125116102

PFE/CG Zolotarev with removalMVs120510331033971927time/s12293978779

Note: Lanzcos methods need two sweeps (or store all Lanczos vectors)

18

Conclusions

• Lanczos based projection techniques are often close to optimal

- Lanczos based projection techniques are often close to optimal
- restriction to odd polynomials smoothes convergence curves, but may (in theory, sometimes) be a severe restriction

- Lanczos based projection techniques are often close to optimal
- restriction to odd polynomials smoothes convergence curves, but may (in theory, sometimes) be a severe restriction
- PFEs and projection on $QK_m(Q^2)$ yield error bounds

- Lanczos based projection techniques are often close to optimal
- restriction to odd polynomials smoothes convergence curves, but may (in theory, sometimes) be a severe restriction
- PFEs and projection on $QK_m(Q^2)$ yield error bounds
- schulz(v,k) is a nice idea

- Lanczos based projection techniques are often close to optimal
- restriction to odd polynomials smoothes convergence curves, but may (in theory, sometimes) be a severe restriction
- PFEs and projection on $QK_m(Q^2)$ yield error bounds
- schulz(v,k) is a nice idea
- inner-outer schemes are important in QCD
- Zolotarev is now standard in QCD
- QCD people include deflation techniques

