3.3 Integration

Definition

Sei $B \subset \mathbb{R}^n$ offen und $\omega = f \, dx_1 \wedge \ldots \wedge dx_n$ ein stetige n-Form mit kompaktem Träger auf B. Dann setzt man

$$\int_{B} \omega := \int_{B} f(\mathbf{x}) \, dx_{1} \dots dx_{n}.$$

3.3.1. Satz

Sei $\Phi: U \to V$ ein Diffeomorphismus zwischen offenen Mengen im \mathbb{R}^n , ω eine n-Form mit kompaktem Träger auf V. Dann ist

$$\int_{U} \Phi^* \omega = \operatorname{sign} \det(J_{\Phi}) \int_{V} \omega.$$

Beweis: Sei $\omega = f \, dy^1 \wedge \ldots \wedge dy^n$. Die Transformationsformel liefert:

$$\int_{u} \Phi^{*} \omega = \int_{U} (f \circ \Phi) \cdot \det(J_{\Phi}) dx^{1} \wedge \dots \wedge dx^{n}$$

$$= \int_{U} f(\Phi(\mathbf{x})) \cdot \det J_{\Phi}(\mathbf{x}) d\mathbf{x}$$

$$= \operatorname{sign} \det(J_{\Phi}) \cdot \int_{U} f(\Phi(\mathbf{x})) \cdot |\det J_{\Phi}(\mathbf{x})| d\mathbf{x}$$

$$= \operatorname{sign} \det(J_{\Phi}) \cdot \int_{V} f(\mathbf{y}) d\mathbf{y}$$

$$= \operatorname{sign} \det(J_{\Phi}) \cdot \int_{V} \omega.$$

Definition

Es sei X eine n-dimensionale orientierte Mannigfaltigkeit, (U, φ) eine positiv orientierte Karte und ω eine stetige n-Form auf X mit kompaktem Träger in U. Dann setzen wir

$$\int_X \omega := \int_{\varphi(U)} (\varphi^{-1})^* \omega.$$

Die Definition hängt nicht von der gewählten Karte ab. Ist (V, ψ) eine weitere positiv orientierte Karte mit $\text{Tr}(\omega) \subset V$, so ist

$$\int_{\psi(V)} (\psi^{-1})^* \omega = \int_{\psi(U \cap V)} (\psi^{-1})^* \omega$$

$$= \int_{\varphi(U \cap V)} (\psi \circ \varphi^{-1})^* (\psi^{-1})^* \omega$$

$$= \int_{\varphi(U \cap V)} (\varphi^{-1})^* \omega = \int_{\varphi(U)} (\varphi^{-1})^* \omega.$$

Es sei jetzt $(U_{\iota}, \varphi_{\iota})_{\iota \in I}$ ein orientierter Atlas für X und $(f_{\iota})_{\iota \in I}$ eine dazu passende Teilung der Eins.

Definition

Ist ω eine stetige n-Form mit kompaktem Träger auf X, so setzen wir

$$\int_X \omega := \sum_{\iota \in I} \int_X f_\iota \cdot \omega.$$

Wir müssen uns erst mal überlegen, dass diese Definition sinnvoll ist.

- 1) Nach Voraussetzung ist $K := \text{Tr}(\omega)$ kompakt. Zu jedem $x \in K$ gibt es eine offene Umgebung U = U(x), die nur für endlich viele ι den Träger von f_{ι} trifft. Da man K mit endlich vielen solchen Umgebungen überdecken kann, ist die Summe in der Integraldefinition endlich.
- 2) Sei $(V_{\nu})_{\nu \in N}$ ein weiterer (gleich-orientierter) Atlas und $(g_{\nu})_{\nu \in N}$ eine dazu passende Teilung der Eins. Dann ist $f_{\iota}g_{\nu} = 0$ für fast alle (ι, ν) , und es gilt:

$$\sum_{\iota} \int_{X} f_{\iota} \omega = \sum_{\iota} \int_{X} \left(\sum_{\nu} g_{\nu} \right) f_{\iota} \omega = \sum_{\iota, \nu} \int_{X} g_{\nu} f_{\iota} \omega$$
$$= \sum_{\nu} \int_{X} \left(\sum_{\iota} f_{\iota} \right) g_{\nu} \omega = \sum_{\nu} \int_{X} g_{\nu} \omega.$$

3.3.2. Eigenschaften des Integrals

Sei X eine orientierte Mannigfaltigkeit, sowie ω , ω_1 und ω_2 n-Formen mit kompaktem Träger auf X: Dann gilt:

- 1. Sind $c_1, c_2 \in \mathbb{R}$, so ist $\int_X (c_1 \omega_1 + c_2 \omega_2) = c_1 \int_X \omega_1 + c_2 \int_X \omega_2$.
- 2. Ist X^- die gleiche Mannigfaltigkeit mit entgegengesetzter Orientierung, so ist $\int_{X^-} \omega = -\int_X \omega$.
- 3. Ist $\Phi: Y \to X$ ein orientierungserhaltender Diffeomorphismus, so ist $\int_X \omega = \int_Y \Phi^* \omega$.

3.3 Integration 107

Der Beweis ist trivial.

Unter einer Nullmenge im \mathbb{R}^n verstehen wir eine Lebesgue-Nullmenge.

