2.1 Lokale Trivialisierungen

Definition

Sei X eine (n-dimensionale) differenzierbare Mannigfaltigkeit. Ein Vek-torbündel vom Rang q über X ist eine differenzierbare Mannigfaltigkeit E, zusammen mit einer surjektiven differenzierbaren Abbildung $\pi: E \to X$, so dass gilt:

- 1. Für jedes $x \in X$ trägt die Faser $E_x := \pi^{-1}(x)$ die Struktur eines q-dimensionalen Vektorraumes.
- 2. Zu jedem $x \in X$ gibt es eine offene Umgebung $U = U(x) \subset X$ und einen Diffeomorphismus $\varphi : \pi^{-1}(U) \to U \times \mathbb{R}^q$ mit folgenden Eigenschaften:
 - (a) Für jedes $x \in U$ ist $\varphi_x := \varphi|_{E_x} : E_x \to \mathbb{R}^q$ ein \mathbb{R} -Isomorphismus.
 - (b) $\operatorname{pr}_1 \circ \varphi = \pi \text{ auf } \pi^{-1}(U).$

Die Abbildung φ nennt man eine **lokale Trivialisierung**, die Abbildung π nennt man **Bündelabbildung**. Die Mannigfaltigkeit X heißt **Basis**, E heißt **Totalraum** des Bündels.

2.1.1. Satz

Sei $\pi: E \to X$ eine surjektive differenzierbare Abbildung (zwischen Mannigfaltigkeiten). E ist genau dann ein Vektorbündel vom Rang q über X, wenn es eine offene Überdeckung $\mathscr{U} = (U_{\alpha})_{\alpha \in A}$ von X und lokale Trivialisierungen $\varphi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{q}$ mit $\operatorname{pr}_{1} \circ \varphi_{\alpha} = \pi$ gibt, so dass gilt:

Zu jedem Paar $(\alpha, \beta) \in I \times I$ gibt es eine differenzierbare Abbildung

$$g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \mathrm{GL}_q(\mathbb{R}) \quad mit \quad \varphi_{\alpha} \circ \varphi_{\beta}^{-1}(x, \mathbf{v}^{\top}) = (x, g_{\alpha\beta}(x) \cdot \mathbf{v}^{\top})$$

 $f\ddot{u}r \ x \in U_{\alpha\beta} := U_{\alpha} \cap U_{\beta} \ und \ \mathbf{v} \in \mathbb{C}^q.$

BEWEIS: 1) Sei E ein Vektorbündel über X. Dann gibt es eine Überdeckung $\mathscr{U} = (U_{\alpha})_{\alpha \in A}$ von X und lokale Trivialisierungen $\varphi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{q}$ mit $\operatorname{pr}_{1} \circ \varphi_{\alpha} = \pi$. Sei

$$\Lambda_{\alpha\beta} := \varphi_{\alpha} \circ \varphi_{\beta}^{-1} : U_{\alpha\beta} \times \mathbb{C}^q \to U_{\alpha\beta} \times \mathbb{C}^q.$$

Dann ist $(\Lambda_{\alpha\beta})_x: \mathbb{C}^q \to \mathbb{C}^q$ für jedes $x \in U_{\alpha\beta}$ ein \mathbb{R} -VR-Isomorphismus, der bezüglich der Standardbasen durch eine Matrix $g_{\alpha\beta}(x) \in \mathrm{GL}_q(\mathbb{R})$ beschrieben wird.

Weil $(g_{\alpha\beta})_{\nu\mu}(x) = \operatorname{pr}_{\nu}(\Lambda_{\alpha\beta}(x)(\mathbf{e}_{\mu}))$ ist, folgt auch, dass $g_{\alpha\beta}$ differenzierbar ist.

2) Sei umgekehrt ein System von lokalen Trivialsierungen mit differenzierbaren Übergangsfunktionen $g_{\alpha\beta}: U_{\alpha\beta} \to \mathrm{GL}_q(\mathbb{R})$ gegeben. Dann kann man auf diesem Wege jede Faser E_x mit einer Vektorraum-Struktur versehen, so dass die Trivialisierungen faserweise Vektorraum-Isomorphismen sind.

2.1.2. Konstruktionslemma

Sei X eine n-dimensionale differenzierbare Mannigfaltigkeit und $q \in \mathbb{N}$. Zu jedem $x \in X$ sei ein q-dimensionaler \mathbb{R} -Vektorraum E_x gegeben, es sei $E := \bigcup_{x \in X} E_x$ und $\pi : E \to X$ die kanonische Projektion. Weiter sei $\mathscr{U} = (U_\alpha)_{\alpha \in A}$ eine offene Überdeckung von X. Zu jedem $\alpha \in A$ gebe es eine bijektive Abbildung $\varphi_\alpha : \pi^{-1}(U_\alpha) \to U_\alpha \times \mathbb{R}^q$ mit $\operatorname{pr}_1 \circ \varphi_\alpha = \pi$, die auf jeder Faser einen \mathbb{R} -VR-Isomorphismus induziert, zu jedem Paar $(\alpha, \beta) \in A \times A$ mit $U_{\alpha\beta} \neq \emptyset$ gebe es eine differenzierbare Abbildung $g_{\alpha\beta} : U_{\alpha\beta} \to \operatorname{GL}_q(\mathbb{R})$, so dass gilt:

$$\varphi_{\alpha} \circ \varphi_{\beta}^{-1}(x, \mathbf{v}^{\top}) = (x, g_{\alpha\beta}(x) \cdot \mathbf{v}^{\top}).$$

Dann gibt es auf E eine (eindeutig bestimmte) differenzierbare Struktur, so dass E ein Vektorbündel vom Rang q über X mit Bündelprojektion π und lokalen Trivialisierungen φ_{α} ist.

BEWEIS: Man kann annehmen, dass A abzählbar ist und dass es lokale Karten $\psi_{\alpha}: U_{\alpha} \to B_{\alpha} \subset \mathbb{R}^n$ gibt. Dann ist

$$\widetilde{\varphi}_{\alpha} : \pi^{-1}(U_{\alpha}) \to B_{\alpha} \times \mathbb{R}^q \quad \text{mit} \quad \widetilde{\varphi}_{\alpha} := (\psi_{\alpha} \times \text{id}) \circ \varphi_{\alpha}$$

eine Karte für E. Die Kartenwechsel

$$\widetilde{\varphi}_{\alpha} \circ \widetilde{\varphi}_{\beta}^{-1} = (\psi_{\alpha} \times \mathrm{id}) \circ \varphi_{\alpha} \circ \varphi_{\beta}^{-1} \circ (\psi_{\beta} \times \mathrm{id})^{-1}$$

sind Diffeomorphismen.

E wird mit einer Topologie versehen, indem man Produktumgebungen als Elementarumgebungen benutzt. Das ist eine Hausdorff-Topologie: Seien $p, q \in E, p \neq q$. Liegen beide Punkte in einer Faser E_x , so liegen sie in der gleichen Koordinatenumgebung, und es gibt natürlich disjunkte Umgebungen. Ist $p \in E_x$ und $q \in E_y$ (mit $x \neq y$), so gibt es disjunkte Umgebungen V = V(x) und W = W(y), und $\pi^{-1}(V)$ und $\pi^{-1}(W)$ sind disjunkte Umgebungen von p und q. Dass E das zweite Abzählbarkeitsaxiom erfüllt, folgt daraus, dass dies für den \mathbb{R}^n gilt und die Überdeckung abzählbar ist. Damit ist E tatsächlich eine differenzierbare Mannigfaltigkeit.

Weil $\psi_{\alpha} \circ \pi \circ \widetilde{\varphi}_{\alpha}^{-1}(\mathbf{x}, \mathbf{v}^{\top}) = \psi_{\alpha} \circ \operatorname{pr}_{1} \circ (\psi_{\alpha}^{-1} \times \operatorname{id}) = \mathbf{x}$ ist, ist π eine differenzierbare Abbildung. Damit ist alles gezeigt.

2.1.3. Beispiel

In jedem Punkt x einer Mannigfaltigkeit ist der (n-dimensionale) Tangentialraum $T_x(X)$ gegeben. Nun sei $T(X) := \dot{\bigcup}_{x \in X} T_x(X)$. Überdeckt man X durch lokale Koordinaten (U_α, ψ_α) , so erhält man Trivialisierungen $\varphi_\alpha : \pi^{-1}(U_\alpha) \to U_\alpha \times \mathbb{C}^n$ durch

$$\varphi_{\alpha}\left(\sum_{\nu=1}^{n} a_{\nu} \frac{\partial}{\partial x_{\nu}} \Big|_{x}\right) := \left(x, (a_{1}, \dots, a_{n})^{\top}\right).$$

Dann ist

$$\varphi_{\alpha} \circ \varphi_{\beta}^{-1}(x, \mathbf{v}^{\top}) = (x, J_{\varphi_{\alpha} \circ \varphi_{\beta}^{-1}} \cdot \mathbf{v}^{\top}).$$

Das so beschriebene Vektorbündel T(X) nennt man das **Tangentialbündel** von X.

