§ 2 Die Tensor-Algebra

Sei V ein endlich-dimensionaler k-Vektorraum, $a_1, \ldots, a_r \in V$ linear unabhängige Vektoren, $\alpha_1, \ldots, \alpha_r \in k$. Dann gibt es eine lineare Abbildung $f: V \to k$ mit $f(a_i) = \alpha_i$ für $i = 1, \ldots, r$. Bilden die a_{ϱ} sogar eine Basis von V, so ist f eindeutig bestimmt.

Diese Aussagen lassen sich auf multilineare Abbildungen verallgemeinern. Sind V, V_1, \ldots, V_m endlich-dimensionale k-Vektorräume, so bezeichnen wir mit

$$L_m(V_1,\ldots,V_m;V)$$

den (ebenfalls endlich-dimensionalen) k-Vektorraum der m-fach k-multilinearen Abbildungen $f: V_1 \times \ldots \times V_m \to V$.

Wir betrachten hier nur den Fall V=k. Ist $\{a_1^{(i)},\ldots,a_{n_i}^{(i)}\}$ eine Basis von V_i , für $i=1,\ldots,m$, so gibt es eindeutig bestimmte Elemente $f_{\nu_1,\ldots,\nu_m}\in L_m(V_1,\ldots,V_m;k)$ mit

$$f_{\nu_1,\dots,\nu_m}(a_{\mu_1}^{(1)},\dots,a_{\mu_m}^{(m)}) = \begin{cases} 1 & \text{falls } \nu_i = \mu_i \text{ für } i = 1,\dots,m, \\ 0 & \text{sonst.} \end{cases}$$

Diese Elemente bilden eine Basis von $L_m(V_1, \ldots, V_m; k)$.

Im Falle eines einzelnen Vektorraumes V mit Basis $\{a_1, \ldots, a_n\}$ erhält man auf diesem Wege die duale Basis $\{\alpha^1, \ldots, \alpha^n\}$ des Dualraumes $V^* = \operatorname{Hom}_k(V, k)$, mit $\alpha^{\nu}(a_{\mu}) = \delta_{\nu\mu}$.

2.1 Satz. Die Abbildung $\iota_V : V \to V^{**} = \operatorname{Hom}_k(V^*, k)$ mit $\iota_V(x)(f) = f(x)$ für $x \in V$ und $f \in V^*$ ist ein Vektorraum-Isomorphismus.

Die Abbildung ι_V ist "kanonisch" in dem Sinne, dass man zu ihrer Definition keine Basis benötigt. Sie ist auch "natürlich" in folgendem Sinne: Zu jeder linearen Abbildung $\varphi: V \to W$ gibt es eine lineare Abbildung $\varphi^{**}: V^{**} \to W^{**}$, so dass folgendes Diagramm kommutiert:

$$\begin{array}{ccc}
V & \xrightarrow{\iota_V} & V^{**} \\
\varphi \downarrow & & \downarrow \varphi^{**} \\
W & \xrightarrow{\iota_W} & W^{**}
\end{array}$$

Man kann deshalb V und V^{**} miteinander identifizieren.

Die Abbildung ι_V existiert auch bei unendlich-dimensionalen Vektorräumen, allerdings ergibt sich dann i.a. kein Isomorphismus.

Unter dem Tensorprodukt zweier Linearformen $f, g \in V^*$ versteht man die Bilinearform $f \otimes g$ mit $(f \otimes g)(x, y) := f(x) \cdot g(y)$. Dies und die Identifikation $V \cong (V^*)^*$ liefern die Idee zu Folgendem:

Definition.

 V_1, \ldots, V_m seien endlich-dimensionale k-Vektorräume. Unter einem Tensorprodukt von V_1, \ldots, V_m versteht man ein Paar (V, η_V) mit folgenden Eigenschaften:

- 1. V ist ein endlich-dimensionaler Vektorraum.
- 2. $\eta_V: V_1 \times \dots V_m \to V$ ist m-fach multilinear.
- 3. Die Elemente $\eta_V(x_1,\ldots,x_m)$ mit $x_i \in V_i$ erzeugen V.
- 4. Ist U ein beliebiger (endlich-dimensionaler) k-Vektorraum und

$$\varphi: V_1 \times \ldots \times V_m \to U$$

m-fach multilinear, so gibt es eine lineare Abbildung $h: V \to U$, so dass $h \circ \eta_V = \varphi$ ist.