Zur Erinnerung: $M \subset \mathbb{R}^n$ heißt eine *Lebesgue-Nullmenge*, falls es zu jedem $\varepsilon > 0$ eine Folge (Q_{ν}) von (achsenparallelen) Quadern im \mathbb{R}^n gibt, so dass $M \subset \bigcup_{\nu} Q_{\nu}$ und $\sum_{\nu} \mu_n(Q_{\nu}) < \varepsilon$ ist (wobei mit μ_n das Lebesgue-Maß bezeichnet wird).

3.3.3. Satz

Sei $Q \subset \mathbb{R}^n$ ein (achsenparalleler) Quader. Eine beschränkte Funktion $f: Q \to \mathbb{R}$ ist genau dann (Riemann-)integrierbar, wenn $\{\mathbf{x} \in Q: f \text{ nicht stetig in } \mathbf{x}\}$ eine Nullmenge ist.

Beweis: Siehe Analysis 2/3.

Eine beschränkte Menge $M \subset \mathbb{R}^n$ soll *Integrationsbereich* heißen, wenn ihr Rand eine Nullmenge ist. Jede beschränkte stetige Funktion auf M ist (Riemann-)integrierbar (denn die Menge der Unstetigkeitsstellen der trivialen Fortsetzung von f ist in ∂M enthalten).

3.3.4. Satz

Sei $U \subset \mathbb{R}^n$ offen und $K \subset U$ kompakt. Dann gibt es einen kompakten Integrationsbereich M mit $K \subset M \subset U$.

BEWEIS: Man überdecke K durch endlich viele offene Kugeln B_1, \ldots, B_N , deren abgeschlossene Hüllen in U enthalten sind. Dann kann man $M := \overline{B}_1 \cup \ldots \cup \overline{B}_N$ setzen.

3.3.5. Satz

Sei $U \subset \mathbb{R}^n$ offen, $A \subset U$ eine Nullmenge und $\mathbf{F} : U \to \mathbb{R}^n$ eine differenzierbare Abbildung. Dann ist auch $\mathbf{F}(A)$ eine Nullmenge.

Beweis: Siehe Analysis 2/3.

3.3.6. Folgerung

Ist $U \subset \mathbb{R}^m$ offen, m < n und $\mathbf{F} : U \to \mathbb{R}^n$ differenzierbar, so ist $\mathbf{F}(U)$ eine Nullmenge im \mathbb{R}^n .

BEWEIS: Sei $\widehat{U} := U \times \{\mathbf{0}\} \subset \mathbb{R}^n$ und $\widehat{\mathbf{F}} : U \times \mathbb{R}^{n-m} \to \mathbb{R}^n$ definiert durch $\widehat{\mathbf{F}}(\mathbf{x}', \mathbf{x}'') := \mathbf{F}(\mathbf{x}')$. Dann ist \widehat{U} eine Nullmenge, $\widehat{\mathbf{F}}$ differenzierbar und $\widehat{\mathbf{F}}(\widehat{U}) = \mathbf{F}(U)$. Die Behauptung folgt aus dem obigen Satz.

Definition

Sei X eine n-dimensionale Mannigfaltigkeit. Eine Teilmenge $N \subset X$ heißt **Null-menge**, falls $\varphi(N \cap U)$ für jede Karte (U, φ) eine Nullmenge im \mathbb{R}^n ist.

Wegen der obigen Ergebnisse ist die Definition nicht von gewählten Karten abhängig. Das Komplement einer Nullmenge ist dicht in X.

3.3.7. Satz

Sei X eine n-dimensionale orientierte differenzierbare Mannigfaltigkeit. G_1, \ldots, G_k seien (offene) Integrationsbereiche im $\mathbb{R}^n, U_1, \ldots, U_k$ offene Mengen in X und $\varphi_i : \overline{G_i} \to X$ differenzierbare Abbildungen, so dass gilt:

- 1. $\overline{U}_i = \varphi_i(\overline{G}_i)$ ist kompakt und ∂U_i ist eine Nullmenge, für $i = 1, \dots, k$.
- 2. $\varphi_i: G_i \to U_i$ ist ein orientierungserhaltender Diffeomorphismus, für $i = 1, \ldots, k$.
- 3. Für $i \neq j$ ist $\overline{U}_i \cap \overline{U}_j = \partial U_i \cap \partial U_j$.

 $Dann\ ist$

$$\int_X \omega = \sum_{i=1}^k \int_{\overline{G}_i} \varphi_i^* \omega$$

für jede n-Form ω auf X mit kompaktem Träger in $\overline{U}_1 \cup \ldots \cup \overline{U}_k$.

Zum Beweis setze man alle vorangegangenen Ergebnisse zusammen.

3.3.8. Beispiel

Sei a > 1. Lässt man den Kreis $(x_1 - a)^2 + x_3^2 = 1$ um die x_3 -Achse rotieren, so entsteht ein "Torus" X, eine 2-dimensionale kompakte (und orientierbare) Untermannigfaltigkeit des \mathbb{R}^3 . Der Torus kann parametrisiert werden durch

$$\psi(u, v) := ((a + \cos v)\cos u, (a + \cos v)\sin u, \sin v).$$

Dabei sei ψ auf $Q:=\{(u,v)\in\mathbb{R}^2:0\leq u\leq 2\pi,0\leq v\leq 2\pi\}$ definiert. Dann ist

$$\int_X \omega = \int_Q \psi^* \omega$$

für jede 2-Form ω auf X.