Definition

Ein **Vektorbündel-Homomorphismus** (zwischen Vektorbündeln E und F über einer Mannigfaltigkeit X) ist eine differenzierbare Abbildung $\Phi: E \to F$, so dass gilt:

- 1. $\pi_F \circ \Phi = \pi_E$.
- 2. Für alle $x \in X$ ist $\Phi_x : E_x \to F_x$ eine \mathbb{R} -lineare Abbildung.

Ist Φ zusätzlich bijektiv und auch Φ^{-1} ein Vektorbündel-Homomorphismus, so spricht man von einem (Vektorbündel-)*Isomorphismus*.

2.1.4. Satz

Eine Abbildung $\Phi: E \to F$ (zwischen Vektorbündeln über X) ist genau dann ein Vektorbündel-Homomorphismus (bzw. -Isomorphismus), wenn es zu jeder offenen Teilmenge $U \subset X$, zu der es Trivialisierungen $\varphi: \pi_E^{-1}(U) \to U \times \mathbb{R}^q$ und $\psi: \pi_F^{-1}(U) \to U \times \mathbb{R}^p$ (im Falle eines Isomorphismus mit p = q) gibt, eine differenzierbare Abbildung $h: U \to M_{p,q}(\mathbb{R})$ (bzw. $H: U \to \mathrm{GL}_q(\mathbb{R})$) gibt, so dass gilt:

$$\psi \circ \Phi \circ \varphi^{-1}(x, \mathbf{v}^\top) = (x, h(x) \cdot \mathbf{v}^\top).$$

Beweis: 1) Sei $\Phi: E \to F$ ein Vektorbündel-Homomorphismus. Dann ist

$$\operatorname{pr}_{1} \circ \psi \circ \Phi \circ \varphi^{-1}(x, \mathbf{v}^{\top}) = \pi_{F} \circ \Phi \circ \varphi^{-1}(x, \mathbf{v}^{\top})$$
$$= \pi_{E} \circ \varphi^{-1}(x, \mathbf{v}^{\top}) = x$$

und für festes $x \in U$ ist

$$\mathbf{v}^{\top} \mapsto \mathrm{pr}_2 \circ \psi \circ \Phi \circ \varphi^{-1}(x, \mathbf{v}^{\top}) = \psi_x \circ \Phi_x \circ \varphi_x^{-1}(\mathbf{v}^{\top})$$

eine lineare Abbildung, die man in der Form $\mathbf{v}^{\top} \mapsto h(x) \cdot \mathbf{v}^{\top}$ mit $h(x) \in M_{p,q}(\mathbb{R})$ schreiben kann.

2) Ist das Kriterium erfüllt, so gibt es eine offene Überdeckung $\mathscr{U} = (U_{\alpha})_{\alpha \in A}$, Trivialisierungen φ_{α} von E und ψ_{α} von F und differenzierbare Abbildungen h_{α} : $U_{\alpha} \to M_{p,q}(\mathbb{R})$, so dass gilt:

$$\psi_{\alpha} \circ \Phi \circ \varphi_{\alpha}^{-1}(x, \mathbf{v}^{\top}) = (x, h_{\alpha}(x) \cdot \mathbf{v}^{\top}).$$

Dann ist

$$\pi_F \circ \Phi \circ \varphi_{\alpha}^{-1}(x, \mathbf{v}^{\top}) = \pi_F \circ \psi_{\alpha}^{-1}(x, h_{\alpha}(x) \cdot \mathbf{v}^{\top})$$
$$= \operatorname{pr}_1(x, h_{\alpha}(x) \cdot \mathbf{v}^{\top}) = x = \pi_E \circ \varphi_{\alpha}^{-1}(x, \mathbf{v}^{\top}),$$

also $\pi_F \circ \Phi = \pi_E$. Dass Φ auf jeder Faser linear ist, ist ebenfalls klar.

Bemerkung: Wir übernehmen die Bezeichnungen aus dem zweiten Teil des Beweises. Die Übergangsfunktionen von E seien mit $g_{\alpha\beta}$ bezeichnet, die von F mit $\gamma_{\alpha\beta}$. Dann ist

$$(x, h_{\alpha}(x) \cdot \mathbf{v}^{\top}) = \psi_{\alpha} \circ \Phi \circ \varphi_{\alpha}^{-1}(x, \mathbf{v}^{\top})$$

$$= (\psi_{\alpha} \circ \psi_{\beta}^{-1}) \circ \psi_{\beta} \circ \Phi \circ \varphi_{\beta}^{-1} \circ (\varphi_{\beta} \circ \varphi_{\alpha}^{-1})(x, \mathbf{v}^{\top})$$

$$= (\psi_{\alpha} \circ \psi_{\beta}^{-1}) \circ \psi_{\beta} \circ \Phi \circ \varphi_{\beta}^{-1}(x, g_{\alpha\beta}(x)^{-1} \cdot \mathbf{v}^{\top})$$

$$= (\psi_{\alpha} \circ \psi_{\beta}^{-1})(x, h_{\beta}(x) \cdot g_{\alpha\beta}(x)^{-1} \cdot \mathbf{v}^{\top})$$

$$= (x, \gamma_{\alpha\beta}(x) \cdot h_{\beta}(x) \cdot g_{\alpha\beta}(x)^{-1} \cdot \mathbf{v}^{\top}),$$

also

$$\gamma_{\alpha\beta}(x) \cdot h_{\beta}(x) = h_{\alpha}(x) \cdot g_{\alpha\beta}(x).$$

2.1.5. Satz

Das System der Übergangsfunktionen $g_{\alpha\beta}$ eines Vektorbündels zur Überdeckung $\mathscr{U} = (U_{\alpha})_{\alpha \in A}$ erfüllt die folgende "Cozykel-Bedingung":

$$g_{\alpha\beta}(x) \cdot g_{\beta\gamma}(x) = g_{\alpha\gamma}(x) \text{ für } x \in U_{\alpha\beta\gamma} := U_{\alpha} \cap U_{\beta} \cap U_{\gamma}.$$

Beweis: Die Behauptung folgt unmittelbar aus der Beziehung

$$\varphi_{\alpha} \circ \varphi_{\gamma}^{-1} = \varphi_{\alpha} \circ (\varphi_{\beta}^{-1} \circ \varphi_{\beta}) \circ \varphi_{\gamma}^{-1} = (\varphi_{\alpha} \circ \varphi_{\beta}^{-1}) \circ (\varphi_{\beta} \circ \varphi_{\gamma}^{-1}),$$

die über $U_{\alpha\beta\gamma}$ gilt.

2.1.6. Existenzsatz

Sei X eine differenzierbare Mannigfaltigkeit, $\mathscr{U} = (U_{\alpha})_{\alpha \in A}$ eine offene Überdeckung von X und $g_{\alpha\beta}$ ein System von Übergangsfunktionen zur Überdeckung \mathscr{U} , das die Cozykel-Bedingung erfüllt.

Dann gibt es ein Vektorbündel $\pi: E \to X$ vom Rang q mit Trivialisierungen $\varphi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{q}$ und Übergangsfunktionen $g_{\alpha\beta}$. Das Bündel ist bis auf Isomorphie eindeutig bestimmt.

BEWEIS: Auf $\widetilde{E} := \bigcup_{\alpha \in A} U_{\alpha} \times \{\alpha\} \times \mathbb{R}^q$ wird eine Äquivalenzrelation erklärt:

$$(x, \alpha, \mathbf{v}) \sim (y, \beta, \mathbf{w}) : \iff x = y \text{ und } \mathbf{w}^{\top} = g_{\beta\alpha}(x) \cdot \mathbf{v}^{\top}.$$

Es sei $E := E/\sim$ die Menge der Äquivalenzklassen und $\pi : E \to X$ definiert durch $\pi([x, \alpha, \mathbf{v}]) := x$. Diese Projektion ist wohldefiniert, und die Fasern haben die Struktur q-dimensionaler Vektorräume. Für $\alpha \in A$ sei $\varphi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^q$ definiert durch $[x, \alpha, \mathbf{v}] \mapsto (x, \mathbf{v})$. Das ist offensichtlich eine wohldefinierte bijektive Abbildung. Über $U_{\alpha\beta}$ gilt:

$$\varphi_{\alpha} \circ \varphi_{\beta}^{-1}(x, \mathbf{w}^{\top}) = \varphi_{\alpha}([x, \beta, \mathbf{w}])$$

$$= \varphi_{\alpha}([x, \alpha, \mathbf{v}]) \quad (\text{mit } \mathbf{w} = g_{\beta\alpha}(x) \cdot \mathbf{v}^{\top})$$

$$= (x, \mathbf{v}) = (x, g_{\alpha\beta}(x) \cdot \mathbf{w}^{\top}).$$

Seien zwei Bündel E und F vom Rang q mit den gleichen Übergangsfunktionen $g_{\alpha\beta}$ gegeben, mit Trivialisierungen φ_{α} und ψ_{α} . Dann sei $h_{\alpha}: U_{\alpha} \to \mathrm{GL}_{q}(\mathbb{R})$ definiert durch $\psi_{\alpha} \circ \varphi_{\alpha}^{-1}(x, \mathbf{v}^{\top}) = (x, h_{\alpha}(x) \cdot \mathbf{v}^{\top})$ und $\Phi: E \to F$ durch

$$\Phi(\varphi_{\alpha}^{-1}(x, \mathbf{v}^{\top})) := \psi_{\alpha}^{-1}(x, h_{\alpha}(x) \cdot \mathbf{v}^{\top}).$$

Ist $x \in U_{\alpha\beta}$ und $\varphi_{\alpha}^{-1}(x, \mathbf{v}^{\top}) = \varphi_{\beta}^{-1}(x, \mathbf{w}^{\top})$, so ist

$$\psi_{\beta}^{-1}(x, h_{\beta}(x) \cdot \mathbf{w}^{\top}) = \psi_{\beta}^{-1} \circ (\psi_{\beta} \circ \varphi_{\beta}^{-1})(x, \mathbf{w}^{\top}) = \varphi_{\alpha}^{-1}(x, \mathbf{v}^{\top}).$$

Also ist Φ ein wohldefinierter Vektorbündel-Isomorphismus.