2.2 Satz.

- a) $Zu V_1, \ldots, V_m$ existiert immer ein Tensorprodukt.
- b) Sind (V, η_V) und (W, η_W) zwei Tensorprodukte von V_1, \ldots, V_m , so gibt es einen eindeutig bestimmten Isomorphismus $\Phi: V \to W$ mit $\Phi \circ \eta_V = \eta_W$.

BEWEIS: a) Wir setzen $V := L_m(V_1^*, \dots, V_m^*; k)$ und definieren $\eta_V : V_1 \times \dots \times V_m \to V$ durch

$$\eta_V(x_1,\ldots,x_m)(f_1,\ldots,f_m) := f_1(x_1)\cdots f_m(x_m).$$

Es ist klar, dass dies eine multilineare Abbildung ist. Für $i=1,\ldots,m$ sei nun $\{a_1^{(i)},\ldots,a_{n_i}^{(i)}\}$ eine Basis von V_i und $\{\alpha_{(i)}^1,\ldots,\alpha_{(i)}^{n_i}\}$ die dazu duale Basis von V_i^* . Dann ist

$$\eta_{V}(a_{\nu_{1}}^{(1)}, \dots, a_{\nu_{m}}^{(m)})(\alpha_{(1)}^{\mu_{1}}, \dots, \alpha_{(m)}^{\mu_{m}}) = \alpha_{(1)}^{\mu_{1}}(a_{\nu_{1}}^{(1)}) \cdots \alpha_{(m)}^{\mu_{m}}(a_{\nu_{m}}^{(m)}) \\
= \delta_{\nu_{1}\mu_{1}} \cdots \delta_{\nu_{m}\mu_{m}} \\
= f_{\nu_{1}, \dots, \nu_{m}}^{*}(\alpha_{(1)}^{\mu_{1}}, \dots, \alpha_{(m)}^{\mu_{m}}),$$

wobei die f_{ν_1,\ldots,ν_m}^* eine (wie oben konstruierte) Basis von $L_m(V_1^*,\ldots,V_m^*;k)$ bilden. Also wird V von den Elementen $\eta_V(x_1,\ldots,x_m)$ erzeugt.

Sei schließlich $\varphi:V_1\times\ldots\times V_m\to U$ m-fach multilinear. Dann definieren wir $h:V\to U$ durch

$$h(f_{\nu_1,\ldots,\nu_m}^*) := \varphi(a_{\nu_1}^{(1)},\ldots,a_{\nu_m}^{(m)}).$$

Weil $f_{\nu_1,\dots,\nu_m}^* = \eta_V(a_{\nu_1}^{(1)},\dots,a_{\nu_m}^{(m)})$ ist, folgt (aus der Multilinearität der beteiligten Abbildungen), dass $h \circ \eta_V = \varphi$ ist.

b) Sind zwei Tensorprodukte (V, η_V) und (W, η_W) gegeben, so gibt es lineare Abbildungen $\Phi: V \to W$ mit $\Phi \circ \eta_V = \eta_W$ und $\Psi: W \to V$ mit $\Psi \circ \eta_W = \eta_V$, also $\Phi \circ \Psi \circ \eta_W = \Phi \circ \eta_V = \eta_W$. Weil die Bilder von η_V bzw. η_W die Tensorprodukträume V bzw. W erzeugen, folgt: $\Phi \circ \Psi = \mathrm{id}_W$, und analog $\Psi \circ \Phi = \mathrm{id}_V$. Also ist Φ ein Isomorphismus und $\Psi = \Phi^{-1}$. Durch die Gleichung $\Phi \circ \eta_V = \eta_W$ ist Φ auf einem Erzeugendensystem von V (und damit auf ganz V) eindeutig festgelegt.

Definition.

Das (im Wesentlichen eindeutig bestimmte) Tensorprodukt von V_1, \ldots, V_m wird mit $V_1 \otimes \cdots \otimes V_m$ bezeichnet, und die Elemente $\eta_V(x_1, \ldots, x_m)$ mit $x_1 \otimes \ldots \otimes x_m$.