Sei etwa $\omega = x_1 dx_2 \wedge dx_3 + x_2 dx_3 \wedge dx_1 + x_3 dx_1 \wedge dx_2$ (worunter eigentlich die Einschränkung dieser Differentialform auf X zu verstehen ist). Dann ist

$$\psi^* dx_1 = -(a + \cos v) \sin u \, du - \sin v \cos u \, dv,$$

$$\psi^* dx_2 = (a + \cos v) \cos u \, du - \sin v \sin u \, dv$$

und
$$\psi^* dx_3 = \cos v \, dv,$$

3.3 Integration 109

also

$$\psi^*(dx_1 \wedge dx_2) = (a + \cos v) \sin v \, du \wedge dv,$$

$$\psi^*(dx_3 \wedge dx_1) = (a + \cos v) \sin u \cos v \, du \wedge dv$$

und
$$\psi^*(dx_2 \wedge dx_3) = (a + \cos v) \cos u \cos v \, du \wedge dv.$$

und daher

$$\psi^*\omega = ((1+a^2)\cos v + a(1+\cos^2 v)) du \wedge dv$$

und

$$\int_{X} \omega = \int_{0}^{2\pi} \left(\int_{0}^{2\pi} \left[a(1 + \cos^{2} v) + (1 + a^{2}) \cos v \right] du \right) dv$$

$$= 2\pi \left(2\pi a + a \int_{0}^{2\pi} \cos^{2} v \, dv + (1 + a^{2}) \int_{0}^{2\pi} \cos v \, dv \right) = 6\pi^{2} a,$$

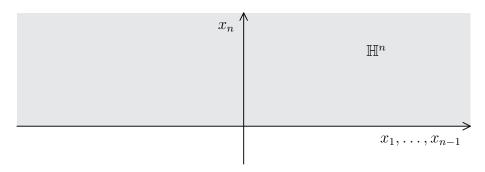
denn es ist

$$\int_0^{2\pi} \cos v \, dv = 0, \, \int_0^{2\pi} \, dv = 2\pi \, \text{und} \, \int_0^{2\pi} \cos^2 v \, dv = \pi.$$

3.4 Der Satz von Stokes

Es sei $\mathbb{H}^n := \{ \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n : x_n \ge 0 \}$. Dann ist

$$\partial \mathbb{H}^n = \{ (x_1, \dots, x_n) \in \mathbb{R}^n : x_n = 0 \}.$$



Der Halbraum \mathbb{H}^n werde mit der Relativtopologie versehen.

Ist $U \subset \mathbb{H}^n$ offen, so heißt eine Funktion $f: U \to \mathbb{R}$ differenzierbar, falls es eine offene Menge $W \subset \mathbb{R}^n$ mit $U \subset W$ und eine differenzierbare Funktion $\widehat{f}: W \to \mathbb{R}$ gibt, so dass $\widehat{f}|_U = f$ ist.

Definition

Ein topologischer Raum X heißt differenzierbare Mannigfaltigkeit mit Rand, falls gilt:

- 1. X ist ein Hausdorffraum und erfüllt das zweite Abzählbarkeitsaxiom.
- 2. Zu jedem Punkt $x_0 \in X$ gibt es eine Umgebung $U = U(x_0) \subset X$, eine offene Teilmenge $W \subset \mathbb{H}^n$ und eine topologische Abbildung $\varphi : U \to W$. Man spricht dann von einer **Karte** für X.
- 3. Je zwei Karten (U, φ) und (V, ψ) für X sind **differenzierbar verträglich**, d.h., $\varphi \circ \psi^{-1} : \psi(U \cap V) \to \varphi(U \cap V)$ ist differenzierbar.

Ein Punkt $a \in X$ heißt *innerer Punkt* von X, falls eine Karte (U, φ) mit $a \in U$ existiert, so dass $\varphi(U)$ eine offene Teilmenge des \mathbb{R}^n ist. Ist a kein innerer Punkt, so nennt man a einen Randpunkt von X. Es sei Int(X) die Menge der inneren Punkte und bX die Menge der Randpunkte von X.

3.4.1. Satz

Sei X eine Mannigfaltigkeit mit Rand. Ein Punkt $a \in X$ liegt genau dann in Int(X), wenn es zu jeder Karte (U,φ) von X mit $a \in U$ eine offene Umgebung $W = W(a) \subset U$ gibt, so dass $\varphi(W)$ offen im \mathbb{R}^n ist. Insbesondere ist die Eigenschaft, "Randpunkt von X zu sein", unabhängig von der Karte.

BEWEIS: 1) Sei $a \in \text{Int}(X)$ und (U, φ) eine Karte mit $a \in U$. $M := \varphi(U)$ ist eine offene Umgebung von $\mathbf{x}_0 := \varphi(a)$ in \mathbb{H}^n , und $\varphi^{-1} : M \to U$ ist eine differenzierbare Abbildung im oben definierten allgemeineren Sinne. Es gibt also eine offene Menge $N \subset \mathbb{R}^n$ mit $M \subset N$ und eine differenzierbare Abbildung $\varrho : N \to X$ mit $\varrho|_M = \varphi^{-1}$.