Definition

Ein Vektorbündel E heißt **trivial**, falls $E \cong X \times \mathbb{R}^q$ ist.

2.1.7. Satz

Das Bündel E sei (bezüglich der Überdeckung $\mathscr{U} = (U_{\alpha})$) durch Übergangsfunktionen $g_{\alpha\beta}$ gegeben. E ist genau dann trivial, wenn es differenzierbare Funktionen $h_{\alpha}: U_{\alpha} \to GL_q(\mathbb{R})$ gibt, so dass gilt:

$$g_{\alpha\beta}(x) = h_{\alpha}(x) \cdot h_{\beta}(x)^{-1} \text{ für } x \in U_{\alpha\beta}.$$

Beweis: Die Einheitsmatrix dient als Übergangsfunktion für das triviale Bündel. Die Behauptung folgt dann aus der lokalen Beschreibung von Vektorbündel-Isomorphismen.

Wir wollen nun zu einem Vektorbündel E das "duale Bündel" E^* konstruieren. Dazu zunächst etwas Lineare Algebra: Ist $f:V\to W$ eine lineare Abbildung zwischen (endlich-dimensionalen) Vektorräumen, so wird die duale lineare Abbildung $f^*:W^*\to V^*$ definiert durch $f^*(\lambda):=\lambda\circ f$.

Nun seien $\{a_1, \ldots, a_n\}$ eine Basis von V und $\{b_1, \ldots, b_m\}$ eine Basis von W. Es gibt dazu die dualen Basen $\{\alpha_1, \ldots, \alpha_n\}$ von V^* und $\{\beta_1, \ldots, \beta_m\}$ von W^* , mit $\alpha_i(a_j) = \delta_{ij}$ und $\beta_k(b_l) = \delta_{kl}$.

f wird bezüglich der Basen durch eine Matrix $A = (a_{\mu\nu})$ beschrieben,

$$f(a_{\nu}) = \sum_{\mu=1}^{m} a_{\mu\nu} b_{\mu},$$

und f^* wird bezüglich der dualen Basis durch eine Matrix $A^* = (a^*_{\nu\mu})$ beschrieben,

$$f^*(\beta_{\mu}) = \sum_{\nu=1}^n a_{\nu\mu}^* \alpha_{\nu}.$$

Dabei ist

$$a_{\nu\mu}^* = (f^*\beta_\mu)(a_\nu) = (\beta_\mu \circ f)(a_\nu) = a_{\mu\nu},$$

also $A^* = A^{\top}$.

Ist nun E ein Vektorbündel über X mit lokalen Trivialisierungen $\varphi_{\alpha}: E|_{U_{\alpha}} \to U_{\alpha} \times \mathbb{R}^{q}$, so beschreibt für $x \in U_{\alpha\beta}$ die Matrix $g_{\alpha\beta}(x) \in \mathrm{GL}_{q}(\mathbb{R})$ den Isomorphismus $(\varphi_{\alpha})_{x} \circ (\varphi_{\beta})_{x}^{-1}: \mathbb{R}^{q} \to \mathbb{R}^{q}$ (bezüglich der Standardbasis). Die Matrix $g_{\alpha\beta}^{*}(x)$ beschreibe nun $((\varphi_{\alpha})_{x}^{*})^{-1} \circ (\varphi_{\beta})_{x}^{*}: (\mathbb{R}^{q})^{*} \to (\mathbb{R}^{q})^{*}$ (bezüglich der zur Standardbasis dualen Basis von $(\mathbb{R}^{q})^{*}$). Dann ist $g_{\alpha\beta}^{*}(x) = (g_{\alpha\beta}(x)^{\top})^{-1}$.

Es gibt einen kanonischen Isomorphismus $\iota : \mathbb{R}^q \to (\mathbb{R}^q)^*$ mit $\iota(\mathbf{v})(\mathbf{w}) = \mathbf{v} \cdot \mathbf{w}$. Dabei wird $\mathbf{v} = (v_1, \dots, v_q)$ auf die Linearform $\lambda_{\mathbf{v}} : (x_1, \dots, x_q) \mapsto v_1 x_1 + \dots + v_q x_q$ abgebildet.

Das \pmb{duale} $\pmb{Bündel}$ E^* ist definiert als $E^*:=\bigcup_{x\in X}E_x^*$. Trivialisierungen $\widetilde{\varphi}_\alpha$ gewinnt man durch

$$(\widetilde{\varphi}_{\alpha})_x := \iota^{-1} \circ ((\varphi_{\alpha})_x^*)^{-1}.$$

Übergangsfunktionen sind die Funktionen $g_{\alpha\beta}^*(x) = (g_{\alpha\beta}(x)^\top)^{-1} = g_{\beta\alpha}(x)^\top$.

Das Cotangentialbündel $T^*(X)$ ist das duale Bündel zum Tangentialbündel T(X).

Definition

Sei $f: X \to Y$ eine differenzierbare Abbildung (zwischen Mannigfaltigkeiten), $\pi: E \to Y$ ein Vektorbündel vom Rang q. Dann versteht man unter dem **inversen Bild** von E über X das Bündel

$$f^*E := X \times_Y E = \{(x, e) \in X \times E : f(x) = \pi(x)\}.$$

Die Bündelprojektion $\widehat{\pi}: f^*E \to X$ ist gegeben durch $\widehat{\pi}(x,e) := x$.

Die Faser von f^*E über $x \in X$ ist gegeben durch $(f^*E)_x = E_{f(x)}$. Daher ist das "geliftete Bündel" (das inverse Bild von E) trivial über den Fasern $f^{-1}(y)$.

Man hat folgendes kommutative Diagramm:

$$\begin{array}{cccc}
f^*E & \xrightarrow{\operatorname{pr}_2} & E \\
\widehat{\pi} & \downarrow & & \downarrow & \pi \\
X & \xrightarrow{f} & Y
\end{array}$$

Ist $\mathscr{U}=(U_{\alpha})_{\alpha\in A}$ eine offene Überdeckung von Y, so dass E über U_{α} trivial ist. Dann ist $\widehat{\mathscr{U}}:=\{\widehat{U}_{\alpha}:=f^{-1}(U_{\alpha}):\alpha\in A\}$ eine offene Überdeckung von X, so dass f^*E über \widehat{U}_{α} trivial ist: Ist $\varphi_{\alpha}:E|_{U_{\alpha}}\to U_{\alpha}\times\mathbb{R}^q$ eine Trivialisierung von E, so kann man eine Trivialisierung $\widehat{\varphi}_{\alpha}:f^*E|_{\widehat{U}_{\alpha}}\to\widehat{U}_{\alpha}\times\mathbb{R}^q$ definieren durch

$$\widehat{\varphi}_{\alpha}(x,e) := (x,(\varphi_{\alpha})_{f(x)}(e)).$$

Sei $(g_{\alpha\beta})$ das System der Übergangsfunktionen von E. Dann ist

$$\widehat{\varphi}_{\alpha} \circ \widehat{\varphi}_{\beta}^{-1}(x, \mathbf{w}^{\top}) = \left(x, (\varphi_{\alpha})_{f(x)} \circ (\varphi_{\beta})_{f(x)}^{-1}(\mathbf{w}^{\top}) = (x, g_{\alpha\beta}(f(x)) \cdot \mathbf{w}^{\top}), \right)$$

also $g_{\alpha\beta} \circ f$ Übergangsfunktion von f^*E .

Sei $j:Y\hookrightarrow X$ die Einbettung einer Untermannigfaltigkeit Y in eine Mannigfaltigkeit X. Ist E ein Vektorbündel über X, so ist $E|_Y:=j^*E$ die Einschränkung von E auf Y.

2.2 Schnitte

Sei $\pi: E \to X$ ein Vektorbündel vom Rang q.

Definition

Sei $U \subset X$ offen. Ein **stetiger** (bzw. differenzierbarer) Schnitt in E über U ist eine stetige (bzw. differenzierbare) Abbildung $s: U \to E$ mit $\pi_E \circ s = \mathrm{id}_U$.

Die Menge aller differenzierbaren Schnitte in E über U wird mit $\Gamma(U, E)$ bezeichnet.

2.2.1. Satz

Sei (φ_{α}) ein System von Trivialisierungen für E und $(g_{\alpha\beta})$ das zugehörige System von Übergangsfunktionen.