Man beachte, dass die "zerlegbaren Tensoren" $x_1 \otimes \ldots \otimes x_m$ lediglich ein Erzeugendensystem des Tensorproduktes bilden. Sie sind i.a. nicht linear unabhängig

(z.B. ist
$$(x'_1 + x''_1) \otimes x_2 \otimes \ldots \otimes x_m = x'_1 \otimes x_2 \otimes \ldots \otimes x_m + x''_1 \otimes x_2 \otimes \ldots \otimes x_m$$
)

und es sind auch nicht alle Tensoren zerlegbar. Ist allerdings $\{a_1^{(i)}, \ldots, a_{n_i}^{(i)}\}$ eine Basis von V_i , so bilden die Tensorprodukte $a_{i_1}^{(1)} \otimes \ldots \otimes a_{i_m}^{(m)}$ eine Basis von $V_1 \otimes \ldots V_m$.

Sind $F_i: V_i \to W_i$ lineare Abbildungen, für $i = 1, \ldots, m$, so definiert man

$$(F_1 \otimes \ldots \otimes F_m) : V := V_1 \otimes \ldots \otimes V_m \to W := W_1 \otimes \ldots \otimes W_m$$

durch
$$(F_1 \otimes \ldots \otimes F_m)(x_1 \otimes \ldots \otimes x_m) := (F_1(x_1)) \otimes \ldots \otimes (F_m(x_m)).$$

Dann ist $(F_1 \otimes \ldots \otimes F_m): V \to W$ die lineare Abbildung, die über die Gleichung

$$(F_1 \otimes \ldots \otimes F_m) \circ \eta_V = \varphi$$

der multilinearen Abbildung $\varphi: V_1 \times \ldots \times V_m \to W$ mit

$$\varphi(x_1,\ldots,x_m):=(F_1(x_1))\otimes\ldots\otimes(F_m(x_m))$$

zugeordnet ist.

2.3 Satz. Es ist $V^* \otimes W \cong \operatorname{Hom}_k(V, W)$, vermöge $f \otimes w : v \mapsto f(v)w$.

BEWEIS: Die bilineare Abbildung $\varphi: V^* \times W \to \operatorname{Hom}_k(V, W)$ mit $\varphi(f, w)(v) := f(v)w$ induziert die lineare Abbildung $\widehat{\varphi}: V^* \otimes W \cong \operatorname{Hom}_k(V, W)$ mit

$$\widehat{\varphi} \circ \eta_{V^* \otimes W} = \varphi.$$

Sei nun $\{a_1,\ldots,a_n\}$ eine Basis von V und $\{\alpha^1,\ldots,\alpha^n\}$ die dazu duale Basis von V^* . Dann definieren wir $\theta: \operatorname{Hom}_k(V,W) \to V^* \otimes W$ durch

$$\theta(f) := \sum_{\nu=1}^{n} \alpha^{\nu} \otimes f(a_{\nu}).$$

Es ist $\widehat{\varphi} \circ \theta(f)(v) = \sum_{\nu} \varphi(\alpha^{\nu}, f(a_{\nu}))(v) = \sum_{\nu} \alpha^{\nu}(v) f(a_{\nu}) = f(v)$ und $\theta \circ \widehat{\varphi}(f \otimes w) = \theta(\varphi(f, w)) = \sum_{\nu} \alpha^{\nu} \otimes f(a_{\nu})w = (\sum_{\nu} f(a_{\nu})\alpha^{\nu}) \otimes w = f \otimes w$. Also ist $\widehat{\varphi}$ ein Isomorphismus und $\theta = \widehat{\varphi}^{-1}$.

Übungsaufgabe: $(V \otimes W)^* \cong V^* \otimes W^*$.

Unter einer k-Algebra versteht man einen (nicht notwendig endlich-dimensionalen) k-Vektorraum A, zusammen mit einer k-bilinearen Abbildung $m: A \times A \to A$. An

Stelle von m(x, y) schreiben wir $x \cdot y$. Erfüllt diese Multiplikation das Assoziativgesetz, so spricht man von einer assoziativen Algebra.

Ist $F \subset A$ ein Untervektorraum und liegt das Produkt zweier Elemente von F wieder in F, so spricht man von einer *Unteralgebra*.