Sei (V, ψ) eine Karte für X mit $a \in V$ und $\psi(V)$ offen im \mathbb{R}^n (eine solche gibt es nach Definition des inneren Punktes). Die Abbildungen $\psi \circ \varrho$ und $\varphi \circ \psi^{-1}$ sind (als Kartenwechsel) differenzierbare Abbildungen, und es ist

$$(\psi \circ \varrho) \circ (\varphi \circ \psi^{-1}) = \psi \circ (\varrho \circ \varphi) \circ \psi^{-1} = \psi \circ \psi^{-1} = \mathrm{id},$$

also $D(\psi \circ \varrho)(\varphi(x)) \circ D(\varphi \circ \psi^{-1})(\psi(x)) = \text{id und damit } D(\varphi \circ \psi^{-1})(\psi(x)) \text{ invertierbar,}$ für alle $x \in U \cap V$. Nach dem Umkehrsatz gibt es offene Umgebungen P von $\psi(a)$ und Q von $\varphi(a)$ (jeweils im \mathbb{R}^n), so dass $\varphi \circ \psi^{-1}(P) = Q$ ist. $W := \psi^{-1}(P)$ ist dann eine offene Umgebung von α in $U \cap V$, so dass $\varphi(W)$ offen im \mathbb{R}^n ist.

2) Erfüllt a das Kriterium, so ist a offensichtlich ein innerer Punkt.

3.4.2. Satz

Ist X eine Mannigfaltigkeit mit Rand, so ist bX leer oder eine (n-1)-dimensionale Mannigfaltigkeit. Insbesondere ist $bbX = \emptyset$.

BEWEIS: Ist $x_0 \in bX$ und (U, φ) eine Karte für X in x_0 , so liegt $\varphi(x_0)$ in $\partial \mathbb{H}^n$. Insbesondere ist $bX \cap U = \varphi^{-1}(\partial \mathbb{H}^n \cap \varphi(U))$.

Sei $\pi: \mathbb{R}^n \to \mathbb{R}^{n-1}$ die durch $\pi(x_1, \dots, x_n) := (x_1, \dots, x_{n-1})$ definierte Projektion. Dann ist $\pi \circ \varphi|_{bX \cap U} : bX \cap U \to \mathbb{R}^{n-1}$ eine Karte für bX. Alle diese Karten ergeben einen Atlas für X.

Wir nennen die betrachteten Karten φ "angepasst".

3.4.3. Beispiele

- **A.** $X := \overline{B_r(\mathbf{0})} \subset \mathbb{R}^n$ ist eine Mannigfaltigkeit mit Rand, mit $bX = \partial B_r(\mathbf{0})$.
- **B.** Ist X_0 eine n-dimensionale Mannigfaltigkeit, so ist $X := X_0 \times [0,1]$ eine (n+1)-dimensionale Mannigfaltigkeit mit Rand. Dabei ist

$$bX = (X_0 \times \{0\}) \cup (X_0 \times \{1\}).$$

Sei X eine Mannigfaltigkeit mit Rand und $a \in bX$. Mit $C_+(a)$ bezeichnen wir die Menge aller differenzierbaren Funktionen $f: U \to \mathbb{R}$ mit folgenden Eigenschaften:

- 1. U ist eine Umgebung von a in X.
- 2. f(a) = 0 und $f(x) \ge 0$ für alle $x \in U$.

Definition

Ein Tangentialvektor $v \in T_a(X)$ heißt **positiv** oder **innerer Normalenvektor**, falls $v(f) \geq 0$ für jedes $f \in C_+(a)$ gilt, und v(f) > 0 für wenigstens ein $f \in C_+(a)$.

3.4.4. Satz

Sei X eine Mannigfaltigkeit mit Rand, $a \in bX$ und (U, φ) eine angepasste Karte für X in a. Die lokalen Koordinaten bezüglich φ seien mit x_1, \ldots, x_n bezeichnet. Ein Vektor $v \in T_a(X)$ ist genau dann ein positiver Tangentialvektor in a, wenn $v = \sum_{\nu=1}^n c_\nu \frac{\partial}{\partial x_\nu}$ mit $c_n > 0$ ist.

BEWEIS: Sei $\varphi(a) = \mathbf{0}$ und $W := \varphi(U) \subset \mathbb{H}^n$. Ist $f \geq 0$ auf W und $f(\mathbf{0}) = 0$, so ist

$$\frac{\partial f}{\partial x_n}(\mathbf{0}) = \lim_{h \to 0+} \frac{f(0, \dots, 0, h) - f(0, \dots, 0)}{h} \ge 0.$$

Die Funktion $g(x_1, \ldots, x_{n-1}) := f(x_1, \ldots, x_{n-1}, 0)$ hat im Nullpunkt ein lokales Minimum, und es ist $f_{x_{\nu}}(\mathbf{0}) = g_{x_{\nu}}(\mathbf{0}) = 0$ für $\nu = 1, \ldots, n-1$.

Ist also $v \in T_{\mathbf{0}}(\mathbb{R}^n)$, $v = \sum_{\nu=1}^n c_{\nu} \frac{\partial}{\partial x_{\nu}}$, so ist $v(f) = c_n \cdot f_{x_n}(\mathbf{0})$. Ist v positiv, so muss $c_n > 0$ sein. Ist umgekehrt $c_n > 0$, so ist allgemein $v(f) \ge 0$ für $f \in C_+(a)$, und speziell $v(x_n) = c_n > 0$, also v positiv.

3.4.5. Satz

Sei X eine Mannigfaltigkeit mit Rand und $a \in bX$. Sind $v_1, v_2 \in T_a(X)$ positiv, so gibt es ein $\lambda > 0$ mit $v_1 - \lambda v_2 \in T_a(bX)$.