Ist $s \in \Gamma(X, E)$, so gibt es ein System von differenzierbaren Funktionen $s_{\alpha}: U_{\alpha} \to \mathbb{R}^q$ mit

$$\varphi_{\alpha} \circ s(x) = (x, s_{\alpha}(x)) \quad \text{für } x \in U_{\alpha}.$$

 $\ddot{U}ber\ U_{\alpha\beta}\ ist\ dann$

$$s_{\alpha}(x)^{\top} = g_{\alpha\beta}(x) \cdot s_{\beta}(x)^{\top}.$$

Jedes System von Funktionen s_{α} , das die zweite Bedingung erfüllt, bestimmt (über die erste Gleichung) einen differenzierbaren Schnitt in E.

BEWEIS: Die Existenz der Funktionen s_{α} (mit $s_{\alpha}(x) = \operatorname{pr}_2 \circ \varphi_{\alpha} \circ s(x)$) ist klar. Und dann ist

$$(x, s_{\alpha}(x)^{\top}) = \varphi_{\alpha} \circ s(x) = (\varphi_{\alpha} \circ \varphi_{\beta}^{-1}) \circ \varphi_{\beta} \circ s(x)$$
$$= (\varphi_{\alpha} \circ \varphi_{\beta}^{-1})(x, s_{\beta}(x)^{\top})$$
$$= (x, g_{\alpha\beta}(x) \cdot s_{\beta}(x)^{\top}).$$

Ist umgekehrt das System der s_α mit der obigen Übergangsbedingung gegeben, so wird durch

$$s(x) := \varphi_{\alpha}^{-1}(x, s_{\alpha}(x))$$
 (über U_{α})

der Schnitt s definiert. Die Wohldefiniertheit folgt wie üblich aus der Übergangsbedingung.

2.2.2. Beispiel

Sei E = T(X) das Tangentialbündel von X. Ist ξ ein Vektorfeld auf X, so wird jedem Punkt $p \in X$ der Tangentialvektor $\xi_p = \sum_{\nu} a_{\nu}(p)(\partial/\partial x_{\nu}) \in T_p(X)$ zugeordnet. Sei $\varphi : T(X)|_{U} \to U \times \mathbb{R}^n$ eine von einer Karte (U, ψ) induzierte Trivialisierung. Dann ist

2.2 Schnitte

$$\varphi(\xi_p) = \varphi\left(\sum_{\nu} a_{\nu}(p) \frac{\partial}{\partial x_{\nu}}\right) = (p, (a_1(p), \dots, a_n(p))^{\top}).$$

Also definiert ξ einen Schnitt in T(X) (und umgekehrt definiert jeder Schnitt ein Vektorfeld).

Definition

Sei $\pi: E \to X$ ein Vektorbündel vom Rang $q, U \subset X$ offen. Ein System $S = \{s_1, \ldots, s_q\}$ von Schnitten in E über U heißt ein **Rahmen** oder eine **Basis** über U, falls $\{s_1(x), \ldots, s_q(x)\}$ für jedes $x \in U$ eine Basis von E_x ist.

Ist $\varphi: E|_U \to U \times \mathbb{R}^q$ eine Trivialisierung, so erhält man durch

$$s_i(x) := \varphi^{-1}(x, \mathbf{e}_i) \text{ für } i = 1, \dots, q$$

einen Rahmen für E über U.

Ist umgekehrt ein Rahmen $\{s_1, \ldots, s_q\}$ über U gegeben, so kann man eine Trivialisierung $\varphi: E|_U \to U \times \mathbb{R}^q$ definieren durch

$$\varphi\left(\sum_{\nu=1}^{q} a_i s_i(x)\right) := (x, (a_1, \dots, a_q)^{\top}).$$

Viele Konstruktionen, die es bei Vektorräumen gibt, lassen sich auf Vektorbündel übertragen. Wir kennen das schon von den Dualräumen und den dualen Bündeln. Nun betrachten wir die direkte Summe.

 $\pi_E: E \to X$ und $\pi_F: F \to X$ seien zwei Vektorbündel vom Rang pbzw. q. Dann nennt man

$$E \oplus F := \bigcup_{x \in X} E_x \oplus F_x = \{(v, w) \in E \times F : \pi_E(v) = \pi_F(w)\} =: E \times_X F$$

die *direkte Summe* oder *Whitney-Summe* von E und F. Wir führen die Vektorbündel-Struktur auf $E \oplus F$ schrittweise ein:

- 1) Sei $E=X\times\mathbb{R}^p$ und $F=X\times\mathbb{R}^q$. Dann ist $E\oplus F=X\times\mathbb{R}^{p+q}$, mit der offensichtlichen Bündel-Struktur.
- 2) Es gebe globale Bündel-Isomorphismen $\varphi: E \to X \times \mathbb{R}^p$ und $\psi: F \to X \times \mathbb{R}^q$. Dann kann man $\varphi \times_X \psi: E \oplus F \to X \times \mathbb{R}^{p+q}$ definieren durch

$$\varphi \times_X \psi(v,w) := (x,\operatorname{pr}_2 \circ \varphi(v),\operatorname{pr}_2 \circ \psi(w)) \text{ für } (v,w) \in E_x \oplus F_x.$$

Das induziert auf $E \oplus F$ eine Bündelstruktur, so dass $\varphi \times_X \psi$ ein VB-Isomorphismus ist.

3) Es seien $\widetilde{\varphi}: E \to X \times \mathbb{R}^p$ und $\widetilde{\psi}: F \to X \times \mathbb{R}^q$ andere Trivialisierungen. Dann gibt es differenzierbare Abbildungen $g_1: X \to \mathrm{GL}_p(\mathbb{R})$ und $g_2: X \to \mathrm{GL}_q(\mathbb{R})$ mit

$$\widetilde{\varphi} \circ \varphi^{-1}(x, \mathbf{v}^{\top}) = (x, g_1(x) \cdot \mathbf{v}^{\top}) \quad \text{und} \quad \widetilde{\psi} \circ \psi^{-1}(x, \mathbf{w}^{\top}) = (x, g_2(x) \cdot \mathbf{w}^{\top}),$$

und es gilt:

$$(\widetilde{\varphi} \times_X \widetilde{\psi}) \circ (\varphi \times_X \psi)^{-1}(x, (\mathbf{v}, \mathbf{w})^\top) = (x, \begin{pmatrix} g_1(x) & 0 \\ 0 & g_2(x) \end{pmatrix} \cdot (\mathbf{v}, \mathbf{w})^\top).$$

4) Sind E und F beliebige Vektorbündel, so gibt es eine offene Überdeckung $\mathscr{U} = (U_{\alpha})$ von X und Trivialisierungen $\varphi_{\alpha} : E|_{U_{\alpha}} \to U_{\alpha} \times \mathbb{R}^{p}$ und $\psi_{\alpha} : F|_{U_{\alpha}} \to U_{\alpha} \times \mathbb{R}^{q}$. Die Trivialisierungen $\varphi_{\alpha} \times_{U_{\alpha}} \psi_{\alpha}$ liefern dann wegen (1), (2) und (3) die gewünschte Vektorbündel-Struktur auf $E \oplus F$.

Nach diesem Schema geht man immer vor, wenn man Vektorraum-Konstruktionen auf Bündel überträgt. Das wird z.B. am Ende des nächsten Abschnittes angesprochen.

2.3 Tensorfelder

Sei V ein n-dimensionaler \mathbb{R} -Vektorraum, $V^* = L(V, \mathbb{R})$ sein Dualraum und $V^{**} = L(V^*, \mathbb{R})$ der Bidualraum. Es gibt eine kanonische Abbildung

$$j: V \to V^{**}$$
, mit $j(v)(\varphi) := \varphi(v)$.

Offensichtlich ist j linear, und wenn j(v) = 0 ist, so ist $\varphi(v) = 0$ für alle Linearformen $\varphi \in V^*$.

Schreibt man $v = v_1 a_1 + \cdots + v_n a_n$, mit einer beliebigen Basis $\{a_1, \ldots, a_n\}$ von V, und ist $\{\alpha^1, \ldots, \alpha^n\}$ die dazu duale Basis von V^* , so ist $0 = \alpha^i(v) = v_i$ für alle i, also v = 0. Das zeigt die Injektivität, und aus Dimensionsgründen ist j dann ein Isomorphismus. Auf diese Weise kann man V und V^{**} miteinander identifizieren.

Definition

Eine Abbildung

$$\varphi: (V^*)^p \times V^q \to \mathbb{R},$$

die in jedem Argument linear (insgesamt also (p+q)-fach multilinear) ist, heißt ein **p-fach kontravarianter** und **q-fach kovarianter Tensor** (über V). Die Menge aller dieser Tensoren sei mit $T_q^p(V)$ bezeichnet.

2.3.1. Beispiele

A. Eine Linearform $\varphi \in V^*$ ist ein 1-fach kovarianter Tensor.

Der Vektorraum $T_q^0(V)$ aller q-fach kovarianten Tensoren wird auch mit $L_q(V;\mathbb{R})$ bezeichnet (Raum der q-fachen Multilinearformen über V).