Ein Untervektorraum $I \subset A$ heißt ein Links- bzw. Rechts- Ideal in A, falls gilt: Für $x \in A$ und $y \in I$ liegt $x \cdot y$ (bzw. $y \cdot x$) wieder in I. Gilt beides, so spricht man von einem zweiseitigen Ideal.

Beispiele.

- 1. Jeder Körper k ist auch eine k-Algebra. Darüber hinaus ist z.B. \mathbb{C} eine \mathbb{R} -Algebra.
- 2. Der Raum $M_{n,n}(k)$ der *n*-reihigen Matrizen über k ist eine k-Algebra. Ist X_0 eine feste Matrix, so ist $I = \{A \cdot X_0 : A \in M_{n,n}(k)\}$ ein Links-Ideal.
- 3. Sei V ein k-Vektorraum mit Basis $\{a_1, \ldots, a_n\}$. Dann ist $T^m(V)$ das m-fache Tensorprodukt von V mit sich selbst: $T^m(V) = V \otimes \ldots \otimes V$ (m-mal). Nun sei $T(V) := \bigoplus_{m \geq 0} T^m(V)$, mit $T^0(V) := k$. Das ist ein k-Vektorraum. Er wird

zu einer Algebra durch die Multiplikation

$$((x_1 \otimes \ldots \otimes x_l), (y_1 \otimes \ldots \otimes y_m)) \mapsto x_1 \otimes \ldots \otimes x_l \otimes y_1 \otimes \ldots \otimes y_m.$$

Aus der universellen Eigenschaft ergibt sich, dass T(V) assoziativ ist. Außerdem wird T(V) (als Algebra) von V erzeugt, d.h., jedes Element ist endliche Summe von Produkten von Elementen aus V.

Behauptung: Ist $f: V \to A$ eine lineare Abbildung in eine k-Algebra A, so gibt es genau einen Algebra-Homomorphismus $\widehat{f}: T(V) \to A$, der f fortsetzt.

Beweis dafür: Definiere $\widehat{f}_m: T^m(V) \to A$ durch

$$\widehat{f}_m(x_1 \otimes \ldots \otimes x_m) := f(x_1) \cdots f(x_m).$$

Alle \widehat{f}_m zusammen ergeben den gewünschten Homomorphismus. Die Eindeutigkeit folgt aus der Tatsache, dass T(V) von V erzeugt wird.

4. Sei $f: A \to B$ ein k-Algebra-Homomorphismus. Ist f(x) = 0, so ist auch $f(a \cdot x \cdot b) = f(a) \cdot f(x) \cdot f(b) = 0$, für $a, b \in A$. Also ist Ker(f) ein zweiseitiges Ideal.

Definition.

Sei L eine (additiv geschriebene) kommutative Halbgruppe (mit neutralem Element 0) und A eine k-Algebra. Eine Graduierung auf A vom Typ L ist eine Familie $(A_{\lambda})_{\lambda \in L}$ von k-Untervektorräumen, so dass gilt:

1. Es ist
$$A = \bigoplus_{\lambda \in L} A_{\lambda}$$
.

2. Ist $x \in A_{\lambda}$ und $y \in A_{\kappa}$, so ist $x \cdot y \in A_{\lambda + \kappa}$.

Man nennt A in diesem Fall eine graduierte k-Algebra vom Typ L. Ein Element $x \in A$ heißt homogen vom Grad λ , falls es in A_{λ} liegt.

Jedes Element $x \neq 0$ in A besitzt eine eindeutig bestimmte Zerlegung in eine Summe von homogenen Elementen. Gibt es in A ein Eins-Element, so hat dieses den Grad 0.

Beispiele.

- 1. Der Polynomring $\mathbb{R}[x]$ ist eine \mathbb{N}_0 -graduierte kommutative und assoziative \mathbb{R} -Algebra mit Eins-Element. Dabei ist $\mathbb{R}[x]_n = \{ax^n : a \in \mathbb{R}\}$, für $n \in \mathbb{N}$. Man kann $\mathbb{R}[x]$ auch als \mathbb{Z} -graduierte Algebra auffassen, indem man $\mathbb{R}[x]_n = 0$ setzt, für n < 0.
- 2. Die Tensoralgebra T(V) ist \mathbb{N}_0 -graduiert. Wir haben auf T(V) aber auch eine \mathbb{Z}_2 -Graduierung. Dazu setzen wir

$$T_0(V) := \bigoplus_{\mu=0}^{\infty} T^{2\mu}(V) \quad \text{ und } T_1(V) := \bigoplus_{\mu=0}^{\infty} T^{2\mu+1}(V).$$

Dann ist $T = T_0 \oplus T_1$, $T_0 \cdot T_0 \subset T_0$, $T_1 \cdot T_1 \subset T_0$ und $T_0 \cdot T_1 \subset T_1$.

