Aufgaben zu Kapitel 2

Afg. 29: Sei X eine differenzierbare Mannigfaltigkeit, $x \in X$ und $v = \alpha'(0) \in T_x(X)$. Ist f eine in einer Umgebung von x definierte differenzierbare Funktion, so setzt man $v[f] := (f \circ \alpha)'(0)$. Zeigen Sie, dass $v[f \cdot g] = f(x) \cdot v[g] + g(x) \cdot v[f]$ ist. Sei $\varphi = (x^1, \ldots, x^n)$ ein lokales Koordinatensystem. Bestimmen Sie einen Tangentialvektor $v = \alpha'(0)$, so dass gilt:

$$v[f] = \frac{\partial (f \circ \varphi^{-1})}{\partial x_{\nu}}(\varphi(x)).$$

Bezeichnen Sie dann den Tangentialvektor v mit $D_{\nu}^{(\varphi)}$.

Ist g eine (beliebig oft) differenzierbare Funktion auf einer Umgebung $U = U(\mathbf{0}) \subset \mathbb{R}^n$, so gibt es eine Umgebung $V = V(\mathbf{0}) \subset U$ und differenzierbare Funktionen g_{ν} auf V, so dass gilt: $g(\mathbf{x}) = g(\mathbf{0}) + \sum_{\nu=1}^n x_{\nu} g_{\nu}(\mathbf{x})$ auf V und $g_{\nu}(\mathbf{0}) = \frac{\partial g}{\partial x_{\nu}}(\mathbf{0})$, für $\nu = 1, \ldots, n$. Benutzen Sie dieses Resultat, um zu zeigen, dass $\{D_1^{(\varphi)}, \ldots, D_n^{(\varphi)}\}$ eine Basis von $T_x(X)$ ist. Beweisen Sie außerdem: $\alpha'(0) = \sum_{\nu=1}^n (x^{\nu} \circ \alpha)'(0) D_{\nu}^{(\varphi)}$.

Ist $\Phi: X \to X$ ein Diffeomorphismus, so ist $\Phi_*\alpha'(0) = (\Phi \circ \alpha)'(0)$. Beweisen Sie die Formel $\Phi_*v[f] = v[f \circ \Phi]$.

Afg. 30: Sei G eine Liegruppe und ξ ein differenzierbares Vektorfeld auf G. Zeigen Sie:

$$(\mathscr{L}_{\xi}f)(g) = \xi_q[f], \text{ für } g \in G.$$

Sei $\varphi = (x^1, \dots, x^n)$ ein Koordinatensystem für G in e mit $\varphi(e) = \mathbf{0}$. Zeigen Sie, dass für das Koordinatensystem $\psi = \varphi \circ L_q^{-1} = (y^1, \dots, y^n)$ gilt:

$$(L_g)_* D_{\nu}^{(\varphi)} = D_{\nu}^{(\psi)}, \text{ für } \nu = 1, \dots, n.$$

Ist ξ ein (zunächst nicht notwendig differenzierbares) Vektorfeld auf G und $\mathcal{L}_{\xi}f \in \mathscr{C}^{\infty}(G)$ für alle $f \in \mathscr{C}^{\infty}(G)$, so ist ξ ein **differenzierbares** Vektorfeld.

Afg. 31: Die Operatoren $L_j: \mathscr{C}^{\infty}(\mathbb{R}^3) \to \mathscr{C}^{\infty}(\mathbb{R}^3), j = 1, 2, 3$, sind definiert durch

$$(L_1 f)(x, y, z) := \frac{1}{\mathsf{i}} \left(y \frac{\partial f}{\partial z} - z \frac{\partial f}{\partial y} \right), \quad (L_2 f)(x, y, z) := \frac{1}{\mathsf{i}} \left(z \frac{\partial f}{\partial x} - x \frac{\partial f}{\partial z} \right)$$

und $(L_3f)(x,y,z) := \frac{1}{\mathsf{i}} \left(x \frac{\partial f}{\partial y} - y \frac{\partial f}{\partial x} \right)$. Zeigen Sie, dass der von den L_j aufgespannte Raum von Operatoren mit $[L_i, L_j] = L_i \circ L_j - L_j \circ L_i$ eine Liealgebra bildet, und berechnen Sie die Lieklammern $[L_i, L_j]$ für i < j.