Im Falle $V = \mathbb{R}^n$ wird jedem Vektor $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{R}^n$ auf kanonische Weise eine Linearform $\lambda_{\mathbf{a}}$ zugeordnet, mit

$$\lambda_{\mathbf{a}}(\mathbf{x}) := \mathbf{a} \cdot \mathbf{x} = a_1 x_1 + \cdots + a_n x_n = \mathbf{a} \cdot \mathbf{x}^{\mathsf{T}}.$$

Die Zuordnung $\mathbf{a} \mapsto \lambda_{\mathbf{a}}$ definiert eine lineare Abbildung von \mathbb{R}^n auf $(\mathbb{R}^n)^*$. Ist $\lambda_{\mathbf{a}} = 0$, so ist $a_i = \lambda_{\mathbf{a}}(\mathbf{e}_i) = 0$ für alle i, also $\mathbf{a} = \mathbf{0}$. Damit ist die Zuordnung ein Isomorphismus.

Leider läßt sich diese Zuordnung zwischen Vektoren und Linearformen nicht so ohne weiteres auf einen beliebigen endlich-dimensionalen Vektorraum V übertragen. Ist allerdings ein $Skalarprodukt \langle \ldots, \ldots \rangle$ auf V gegeben, so können wir jedem Vektor $a \in V$ genau wie oben eine Linearform λ_a zuordnen, durch

$$\lambda_a(x) := \langle a, x \rangle.$$

B. Ein 1-fach kontravarianter Tensor ist ein Element des Bidualraumes V^{**} und kann deshalb auch als Vektor aufgefasst werden.

Definition

Sind f_1, \ldots, f_q Linearformen auf V, so wird deren **Tensorprodukt** $f_1 \otimes \ldots \otimes f_q \in L_q(V; \mathbb{R})$ definiert durch

$$(f_1 \otimes \ldots \otimes f_q)(v_1,\ldots,v_q) := f_1(v_1)\cdots f_q(v_q).$$

2.3.2. Satz

Ist $\{a_1,\ldots,a_n\}$ eine Basis von V und $\{\alpha^1,\ldots,\alpha^n\}$ die dazu duale Basis, so bilden die Tensorprodukte $\alpha^{i_1}\otimes\ldots\otimes\alpha^{i_q}$ mit $1\leq i_1,\ldots,i_q\leq n$ eine Basis des Raumes $L_q(V;\mathbb{R})$. Insbesondere ist dim $L_q(V;\mathbb{R})=n^q$.

Beweis: 1) Lineare Unabhängigkeit:

Sei $\sum_{i_1,\ldots,i_q} c_{i_1\ldots i_q} \alpha^{i_1} \otimes \cdots \otimes \alpha^{i_q} = 0$. Setzt man q-Tupel (a_{j_1},\ldots,a_{j_q}) ein, so erhält man $c_{j_1\ldots j_q} = 0$ für alle j_1,\ldots,j_q .

2) Ist φ eine beliebige q-fache Multilinearform, so setzen wir

$$\psi := \sum_{i_1, \dots, i_q} \varphi(a_{i_1}, \dots, a_{i_q}) \alpha^{i_1} \otimes \dots \otimes \alpha^{i_q}.$$

Dann ist $(\psi - \varphi)(a_{j_1}, \dots, a_{j_q}) = 0$ für alle j_1, \dots, j_q , also $(\psi - \varphi)(v_1, \dots, v_q) = 0$ für alle v_1, \dots, v_q , und damit $\varphi = \psi$.

Definition

Eine Multilinearform $\varphi \in L_q(V; \mathbb{R})$ heißt alternierend oder schiefsymmetrisch, falls für $i = 1, \ldots, q-1$ gilt:

$$\varphi(x_1,\ldots,x_i,x_{i+1},\ldots,x_q) = -\varphi(x_1,\ldots,x_{i+1},x_i,\ldots,x_q).$$

Da man beliebige Permutationen aus Vertauschungen zusammensetzen kann, folgt:

2.3.3. Satz

- 1. $\varphi(x_{\sigma(1)}, \ldots, x_{\sigma(q)}) = \operatorname{sign}(\sigma) \cdot \varphi(x_1, \ldots, x_q)$ für alle Permutationen $\sigma \in S_q$.
- 2. $\varphi(x_1,\ldots,x_q)=0$, falls zwei Argumente gleich sind.

Definition

Es sei $A^q(V) \subset L_q(V;K)$ der Unterraum aller alternierenden q-fachen Multilinearformen auf V.

Speziell ist $A^0(V) = \mathbb{R}$, $A^1(V) = V^*$ und $A^q(V) = 0$ für q > n.

Definition

Sind $\lambda_1, \ldots, \lambda_q \in V^*$ Linearformen, so setzt man

$$\lambda_1 \wedge \ldots \wedge \lambda_q = \sum_{\sigma \in S_q} \operatorname{sign}(\sigma) \lambda_{\sigma(1)} \otimes \ldots \otimes \lambda_{\sigma(q)}.$$

2.3.4. Satz

Es ist

$$\lambda_1 \wedge \ldots \wedge \lambda_q(v_1, \ldots, v_q) = \det(\lambda_i(v_j) \mid i, j = 1, \ldots, q).$$

Die Behauptung folgt sofort aus der Definition der Determinante.

2.3.5. Folgerung

 $\lambda_1 \wedge \ldots \wedge \lambda_q$ ist alternierend, und für $\sigma \in S_q$ ist

$$\lambda_{\sigma(1)} \wedge \ldots \wedge \lambda_{\sigma(q)} = \operatorname{sign}(\sigma) \cdot \lambda_1 \wedge \ldots \wedge \lambda_q.$$

Beweis: Die Determinante

$$\lambda_1 \wedge \ldots \wedge \lambda_q(v_1, \ldots, v_q) = \det(\lambda_i(v_j) \mid i, j = 1, \ldots, q)$$

ist alternierend in den Zeilen (also den λ_i) und den Spalten (also den v_i).

Für $1 \leq i_1, \ldots, i_q \leq n$ sei $\delta(i_1, \ldots, i_q)$ das (eindeutig bestimmte) Vorzeichen derjenigen Permutation, die (i_1, \ldots, i_q) auf (j_1, \ldots, j_q) mit $1 \leq j_1 < \ldots < j_q \leq n$ abbildet.

2.3.6. Hilfssatz 1

Ist $\{\alpha^1, \ldots, \alpha^n\}$ die duale Basis zu $A = \{a_1, \ldots, a_n\}$ und $1 \le j_1 < \ldots < j_q \le n$, so ist

$$\alpha^{i_1} \wedge \ldots \wedge \alpha^{i_q}(a_{j_1}, \ldots, a_{j_q}) = \begin{cases} 0 & falls \ \{i_1, \ldots, i_q\} \neq \{j_1, \ldots, j_q\}, \\ \delta(i_1, \ldots, i_q) & falls \ \{i_1, \ldots, i_q\} = \{j_1, \ldots, j_q\}. \end{cases}$$

BEWEIS: Ist $\{i_1, \ldots, i_q\} \neq \{j_1, \ldots, j_q\}$, so ist $\alpha^{i_{\sigma(1)}} \otimes \ldots \otimes \alpha^{i_{\sigma(q)}}(a_{j_1}, \ldots, a_{j_q}) = 0$ für jedes $\sigma \in S_q$. Sei daher $\{i_1, \ldots, i_q\} = \{j_1, \ldots, j_q\}$. Dann ist

$$\alpha^{i_1} \wedge \ldots \wedge \alpha^{i_q}(a_{j_1}, \ldots, a_{j_q}) = \delta(i_1, \ldots, i_q) \alpha^{j_1} \wedge \ldots \wedge \alpha^{j_q}(a_{j_1}, \ldots, a_{j_q})$$

$$= \delta(i_1, \ldots, i_q) \sum_{\sigma \in S_q} \operatorname{sign}(\sigma) \alpha^{j_1}(a_{j_{\sigma(1)}}) \cdots \alpha^{j_q}(a_{j_{\sigma(q)}})$$

$$= \delta(i_1, \ldots, i_q).$$

Von der Summe bleibt nur der Summand mit $\sigma = id$ übrig.

2.3.7. Hilfssatz 2

Ist $\varphi \in A^q(V)$, $A = \{a_1, \dots, a_n\}$ eine Basis von V und

$$\varphi(a_{i_1}, \dots, a_{i_q}) = 0 \text{ für } 1 \le i_1 < \dots < i_q \le n,$$

so ist $\varphi = 0$.

BEWEIS: Ist $\{i_1, ..., i_q\} = \{j_1, ..., j_q\}$ mit $1 \le j_1 < ... < j_q \le n$, so ist

$$\varphi(a_{i_1},\ldots,a_{i_q})=\delta(i_1,\ldots,i_q)\cdot\varphi(a_{j_1},\ldots,a_{j_q})=0.$$

Sind nun $x_j = x_{j1}a_1 + \cdots + x_{jn}a_n$, $j = 1, \dots, q$, beliebige Vektoren, so ist

$$\varphi(x_1, \dots, x_q) = \sum_{i_1, \dots, i_q} x_{1i_1} \cdots x_{qi_q} \varphi(a_{i_1}, \dots, a_{i_q}) = 0.$$

2.3.8. Satz

Die Formen $\alpha^{i_1} \wedge \ldots \wedge \alpha^{i_q}$ mit $1 \leq i_1 < \ldots < i_q \leq n$ bilden eine Basis von $A^q(V)$. Insbesondere ist $\dim(A^q(V)) = \binom{n}{q}$.