Definition.

Sei A eine graduierte k-Algebra vom Typ L. Ein Ideal $I \subset A$ heißt graduiert, falls $I = \bigoplus_{\lambda \in L} I \cap A_{\lambda}$ ist, falls also mit einem Element $x \in I$ auch alle homogenen

Komponenten von x zu I gehören.

2.4 Satz. Ein Ideal $I \subset A$ ist genau dann graduiert, wenn es von homogenen Elementen erzeugt wird.

BEWEIS: Ein Ideal $I \subset A$ wird von einer Teilmenge $E \subset A$ "erzeugt", falls jedes Element $x \in I$ als endliche Summe $x = \sum_{\nu} a_{\nu} e_{\nu}$ mit $a_{\nu} \in A$ und $e_{\nu} \in E$ geschrieben werden kann.

- a) Sei I graduiert. Ist $x \in I$, so gibt es eine eindeutige Zerlegung $x = \sum_{\lambda} x_{\lambda}$, mit $x_{\lambda} \in I \cap A_{\lambda}$. Führt man die Zerlegung für alle $x \in I$ durch, so bildet die Gesamtheit aller dabei auftretenden x_{λ} ein Erzeugendensystem von homogenen Elementen.
- b) Sei umgekehrt I durch homogene Elemente erzeugt, etwa durch eine Familie von Elementen $(e_{\iota})_{\iota \in J}$. Es sei $n_{\iota} = \deg(e_{\iota})$. Jedes Element $x \in I$ kann als endliche Summe $x = \sum_{\iota \in J} a_{\iota} e_{\iota}$ geschrieben werden, mit $a_{\iota} \in A$. Nun sei $a_{\iota,\lambda}$ die homogene Komponente vom Grad λ von a_{ι} . Dann gilt:

$$x = \sum_{\iota \in J} \left(\sum_{\lambda \in L} a_{\iota,\lambda} e_{\iota} \right) = \sum_{\lambda \in L} \left(\sum_{\iota \in J} a_{\iota,\lambda} e_{\iota} \right) = \sum_{\mu \in L} \left(\sum_{\substack{(\lambda,\iota) \in L \times J \\ \lambda + n_{\iota} = \mu}} a_{\iota,\lambda} e_{\iota} \right).$$

Das ist die Zerlegung von $x = \sum_{\mu \in L} x_{\mu}$ in homogene Komponenten, und alle Komponenten gehören wieder zu I. Daraus folgt, dass I graduiert ist.

2.5 Satz. Sei A eine graduierte k-Algebra vom Typ L und $I \subset A$ ein graduiertes (zweiseitiges) Ideal. Dann ist auch A/I eine graduierte Algebra vom Typ L (mit $(A/I)_{\lambda} \cong A_{\lambda}/(I \cap A_{\lambda})$, und die Multiplikation ist gegeben durch $q(x) \cdot q(y) = q(x \cdot y)$ (wobei $q: A \to A/I$ die kanonische Projektion ist).

Beweis: Sei $u := x - x' \in I$ und $v := y - y' \in I$. Dann folgt:

$$x \cdot y = (x' + u) \cdot (y' + v) = x'y' + (x'v + uy' + uv) \equiv x'y' \mod I.$$

Also ist die Multiplikation in A/I wohldefiniert. Die Algebra-Eigenschaften sind schnell nachgerechnet.

Sei $(A_{\lambda})_{{\lambda}\in L}$ die Graduierung von A und $j_{\lambda}:A_{\lambda}\hookrightarrow A$ die kanonische Injektion. Dann ist $A_{\lambda}/(I\cap A_{\lambda})\cong q(A_{\lambda})$, vermöge $(x\mod I\cap A_{\lambda})\mapsto q(x)$. Die Abbildung ist offensichtlich wohldefiniert und linear. Ist $x\in A_{\lambda}$ und q(x)=0, so liegt x in $I\cap A_{\lambda}$. Also ist die Abbildung injektiv. Die Surjektivität ist klar.