Bestimmen Sie die Liealgebra der Lorentz-Gruppe $\mathscr{L}_{+}^{\uparrow}$. Afg. 32:

Sei G eine Liegruppe, $f \in \mathscr{C}^{\infty}(G)$ und ξ ein differenzierbares Vektorfeld Afg. 33: auf G mit globalem Fluss Φ . Zeigen Sie:

$$(\mathscr{L}_{\xi}f)(g) = \lim_{t \to 0} \frac{f(\Phi(t,g)) - f(g)}{t}$$
, für $g \in G$.

Sei $E := \mathscr{C}^{\infty}(\mathbb{R})$, H die von den Operatoren P, Q und id erzeugte "Heisenberg-Algebra", mit

$$Qf(x) := x \cdot f(x), \quad Pf(x) := \frac{d}{dt}f(x) \quad \text{ und } \mathrm{id}f(x) := f(x).$$

Berechnen Sie alle Kommutatoren (Lieklammern) und zeigen Sie, dass H eine Liealgebra ist. Berechnen Sie $[a, a^*]$ für $a := \frac{1}{\sqrt{2}}(Q + P)$ und $a^* := \frac{1}{\sqrt{2}}(Q - P)$.

a) Es sei $k \in \{\mathbb{R}, \mathbb{C}\}$, \mathscr{A} eine beliebige k-Algebra. Eine Derivation in \mathscr{A} ist ein $\delta \in \operatorname{End}_k(\mathscr{A})$ mit $\delta(xy) = \delta(x)y + x\delta(y)$ (Reihenfolge beachten!). Zeigen Sie, dass die Menge $\operatorname{Der}_k(\mathscr{A})$ aller Derivationen in \mathscr{A} eine Unteralgebra von $\operatorname{End}_k(\mathscr{A})$ ist. Enthält \mathscr{A} eine Eins, so ist $\delta(1) = 0$.

b) Sei $\mathscr{A} := k[x]$. Zeigen Sie: Ist $\delta \in \operatorname{Der}_k(\mathscr{A})$, so ist $\delta(x^n) = nx^{n-1}\delta(x)$. Beweisen Sie, dass die Derivation $\delta_0 := \frac{d}{dx}$ eine Basis von $\operatorname{Der}_k(\mathscr{A})$ darstellt.

Afg. 36: Sei L eine beliebige abstrakte Liealgebra über k. Für $x, y \in L$ sei ad x(y) := [x, y]. Zeigen Sie: ad $x \in \operatorname{End}_k(L)$ ist eine Derivation und Ker(ad) ein Ideal in L.

Sei L eine beliebige abstrakte k-Liealgebra. Eine assoziative k-Algebra W mit 1 heißt universelle einhüllende Algebra von L, falls es eine k-lineare Abbildung $j: L \to \mathcal{U}$ gibt, so dass gilt:

- 1. j([x,y]) = j(x)j(y) j(y)j(x).
- 2. Ist \mathscr{A} irgend eine assoziative k-Algebra mit 1 und $h:L\to\mathscr{A}$ eine k-lineare Abbildung mit h([x,y]) = h(x)h(y) - h(y)h(x), so gibt es genau einen k-Algebra-Homomorphismus $\varphi: \mathcal{U} \to \mathscr{A}$ mit $\varphi(1) = 1$ und $h = \varphi \circ j$.

Zeigen Sie: Ist L endlich-dimensional, T(L) die Tensoralgebra von L und $J \subset T(L)$ das von den Elementen $x \otimes y - y \otimes x - [x, y], x, y \in L$, erzeugte Ideal, so ist $\mathscr{U} := T(L)/J$ eine universelle einhüllende Algebra von L.

Sei $\rho: G \to \operatorname{Aut}_k(E)$ die Darstellung einer Liegruppe, $\rho': L(G) \to$ $\operatorname{End}_k(E)$ ihre Ableitung. Zeigen Sie: Ist $U \subset E$ ein G-invarianter Unterraum, so ist U auch invarianter Unterraum bezüglich ϱ' . Ist ϱ' irreduzibel, so auch ϱ .