Beweis: 1) Lineare Unabhängigkeit: Sei

$$\sum_{1 \le i_1 < \dots < i_q \le n} c_{i_1 \dots i_q} \alpha^{i_1} \wedge \dots \wedge \alpha^{i_q} = 0.$$

Dann ist

$$0 = \left(\sum_{1 \le i_1 < \dots < i_q \le n} c_{i_1 \dots i_q} \alpha^{i_1} \wedge \dots \wedge \alpha^{i_q}\right) (a_{j_1}, \dots, a_{j_q}) = c_{j_1 \dots j_q} \text{ für } j_1 < \dots < j_q.$$

2) Erzeugendensystem: Sei $\varphi \in A^q(V)$. Dann definieren wir $\psi \in A^q(V)$ als

$$\psi := \sum_{1 \le i_1 < \dots < i_q \le n} \varphi(a_{i_1}, \dots, a_{i_q}) \alpha^{i_1} \wedge \dots \wedge \alpha^{i_q}.$$

Dann sieht man sofort: $\psi = \varphi$.

Die Dimension von $A^q(V)$ ist die Anzahl der q-Tupel (i_1, \ldots, i_q) mit $1 \leq i_1 < \ldots < i_q \leq n$. Jedes solche q-Tupel bestimmt genau eine q-elementige Teilmenge von $\{1, \ldots, n\}$, und zu jeder der Mengen gibt es nur eine zulässige Anordnung der Elemente.

2.3.9. Satz

Sei W ein beliebiger Vektorraum und $h: V^* \times \ldots \times V^* \to W$ eine q-fach multilineare, alternierende Abbildung. Dann gibt es genau eine lineare Abbildung $\widehat{h}: A^q(V) \to W$ mit

$$\widehat{h}(f_1 \wedge \ldots \wedge f_q) = h(f_1, \ldots, f_q).$$

BEWEIS: Die lineare Abbildung \hat{h} wird durch Festlegung auf den Elementen einer Basis definiert. Das ergibt auch schon die Eindeutigkeit. Wir müssen nur sehen, dass die gewünschte Eigenschaft erfüllt ist. Ist $\{\alpha^1, \ldots, \alpha^n\}$ eine Basis von V^* , so gilt für Elemente $f_{\nu} = \sum_{i_{\nu}} a_{\nu,i_{\nu}} \alpha^{i_{\nu}}$:

$$\widehat{h}(f_1 \wedge \ldots \wedge f_q) = \widehat{h}\left(\sum_{i_1,\ldots,i_q} a_{1,i_1} \cdots a_{q,i_q} \alpha^{i_1} \wedge \ldots \wedge \alpha^{i_q}\right) \\
= \sum_{i_1,\ldots,i_q} a_{1,i_1} \cdots a_{q,i_q} \widehat{h}(\alpha^{i_1} \wedge \ldots \wedge \alpha^{i_q}) \\
= \sum_{i_1,\ldots,i_q} a_{1,i_1} \cdots a_{q,i_q} h(\alpha^{i_1},\ldots,\alpha^{i_q}) \\
= h\left(\sum_{1,i_1} a_{1,i_1} \alpha^{i_1},\ldots,\sum_{i_q} a_{q,i_q} \alpha^{i_q}\right) = h(f_1,\ldots,f_q).$$

2.3.10. Satz

Es gibt genau eine bilineare Abbildung $\Phi: A^p(V) \times A^q(V) \to A^{p+q}(V)$ mit

$$\Phi(f_1 \wedge \ldots \wedge f_p, g_1 \wedge \ldots \wedge g_q) = f_1 \wedge \ldots \wedge f_p \wedge g_1 \wedge \ldots \wedge g_q.$$

BEWEIS: Für $\mathbf{u} = (u_1, \dots, u_p) \in (V^*)^p$ sei $g_{\mathbf{u}} : (V^*)^q \to A^{p+q}(V)$ definiert durch $g_{\mathbf{u}}(w_1, \dots, w_q) := u_1 \wedge \dots \wedge u_p \wedge w_1 \wedge \dots \wedge w_q$.

Weil $g_{\mathbf{u}}$ q-fach multilinear und alternierend ist, gibt es eine eindeutig bestimmte lineare Abbildung $\widehat{g}_{\mathbf{u}}: A^q(V) \to A^{p+q}(V)$ mit

$$\widehat{g}_{\mathbf{u}}(w_1 \wedge \ldots \wedge w_q) = g_{\mathbf{u}}(w_1, \ldots, w_q).$$

Die Abbildung $h:(V^*)^p \to L(A^q(V),A^{p+q}(V))$ mit $h(\mathbf{u}):=\widehat{g}_{\mathbf{u}}$ ist p-fach multilinear und alternierend. Also gibt es eine eindeutig bestimmte lineare Abbildung $\widehat{h}:A^p(V)\to L(A^q(V),A^{p+q}(V))$ mit $\widehat{h}(u_1\wedge\ldots\wedge u_p):=\widehat{g}_{\mathbf{u}}$.

Für $\omega \in A^p(V)$ und $\psi \in A^q(V)$ sei $\Phi(\omega, \psi) := \widehat{h}(\omega)(\psi)$. Offensichtlich ist Φ bilinear und (durch die Werte auf Basis-Elementen) eindeutig bestimmt. Es ist

$$\widehat{h}(f_1 \wedge \ldots \wedge f_p)(g_1 \wedge \ldots \wedge g_q) = \widehat{g}_{(f_1,\ldots,f_p)}(g_1 \wedge \ldots \wedge g_q)$$

$$= g_{(f_1,\ldots,f_p)}(g_1,\ldots,g_q)$$

$$= f_1 \wedge \ldots \wedge f_p \wedge g_1 \wedge \ldots \wedge g_q.$$

So erhält man das **Dachprodukt**

$$A^{p}(V) \times A^{q}(V) \xrightarrow{\wedge} A^{p+q}(V)$$
, mit $(\varphi, \psi) \mapsto \varphi \wedge \psi := \Phi(\varphi, \psi)$.

Dieses Produkt hat folgende Eigenschaften:

- 1. $(\omega \wedge \varphi) \wedge \psi = \omega \wedge (\varphi \wedge \psi)$.
- 2. $\omega \wedge \varphi = (-1)^{pq} \varphi \wedge \omega$ für $\omega \in A^p(V)$, $\varphi \in A^q(V)$. (Antikommutativgesetz).
- 3. Für Linearformen $\varphi, \psi \in V^*$ ist $\varphi \wedge \psi = \varphi \otimes \psi \psi \otimes \varphi$.

Die Eigenschaften (1) und (2) folgen ganz leicht für Basisformen und dann wegen der Bilinearität für beliebige Formen.

Sei nun X eine differenzierbare Mannigfaltigkeit und

$$T_q^p(X) := \bigcup_{x \in X} T_q^P(T_x(X)).$$

Wie üblich kann man auf $T_q^p(X)$ die Struktur eines differenzierbaren Vektorbündels einführen.

Definition

Ein p-fach kontravariantes und q-fach kovariantes Tensorfeld auf X ist ein differenzierbarer Schnitt $T \in \Gamma, X, T_q^p(X)$). Die Menge solcher Tensorfelder bezeichnet man mit $\mathcal{T}_q^p(X)$.

Bemerkung: Die Tensorfelder über X bilden einen Modul über $\mathscr{C}^{\infty}(X)$.

Analog bildet man das Vektorbündel $A^q(X) := \bigcup_{x \in X} A^q(T_x(X)).$

Definition

Eine q-dimensionale Differentialform (kurz: q-Form) ist ein differenzierbarer Schnitt im Bündel $A^q(X)$. Man setzt $\Omega^q(X) := \Gamma(X, A^q(X))$.

Ist $\omega \in \Omega^p(X)$ und $\varphi \in \Omega^q(X)$, so wird $\omega \wedge \varphi \in \Omega^{p+q}(X)$ definiert durch $(\omega \wedge \varphi)_x := \omega_x \wedge \varphi_x$.

Es ist $T_0^1(X) = T(X)$ und $T_1^0(X) = T^*(X)$. Die Schnitte sind jeweils Vektorfelder oder 1-Formen. Ist (U, φ) eine Karte für X mit Koordinaten x_1, \ldots, x_n , so haben wir die Basen $\{\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}\}$ bzw. $\{dx_1, \ldots, dx_n\}$ von $\mathscr{T}_0^1(U)$ bzw. $\mathscr{T}_1^0(U)$. Ein Tensorfeld T hat über U die Darstellung

$$\mathsf{T}|_{U} = \sum_{\substack{i_{1}, \dots, i_{p} \\ j_{1}, \dots, j_{q}}} T^{i_{1} \dots i_{p}}_{j_{1} \dots j_{q}} \frac{\partial}{\partial x_{i_{1}}} \otimes \dots \otimes \frac{\partial}{\partial x_{i_{p}}} \otimes dx_{j_{1}} \otimes \dots \otimes dx_{j_{q}},$$

mit differenzierbaren Funktionen $T_{j_1...j_q}^{i_1...i_p}$.