Wir behaupten, dass $A/I = \bigoplus_{\lambda} q(A_{\lambda})$ ist. Es ist klar, dass $A/I = \sum_{\lambda} q(A_{\lambda})$ ist.

Sind nun $x\lambda \in A_{\lambda}$ mit $\sum_{\lambda} q(x_{\lambda}) = 0$, dann ist $\sum_{\lambda} x_{\lambda} \in I$. Aber weil I graduiert ist, müssen die x_{λ} sogar in $I \cap A_{\lambda}$ liegen, und das bedeutet, dass $q(x_{\lambda}) = 0$ ist, für alle λ . Also ist die Summe direkt.

Ist $x_{\lambda} \in A_{\lambda}$ und $x_{\kappa} \in A_{\kappa}$, so ist $q(x_{\lambda}) \cdot q(x_{\kappa}) = q(x_{\lambda} \cdot x_{\kappa})$ in $q(A_{\lambda+\kappa})$. Also ist A/I graduiert vom Typ L.

Sei $J \subset T(V)$ das (zweiseitige) Ideal, das von allen Elementen $x \otimes x, x \in V$, erzeugt wird. Dann besteht J aus allen endlichen Summen der Gestalt

$$\sum_{i} t_{i} \otimes x_{i} \otimes x_{i} \otimes s_{i}, \quad x_{i} \in V, \ t_{i}, s_{i} \in T(V).$$

Weil $(x + y) \otimes (x + y) - x \otimes x - y \otimes y = x \otimes y + y \otimes x$ ist, wird J auch von den Elementen $x \otimes y + y \otimes x$ erzeugt.

Da J von den homogenen Elementen $x \otimes x$ (vom Grad 2) erzeugt wird, ist J ein graduiertes Ideal.

Definition.

Die äußere Algebra über V ist die Algebra $\bigwedge(V) := T(V)/J$, wobei J das von den Elementen $x \otimes x$ erzeugte zweiseitige Ideal ist.

Bemerkung. Weil J ein graduiertes Ideal ist, ist $\bigwedge(V)$ eine graduierte k-Algebra, mit

$$\bigwedge^{m}(V) := (\bigwedge(V))_{m} = T^{m}(V)/T^{m}(V) \cap J.$$

Weil $T^0(V) \cap J = T^1(V) \cap J = 0$ ist, ist $\bigwedge^0(V) = k$ und $\bigwedge^1(V) = V$.

2.6 Satz. Sei E eine beliebige k-Algebra und $f: V \to E$ eine lineare Abbildung, so dass gilt:

$$f(x)^2 = 0$$
 für alle $x \in V$.

Dann gibt es genau einen k-Algebra-Homomorphismus $\widehat{f}: \bigwedge(V) \to E$, der f fortsetzt.

BEWEIS: Die Eindeutigkeit folgt aus der Tatsache, dass $\bigwedge(V)$ von V erzeugt wird. Zur Existenz benutzen wir die eindeutige Fortsetzung $f_T: T(V) \to E$ von f. Ker (f_T) ist ein zweiseitiges Ideal, das auf jeden Fall die Elemente $x \otimes x$ enthält. Das bedeutet, dass $J \subset \operatorname{Ker}(f_T)$ ist. Wir können also $\widehat{f}(t \mod J) := f_T(t)$ setzen.

Definition.

Das Produkt zweier Elemente $u, v \in \bigwedge(V)$ vom Grad ≥ 1 wird mit $u \wedge v$ bezeichnet (Dachprodukt).

Die Elemente von $\bigwedge^m(V)$ sind also Summen von Produkten $u_1 \wedge \ldots \wedge u_m$ mit $u_i \in V$. Man nennt solche Produkte auch m-Vektoren.

Definition.