Sei $\rho: G \to \mathrm{GL}(E)$ eine endlich-dimensionale Darstellung, $\rho^*: G \to$ $GL(E^*)$ die kontragrediente Darstellung mit $\rho^*g(f)(v) = f(\rho(g)^{-1}v)$ für $v \in E$ und $f \in E^*$. Zeigen Sie: Ist ρ irreduzibel, so ist auch ρ^* irreduzibel.

Sei $V_n \subset \mathbb{C}[z_1, z_2]$ der Unterraum der homogenen Polynome v. Grad n. Afg. 40:

- a) Zeigen Sie, dass durch $(\varrho_A p)(\mathbf{z}) := p(\mathbf{z} \cdot A)$ (für $p \in V_n$, $A \in SU(2)$ und $\mathbf{z} \in \mathbb{C}^2$) eine Darstellung der Gruppe SU(2) auf V_n gegeben wird.
- b) Für $\mathbf{a} \in \mathbb{C}^2$ sei $p_{\mathbf{a}}(\mathbf{z}) := (\mathbf{z} \cdot \mathbf{a}^\top)^n$. Definieren Sie auf V_n ein hermitesches Skalarprodukt (..., ...), so dass gilt: $(p_{\mathbf{a}}, p_{\mathbf{b}}) = n! < \mathbf{a}, \mathbf{b} >$, wobei $< \mathbf{a}, \mathbf{b} >$ das kanonische hermitesche Skalarprodukt auf dem \mathbb{C}^2 ist. Zeigen Sie, dass ϱ dann eine unitäre Darstellung ist.
- c) $\sigma_1, \sigma_2, \sigma_3$ seien die Pauli-Matrizen. Zeigen Sie, dass $X_1 := \frac{i}{2}\sigma_1, X_2 := -\frac{i}{2}\sigma_2$ und $X_3 := \frac{i}{2}\sigma_3$ eine Basis von $\mathfrak{su}(2)$ bilden. Berechnen Sie die Lieklammern $[X_1, X_2]$, $[X_2, X_3]$ und $[X_3, X_1]$, sowie $\exp(tX_i)$ für i = 1, 2, 3.
- d) Für $k=0,1,\ldots,n$ sei $\varphi_k(z_1,z_2):=z_1^kz_2^{n-k}.$ Beweisen Sie:

$$\begin{aligned} (\varrho' X_1) \varphi_k &=& \frac{\mathrm{i}}{2} (k \varphi_{k-1} + (n-k) \varphi_{k+1}), \\ (\varrho' X_2) \varphi_k &=& \frac{1}{2} (k \varphi_{k-1} - (n-k) \varphi_{k+1}) \\ \mathrm{und} \ (\varrho' X_3) \varphi_k &=& \frac{2k-n}{2} \mathrm{i} \ \varphi_k \,. \end{aligned}$$

- e) Berechnen Sie die Matrizen der Endomorphismen ad X_i (mit ad $X_i(Y) = [X_i, Y]$) von $\mathfrak{su}(2)$ bezüglich der Basis $\{X_1, X_2, X_3\}$.
- Sei \mathfrak{g} eine Liealgebra über k. Zeigen Sie, dass die Killing-Form B: Afg. 41: $\mathfrak{g} \times \mathfrak{g} \to k$, definiert durch $B(v,w) := \operatorname{Spur}((\operatorname{ad} v) \circ (\operatorname{ad} w))$, eine symmetrische Bilinearform ist. Beweisen Sie mit Hilfe von 42e), dass die Killing-Form von $\mathfrak{su}(2)$ nicht entartet ist.
- Unter einem infinitesimalen Erzeugendensystem von SU(n) versteht man eine Basis $\{H_1, \ldots, H_k\}$ des Raumes der *n*-reihigen hermiteschen Matrizen mit Spur 0. Die Matrizen $A_{\nu} := \exp(\mathrm{i} t H_{\nu})$ erzeugen dann SU(n). Warum? Welcher Zusammenhang besteht zur Liealgebra $\mathfrak{su}(n)$? Bestimmen Sie ein solches System für SU(2) und SU(3).
- Es wird die komplexe Liealgebra $\mathfrak{g} := \mathfrak{sl}(3,\mathbb{C}) = \{A \in M_3(\mathbb{C}) : \}$ Afg. 43: Spur(A) = 0} betrachtet.
- a) Zeige Sie, dass $\mathfrak{h} := \{ H = \Delta(z_1, z_2, z_3) : z_1 + z_2 + z_3 = 0 \}$ eine abelsche Lie-Unteralgebra von \mathfrak{g} ist.