Eine q-dimensionale Differentialform ω hat über U die Darstellung

$$\omega|_U = \sum_{0 \le j_1 < \dots < j_q \le n} a_{j_1 \dots j_q} dx_{j_1} \wedge \dots \wedge dx_{j_q},$$

mit differenzierbaren Funktionen $a_{j_1...j_q}$.

2.4 Unterbündel und Quotientenbündel

Definition

Sei $\pi: E \to X$ ein Vektorbündel vom Rang q. Eine Teilmenge $F \subset E$ heißt Unterbündel vom Rang p, falls es einen p-dimensionalen Untervektorraum $W \subset \mathbb{R}^q$ gibt, so dass gilt:

Zu jedem Punkt $x \in X$ gibt es eine offene Umgebung $U = U(x) \subset X$ und eine Trivialisierung $\varphi : E|_U \to U \times \mathbb{R}^q$ von E über U mit $\varphi^{-1}(U \times W) = F|_U$ (:= $F \cap (E|_U)$).

2.4.1. Satz

Sei E ein Vektorbündel über X. Eine Teilmenge $F \subset E$ ist genau dann ein Unterbündel (vom Rang p), wenn gilt:

- 1. Für jedes $x \in X$ ist $F_x \subset E_x$ ein p-dimensionaler Unterraum.
- 2. Zu jedem $x_0 \in X$ gibt es eine offene Umgebung $U = U(x_0) \subset X$ und ein Rahmen $\{s_1, \ldots, s_q\} \subset \Gamma(U, E)$, so dass $\{s_1(x), \ldots, s_p(x)\}$ für $x \in U$ eine Basis von F_x ist.

BEWEIS: 1) Sei $F \subset E$ ein Unterbündel, $\varphi : E|_U \to U \times \mathbb{R}^q$ eine angepasste Trivialisierung. Dann ist $F_x = \varphi_x^{-1}(W)$ ein Unterraum von E_x , für $x \in X$. Man wähle eine Basis $\{\mathbf{a}_1, \ldots, \mathbf{a}_p\}$ von W und ergänze diese zu einer Basis $\{\mathbf{a}_1, \ldots, \mathbf{a}_p, \mathbf{a}_{p+1}, \ldots, \mathbf{a}_q\}$ von \mathbb{R}^q . Die Schnitte s_i mit $s_i(x) := \varphi^{-1}(x, \mathbf{a}_i)$ liefern das Gewünschte.

2) Sei umgekehrt das Kriterium erfüllt. Die Schnitte $s_1, \ldots, s_q \in \Gamma(U, E)$ eines angepassten lokalen Rahmens liefern eine Trivialisierung φ für E über U. Dann ist $\varphi \circ s_i(x) = (x, \mathbf{e}_i^\top)$ für alle i, und es ist $F|_U = \varphi^{-1}(U \times (\mathbb{R}^p \times \{\mathbf{0}\}))$. Also ist F ein Unterbündel.

Klar ist, dass ein Unterbündel eine Untermannigfaltigkeit und selbst ein Vektorbündel ist.

Sei E ein Vektorbündel vom Rang q über X und $F \subset E$ ein Unterbündel vom Rang r, sowie

$$E/F := \bigcup_{x \in X} E_x/F_x$$
 und $\overline{\pi} : E/F \to X$ sowie $p : E \to E/F$

die kanonischen Projektionen. Wir wollen E/F so mit der Struktur eines Vektorbündels versehen, dass p ein Bündel-Homomorphismus ist.

Sei $\{s_1, \ldots, s_q\}$ ein Rahmen für E über einer offenen Menge $U \subset X$, so dass s_1, \ldots, s_r das Unterbündel F über U erzeugen. Dann erzeugen s_{r+1}, \ldots, s_q ein weiteres (triviales) Unterbündel $Q \subset E|_U$. Für $x \in U$ ist $\{p(s_{r+1}(x)), \ldots, p(s_q(x))\}$

eine Basis von E_x/F_x . Damit ist $p_x: Q_x \to E_x/F_x$ für jedes $x \in U$ ein Isomorphismus, und $(E/F)|_U$ erhält die Struktur eines trivialen Bündels.

Nun sei eine offene Überdeckung durch Vektorbündel-Karten $\varphi_{\alpha}: E|_{U_{\alpha}} \to U_{\alpha} \times \mathbb{R}^{q}$ gegeben, so dass $F|_{U_{\alpha}} = \varphi_{\alpha}^{-1}(U_{\alpha} \times (\mathbb{R}^{r} \times \{\mathbf{0}\}))$ ist. Sei $Q_{\alpha} := \varphi_{\alpha}^{-1}(U_{\alpha} \times (\{\mathbf{0}\} \times \mathbb{R}^{q-r}))$. Dann induziert p eine Abbildung $p_{\alpha}: Q_{\alpha} \to (E/F)|_{U_{\alpha}}$, die faserweise ein Isomorphismus ist.

Sei $\psi_{\alpha} := \varphi_{\alpha}|_{F} : F|_{U_{\alpha}} \to U_{\alpha} \times (\mathbb{R}^{r} \times \{\mathbf{0}\})$. Die Übergangsfunktionen zu den φ_{α} und den ψ_{α} seien mit $G_{\alpha\beta}$, bzw. $g_{\alpha\beta}$ bezeichnet. Dann gilt:

$$G_{\alpha\beta}(x) \bullet \begin{pmatrix} \mathbf{v}^{\mathsf{T}} \\ \mathbf{0}^{\mathsf{T}} \end{pmatrix} = \begin{pmatrix} g_{\alpha\beta}(x) \bullet \mathbf{v}^{\mathsf{T}} \\ \mathbf{0}^{\mathsf{T}} \end{pmatrix},$$

also

$$G_{\alpha\beta}(x) = \begin{pmatrix} g_{\alpha\beta}(x) & \sharp \\ 0 & h_{\alpha\beta}(x) \end{pmatrix},$$

mit differenzierbaren Funktionen $h_{\alpha\beta}: U_{\alpha\beta} \to \mathrm{GL}_{q-r}(\mathbb{R}).$

Ist $\sigma: U \times \mathbb{R}^q \to U \times \mathbb{R}^{q-r}$ definiert durch $\sigma(x, (\mathbf{v}', \mathbf{v}'')^\top) := (x, (\mathbf{v}'')^\top)$ und $j_\alpha: Q_\alpha \hookrightarrow E|_{U_\alpha}$ die kanonische Injektion, so werden durch $\varrho_\alpha := \sigma \circ \varphi_\alpha \circ j_\alpha \circ p_\alpha^{-1}: (E/F)|_{U_\alpha} \to U_\alpha \times \mathbb{R}^{q-r}$ Trivialisierungen für E/F gegeben, mit

$$\varrho_{\alpha} \circ \varrho_{\beta}^{-1}(x, \mathbf{w}^{\top}) = \sigma \circ \varphi_{\alpha} \circ j_{\alpha} \circ p_{\alpha}^{-1} \circ p_{\beta} \circ (\sigma \circ \varphi_{\beta} \circ j_{\beta})^{-1}(x, \mathbf{w}^{\top})
= \sigma \circ \varphi_{\alpha} \circ j_{\alpha} \circ p_{\alpha}^{-1} \circ p \circ \varphi_{\beta}^{-1}(x, (\mathbf{0}, \mathbf{w})^{\top})
= \sigma \circ \varphi_{\alpha} \circ j_{\alpha} \circ p_{\alpha}^{-1} \circ p \circ \varphi_{\alpha}^{-1}(x, G_{\alpha\beta}(x) \cdot (\mathbf{0}, \mathbf{w})^{\top})
= \sigma(x, (\sharp, h_{\alpha\beta}(x) \cdot \mathbf{w}^{\top})) = (x, h_{\alpha\beta}(x) \cdot \mathbf{w}^{\top}))$$

Damit ist alles gezeigt, E/F ist ein Vektorbündel mit Übergangsfunktionen $h_{\alpha\beta}$.

Definition

Sei $f: E \to F$ ein Vektorbündel-Homomorphismus. Dann setzt man

$$\operatorname{Ker} f := \bigcup_{x \in X} \operatorname{Ker}(f_x : E_x \to F_x)$$
und
$$\operatorname{Im} f := \bigcup_{x \in X} \operatorname{Im}(f_x : E_x \to F_x).$$

2.4.2. Satz

Sei X eine zusammenhängende differenzierbare Mannigfaltigkeit, $f: E \to F$ ein Homomorphismus zwischen Bündeln über X. Dann sind folgende Aussagen äquivalent:

- 1. $x \mapsto \operatorname{rg}(f_x)$ ist konstant.
- 2. Ker $f \subset E$ ist ein Unterbündel.
- 3. Im $f \subset F$ ist ein Unterbündel.

BEWEIS: OBdA sei $E = X \times \mathbb{R}^p$, $F = X \times \mathbb{R}^q$ und $f(x, \mathbf{v}^\top) = (x, A(x) \cdot \mathbf{v}^\top)$. Ist Ker f oder Im f ein Unterbündel, so muss offensichtlich $x \mapsto \operatorname{rg}(f_x)$ konstant.