BEWEIS: Man beschreibe beide Tangentialvektoren in lokalen Koordinaten, c_n bzw d_n sei jeweils der Koeffizient bei $\frac{\partial}{\partial x_n}$. Dann sind beide Zahlen > 0, und man kann ein $\lambda > 0$ finden, so dass $c_n - \lambda d_n = 0$ ist. Dann ist $v_1 - \lambda v_2$ Linearkombination von $\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_{n-1}}$, liegt also in $T_a(bX)$.

Sei $N_a(bX) := T_a(X)/T_a(bX)$ und $\varepsilon_a : T_a(X) \to N_a(bX)$ die kanonische Projektion. Für zwei positive Tangentialvektoren $v_1, v_2 \in T_a(X)$ gibt es ein $\lambda > 0$, so dass $\varepsilon(v_1) = \lambda \cdot \varepsilon(v_2)$ ist. Die von einem positiven Tangentialvektor v induzierte Orientierung $[\varepsilon(v)]$ von $N_a(bX)$ ist demnach eindeutig bestimmt. Man orientiert nun bX transversal so, dass $-[\varepsilon(v)]$ positiv orientiert ist, also eine äußere Normale.

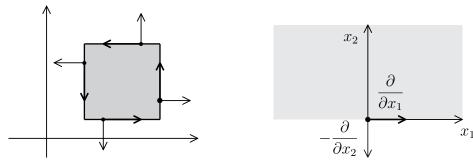
Ist φ eine angepasste positiv orientierte Karte mit Koordinaten x_1, \ldots, x_n , so ist $\partial/\partial x_n$ ein positiver Tangentialvektor. Nun gilt:

$$\left[-\frac{\partial}{\partial x_n}, \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_{n-1}} \right] = (-1)^n \left[\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_{n-1}}, \frac{\partial}{\partial x_n} \right].$$

Also ist

$$(-1)^n \left[\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_{n-1}} \right]$$

die innere Orientierung von bX, die der kanonischen transversalen Orientierung entspricht. Fortan sei bX immer so orientiert. Dies entspricht nur dann der Standard-Orientierung des \mathbb{R}^{n-1} , wenn n gerade ist (also z.B. im Falle n=2).



Orientierung des Randes

3.4.6. Satz von Stokes

Sei X eine orientierte n-dimensionale Mannigfaltigkeit mit Rand, $j:bX\hookrightarrow X$ die natürliche Einbettung, ω eine (n-1)-Form mit kompaktem Träger auf X. Dann ist

$$\int_{bX} j^* \omega = \int_X d\omega.$$

BEWEIS: 1) Sei $(U_{\iota}, \varphi_{\iota})_{\iota \in I}$ ein positiv orientierter angepasster Atlas, $(\varrho_{\iota})_{\iota \in I}$ eine dazu passende Teilung der Eins. Dann ist $\omega = \sum_{\iota} \omega_{\iota}$ mit $\omega_{\iota} := \varrho_{\iota} \omega$, und es ist $d\omega = \sum_{\iota} d\omega_{\iota}$ und $j^*\omega = \sum_{\iota} j^*\omega_{\iota}$. Gilt schon für jedes ι die Gleichung $\int_{bX} j^*\omega_{\iota} = \int_X d\omega_{\iota}$, so ist

$$\int_{bX} j^* \omega = \sum_{\iota \in I} \int_{bX} j^* \omega_{\iota} = \sum_{\iota \in I} \int_{X} d\omega_{\iota} = \int_{X} d\omega.$$

Es genügt also, den Fall zu betrachten, dass es eine Karte (U, φ) für X mit Tr $\omega \subset\subset U$ gibt.

Sei $\omega = \sum_{i=1}^{n} a_i dx_1 \wedge \ldots \wedge \widehat{dx_i} \wedge \ldots \wedge dx_n$ die Darstellung von ω bezüglich der Koordinaten x_1, \ldots, x_n zur Karte φ . Dann ist

$$(\varphi^{-1})^*\omega = \sum_{i=1}^n (a_i \circ \varphi^{-1}) \, dx_1 \wedge \ldots \wedge \widehat{dx_i} \wedge \ldots \wedge dx_n$$

und

$$(\varphi^{-1})^*(d\omega) = d((\varphi^{-1})^*\omega) = \sum_{i=1}^n (-1)^{i-1} \frac{\partial (a_i \circ \varphi^{-1})}{\partial x_i} dx_1 \wedge \ldots \wedge dx_n.$$

Schließlich sei noch $Q = [a, b]^n \subset \mathbb{R}^n$ ein Quader mit $\operatorname{Tr}((\varphi^{-1})^*\omega) \subset\subset Q$.

2) Fall (a): Es sei $bX \cap U = \emptyset$. Dann ist $\int_{bX} j^*\omega = 0$ und

$$\int_{X} d\omega = \int_{\varphi(U)} (\varphi^{-1})^{*}(d\omega)$$

$$= \int_{\varphi(U)} \sum_{i=1}^{n} (-1)^{i-1} \frac{\partial (a_{i} \circ \varphi^{-1})}{\partial x_{i}} dx_{1} \wedge \dots \wedge dx_{n}$$

$$= \sum_{i=1}^{n} (-1)^{i-1} \int_{Q} \frac{\partial (a_{i} \circ \varphi^{-1})}{\partial x_{i}} dx_{1} \dots dx_{n}$$

$$= \sum_{i=1}^{n} (-1)^{i-1} \int_{a}^{b} \dots \int_{a}^{b} \frac{\partial (a_{i} \circ \varphi^{-1})}{\partial x_{i}} dx_{1} \dots dx_{n} = 0.$$

Das folgt aus dem Fundamentalsatz der Differential- und Integralrechnung, da $a_i \circ \varphi^{-1}$ auf ∂Q verschwindet.