b) Eine Abbildung $\alpha: \mathfrak{h} \to \mathbb{C}$ wird Wurzel von \mathfrak{g} genannt, falls es ein Element $E_{\alpha} \in \mathfrak{g} \setminus \{0\}$ (einen Wurzelvektor) gibt, so dass für alle $H \in \mathfrak{h}$ gilt:

$$ad(H)(E_{\alpha}) = \alpha(H) \cdot E_{\alpha}.$$

Zeigen Sie, dass α automatisch \mathbb{C} -linear ist.

c) Sei $\{E_{ij}: 1 \leq i, j \leq 3\}$ die Standardbasis von $M_3(\mathbb{C})$, sowie

$$E_{\alpha}=E_{12},\ E_{\beta}=E_{23},\ E_{\gamma}=E_{13},\ E_{-\alpha}=E_{21},\ E_{-\beta}=E_{32}\ \mathrm{und}\ E_{-\gamma}=E_{31}.$$

Bestimmen Sie Wurzeln $\pm \alpha$, $\pm \beta$, $\pm \gamma$, für die $E_{\pm \alpha}$, $E_{\pm \beta}$, $E_{\pm \gamma}$ Wurzelvektoren sind. Zeigen Sie, dass $\alpha + \beta = \gamma$ ist.

- d) Zeigen Sie: Zu jedem $\lambda \in \mathfrak{h}^* = \operatorname{Hom}_{\mathbb{C}}(\mathfrak{h}, \mathbb{C})$ gibt es ein $H_{\lambda} \in \mathfrak{h}$ mit $\lambda(H) = \operatorname{Spur}(H \cdot H_{\lambda})$.
- e) Fassen Sie die Wurzeln von \mathfrak{g} als Vektoren von \mathbb{R}^2 und die Zahlen $\langle \varrho, \mu \rangle := \operatorname{Spur}(H_\varrho \cdot H_\mu)$ als euklidische Skalarprodukte auf und zeichnen Sie das zugehörige "Wurzeldiagramm" auf. Leiten Sie daraus einen Dynkin-Graphen ab.

Afg. 44: Zeigen Sie, dass die Killing-Form von SU(n+1) durch $B(X,Y) := 2(n+1)\operatorname{Spur}(X\cdot Y)$ gegeben wird.

Afg. 45: Sei G = SO(3) und $T = \{R^*(t) = \begin{pmatrix} R(t) & \mathbf{0}^\top \\ \mathbf{0} & 1 \end{pmatrix} : t \in \mathbb{R}\} \subset G$ der maximale Torus (mit $R(t) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$).

- a) Zeigen Sie: Die Matrizen $U = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, V = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ und
- $W = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$ bilden eine Basis von L(G), und U liegt in L(T).
- b) Berechnen Sie alle Lieklammern von U, V und W, sowie alle Wurzeln von G.
- b) Sei $Z := \Delta(-1, 1, -1)$. Zeigen Sie: $N_G(T) = T \cup (Z \cdot T)$. Bestimmen Sie die Weylgruppe W(G).

Afg. 46: Die Liegruppe G_2 hat den Dynkin-Graphen

Es gebe ein Skalarprodukt auf $L(G_2)$, so dass $|\alpha_1| = 1$ ist. Bestimmen Sie alle Wurzeln von G_2 und das Wurzel-Diagramm, sowie $|\alpha_2|$ und $\angle(\alpha_1, \alpha_2)$.