Für $q \in \mathbb{N}$ setzen wir

 $A^q(V) := \{ \varphi : V \times \ldots \times V \to k : \varphi \text{ ist } q\text{-fach multilinear und alternierend} \}.$

2.7 Hilfssatz. Es seien M, N k-Vektorräume und $U \subset M$ ein Unterraum. Dann ist

$$\{f \in \operatorname{Hom}_k(M,N) : U \subset \operatorname{Ker}(f)\} \cong \operatorname{Hom}_k(M/U,N).$$

BEWEIS: Ist $f \in \operatorname{Hom}_k(M,N)$ und $f|_U = 0$, so ist $\overline{f} \in \operatorname{Hom}_k(M/U,N)$ durch $\overline{f}(x \mod U) := f(x)$ wohldefiniert. Ist umgekehrt $g \in \operatorname{Hom}_k(M/U,N)$ gegeben und $p: M \to M/U$ die kanonische Projektion, so ist $\widehat{g} := g \circ p \in \operatorname{Hom}_k(M,N)$ und $\widehat{g}|_U = 0$. Man sieht, dass diese beiden Zuordnungen zueinander invers sind.

Nun folgt unmittelbar:

$$\operatorname{Hom}_k(\bigwedge^q(V), k) \cong \{ f \in \operatorname{Hom}_k(T^q(V), k) : f|_J = 0 \}.$$

2.8 Satz. Sei $\varphi: V \times \ldots \times V \to k$ q-fach multilinear und alternierend (also ein Element von $A^q(V)$). Dann gibt es genau eine lineare Abbildung $g: \bigwedge^q(V) \to k$ mit

$$g(x_1 \wedge \ldots \wedge x_q) = \varphi(x_1, \ldots, x_q).$$

BEWEIS: Die Eindeutigkeit folgt daraus, dass $\bigwedge^q(V)$ von den q-Vektoren $x_1 \wedge \ldots \wedge x_q$ erzeugt wird. Wegen der Existenz sei daran erinnert, dass es zu der multilinearen Abbildung φ genau eine lineare Abbildung $h: T^q(V) \to k$ mit $h \circ \eta_{T^qV} = \varphi$ gibt. Weil φ alternierend ist, verschwindet h auf $J \cap T^q(V)$. Sei nun $p: T^q(V) \to \bigwedge^q(V) = T^q(V)/(J \cap T^q(V))$ die kanonische Projektion. Dann gibt es eine lineare Abbildung $g: \bigwedge^q(V) \to k$ mit $g \circ p = h$. Es ist

$$g(x_1 \wedge \ldots \wedge x_q) = g(p(x_1 \otimes \ldots \otimes x_q))$$

$$= h(x_1 \otimes \ldots \otimes x_q)$$

$$= \varphi(x_1, \ldots, x_q).$$

2.9 Satz.

- 1. Es ist $x \wedge x = 0$ und $x \wedge y = -y \wedge x$ für $x, y \in V$.
- 2. Sind $x_1, \ldots, x_m \in V$ und ist $\sigma \in S_m$ eine Permutation, so ist

$$x_{\sigma(1)} \wedge \ldots \wedge x_{\sigma(m)} = \operatorname{sign}(\sigma) \cdot x_1 \wedge \ldots \wedge x_m.$$

3. Ist $\{e_1, \ldots, e_n\}$ eine Basis von V, so bilden die Elemente

$$e_{i_1} \wedge \ldots \wedge e_{i_p}, \quad 1 \leq i_1 < \ldots < i_p \leq n,$$

eine Basis von $\bigwedge^p(V)$. Insbesondere ist dim $\bigwedge^p(V) = \binom{n}{p}$ für $0 \le p \le n$ und $\bigwedge^q(V) = 0$ für q > n.

4. Ist $u \in \bigwedge^p(V)$ und $v \in \bigwedge^q(V)$, so ist $u \wedge v = (-1)^{pq}v \wedge u$ (man spricht deshalb auch von einer alternierenden graduierten Algebra).

Beweis: 1) ist trivial.