Fall (b): Nun sei $bX \cap U \neq \emptyset$. Dann ist $\varphi(U) \subset \mathbb{H}^n$ und

$$\varphi(U) \cap \{\mathbf{x} \in \mathbb{H}^n : x_n = 0\} \neq \varnothing.$$

Es ist
$$\int_{X} d\omega = \sum_{i=1}^{n} (-1)^{i-1} \int_{\varphi(U)} \frac{\partial (a_{i} \circ \varphi^{-1})}{\partial x_{i}} dx_{1} \dots dx_{n},$$
 und für $i = 1, \dots, n-1$ ist
$$\int_{\varphi(U)} \frac{\partial (a_{i} \circ \varphi^{-1})}{\partial x_{i}} dx_{1} \dots dx_{n} = 0,$$

das folgt mit dem gleichen Argument wie oben.

Für i = n ist $\frac{\partial (a_n \circ \varphi^{-1})}{\partial x_n}$ nur auf $[0, \infty)$ erklärt und

$$\int_{\varphi(U)} \frac{\partial (a_n \circ \varphi^{-1})}{\partial x_n} dx_1 \dots dx_n = \int_{\mathbb{R}^{n-1} \times [0,\infty)} \frac{\partial (a_n \circ \varphi^{-1})}{\partial x_n} dx_1 \dots dx_{n-1} dx_n$$

$$= -\int_{\mathbb{R}^{n-1}} a_n \circ \varphi^{-1}(x_1, \dots, x_{n-1}, 0) dx_1 \dots dx_{n-1},$$

also

$$\int_X d\omega = (-1)^n \int_{\mathbb{R}^{n-1}} a_n \circ \varphi^{-1}(x_1, \dots, x_{n-1}, 0) \, dx_1 \dots dx_{n-1}.$$

Ist $\widetilde{\varphi} := \varphi|_{bX \cap U} : bX \cap U \to \partial \mathbb{H}^n \cap \varphi(U)$ die induzierte Karte für den Rand und $J : \partial \mathbb{H}^n \hookrightarrow \mathbb{H}^n$ die natürliche Einbettung, so ist

$$j \circ \widetilde{\varphi}^{-1} = \varphi^{-1} \circ J$$

und

$$\int_{bX} j^* \omega = \int_{\varphi(bX \cap U)} (\widetilde{\varphi}^{-1})^* (j^* \omega) = \int_{\varphi(bX \cap U)} (j \circ \widetilde{\varphi}^{-1})^* \omega = \int_{\varphi(bX \cap U)} (\varphi^{-1} \circ J)^* \omega.$$

Es ist

$$\operatorname{pr}_{i} \circ J(x_{1}, \dots, x_{n-1}) = \operatorname{pr}_{i}(x_{1}, \dots, x_{n-1}, 0) = \begin{cases} x_{i} & \text{für } i = 1, \dots, n-1, \\ 0 & \text{für } i = n. \end{cases}$$

und damit

$$(j \circ \widetilde{\varphi}^{-1})^* dx_i = (\varphi^{-1} \circ J)^* dx_i = d(x_i \circ \varphi^{-1} \circ J) = d(\operatorname{pr}_i \circ J) = \begin{cases} dx_i & \text{für } i = 1, \dots, n-1, \\ 0 & \text{für } i = n. \end{cases}$$

Daraus folgt:

$$(j \circ \widetilde{\varphi}^{-1})^* (dx_1 \wedge \ldots \wedge \widehat{dx_i} \wedge \ldots \wedge dx_n) = \begin{cases} dx_1 \wedge \ldots \wedge dx_{n-1} & \text{falls } i = n, \\ 0 & \text{sonst.} \end{cases}$$

und

$$(j \circ \widetilde{\varphi}^{-1})^* \omega = a_n \circ \varphi^{-1}(x_1, \dots, x_{n-1}, 0) dx_1 \wedge \dots \wedge dx_{n-1}.$$

Da sich definitionsgemäß die Orientierung von bX von der kanonischen Orientierung des \mathbb{R}^{n-1} um den Faktor $(-1)^n$ unterscheidet, folgt:

$$\int_{bX} j^* \omega = (-1)^n \int_{\mathbb{R}^{n-1}} a_n \circ \varphi^{-1}(x_1, \dots, x_{n-1}, 0) \, dx_1 \dots dx_{n-1}.$$

Damit ist alles gezeigt.

3.4.7. Folgerung

Ist X eine orientierte n-dimensionale differenzierbare Mannigfaltigkeit (ohne Rand) und ω eine (n-1)-Form mit kompaktem Träger auf X, so ist $\int_X d\omega = 0$.

3.4.8. Satz

Sei X eine kompakte, orientierte, n-dimensionale Mannigfaltigkeit mit Rand. Dann gibt es **keine** differenzierbare Abbildung $r: X \to bX$ mit $r|_{bX} = \mathrm{id}$.