Sei umgekehrt $\operatorname{rg}(f_x)$ konstant, etwa = r. OBdA kann man annehmen, dass es eine Basis $\{\mathbf{a}_1, \ldots, \mathbf{a}_p\}$ von \mathbb{R}^p und eine Basis $\{\mathbf{b}_1, \ldots, \mathbf{b}_q\}$ von \mathbb{R}^q gibt, so dass die Elemente $f(x, \mathbf{a}_i), i = 1, \ldots, r$, eine Basis von $\operatorname{Im}(f_x)$ bilden und $\operatorname{Im}(f_x)$ komplementär zu dem von $\mathbf{b}_{r+1}, \ldots, \mathbf{b}_q$ erzeugten Raum ist.

Die Schnitte $t_i(x) := f(x, \mathbf{a}_i), i = 1, \dots, r, \text{ und } \widetilde{t}_j(x) := (x, \mathbf{b}_j), j = r + 1, \dots, q,$ bilden dann einen Rahmen für F. Deshalb ist Im f ein Unterbündel.

Es gibt Funktionen α_{ij} , so dass gilt:

$$f(x, \mathbf{a}_i) = \sum_{j=1}^{q} \alpha_{ij}(x)\mathbf{b}_j$$
, für $i = 1, \dots, p$.

Setzt man $A'(X) := \left(\alpha_{ij}(x) \mid \sum_{j=1,\dots,r}^{i=1,\dots,r}\right)$, so ist $\det A'(x) \neq 0$. Daher gibt es auch differenzierbare Funktionen β_{ki} mit

$$f(x, \mathbf{a}_k) = \sum_{i=1}^r \beta_{ki}(x) f(x, \mathbf{a}_i), \text{ für } k = r + 1, \dots, q.$$

Es folgt: Die Schnitte

$$s_k(x) := \left(x, \mathbf{a}_k - \sum_{i=1}^r \beta_{ki}(x) \mathbf{a}_i\right), \ k = r + 1, \dots, q$$

und $\widetilde{s}_i := (x, \mathbf{a}_i), \ i = 1, \dots, r,$

erzeugen E, und dabei erzeugen die s_k den Kern von f. Also ist Kerf ein Unterbündel.

Definition

Eine Folge $E \xrightarrow{f} F \xrightarrow{g} H$ von Vektorbündel-Homomorphismen heißt eine **exakte Sequenz**, falls für jedes $x \in X$ die Folge $E_x \xrightarrow{f} F_x \xrightarrow{g} H_x$ eine exakte Sequenz ist (also $\text{Im}(f_x) = \text{Ker}(g_x)$).

In diesem Fall ist $rg(f_x) + rg(g_x) = rg(F)$ konstant. Da $rg(f_x)$ und $rg(g_x)$ in der Nähe eines Punktes x_0 höchstens kleinere Werte als in x_0 selbst annehmen können,

gilt das auch für die Summe. Also sind beide Ränge konstant, und Kerf und Imf sind Unterbündel.

2.4.3. Beispiel

Sei $F \subset E$ ein Unterbündel. Dann ist die Sequenz $0 \to F \to E \to E/F \to 0$ exakt.

Ist $f:X\to Y$ eine differenzierbare Abbildung zwischen Mannigfaltigkeiten, so kann man

$$Tf:T(X)\to f^*T(Y)$$

definieren durch $(Tf)_x := f_{*,x} : T_x(X) \to T_{f(x)}(Y) = (f^*T(Y))_x$. Diese Abbildung ist fasertreu und in jeder Faser linear. Wir müssen noch die Differenzierbarkeit zeigen.

Sind $\psi_0: V \to \mathbb{R}^m$ und $\varphi_0: U = f^{-1}(V) \to \mathbb{R}^n$ Karten für Y bzw. X, so hat man Bündelkarten $\varphi: T(X)|_U \to U \times \mathbb{R}^n$ mit $\varphi\left(\sum_{\nu} a_{\nu}(\partial/\partial x_{\nu})|_x\right) := \left(x, (a_1, \dots, a_n)^{\top}\right)$ und analog $\psi: T(Y)|_V \to V \times \mathbb{R}^m$. Eine Trivialisierung $\widehat{\psi}: (f^*T(Y))|_U \to U \times \mathbb{R}^m$ gewinnt man dann durch $\widehat{\psi}\left(\sum_{\mu} b_{\mu}(\partial/\partial y_{\mu})|_{f(x)}\right) := \left(x, (b_1, \dots, b_m)^{\top}\right)$. Nun ist

$$\widehat{\psi} \circ Tf \circ \varphi^{-1}(x, \mathbf{a}^{\top}) = \widehat{\psi} \left(f_{*,x} \sum_{\nu=1}^{n} a_{\nu} \frac{\partial}{\partial x_{\nu}} \Big|_{x} \right)$$

$$= \widehat{\psi} \left(\sum_{\mu=1}^{m} \sum_{\nu=1}^{n} \frac{\partial (y_{\mu} \circ f)}{\partial x_{\nu}} (x) a_{\nu} \frac{\partial}{\partial y_{\mu}} \Big|_{f(x)} \right)$$

$$= (x, \psi_{f(x)}) \left(\sum_{\mu=1}^{m} \sum_{\nu=1}^{n} \frac{\partial (y_{\mu} \circ f)}{\partial x_{\nu}} (x) a_{\nu} \frac{\partial}{\partial y_{\mu}} \Big|_{f(x)} \right)$$

$$= \left(x, \left(\sum_{\nu=1}^{n} \frac{\partial (y_{1} \circ f)}{\partial x_{\nu}} (x) a_{\nu}, \dots, \sum_{\nu=1}^{n} \frac{\partial (y_{m} \circ f)}{\partial x_{\nu}} (x) a_{\nu} \right)^{\top} \right)$$

$$= (x, J_{\psi_{0} \circ f \circ \varphi_{0}^{-1}} (\varphi_{0}(x)) \cdot \mathbf{a}^{\top})$$

Das zeigt, dass Tf ein Bündel-Homomorphismus ist.

2.4.4. Beispiele

A. Ist $Y \stackrel{j}{\hookrightarrow} X$ eine Untermannigfaltigkeit, so hat man die exakte Sequenz

$$0 \longrightarrow T(Y) \longrightarrow j^*T(X) \longrightarrow N_X(Y) \longrightarrow 0,$$

mit dem **Normalenbündel** $N_X(Y) := j^*T(X)/T(Y)$.

B. Sei $f: X \to Y$ eine Submersion. Dann hat man eine exakte Sequenz

$$0 \longrightarrow \operatorname{Ker} T(f) \longrightarrow T(X) \xrightarrow{Tf} f^*T(Y) \longrightarrow 0,$$

da $f_{*,x}$ für jedes $x \in X$ surjektiv ist. Das Bündel Ker(Tf) nennt man auch das "Bündel der vertikalen Tangentialvektoren".

C. Ist $\pi: E \to X$ ein Vektorbündel, so ist π eine Submersion.

Behauptung: $Ker(T\pi) \cong \pi^*E$.

BEWEIS: Sind e und v zwei Elemente von E_x , so wird durch $\alpha(t) := e + tv$ ein Weg in E_x mit $\alpha(0) = e$ und $\overset{\bullet}{\alpha}(0) = v$ definiert. Auf diese Weise kann man die Elemente von $E_x = E_{\pi(e)} = (\pi^* E)_e$ als Tangentialvektoren aus $T_e(E_x) \subset T_e(E)$ auffassen. Aus Dimensionsgründen ist dann sogar $T_e(E_x) \cong E_x$. Weil $\pi \circ \alpha$ konstant ist, ist $\pi_{*,e}(v) = 0$ für alle $v \in T_e(E_x)$, also $(\pi^* E)_e \subset (\text{Ker}(T\pi))_e$. Wieder aus Dimensionsgründen folgt die Gleichheit.

So erhält man die exakte Sequenz

$$0 \longrightarrow \pi^* E \longrightarrow T(E) \xrightarrow{T\pi} \pi^* T(X) \longrightarrow 0.$$

Besonders interessant ist der Spezialfall E=T(X). Mit der Projektion $\pi_X: T(X) \to X$ erhält man die exakte Sequenz

$$0 \longrightarrow \pi_X^* T(X) \longrightarrow T(T(X)) \xrightarrow{T\pi_X} \pi_X^* T(X) \longrightarrow 0.$$

Das zweite Tangentialbündel spielt eine wichtige Rolle in der Analytischen Mechanik.

Der Konfigurationsraum X eines mechanischen Systems wird durch n verallgemeinerte Koordinaten q_1, \ldots, q_n beschrieben (das können z.B. die 3n kartesischen Koordinaten eines Systems von n Massenpunkten sein). Die Koordinaten von T(X) bezeichnet man mit $q_1, \ldots, q_n, \overset{\bullet}{q}_1, \ldots, \overset{\bullet}{q}_n$, die des Phasenraums $T^*(X)$ mit $q_1, \ldots, q_n, p_1, \ldots, p_n$ (mit den verallgemeinerten Impulsen p_i). Auf T(T(X)) hat man die Koordinaten $q_i, \overset{\bullet}{q}_i, dq_i$ und $d\overset{\bullet}{q}_i$.