- 2) Aus (1) folgt: Enthält $x_1 \wedge \ldots \wedge x_m$ zwei gleiche Vektoren, so verschwindet das Produkt. Vertauscht man zwei aufeinanderfolgende Faktoren, so wechselt das Vorzeichen. Per Induktion folgt die Behauptung.
- 3) Wegen (2) ist klar, dass die Elemente $e_{i_1} \wedge \ldots \wedge e_{i_p}$, $1 \leq i_1 < \ldots < i_p \leq n$, ein Erzeugendensystem von $\bigwedge^p(V)$ bilden. Wir müssen nur noch zeigen, dass sie linear unabhängig sind.

a) Wir beginnen mit dem Fall p = n. Zu der alternierenden Multilinearform

$$\det: \underbrace{V \times \ldots \times V}_{n\text{-mal}} \to k$$

gibt es eine lineare Abbildung $\delta: \bigwedge^n(V) \to k$ mit

$$\delta(x_1 \wedge \ldots \wedge x_n) = \det(x_1, \ldots, x_n).$$

Ist nun $c \cdot e_1 \wedge \ldots \wedge e_n = 0$, so ist $\det(c \cdot e_1, \ldots, e_n) = 0$. Das bedeutet, dass die Vektoren $c \cdot e_1, e_2, \ldots, e_n$ linear abhängig sind. Aber das ist nur möglich, wenn c = 0 ist.

b) Sei nun
$$1 und $\sum_{1 \le \nu_1 < \dots < \nu_p \le n} c_{\nu_1 \dots \nu_p} e_{\nu_1} \wedge \dots \wedge e_{\nu_p} = 0.$$$

Zu festem $(\lambda_1, \ldots, \lambda_p)$ mit $\lambda_1 < \ldots < \lambda_p$ wählen wir μ_1, \ldots, μ_{n-p} , so dass gilt:

$$\{\lambda_1, \dots, \lambda_p, \mu_1, \dots, \mu_{n-p}\} = \{1, \dots, n\}.$$

Dann ist

$$0 = e_{\mu_1} \wedge \ldots \wedge e_{\mu_{n-p}} \wedge 0$$

$$= \sum_{\nu_1 < \ldots < \nu_p} c_{\nu_1 \ldots \nu_p} e_{\mu_1} \wedge \ldots \wedge e_{\mu_{n-p}} \wedge e_{\nu_1} \wedge \ldots \wedge e_{\nu_p}$$

$$= c_{\lambda_1 \ldots \lambda_p} e_{\mu_1} \wedge \ldots \wedge e_{\mu_{n-p}} \wedge e_{\lambda_1} \wedge \ldots \wedge e_{\lambda_p}$$

$$= \pm c_{\lambda_1 \ldots \lambda_p} e_1 \wedge \ldots \wedge e_n.$$

Also ist $c_{\lambda_1...\lambda_p} = 0$, und die $e_{\nu_1} \wedge ... \wedge e_{\nu_p}$ sind linear unabhängig.

4) folgt leicht für Basiselemente $e_{i_1} \wedge \ldots \wedge e_{i_p}$ und $e_{j_1} \wedge \ldots \wedge e_{j_q}$ mit $\{i_1, \ldots, i_p\} \cap \{j_1, \ldots, j_q\} = \emptyset$. Daraus ergibt sich dann die allgemeine Aussage.

2.10 Satz. Es ist $A^q(V) \cong (\bigwedge^q(V))^*$.

BEWEIS: Jedem $\varphi \in A^q(V)$ wird die Linearform $f_{\varphi} \in \operatorname{Hom}_k(\bigwedge^q(V), k)$ zugeordnet, mit $f_{\varphi}(x_1 \wedge \ldots \wedge x_q) = \varphi(x_1, \ldots, x_q)$. Ist umgekehrt $g \in (\bigwedge^q(V))^*$, so kann man ein $\varphi \in A^q(V)$ definieren, durch $\varphi(x_1, \ldots, x_q) := g(x_1 \wedge \ldots \wedge x_q)$. Dazu braucht man die Eigenschaften des Dachproduktes aus dem obigen Satz. Offensichtlich sind die beiden Zuordnungen zueinander invers.

Umgekehrt kann man auch einen Isomorphismus $\bigwedge^q(V^*) \to A^q(V)$ angeben, etwa vermöge

$$f_1 \wedge \ldots \wedge f_q \mapsto \left((x_1, \ldots, x_q) \mapsto \sum_{\sigma \in S_q} \operatorname{sign}(\sigma) f_1(x_{\sigma(1)}) \cdots f_q(x_{\sigma(q)}) \right).$$

Man nennt die rechte Seite auch den alternierenden Anteil von $f_1 \otimes ... \otimes f_q$. Er ist nicht eindeutig festgelegt, häufig wird noch durch q! geteilt.