BEWEIS: bX ist eine (n-1)-dimensionale orientierte Mannigfaltigkeit. Sei ω eine (n-1)-Form auf bX mit $\int_{bX} \omega \neq 0$ (lässt sich leicht konstruieren, weil ω nur auf einer Koordinatenumgebung definiert werden muss). Für die Inklusionsabbildung $i:bX\hookrightarrow X$ gelte $r\circ i=\mathrm{id}_{bX}$. Dann ist $r^*\omega$ eine (n-1)-Form auf X und

$$\int_{bX} \omega = \int_{bX} (r \circ i)^* \omega = \int_{bX} i^* (r^* \omega) = \int_X d(r^* \omega) = \int_X r^* (d\omega) = 0,$$

denn aus Dimensionsgründen verschwindet bereits die n-Form $d\omega$ auf bX. Das ergibt einen Widerspruch!

3.4.9. (Differenzierbarer) Brouwer'scher Fixpunktsatz

Sei $K := \overline{B_1(\mathbf{0})}$ die abgeschlossene Einheitskugel im \mathbb{R}^n , $\mathbf{f} : K \to \mathbb{R}^n$ eine differenzierbare Abbildung mit $\mathbf{f}(K) \subset K$. Dann besitzt \mathbf{f} einen Fixpunkt.

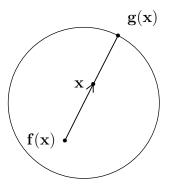
BEWEIS: 1) Sei zunächst n=1. Dann betrachten wir die Funktion $g:[-1,1] \to \mathbb{R}$ mit g(x):=x-f(x). Ist f(-1)=-1 oder f(1)=1, so sind wir fertig. Weil auf jeden Fall $f(-1) \ge -1$ und $f(1) \le 1$ ist, ist $g(1)=1-f(1) \ge 0$ und $g(-1) \le 0$. Wir brauchen nur noch den Fall g(-1) < 0 und g(1) > 0 zu betrachten. Aber dann besagt der Zwischenwertsatz, dass ein $x_0 \in [-1,1]$ mit $g(x_0)=0$ existiert, also $f(x_0)=x_0$.

2) Sei nun $n \geq 2$. Wir nehmen an, dass **f** keinen Fixpunkt besitzt. Dann wird durch

$$\mathbf{u}(\mathbf{x}) := \frac{\mathbf{x} - \mathbf{f}(\mathbf{x})}{\|\mathbf{x} - \mathbf{f}(\mathbf{x}\|)}$$

eine differenzierbare Abbildung $\mathbf{u}: K \to S^{n-1}$ definiert, und man kann eine Abbildung $t: K \to \mathbb{R}$ mit $t(\mathbf{x}) \ge 0$ finden, so dass $\|\mathbf{x} + t(\mathbf{x}) \cdot \mathbf{u}(\mathbf{x})\| = 1$ ist.

Sei $\mathbf{g}(\mathbf{x}) := \mathbf{x} + t(\mathbf{x}) \cdot \mathbf{u}(\mathbf{x})$. Anschaulich erhält man \mathbf{g} , indem man die Strecke von $\mathbf{f}(\mathbf{x})$ nach \mathbf{x} über \mathbf{x} hinaus so weit verlängert, dass sie die Sphäre trifft.



Bildet man das Skalarprodukt von $\mathbf{g}(\mathbf{x})$ mit sich selbst, so erhält man eine quadratische Gleichung für $t = t(\mathbf{x})$, nämlich

$$1 = \|\mathbf{x}\|^2 + t^2 + 2t \cdot \mathbf{x} \cdot \mathbf{u}(\mathbf{x}).$$

Die Auflösung der Gleichung ergibt $t(\mathbf{x}) = -\mathbf{x} \cdot \mathbf{u}(\mathbf{x}) + \sqrt{1 - \|\mathbf{x}\|^2 + (\mathbf{x} \cdot \mathbf{u}(\mathbf{x}))^2}$. Dass der Radikand positiv ist und ein Minuszeichen vor der Wurzel nicht in Frage kommt, ist klar, wenn $\|\mathbf{x}\| < 1$ ist. Ist $\|\mathbf{x}\| = 1$, so gibt es (weil auf jeden Fall $\mathbf{f}(\mathbf{x}) \neq 1$

 \mathbf{x} ist) zwei Möglichkeiten: Entweder ist $\mathbf{f}(\mathbf{x}) = -\mathbf{x}$, $\mathbf{u}(\mathbf{x}) = \mathbf{x}$ und $\mathbf{x} \cdot \mathbf{u}(\mathbf{x}) = 1$, also $1 - \|\mathbf{x}\|^2 + (\mathbf{x} \cdot \mathbf{u}(\mathbf{x}))^2 = 1$ und $t(\mathbf{x}) = -1 \pm 1$, oder \mathbf{x} und $\mathbf{f}(\mathbf{x})$ sind linear unabhängig. Im letzteren Fall folgt aus der Ungleichung von Cauchy-Schwarz, dass $|\mathbf{x} \cdot \mathbf{f}(\mathbf{x})| < \|\mathbf{x}\| \cdot \|\mathbf{f}(\mathbf{x})\| = \|\mathbf{f}(\mathbf{x})\| \le 1$ ist, also $\mathbf{x} \cdot \mathbf{u}(\mathbf{x}) > 0$ und $0 < 1 - \|\mathbf{x}\|^2 + (\mathbf{x} \cdot \mathbf{u}(\mathbf{x}))^2 = |\mathbf{x} \cdot \mathbf{u}(\mathbf{x})|^2$.

Damit hängt t und insbesondere \mathbf{g} differenzierbar von \mathbf{x} ab. Für $\mathbf{x} \in S^{n-1}$ ist $t(\mathbf{x}) = 0$, also $\mathbf{g}(\mathbf{x}) = \mathbf{x}$. Das ist ein Widerspruch zur Aussage von Satz 3.4.8, wenn man $\mathbf{g}: K \to S^{n-1}$ als Retraktion r auffasst.

Definition

Sei I := [0,1]. Zwei differenzierbare Abbildungen $\mathbf{f}, \mathbf{g} : X \to Y$ zwischen Mannigfaltigkeiten heißen **differenzierbar homotop**, falls eine differenzierbare Abbildung $\mathbf{F} : I \times X \to Y$ mit $\mathbf{F}(0, \mathbf{x}) = \mathbf{f}(\mathbf{x})$ und $\mathbf{F}(1, \mathbf{x}) = \mathbf{g}(\mathbf{x})$ existiert. Die Abbildung \mathbf{F} nennt man eine (**differenzierbare**) **Homotopie**.

Ist X eine kompakte, orientierte Mannigfaltigkeit, so ist $\mathbb{R} \times X$ eine Mannigfaltigkeit und $I \times X$ eine kompakte Mannigfaltigkeit mit Rand. Der Rand $b(I \times X)$ ist Vereinigung der Untermannigfaltigkeiten $X_0 := \{0\} \times X$ und $X_1 := \{1\} \times X$ (wenn die erste mit der Orientierung von X versehen wird, die zweite aber mit der entgegengesetzten Orientierung).

3.4.10. Satz

Sei X eine kompakte, n-dimensionale, orientierte Mannigfaltigkeit. Sind $\mathbf{f}, \mathbf{g}: X \to Y$ zwei homotope differenzierbare Abbildungen in eine weitere Mannigfaltigkeit Y, so gilt für jede n-Form ω auf Y mit $d\omega = 0$:

$$\int_X \mathbf{f}^* \omega = \int_X \mathbf{g}^* \omega.$$

BEWEIS: Sei $\mathbf{F}:I\times X\to Y$ die Homotopie zwischen \mathbf{f} und \mathbf{g} . Dann ist

$$\int_{X} \mathbf{f}^{*}\omega - \int_{X} \mathbf{g}^{*}\omega = \int_{X_{0}} \mathbf{F}^{*}\omega - \int_{X_{1}} \mathbf{F}^{*}\omega$$

$$= \int_{b(I \times X)} \mathbf{F}^{*}\omega = \int_{I \times X} d(\mathbf{F}^{*}\omega)$$

$$= \int_{I \times X} \mathbf{F}^{*}(d\omega) = 0.$$

Eine nette Folgerung ist der

3.4.11. Satz vom Igel

Auf der Sphäre S^{n-1} gibt es genau dann ein stetig differenzierbares Vektorfeld ohne Nullstellen, wenn n gerade ist.

Insbesondere hat jedes stetig differenzierbare Vektorfeld auf S^2 eine Nullstelle ("Jeder glatt gekämmte Igel hat wenigstens einen Glatzpunkt").

Beweis: 1) Ist n = 2m, so wird durch

$$\boldsymbol{\xi}(x_1,\ldots,x_m;x_{m+1},\ldots,x_{2m}) := (-x_{m+1},\ldots,-x_{2m};x_1,\ldots,x_m)$$

ein nirgends verschwindendes (stetig differenzierbares) Vektorfeld auf S^{n-1} gegeben.

2) Sei n = 2m+1 und $\boldsymbol{\tau}: S^{n-1} \to S^{n-1}$ die "Antipodenabbildung" mit $\boldsymbol{\tau}(\mathbf{x}) := -\mathbf{x}$. Wir nehmen an, es gibt ein stetig differenzierbares Vektorfeld $\boldsymbol{\xi}$ ohne Nullstellen auf S^{n-1} . Man kann annehmen, dass $\|\boldsymbol{\xi}(\mathbf{x})\| \equiv 1$ ist. Damit ist $\boldsymbol{\xi}$ eine stetig differenzierbare Abbildung von S^{n-1} auf sich. Definiert man $\mathbf{F}: I \times S^{n-1} \to S^{n-1}$ durch

$$\mathbf{F}(t, \mathbf{x}) := (\cos \pi t)\mathbf{x} + (\sin \pi t)\boldsymbol{\xi}(\mathbf{x}),$$

so ist $\mathbf{F}(0, \mathbf{x}) = \mathbf{x}$ und $\mathbf{F}(1, \mathbf{x}) = -\mathbf{x}$, also \mathbf{F} eine Homotopie zwischen id und $\boldsymbol{\tau}$. Auf S^{n-1} ist eine (n-1)-Form σ gegeben durch

$$\sigma = \sum_{i=1}^{n} x_i (-1)^{i+1} dx_1 \wedge \ldots \wedge \widehat{dx_i} \wedge \ldots \wedge dx_n.$$

Wir werden im nächsten Paragraphen sehen, dass $\int_{S^{n-1}} \sigma \neq 0$ ist. Dann ist

$$\tau^*\sigma = \sum_{i=1}^n (-x_i)(-1)^{i+1} d(-x_1) \wedge \ldots \wedge \widehat{dx_i} \wedge \ldots \wedge d(-x_n) = (-1)^n \sigma,$$

also

$$0 \neq \int_{S^{n-1}} \sigma = \int_{S^{n-1}} \tau^* \sigma = (-1)^n \int_{S^{n-1}} \sigma = -\int_{S^{n-1}} \sigma.$$

Das ist ein Widerspruch.